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Abstract

Background: Micro-organisms play an important role in various industrial sectors (including biochemical, food and

pharmaceutical industries). A profound insight in the biochemical reactions inside micro-organisms enables an

improved biochemical process control. Biological networks are an important tool in systems biology for incorporating

microscopic level knowledge. Biochemical processes are typically dynamic and the cells have often more than one

objective which are typically conflicting, e.g., minimizing the energy consumption while maximizing the production

of a specific metabolite. Therefore multi-objective optimization is needed to compute trade-offs between those

conflicting objectives. In model-based optimization, one of the inherent problems is the presence of uncertainty. In

biological processes, this uncertainty can be present due to, e.g., inherent biological variability. Not taking this

uncertainty into account, possibly leads to the violation of constraints and erroneous estimates of the actual objective

function(s). To account for the variance in model predictions and compute a prediction interval, this uncertainty

should be taken into account during process optimization. This leads to a challenging optimization problem under

uncertainty, which requires a robustified solution.

Results: Three techniques for uncertainty propagation: linearization, sigma points and polynomial chaos expansion,

are compared for the dynamic optimization of biological networks under parametric uncertainty. These approaches

are compared in two case studies: (i) a three-step linear pathway model in which the accumulation of intermediate

metabolites has to be minimized and (ii) a glycolysis inspired network model in which a multi-objective optimization

problem is considered, being the minimization of the enzymatic cost and the minimization of the end time before

reaching a minimum extracellular metabolite concentration. A Monte Carlo simulation procedure has been applied for

the assessment of the constraint violations. For the multi-objective case study one Pareto point has been considered

for the assessment of the constraint violations. However, this analysis can be performed for any Pareto point.

Conclusions: The different uncertainty propagation strategies each offer a robustified solution under parametric

uncertainty. When making the trade-off between computation time and the robustness of the obtained profiles, the

sigma points and polynomial chaos expansion strategies score better in reducing the percentage of constraint

violations. This has been investigated for a normal and a uniform parametric uncertainty distribution. The polynomial

chaos expansion approach allows to directly take prior knowledge of the parametric uncertainty distribution into

account.
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Background
The application of micro-organisms in chemical industry

and life sciences is paramount. In industrial biotech-

nology, on the one hand, microbial growth is stimu-

lated in order to enhance the production of (high added

value) chemical and pharmaceutical products. On the

other hand, in food industry the aim is to avoid the

growth of pathogens and food spoilage to ensure food

safety.

Therefore, a profound biochemical insight in micro-

bial dynamics and the reactions inside micro-organisms

is important. Integrating insights obtained at systems

biology (microscopic) level contributes to an improved

(macroscopic level) biochemical process control (i.e.,

enabling advanced model based monitoring, control and

optimization of bioprocesses) [1].

A basic tool in systems biology for incorporating micro-

scopic level information are biological networks, e.g.,

metabolic reaction networks in which the knots rep-

resent the metabolites (chemical substances produced/

consumed in the micro-organisms) and the connections

indicate themass fluxes between thosemetabolites. A bio-

logical network is a systematic representation of the cellu-

lar processes and the interactions between the molecules

in the cells: e.g., proteins and metabolites. Such a net-

work comprises (a subset of ) all reactions which occur

inside a cell and the knots represent the metabolites (i.e.,

products consumed/produced by the cells) and the links

represent the intracellular reactions or reactions between

the cell and its environment. A cell can be seen on micro-

scopic scale as a combination of interactions between

different layers: fluxome, metabolome, proteome, tran-

scriptome and genome. In terms of network complexity

(i.e., the number of metabolites and fluxes), fluxome level

biological networks have the lowest level of complexity,

while genome-scale biological networks have the highest

level of complexity [2–4].

Insight in the dynamic behavior of micro-organisms can

be obtained by simulation of metabolic networks. Opti-

mization of biological networks can be used to analyze

and also influence the regulation of pathways, e.g., to stim-

ulate the production of high added value products. In

practice, cells often have more than one objective, which

are conflicting, e.g., minimizing the energy consumption

while maximizing the production of a certain metabo-

lite. Therefore, dynamic (multi-objective) optimization,

which provides optimal (possibly time-varying) control

profiles, is an important tool. Multi-objective optimiza-

tion of biological networks has been investigated in [5–7].

The multi-objective design of bioprocesses and solution

strategies have for instance been presented in [8] with

application to a well-stirred, aerobic fermentor in which

Saccharomyces cerevisiae grows in a medium of sugar

cane molasses.

However, in practice, uncertainty on the model param-

eters and external process disturbances are inherently

present. Uncertainty can originate from unmodeled pro-

cess variables (process noise), e.g., inherent biological vari-

ability between cells which are genetically identical [9] or

from a parameter estimation procedure based on noisy

measurements (measurement noise), such that the true

parameter values (which are different from the model

parameters) are unknown. Not taking this uncertainty

into account, possibly leads to the violation of constraints

and erroneous estimates of the actual objective func-

tion(s). Therefore, the information about the uncertainty

has to be taken into account to obtain robustified controls

(i.e., variables that can be manipulated throughout the

process) that ensure that constraints are met and an over-

all better objective function estimate is guaranteed. In this

work the nature of uncertainty is assumed to be stochastic,

i.e., following a probability distribution, and the uncer-

tainty is modeled in themodel parameters, i.e., parametric

uncertainty [10].

Including robustness in an optimization problem is

often tedious, since this typically leads to semi-infinite

optimization problems that are challenging to solve in

practice [10]. Three methods are compared in this work

to approximately solve the (multi-objective) dynamic opti-

mization problem under parametric uncertainty for bio-

logical networks: linearization [11], sigma points [12]

and polynomial chaos expansion [13, 14]. Each of these

methods requires increasing levels of information on

the parametric uncertainty distribution to propagate the

parametric uncertainty towards the states, constraints or

objectives of interest.

The authors want to highlight that enzyme activation in

biological networks has been studied in terms of dynamic

optimization, single objective as well as multi-objective.

In this work, for the first time, parametric uncertainty

is taken into account for prediction and control of bio-

logical networks. Another novelty is the critical compar-

ison of the linearization, sigma points and polynomial

chaos expansion approaches for dynamic optimization

of biological networks under uncertainty. Single objec-

tive as well as multi-objective optimization case studies

have been investigated in this work. Therefore the gen-

eral formulations in this work have been presented for

multi-objective optimization problems.

The paper is structured as follows. In the ‘Methods’

section the multi-objective dynamic optimization prob-

lem formulation under parametric uncertainty is first

presented. Then the concept of uncertainty propagation

is introduced, together with the three applied approx-

imation techniques for uncertainty propagation. Subse-

quently, multi-objective optimization methods are briefly

discussed. To conclude this section the software and case

studies are presented. A validation and assessment of
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the approximation techniques for uncertainty propagation

based on the case studies is presented in the ‘Results and

discussion’ section, together with a physical/biological

interpretation. Finally, the ‘Conclusions’ section summa-

rizes the main results of this work.

Methods
In this section the robustified multi-objective dynamic

optimization formulation is presented. Subsequently, the

different approximation techniques for uncertainty prop-

agation that enable a robustified dynamic optimization

under parametric uncertainty are discussed. Next, the

approach for the Monte Carlo simulations is presented. In

addition, multi-objective optimization methods are intro-

duced, followed by a brief discussion on the software used

in this work. To conclude the case studies are presented.

Multi-objective dynamic optimization under parametric

uncertainty

Consider the system ẋ = f(x,u, θ , t), with x ∈ R
nx the

state vector (e.g., metabolite concentrations), u ∈ R
nu ,

the control vector (e.g., enzyme expression rates), θ ∈
R
nθ the vector containing the uncertain parameters (e.g.,

kinetic constants such as the maximum reaction rate) and

t the time. The aim of a multi-objective dynamic opti-

mization problem is to design a control, which minimizes

several objective functions {J1, . . . , JnJ }, subject to the

constraints (i.e., model as dynamic constraint and other

constraints). The multi-objective dynamic optimization

problem in the time interval t ∈ [0, tf] and constraints

c(x,u, θ , t) ∈ R
nc (e.g., bounds on the metabolite con-

centrations or fluxes for cell viability) is formulated as in

Eq. (1).

min
u,x,tf

{J1, . . . , JnJ }

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ = f(x,u, θ , t)

x(0) = x0

0 ≥ c(x,u, θ , t)

(1)

An inherent problem in the modeling of biological pro-

cesses is uncertainty. This uncertainty can originate from

model uncertainty and external disturbances [10]. The

emphasis in this work is on parametric uncertainty, i.e.,

the uncertainty is present in several model parameters,

which for instance can originate from biological variabil-

ity. Not taking this uncertainty into account can possibly

lead to constraint violations or erroneous estimates of

the actual objective function of the process. In the field

of robust optimization these uncertainties are taken into

account to guarantee that critical constraints are not vio-

lated [10].

If knowledge about the parametric uncertainty distribu-

tion is present, expected values for the states and chance

constraints can be formulated [15]. Chance constraints

express that the probability of a constraint to be validmust

be larger than a specific value [16, 17].

Consider that the constraints 0 ≥ c(x,u, θ , t) can be

replaced by ncprob chance constraints cprob,i, expressing

that the probability that a constraint is satisfied is larger

than a preset probability βi, with i = 1, . . . , ncprob . In this

work only single chance constraints are considered.

βi ≤ Pr
[

0 ≥ cprob,i(x,u, θ , t)
]

(2)

If the uncertainty is fully known within a specific

bounded set, the optimization problem is solved for the

worst-case scenario in which all constraints have to be sat-

isfied [15]. This approach typically leads to minmax prob-

lems which are hard to solve [18]. Since the worst-case

scenario is often highly unlikely to occur, this approach

can lead to poor results [11]. In order to solve this, a trade-

off between the nominal case (i.e., the non-robustified

case in which uncertainty is not taken into account and

the nominal parameter values are used) and worst-case

scenario can be made [15].

The main limitation of the dynamic optimization prob-

lem with chance constraints is solving the problem in

a computationally efficient way. The propagation of the

parameter uncertainties through the nonlinear model and

obtaining computationally tractable expressions for the

dynamic optimization problem with chance constraints

remains challenging [19]. Therefore, the chance con-

straints can be approximated by deterministic constraints

as in Eq. (3).

0 ≥ E
[

cprob,i
]

+ αcprob,i

√

Var
[

cprob,i
]

(3)

In Eq. (3), E
[

cprob,i
]

and Var
[

cprob,i
]

express the

expected value and variance of the chance constraint func-

tion cprob,i, respectively. The coefficient αcprob,i is intro-

duced as a backoff parameter (e.g., [11, 20]) to take the

uncertainty on the chance constraints into account. The

choice of the backoff can for instance correspond to a

probability that the specific constraint is violated, i.e.,

so-called single chance constraints.

A first way to choose the backoff parameter αcprob,i is

with Cantelli-Chebyshev’s inequality. In [17] it is shown

that an upper bound for the expected value on an indi-

vidual chance constraint can be calculated. This equation

holds for any underlying distribution of the chance con-

straint. Computing the backoff parameter via Cantelli-

Chebyshev’s inequality for a probability of 95% for the

chance constraint to be satisfied, results in a backoff

parameter αcprob,i = 4.36, while for a normal proba-

bility distribution the backoff parameter would be 1.96.
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From this, it is clear that Cantelli-Chebyshev’s inequal-

ity generally leads to a very conservative bound with too

high backoff parameter values for use in practice, leading

potentially to infeasibilities.

If a probability distribution is assumed for the consid-

ered constraint(s) or objective function(s), a second way is

to choose the backoff parameter based on the quantiles.

For this a procedure as in [10] can be followed to obtain a

desired confidence level for the constraint to be satisfied

or to cover the objective function in a prediction interval.

In this work the choice of the backoff parameter is based

on the quantiles, assuming that the states follow a normal

distribution, as shown in Table 1.

Similarly to the reformulation of constraints, the objec-

tive function Ji can be reformulated by adding the term

αJi

√
Var [Ji]. Since an objective function has to be mini-

mized, an increase in variance is penalized by this refor-

mulation. The reformulated robustified multi-objective

dynamic optimization problem with deterministic con-

straints is formulated in Eq. (4).

min
u,x,tf

{

E [J1] + αJ1

√

Var [J1], . . . ,E
[

JnJ
]

+ αJnJ

√

Var
[

JnJ
]

}

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ = f(x,u, θ , t)

x(0) = x0

0 ≥ E
[

cprob,i
]

+ αcprob,i

√

Var
[

cprob,i
]

i = 1, . . . , ncprob

(4)

In practice, not all constraints have to be replaced by

probabilistic constraints (e.g., bounds on the controls and

states) and constraints of the form 0 ≥ c(x,u, θ , t) can still

be present in the optimization problem formulation.

Approximation techniques for uncertainty propagation

In this paper, the parametric uncertainty is propagated to

the states, constraints and objectives of interest. This can

be illustrated with an example shown in Fig. 1. Consider

the simple nonlinear model y = g(x) (blue curve), with

the parameter x that is uncertain with a known paramet-

ric uncertainty distribution (green curve). The principle

of uncertainty propagation will propagate the parametric

uncertainty distribution (green curve) through the nonlin-

ear model (blue curve) in order to obtain the uncertainty

distribution of the output y (purple curve).

Table 1 Backoff parameter αi with corresponding quantiles and

confidence levels

αi 0.84 1.28 1.65 1.96

Quantile 0.20 0.10 0.05 0.025

Confidence level 0.80 0.90 0.95 0.975

The parametric uncertainty can be propagated via a

numerical integration over the parameter distribution

[21]. However, this integration is typically computation-

ally expensive for realistic models and more efficient

approximative uncertainty propagation techniques exist.

An alternative to this numerical integration is the use

of Monte Carlo simulations in optimization. A large num-

ber of N realizations is drawn from the assumed para-

metric uncertainty distribution with variance-covariance

matrix � and the empirical confidence regions can be

determined by using the appropriate quantiles. However,

this is in practice computationally extremely expensive.

Due to the large amount of simulations, no computation-

ally tractable procedure for gradient based optimization

schemes is available. In addition there is no clear rule on

how many noise realizations have to be taken in order

to obtain an accurate estimate [10]. For these reasons,

Monte Carlo simulations are not pursued in the dynamic

optimization procedure.

Approaches that exploit the availability of measure-

ments as described in [11, 22, 23] are also used in the field

of robust optimization. However, these are not considered

in this paper, since in an industrial setting intracellu-

lar measurements are typically not available on a routine

basis.

The first type of the employed techniques is a so-called

linearization approach, which is based on first-order Tay-

lor series approximations of the model functions with

respect to the uncertainty [10, 11]. This approximation

can be used if higher order terms can be neglected. This

is the case when the uncertainty is small compared to

the model curvature [15]. In this linearization approach

a linear approximation of the variance-covariance matrix

[11] of the states is made. On the other hand efficient

sampling-based uncertainty propagation techniques exist

as, e.g., using Hammersley sequences [24], the unscented

transformation or sigma points approach [12] and the

polynomial chaos expansion approach [19, 25].

In addtition to the linearization approach [11], two

other techniques are considered: the sigma points

approach [12] and the polynomial chaos expansion

approach [19].

In practice, one is often interested in the violation of a

path constraint (e.g., fluxes or concentrations that should

not exceed their bounds for cell viability), a terminal con-

straint (e.g., a minimum amount of a specific metabolite

to be produced) or the robustness of the objective (e.g.,

a minimum enzymatic cost), i.e., minimizing the uncer-

tainty on the objective by taking into account the variance

on the objective. The constraint or objective function

to which the uncertainty is propagated, is denoted by

Rk(x,u, θ , t) in the following. The three techniques consist

of propagating the parametric uncertainty by approximat-

ing the expected value E [Rk] and variance Var [Rk] of
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x

y

Original
y = g(x)
Exact

Fig. 1 Principle of uncertainty propagation. Uncertainty propagation of x towards y via nonlinear transformation g(x) in an exact way

Rk(x,u, θ , t). The approximated expected value and vari-

ance are denoted by R̄k,LIN, R̄k,SP, R̄k,PCE and PLIN,PSP,

PPCE, respectively.

An overview of these techniques with the robustified

multi-objective dynamic optimization problem formula-

tion is provided in Table 2. A graphical representation of

the approximation techniques for uncertainty propagation

is shown in Fig. 2. A more detailed review of these tech-

niques is presented in Additional file 1. Note that these

approaches are also applicable to uncertainty present in

the model right hand side. However, in this work only

the application to parametric uncertainty propagation is

considered.

Note: The approximation techniques for uncertainty

propagation can also be used to quantify the effect of

parametric uncertainty on model predictions. If the con-

trols are fixed, then an additional benefit could be that the

uncertainty on the states can be displayed. This enhances

the insight in whereto the system can evolve with an a

priori known or assumed parametric uncertainty. In fact,

in literature it has been pointed out that the polynomial

chaos expansion could be considered as an alternative

to Monte Carlo simulations, but with less computational

cost [25].

Multi-objective optimization methods

In practice, multiple objectives, which are very often con-

flicting with each other, have to be considered simulta-

neously, e.g., minimizing the enzyme consumption while

maximizing the production of a certainmetabolite. There-

fore, a single optimal solution will not exist, but a set

of trade-off solutions, called the Pareto front, is obtained

when solving a multi-objective problem [16].

Two categories of methods can be distinguished for

the calculation of Pareto fronts: scalarization methods

([26–30]) that convert the multi-objective optimization

problem into a series of single objective optimization

problems by using scalar variables, and vectorization

methods [16, 32–34] that start from a population of

candidate solutions that gradually evolve to the Pareto

front. Scalarization methods can take advantage of fast

and efficient gradient based methods to find an opti-

mum for the series of single objectives, while vectorization

methods often use derivative-free optimization methods

as evolutionary or stochastic optimization approaches.

In this work the Normal Boundary Intersection (NBI)

method [30, 31], i.e., a scalarization method, is used. For a

more detailed description of the frame of multi-objective

dynamic optimization and the NBI method see, e.g., [35]

and Additional file 2.

Implementation and software

The dynamic optimization problems in this work are

solved using a direct approach, in which first the optimal

control problem is discretized into a nonlinear optimiza-

tion problem that can be solved afterwards with NLP

solvers. It is chosen to discretize the problems using an

orthogonal collocation discretization scheme. The ratio-

nale of orthogonal collocation is that the states and con-

trols are fully discretized with respect to time in finite

elements. Per finite element there are four collocation

points of which the first one is fixed and the three other
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Table 2 Overview of the approximation techniques for uncertainty propagation with Rk the variable to which the parametric uncertainty is propagated

Linearization Sigma points Polynomial chaos

Rationale Linearization of state equations around θ̄ Approximate distribution by a fixed number of Approximate response of the model (at sampling
parameters (sigma points) points) as a pth order polynomial function of θ

Uncertainty distribution Normal Any symmetric, unimodal distribution Any

Equations State equations + Sensitivity equations: State equations for SPs: State equations for sampling points:
⎧

⎨

⎩

ṠLIN(t) = ∂f(x,u,θnom ,t)
∂x

SLIN + ∂f(x,u,θnom ,t)
∂θ

,

SLIN(0) = 0
ẋi = f(xi ,u,π i , t) with i = 0, . . . , 2nθ ẋi = f(xi ,u,π i , t) with i = 0, . . . , ns − 1

Total nstates (nθ + 1)nx (2nθ + 1)nx
(nθ +p)!
nθ !p!

nx

Sampling points – Sigma points: 2nθ + 1 Collocation points:
(nθ +p)!
nθ !p!

Expected value of Rk Rk
1

nθ +κ

(

κRk(π0) + 1
2

∑2nθ

i=1 Rk(π i)

)

a
(p)
Rk ,0

Variance on Rk PRkRk ,LIN = ∂Rk
∂x

PLIN

(

∂Rk
∂x

)⊤
PRkRk ,SP = 1

nθ +κ

(

κ(Rk(π0) − R̄k)(Rk(π0) − R̄k)
⊤)

P
(p)
RkRk ,PCE

=
∑L−1

j=1

(

a
(p)
Rk ,j

)2
E

[

�2
j (θ)

]

+ 1
nθ +κ

(

1
2

∑2nθ

i=1(Rk(π i) − R̄k)(Rk(π i) − R̄k)
⊤
)

with: PLIN = SLIN(t)�SLIN(t)⊤ with:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

π0 = θnom ,

π i = θnom +
√

(nθ + κ)� i with i = 1, . . . , nθ ,

π i = θnom −
√

(nθ + κ)� i−nθ
with i = nθ + 1, . . . , 2nθ .

κ = 3 − nθ

with: a = (��
⊤)−1

�Rk,s

Optimization problem min
u,x,tf

{J1 , . . . , JnJ } min
u,x,tf

{J1 , . . . , JnJ } min
u,x,tf

{J1 , . . . , JnJ }

J̄iLIN + αJi

√

PJiJi ,SP J̄iSP + αJi

√

PJiJi ,SP J̄i
(p)
PCE + αJi

√

PJiJi ,PCE
(p)

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ = f(x,u, θ , t)

ṠLIN(t) = ∂f(x,u,θnom ,t)
∂x

SLIN + ∂f(x,u,θnom ,t)
∂θ

,

SLIN(0) = 0

x(0) = x0

0 ≥ c̄prob,i,LIN

+αcprob,i

√

Pcprob,i ,cprob,i ,LIN

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ẋi = f(xi ,u,π i , t)with i = 0, . . . , 2nθ

x(0) = x0

0 ≥ c̄prob,i,SP

+αcprob,i

√

Pcprob,i ,cprob,i ,SP

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋi = f(xi ,u,πi , t)

with i = 0, . . . , ns − 1

x(0) = x0

Rk,s
(p) =

(

	(p)
)⊤

aRk
(p)

with k = 1, . . . , nR

0 ≥ c̄
(p)
prob,i,PCE

+αcprob,i

√

Pcprob,i ,cprob,i ,PCE
(p)

with i = 1, . . . , ncprob
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Fig. 2 Approximation techniques for uncertainty propagation. Overview of the linearization, sigma points and polynomial chaos expansion

methods for uncertainty propagation of x towards y = g(x)

ones should obey the model equations and are seen as

equality constraints (i.e., so-called collocation constraints).

Between each finite element there is also a constraint that

ensures continuity (i.e., so-called continuity constraints).

As interpolation between the collocation points a cubic

Lagrange polynomial is used, with four collocation points

situated at the Radau roots on each interval. State bounds

are easily added in this technique. The fact that orthogo-

nal collocation has hardly any problem with stiff systems

is advantageous in case of numerically unstable systems.

An inhouse developed software package, called

Pomodoro, is used for the implementation of both case

studies. The Pomodoro software contains a collection

of algorithms and tools for dynamic optimization and is

implemented in Python. Pomodoro uses CasADi [36]

as a backbone for the dynamic optimization problem

formulation. CasADi is a software package for rapid

prototyping of large-scale optimization problems with

automatic differentiation using a symbolic/numeric

approach. For solving the NLP, an interior point algo-

rithm, IPOPT [37], has been used. The Pomodoro

software can be downloaded from https://perswww.

kuleuven.be/~u0093798/software.php. For review pur-

poses the work describing Pomodoro (Bhonsale SS, Telen

D, Vercammen D, Vallerio M, Hufkens J, Nimmegeers

P, Logist F, Van Impe J. Pomodoro - A novel toolkit for

(multiobjective) dynamic optimization, model based

control and estimation, submitted), can be found on

http://www.student.kuleuven.be/~s0212066/pomodoro/.

For more information on the optimization methods and

implementation, the reader is referred to Additional file 2

and [35].

Case studies

Two case studies are considered: (a) a three-step linear

pathway with mass-action kinetics [7, 38] and (b) a gly-

colysis based network with 1 output [7, 39]. It should

be noted that the models for the case study are partially

taken from [7]. The networks for the two case studies are

presented in Fig. 3.

Case 1: three-step linear pathway

The first case study is a three-step linear pathway pro-

ducing one product S4 from a buffered substrate S1
[7, 38]. This pathway consists of three enzymatic reactions

(with reaction fluxes v = [v1 v2 v3]
⊤.) following mass-

action kinetics, between 4 metabolites S = [S1 S2 S3 S4]
⊤.

Each reaction is catalyzed by a specific enzyme ei. The first

metabolite S1 is the substrate, intermediate metabolites

are S2 and S3, while S4 is the product, produced by this

three step linear pathway. The substrate is considered to

be buffered, whichmeans that the substrate concentration

remains constant.

The model contains four differential states and an addi-

tional state xextra for the objective function correspond-

ing to the integral of the intermediate accumulation.

The model together with its constraints is presented in

Eq. (5). The first constraint is to ensure that a minimum

amount of product is obtained at tf. The second constraint

expresses that the sum of all enzyme concentrations

https://perswww.kuleuven.be/~u0093798/software.php
https://perswww.kuleuven.be/~u0093798/software.php
http://www.student.kuleuven.be/~s0212066/pomodoro/
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(a)

(b)

Fig. 3 Networks for Case 1 and Case 2. Biological networks based on [7]: a Three step linear pathway with four metabolites and three fluxes and

b Glycolysis based network with five metabolites and four fluxes

cannot exceed the total enzymatic concentration ET of 1

mM. The enzyme concentrations e = [e1 e2 e3]
⊤ are the

controls in this case study.

⎧
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⎪
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⎪
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⎨

⎪

⎪

⎪

⎪

⎪

⎪
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⎩

dS
dt = Nv

dxextra
dt = S2 + S3

S4(tf) ≥ 0.90mM

∑ne=3
ie=1 ei ≤ ET

(5)

with:

v1 = k1 · S1 · e1 (6)

v2 = k2 · S2 · e2 (7)

v3 = k3 · S3 · e3 (8)

N =

⎡

⎢

⎢

⎣

0 0 0

1 −1 0

0 1 −1

0 0 1

⎤

⎥

⎥

⎦

(9)

with N ∈ R
4×3 the stoichiometric matrix, containing the

stoichiometric coefficients Nij of metabolite i in the j-th

reaction and kj, the maximum reaction rate of reaction j.

The three uncertain parameters are the three reaction

rate constants k1, k2 and k3, for which the nominal value

equals 1 (mMs)−1. Since high concentrations of inter-

mediate metabolites S2 and S3 can be harmful for cell

viability, the intermediate accumulation is minimized for

this case study.

J = xextra(tf) =
tf

∫

t0=0s

S2 + S3dt (10)

Case 2: glycolysis based network with 1 output

The second case study is a glycolysis based network with

the production of one product S5, starting from one sub-

strate S1 from [7]. In this pathway four enzymatic reac-

tions are taking place, each catalyzed by a specific enzyme.

The fluxes are modeled with Michaelis-Menten kinetics.

The intracellular metabolites in this network are S2, S3
and S4. It is assumed that the substrate S1 is buffered. This

case study is particularly interesting due to the branch

that is present. Such branches often occur in biological

networks and the presented problem formulation can be

modified/extended to many scenarios.

The expressions for this model are presented in

Eq. (11) where N is the stoichiometric matrix, with v =
[v1 v2 v3 v4]

⊤ the flux vector, S = [S1 S2 S3 S4 S5]
⊤ the

vector containing the metabolite concentrations , e =
[e1 e2 e3 e4]

⊤ the enzyme concentration vector, the vec-

tor of manipulated variables r = [r1 r2 r3 r4]
⊤ containing

the expression rates, kcat,j the maximum reaction rate for



Nimmegeers et al. BMC Systems Biology  (2016) 10:86 Page 9 of 20

reaction j, dependent on the enzyme that is catalyzing the

reaction j which is assumed to be the same for each reac-

tion and therefore considered as the model parameter kcat
and KM the Michaelis constant.

⎧

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dS
dt = Nv

de
dt = r − λe

dxextra
dt = e1 + e2 + e3 + e4

S5(tf) ≥ 0.675 mM
∑ne=4

ie=1 ei ≤ ET

r1(t0) = 0.5

rir (t0) = 0,
∑nr=4

ir=1 rir ≤ 0.5 ir = 2, . . . , nr = 4

(11)

with:

v1 =
kcat · S1
KM + S1

· e1 (12)

v2 =
kcat · S2
KM + S2

· e2 (13)

v3 =
kcat · S3
KM + S3

· e3 (14)

v4 =
kcat · S4
KM + S4

· e4 (15)

N =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0

1 −1 0 0

0 1 −1 0

0 1 1 −1

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(16)

The following values for the parameters are assumed [7]:

kcat = 1 s−1, KM = 1 mM and λ = 0.5 s−1.

Two objectives are considered for which the enzyme

expression rates in r are optimized: the minimization of

the time to reach a given steady state and the enzyme

consumption (or enzymatic cost) as shown in Eqs. (17)-

(18):

J1 = tf (17)

J2 =
tf

∫

t0=0s

⎛

⎝

ne=4
∑

ie=1

eiedt

⎞

⎠ . (18)

Results and discussion
This section discusses the obtained results in this work.

In the first subsection the approach followed to obtain

these results is clarified. Next, the results for the three-

step linear pathway are presented. In the third subsec-

tion the results for the glycolysis inspired network are

described.

Approach

The approach consists of the four steps in Fig. 4. This

approach is formulated for the generic case of the multi-

objective dynamic optimization of biological networks

under uncertainty. First, the (multi-objective) dynamic

optimization problem is solved for the nominal (non-

robustified) case. Then, desired confidence levels for the

robustified constraint are set (Step 1). Robustified termi-

nal constraints of the form cmin ≤ E [c(tf)]−αc
√
Var [c(tf)]

are considered. Table 1 presents the backoff parameter

values that are used for the computation of the robusti-

fied controls together with the corresponding quantiles

and preset confidence levels for a normal distribution of

the constraint.

In Step 2 robustified Pareto fronts are calculated with

the linearization, sigma points and polynomial chaos

expansion approaches (PCE1 and PCE2) to include para-

metric uncertainty in the multi-objective dynamic opti-

mization problem. These robustified Pareto fronts are

computed for the different backoff parameter values.

A first comparison of the approximation techniques for

uncertainty propagation is based on the Pareto fronts:

comparison of the CPU time for a single Pareto point,

comparison of the objective function vectors JLIN, JSP,

JPCE1 and JPCE2, calculated with the linearization, sigma

points, PCE1 and PCE2 respectively. Also the expected

values and variance approximations for the robustified

model outputs with the approximation techniques for

uncertainty propagation are compared.

Subsequently, a Pareto point is selected from the Pareto

front for further analysis (Step 3). This analysis can be

performed for any Pareto point or confidence level set

(i.e., corresponding to different backoff parameter values

αi), without a loss of generality. In this work, the consid-

ered point corresponds to one of the objectives, i.e., the

minimization of the intermediate accumulation for Case 1

(single objective case study) and the minimization of the

enzymatic cost for Case 2 (multi-objective case study).

In Step 4, Monte Carlo simulations are done for the

considered Pareto point by sampling 1000 randomly gen-

erated parameter sets from the parametric uncertainty

distribution. The robustified controls, determined with

linearization, sigma points and polynomial chaos expan-

sion approaches (PCE1 and PCE2), are fixed in the Monte

Carlo simulations.

The further analysis of the Pareto point consists of

assessing the robustness of the optimal control profiles

obtained with the different approximation techniques for

uncertainty propagation: i.e., (i) checking the reduction

of constraint violations by applying a robustified control

in comparison with applying a nominal (non-robustified)

control profile, (ii) evaluating the backoff taken in objec-

tive function when uncertainty is taken into account and

(iii) a comparison between the predicted expected value
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Fig. 4 Illustration of the approach. Different steps in the approach followed in this work

and variance for the robustified model output with the

approximation techniques for uncertainty propagation

and the calculated mean and variance with the Monte

Carlo simulations. Furthermore, for the robustified sin-

gle chance constraint it is investigated whether the preset

confidence is reached for different backoff parameter val-

ues. This is done by checking whether the percentage of

constraint violations in Monte Carlo simulations does not

exceed the preset percentage of constraint violations. For

instance, a confidence level of 0.95 is associated with a

backoff parameter value of 1.65, meaning that in case the

robustified control is applied, the percentage of constraint

violations is not allowed to exceed 5%. Alternatively, if the

confidence level is not sufficient, the preset confidence

can be increased by increasing the backoff parameter. An

iterative procedure to determine the quantiles and backoff

parameter can be followed as presented in [10].

Both case studies have been implemented in

Pomodoro. The KKT tolerance is set to 10−5 and an

orthogonal collocation discretization scheme is used for

the dynamic optimization problems. Since the polynomial

chaos expansion allows to take a priori information on the

parametric uncertainty distribution directly into account

via the orthogonal polynomials, two parametric uncer-

tainty distributions have been studied: a priori normal

and a priori uniform parametric uncertainty distribution

with as mean the nominal parameter values and 20%

relative standard deviation in Case 1 and 10% relative

standard deviation in Case 2. For the normal parametric

uncertainty distribution, Hermite polynomials are used,

while for the uniform distribution another type is used.

The reader is referred to Additional files 3 and 4.

Case 1: three step linear pathway

In this case study the terminal constraint expressing that

the concentration of S4 at time tf should exceed or equal

0.90 mM is robustified.

0.90mM ≤ E [S4(tf)] − αS4

√

Var [S4(tf)] (19)

Since this constraint only looks at one bound that has

to be exceeded, the 95% confidence region should be

covered when a backoff parameter of αS4 = 1.65 is cho-

sen. The intermediate accumulation objective function is

not robustified for this case study (i.e., αJ2 ). The three

uncertain parameters are k1, k2 and k3.

In this section, the single objective optimization (i.e., the

minimization) of the intermediate accumulation is con-

sidered. Intermediate accumulation can be harmful for

the cell and should therefore be minimized. It is assumed

that the final time is fixed at 10 seconds. First the com-

putational aspects are discussed. Subsequently a phys-

ical/biological interpretation of the results is given. To

conclude Case 1 the approximation techniques for uncer-
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tainty propagation are compared based on the results

from the single objective optimization and Monte Carlo

simulations for a normal and uniform parametric uncer-

tainty distribution.

Computational aspects

A first aspect is the computational cost of including uncer-

tainty in dynamic optimization. The number of required

states and variables, together with the CPU time for the

different approximation techniques for uncertainty prop-

agation are presented in Table 3. The CPU times are

presented for the largest backoff parameter used in this

work, i.e., αS4 = 1.96, to give an upper bound on the com-

putation times that are required. The results in Table 3

confirm that taking uncertainty into account, leads to

an increased computational time. An inherent property

of the considered uncertainty propagation techniques, is

the increase in number of states when the number of

uncertain parameters increases. The increase in compu-

tational time for this case study is thus related to the

increase in the size of the optimization problem. From

this it is clear that the linearization and PCE1 approaches

have a similar computation time and are the fastest of

the considered approximation techniques for uncertainty

propagation, followed by the sigma points approach and

PCE2 approach.

Physical/biological interpretation

The enzyme concentration profiles are (from a compu-

tational point of view) seen as the optimal controls. The

enzyme concentration profiles are illustrated in Fig. 5(a)-

(c) for α = 1.65. Different phases can be distinguished in

the process (i.e., a sequential activation of the controls): (i)

a first phase in which enzyme e1 is activated to produce S2
as fast as possible, (ii) a second phase in which both S2 and

S3 are consumed and produced (by activation of e2 and e3)

(iii) a third phase in which a novel activation of e1 takes

place, followed by (iv) a phase of activity of e2 and e3 and a

final phase in which the third enzyme is fully activated for

the production of S4.

Table 3 Case 1 - Overview of the number of states, CPU time,

expected values of the objective function, expected values of the

terminal constraint and standard deviations for the different

approximation techniques for uncertainty propagation when the

enzymatic cost is minimized for α = 1.96 for 3 uncertain

parameters k1 , k2 and k3

Nominal Linearization Sigma points PCE1 PCE2

States 5 20 29 17 41

CPU time [s] 0.156 1.332 4.507 2.087 7.780

E [J] 3.65 6.61 7.06 7.74 7.04

E [S4] 0.90 1.50 1.52 1.53 1.52
√
Var[S4] 0 0.30 0.32 0.33 0.32

From the enzyme concentration profiles in Fig. 5(a)-(c),

it is clear that, the robustified enzyme concentrations will

increase earlier than the nominal enzyme concentrations.

The sequential activation of the controls (i.e., the increas-

ing and decreasing enzyme concentrations ei) will be early

enough and sufficient in the robustified case to ensure

that the robustified constraint is satisfied, i.e., a suffi-

cient amount of S4 is produced. In Fig. 5(d) it is shown

that for the PCE1 approach the minimum treshold of

0.90 mM is reached after 5.3 seconds, for PCE2 after

6.52, for the sigma points after 6.58 and for linearization

after 6.7 seconds, while in the nominal case the mini-

mum treshold of 0.90 mM is reached at the end time of

10 seconds. The enzyme concentrations, calculated with

the approximative uncertainty propagation techniques,

ensure more robustness towards satisfying the minimum

end concentration of 0.90 mM for S4. However, includ-

ing robustness towards satisfying the minimum end con-

centration leads to a higher intermediate accumulation

as shown in Table 3. This is acceptable, as long as cell

viability is not compromised. Comparing this with exper-

imental results for amino-acid biosynthetic pathways in

Escherichia coli [38, 40, 41] a sequential activation of the

enzymes can be observed in the enzyme concentration

profiles.

Comparison of the approximation techniques for uncertainty

propagation

The number of constraint violations, expected value of

S4 and the variance on S4 for the different approaches

and αS4 are shown in Tables 4 and 5 for a normal and

uniform parametric uncertainty distribution, respectively.

More extensive results are given in Additional file 3.

Expected value and 95% confidence bound First the

expected value and 95% confidence bound of S4 (based

on αS4 = 1.65) are compared. This is done in Fig. 5(d)

and it can be seen that the expected state and 95% con-

fidence bounds for S4 are very similar when computed

with the linearization, sigma points and PCE2 approaches.

The expected value for the PCE1 approach differs slightly

from the others: initially it is taking more distance from

the nominal profile, indicating that this approach is more

conservative than the other approaches and will lead to

less constraint violations. In general, linear approximation

techniques (as the PCE1 approach) tend to be more con-

servative, but it cannot be predicted upfront whether this

is in a positive sense or not.

Constraint violations In order to investigate the per-

formance of the different approximation techniques for

uncertainty propagation with respect to the constraint

violations, a Monte Carlo simulation with 1000 realiza-

tions (i.e., randomly generated parameter samples from
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(a) (b)

(c) (d)

Fig. 5 Results for Case 1. Comparison of the control profiles e1 (a), e2 (b) and e3 (c) calculated with linearization, sigma points approach, PCE1 and

PCE2 for α = 1.65 with the nominal control profile and (d) comparison of the expected state S4 and its 95% confidence bound calculated with

linearization, sigma points, PCE1 and PCE2 with the nominal case (α = 1.65) in case of 3 uncertain parameters k1 , k2 and k3

Table 4 Case 1 - Results Monte Carlo simulations (N = 1000) in case of three normally distributed uncertain parameters k1 , k2 and k3
for robustified terminal constraint with the number of constraint violations, mean terminal constraint values and variance on the

terminal constraint

Nominal case Linearization Sigma points PCE 1 PCE 2

α = 1.96

J̄ 11.903 13.4600 13.600 13.829 13.583

σJ 0.5578 0.9737 1.0087 1.016 0.9981

S̄4 0.88734 1.4739 1.5242 1.5500 1.5316

σS4 0.1733 0.2878 0.2970 0.2993 0.2993

ct violations 509 (50.9%) 30 (3.0%) 21 (2.1%) 20 (2.0%) 20 (2.0%)

α = 1.65

J̄ 11.903 13.051 13.127 13.331 13.139

σJ 0.5578 0.8624 0.8869 0.9049 0.8892

S̄4 0.8712 1.3357 1.3765 1.3910 1.3781

σS4 0.1733 0.2614 0.2691 0.2683 0.2690

ct violations 509 (50.9%) 51 (5.1%) 44 (4.4%) 39 (3.9%) 43 (4.3%)
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Table 5 Case 1 - Results Monte Carlo simulations (N = 1000) in case of three uniformly distributed uncertain parameters k1 , k2 and k3
for robustified terminal constraint with the number of constraint violations, mean values and variances on the objective function and

terminal constraint, respectively

Nominal case Linearization Sigma points PCE1 PCE2 PCE2 Uniform

α = 1.96

J̄ 11.913 13.477 13.618 13.847 13.601 13.591

σJ 0.5470 0.9601 0.9942 1.0000 0.9835 0.9790

c̄t 0.88917 1.4768 1.5273 1.5533 1.5347 1.5261

σct 0.1818 0.3015 0.3110 0.3132 0.3137 0.3118

ct violation 516 (51.6%) 4 (0.4%) 1 (0.1%) 0 (0.0%) 1 (0.1%) 2 (0.2%)

α = 1.65

J̄ 11.913 13.066 13.143 13.347 13.155 13.330

σJ 0.5470 0.8489 0.8730 0.6813 0.8750 0.8881

c̄t 0.88917 1.3384 1.3792 1.3940 1.3809 1.3660

σct 0.1818 0.2740 0.2820 0.2808 0.2819 0.2754

ct violation 516 (51.6%) 35 (3.5%) 22 (2.2%) 11 (1.1%) 22 (2.2%) 22 (2.2%)

the parametric uncertainty distribution) has been per-

formed for the four approaches and is compared with the

nominal case.

From these simulations, it is observed in case of a

normal parametric uncertainty distribution that all four

methods reduce the amount of constraint violations sig-

nificantly: from 50.9% in the nominal case to even 2.0%

for PCE1 and PCE2, when a backoff parameter value

of α = 1.96 is chosen. The same holds for a uniform

parametric uncertainty distribution.

In practice, the most interesting backoff parameter val-

ues are 1.65 and 1.96, corresponding to 5% and 2.5% vio-

lations in case of a normal distribution. From the results

in Tables 4 and 5 it is clear that the PCE1 method scores

the best with respect to constraint violations, followed by

PCE2 and sigma points. The performance of the sigma

points method and the second order polynomial chaos

expansion are, as shown throughout this case study, very

similar.

Parametric uncertainty distribution If an uncertainty

distribution is assumed for the constraint and the back-off

parameters are chosen in accordance with the quantiles

(which is the case for the normal parametric uncertainty

distribution), the level of constraint violations should cor-

respond exactly with the confidence level. A too low

degree of violations is also not wished, since the uncer-

tainty is not propagated correctly in that case.

Furthermore, the expected values and variances of S4
for a backoff parameter of α = 1.96 from Table 3 which

are predicted with the approximation techniques, are very

close to the empirically calculated expected values and

variances by Monte Carlo simulation in Tables 4 and 5.

For the sigma points, PCE1 and PCE2 approaches these

predicted expected values and variances are an accurate

estimation of the ones obtained by Monte Carlo simula-

tion. For the linearization approach, this is not the case.

However, the expected value of the intermediate accumu-

lation objective function is not accurately predicted. This

objective function is not robustified in this case study,

as the variance on the objective function is not taken

into account. Therefore, the predictions of the expected

value of the objective functions are not accurate, when

compared with a Monte Carlo setting.

There is less backoff from the objective function when

a uniform parametric uncertainty distribution is assumed,

also the variance is reduced for the second order polyno-

mial chaos expansion with respect to the assumption of a

normal parametric uncertainty distribution. The percent-

age of constraint violations on the other hand is slightly

higher when a uniform distribution is considered. How-

ever, for this case study, the difference in performance

between a uniform parametric uncertainty distribution

and a normal parametric uncertainty distribution for the

polynomial chaos expansion, is small. Therefore, it should

be stressed that including the additional information on

the parametric uncertainty distribution can be useful.

However, gathering information on the parametric uncer-

tainty distribution is quite intensive and does not lead

to a drastic improvement in performance for this case

study.

Case 2: glycolysis based network with 1 output

The terminal constraint and enzymatic cost objective

function are robustified in this case study as shown in

following equations. This is done in order to reduce

the variance on the objective function. In contrast to

Case 1, this should allow to have a better prediction
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of the expected value and variance on the objective

function.

0.675mM ≤ E [S5(tf)] − αS5

√

Var [S5(tf)] (20)

J2 = E [xextra(tf)] + αxextraVar [xextra(tf))] (21)

For simplicity, the backoff parameters αS5 and αxextra are

assumed to be the same and are called α in the remain-

der of the text. The objective function is robustified by

adding the term αxextraVar [xextra(tf))], since the objective

function has to be minimized and an increase in variance

is penalized.

In this case study three parameters (kcat, KM and λ) are

considered uncertain. First, the multi-objective optimiza-

tion results are discussed, followed by a more in depth

analysis of the minimization of the enzymatic cost. Note

that this in depth analysis can be performed for any Pareto

point. Subsequently the computational aspects, a physi-

cal/biological interpretation of the results and comparison

of the approaches are presented for this case study, based

on the dynamic optimization results and Monte Carlo

simulations for a normal and uniform parametric uncer-

tainty distribution. For more extensive results, the reader

is referred to Additional file 4.

Multi-objective optimization results

The multi-objective optimization problem consists of

minimizing the time needed to reach at least 0.675 mM

of product S5 and minimizing the enzymatic cost, i.e., the

total enzyme consumption over the whole time span.

In the robustified problem formulation, both the objec-

tive function for the enzymatic cost and the terminal

constraint are robustified with backoff parameter α. It

is assumed that the final time tf cannot exceed 30 sec-

onds. The two objectives, final time and enzymatic cost,

are clearly conflicting: reducing the time needed to reach

a level of 0.675 mM of S5 leads to an increase in the

enzymatic cost and vice versa.

Receeding Pareto fronts from the nominal optimal solu-

tion with increasing backoff parameter values can be

observed in Fig. 6: both anchor points shift away from

the nominal optimal solution. This is the price in perfor-

mance (i.e., minimum time and enzymatic cost) that has

to be paid to ensure a minimum concentration of 0.675

mM for S5. However, it is also observed that the Pareto

fronts change shape and range, when the backoff parame-

ter increases. This is related to the feasibility of the Pareto

points.

A comparison of the different approximation techniques

for uncertainty propagation based on the Pareto fronts

is presented in Additional file 4. From this compari-

son it is firstly seen that the linearization and sigma

points approach take more backoff than the polynomial

chaos approaches. Secondly, when the backoff parameters

decrease, it is observed that there is a similarity between

the Pareto fronts for the PCE2 and sigma points approach.

This can be explained from the variance that is taken less

into account when the backoff parameter value decreases.

Since the difference between the PCE2 and sigma points

approach lies in the variance calculation, this explains the

increasing difference in Pareto fronts with an increasing

backoff parameter value. The expected value calculation

is the same for the sigma points and PCE2 approach in

case of a normal parametric uncertainty distribution. For

this case study, the sigma points are a subset of the PCE2

sampling points as shown in Additional file 4.

Computational aspects

For the discussion of the computational aspects, the single

objective optimization of the enzymatic cost is consid-

ered. It is assumed that the final time is fixed at 30

seconds.

In Table 6 an overview is presented of the number of

states, the CPU time, objective function values, termi-

nal constraint and their expected values and standard

deviations for the different approximation techniques for

uncertainty propagation for 3 uncertain parameters KM,

λ and kcat. This is done for the largest backoff parameter

value α = 1.96 for the same reasons as mentioned in the

first case study.

In this case study the linearization approach is computa-

tionally the most expensive. While in Case 1, the increase

in computational time is related to the increase in the size

of the optimization problem, this cannot be the explana-

tion for why the linearization approach takes the most

CPU time. One explanation for the long CPU time of

the linearization approach, can be the nonlinearity of the

model in Case 2 and solving the sensitivity equations. The

interconnection of the states in the sensitivity equations,

makes the linearization approach computationally more

challenging.

Physical/biological interpretation

In Fig. 7 the enzyme expression rates are shown together

with the corresponding enzyme concentration profiles,

which are computed by minimizing the enzymatic cost for

the nominal case (a) and with the different approxima-

tion techniques for uncertainty propagation: linearization

(b), sigma points (c), PCE1 (d) and PCE2 (e) (α = 1.65).

It is observed that the expression rate profiles show an

on/off behavior that leads to the sequential activation of

the different enzymes in the network. The physical inter-

pretation of this on/off behavior of the enzyme expression

rates is that the previous enzyme first has to be degraded,

before the other enzyme can be synthesized. This makes

sense from a biological point of view, since the cells only

have a limited amount of proteins available. This also

corresponds to the satisfaction of the constraint on the
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(a) (b)

(c) (d)

Fig. 6 Receeding Pareto fronts Case 2. Receeding Pareto fronts with increasing backoff parameter α for linearization (a), sigma points (b), first (c) and

second order polynomial chaos expansion (d) approach in case of 3 uncertain parameters KM , λ and kcat

total enzymatic content. When minimizing the end time,

there is a high accumulation of metabolites. This accu-

mulation can affect cell viability negatively. The optimal

control profiles in Fig. 8(a)-(d) clearly show a switching

pattern, corresponding to the sequential activation of the

pathways. According to [42] there is a mechanism lead-

ing to more pronounced transcriptional control of costly

enzymes which can be explained by the trade-off between

enzymatic cost minimization and time. Similarly to the

Case 1, it can be seen in Fig. 8(e)-(f) that the minimum

threshold of 0.675 mM for S5 is reached sooner when

applying the approximation techniques for uncertainty

propagation. However, this robustness with respect to the

terminal constraint on S5 comes together with an increase

in enzymatic cost as shown in Table 6. To avoid a too

high enzymatic cost that is harmful for cell viability, an

upper bound on the enzymatic cost can be introduced and

robustified.

Table 6 Case 2 - Overview of the number of states, CPU time, objective function values, terminal constraint values and their expected

values and standard deviations for the different approximation techniques for uncertainty propagation when the enzymatic cost is

minimized for α = 1.96 for 3 uncertain parameters (Km , λ and kcat)

Nominal Linearization Sigma points PCE1 PCE2

States 9 36 63 36 90

CPU time [s] 0.547 117.474 25.65 4.574 25.847

E[ J] 6.500 12.945 8.338 8.799 9.168
√
Var[ J] 0 1.113 0.697 0.739 0.791

ct 0.675 0.675 0.675 0.675 0.675

E[ ct] 0.675 1.000 1.067 1.163 1.210
√
Var[ ct] 0 0.166 0.200 0.249 0.273
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(a) (b)

(c) (d)

(e)

Fig. 7 Enzyme expression rates and enzyme concentration profiles Case 2. Enzyme expression rates together with the enzyme concentration

profiles following from the minimization of the enzymatic cost for the nominal case (a) and with the different approximation techniques for

uncertainty propagation: linearization (b), sigma points (c), PCE1 (d) and PCE2 (e) (α = 1.65)

In Fig. 7(b) and (c) some remarkable observations are

made for the linearization and sigma points approaches.

After approximately 6 seconds a small expression rate u2
is observed, leading to a short activation of e2, producing

intermediates S3 and S4. Furthermore after approximately

18 seconds in the linearization approach and 20 seconds

in the sigma points approach, e2 is expressed for a longer

time. The accumulated S2 is intensively consumed in this

period for the production of intermediates S3 and S4.

Eventually this will lead to a very low concentration of S2
in comparison with the other approaches. Furthermore, a

very small expression rate u3 is observed in Fig. 7(b) and

(c) for the optimization with the linearization and sigma

points approaches, leading to a weak activation of e3. This

means that the branch in the glycolysis inspired network

involving the conversion of S3 to S4 is practically inactive,

leading to accumulation of S3 for the linearization and

sigma points approaches. This behavior is not observed

in the profiles obtained with the other techniques and

explains the higher objective function values for enzy-

matic cost in case of the linearization and sigma points

approaches.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Results for minimization of enzymatic cost in Case 2. Comparison of the control profiles r1 (a), r2 (b), r3 (c) and r4 (d) calculated with

linearization, sigma points approach, PCE1 and PCE2 for α = 1.65 with the nominal control profile and comparison of expected state S5 and its 95%

confidence bound calculated with linearization, sigma points, PCE1 and PCE2 with the nominal case (α = 1.65) ((e) and (f)) in case of 3 uncertain

parameters KM , λ and kcat

Comparison of the approximation techniques for uncertainty

propagation

The performance of the different approximation tech-

niques for uncertainty propagation with respect to the

constraint violations is investigated by performing a

Monte Carlo simulation with 1000 noise realizations from

a normal distribution. The number of constraint vio-

lations on S5, mean values, and the variances for the

objective function and terminal constraint, respectively

are shown in Table 7 for the different approaches and

backoff parameter values αi. More extensive results are

presented in Additional file 4.

Expected value and 95% confidence bound First the

expected value and 95% confidence bound of S5 (based

on α = 1.65) are compared. This is done in Figs. 8(e)-

(f). From Fig. 8(e)-(f) it can be seen that the expected

state and 95% confidence bounds for S5 are similar for

the PCE1 and PCE2 approaches. However, the lineariza-

tion approach and sigma points approach take initially
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Table 7 Case 2 - Results Monte Carlo simulations (N = 1000) in case of three normally distributed uncertain parameters (Km , λ and

kcat) for robustified terminal constraint and objective function with the number of constraint violations, mean values and variances on

the objective function and terminal constraint, respectively

Nominal case Linearization Sigma points PCE1 PCE2

α = 1.96

J̄ 6.5268 12.996 12.549 8.7702 9.1358

σJ 0.57543 1.1893 1.15230 0.78540 0.82107

c̄t 0.69319 1.0106 1.0106 1.1406 1.2099

σct 0.18291 0.17462 0.17752 0.27117 0.28089

ct violation 477 (47.7%) 15 (1.5%) 18 (1.8%) 23 (2.3%) 13 (1.3%)

α = 1.65

J̄ 6.5268 10.04 9.6011 8.2477 8.5514

σJ 0.57543 0.88430 0.83741 0.73621 0.76632

c̄t 0.69319 1.0143 1.0157 1.0339 1.0933

σct 0.18291 0.20620 0.21414 0.25176 0.26120

ct violation 477 (47.7%) 31 (3.1%) 39 (3.9%) 53 (5.3%) 34 (3.4%)

more distance from the nominal profile. In this case, sim-

ilarly to Case1, a linear approximation technique (i.e.,

the linearization approach) is more conservative, imply-

ing less constraint violations. All 95% confidence bounds

are at 0.675 mM at the end as required by the imposed

constraint in the implementation of the approximation

techniques for uncertainty propagation.

Both PCE1 and PCE2 have a more accurate prediction

of the expected value and variance of the objective func-

tion J and the terminal constraint function value ct than

the linearization and sigma points approach (in Table 6),

when comparing with the empirically calculated expected

values and variances with Monte Carlo simulations (in

Table 7).

Constraint violations The percentage of constraint vio-

lations is investigated by performing a Monte Carlo sim-

ulation with 1000 noise realizations from the parametric

uncertainty distribution. From these simulations, it is

observed that all four methods reduce the amount of

constraint violations significantly: from 47.7% in the

nominal case to even 1.3% for PCE2, when a backoff

parameter value of α = 1.96 is chosen in case of a

normal parametric uncertainty distribution. For this case

study, the PCE2 method is superior in performance, when

considering number of constraint violations.

Parametric uncertainty distribution For this case

study, the integration of prior information on the para-

metric uncertainty distribution in the polynomial chaos

expansion approaches is studied. The orthogonal poly-

nomials for Km, λ and kcat are derived via the defini-

tion of orthogonal polynomials. Details can be found in

Additional file 4.

For a normal and uniform parametric uncertainty dis-

tribution, a Monte Carlo simulation procedure with 1000

noise realizations has been followed and the results are

summarized in Tables 7 and 8.

As in the first case study, the percentage of constraint

violations is slightly higher when a uniform distribution is

considered. For this case study, the difference in perfor-

mance between a uniform parametric uncertainty distri-

bution and a normal parametric uncertainty distribution

for the polynomial chaos expansion, is small. Gathering

information on the parametric uncertainty distribution

from a parameter identification procedure is intensive and

does not lead to a drastic improvement in performance for

this case study.

Conclusions
In this work parametric uncertainty has been taken into

account for prediction and control of biological networks.

A critical comparison of three approximation techniques

for uncertainty propagation, i.e., the linearization, sigma

points and polynomial chaos expansion approaches has

been made for dynamic optimization of biological net-

works under parametric uncertainty. The main advantage

of the polynomial chaos expansion is its ability to tackle

more easily non-normal parametric uncertainty distri-

butions. Two case studies are investigated: (i) the min-

imization of intemediate metabolite accumulation in a

basic three-step linear pathway model (with 3 metabo-

lites, 3 fluxes, 4 differential states and 3 controls) and

(ii) the multi-objective optimization (i.e., the minimiza-

tion) of the final time and enzymatic cost a glycolysis

inspired network model (with 4 metabolites, 4 fluxes, 8

differential states and 4 controls). For further analysis of
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Table 8 Case 2 - Results Monte Carlo simulations (N = 1000) in case of three uniformly distributed uncertain parameters (Km , λ and

kcat) for robustified terminal constraint and objective function with the number of constraint violations, mean values and variances on

the objective function and terminal constraint, respectively

Nominal case Linearization Sigma points PCE1 PCE2 PCE2 uniform

α = 1.96

J̄ 6.5517 13.048 12.599 8.8045 9.1717 9.1498

σJ 0.5323 1.1015 1.0665 0.7270 0.7600 0.7600

c̄t 0.7023 1.0205 1.0208 1.1555 1.2254 1.2240

σct 0.1744 0.1659 0.1687 0.2590 0.2684 0.2690

ct violation 470 (47.0%) 10 (1.0%) 13 (1.3%) 21 (2.1%) 7 (0.7%) 9 (0.9%)

α = 1.65

J̄ 6.5517 10.079 9.6385 8.2798 8.5848 8.5683

σJ 0.5323 0.8195 0.7762 0.6813 0.7092 0.7086

c̄t 0.7030 1.0259 1.0277 1.0476 1.1077 1.1056

σct 0.1744 0.1966 0.2042 0.2404 0.2495 0.2496

ct violation 470 (47.0%) 28 (2.8%) 36 (3.6%) 55 (5.5%) 29 (2.9%) 29 (2.9%)

the robustness, emphasis was put on a single objective:

in Case 1 the minimization of the intermediate accumu-

lation and in Case 2 the minimization of the enzymatic

cost. In a next step, the robustness of the optimal control

profiles obtained with the different approximation tech-

niques for uncertainty propagation is investigated. Monte

Carlo simulations are used for the assessment of these

control profiles. From the results for both case studies,

the different uncertainty propagation strategies each offer

a robust solution under parametric uncertainty. When

making the trade-off between computation time and the

robustness of the obtained profiles, the sigma points and

polynomial chaos expansion strategies score the best. In

both case studies the effect of taking a uniform probabil-

ity distribution for the parametric uncertainty has been

taken into account. However, the gain by taking a uni-

form probability distribution into account instead of a

normal probability distribution is low. There is a reduc-

tion on the considered backoff and the variance of the

objective functions and constraint. On the other hand, an

upfront identification procedure for the parametric uncer-

tainty distribution is time-consuming, expensive and does

not offer a substantial advantage for the considered case

studies in comparison with assuming a normal para-

metric uncertainty distribution. The linearization, sigma

points and polynomial chaos expansion approaches offer

a great potential for optimization and modeling under

uncertainty in systems biology. The application of these

approximation techniques for uncertainty propagation to

large scale biological network models is the subject of

future work. The integration of these approximation tech-

niques for uncertainty propagation in an interactive tool

for multi-objective dynamic optimization [43] is also part

of the future work.
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