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Dynamic Output Feedback Controller Synthesis using an LMI-based

α− Strictly Negative Imaginary Framework

Suleiman Kurawa, Parijat Bhowmick and Alexander Lanzon

Abstract— This paper deals with the dynamic output feed-
back controller synthesis utilizing the α− strictly negative
imaginary systems property. The proposed scheme ensures
robust stability in closed-loop against the set of all stable, strictly
proper negative imaginary uncertainties that satisfies the DC
loop gain condition pertaining to negative imaginary stability.
In addition to that, a prescribed decay rate in the closed-
loop time response is also enforced via α− pole placement.
Two illustrative examples have been studied to demonstrate
the usefulness of the proposed controller synthesis scheme.

I. INTRODUCTION

The theory of negative imaginary (NI) systems was moti-

vated by the study of inertial systems with colocated force

actuator and position sensor [1], [3]. In a single-input-single-

output (SISO) setting, a stable transfer function is said to

have the NI (resp., strictly NI or SNI) frequency response

if its Nyquist plot lies below (resp., strictly below) the real

axis of the complex plane in the open frequency interval from

zero to infinity [1]. In contrast to positive real (PR) systems,

NI systems can have relative degree of up to two and they

can also have non-minimum phase zeros [8]. Due to virtue

of the simple internal stability condition for interconnected

NI and SNI systems that depends primarily on the DC loop

gain information [1], the NI system theory finds immense

applications in controller design especially for mechanical

and mechatronic systems. For example, it has been applied

in vibration control of a flexible robotic arm [10], in motion

control of a robotic arm with unknown parameters [6], in

vehicle platooning [4], in control of a DC servo motor [7],

in nano-positioning of an atomic force microscope [11], and

in position control of a swing-arm hard disk drive [15].

So far in the literature, a handful of effort has been

dedicated towards the problem of NI controller synthesis. For

example, an LMI-based state feedback synthesis imposing

closed-loop NI property is explored in [3], [6]. While in [11],

the state feedback synthesis has been done to enforce closed-

loop NI/SNI property using an algebraic Riccati equation

(ARE) based approach. In [13], the authors introduce a static

state feedback and a dynamic output feedback controller

synthesis schemes imposing closed-loop NI property. In [15],
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a dynamic output feedback control framework is proposed

for systems with PR uncertainty which is then applied

to systems with stable NI uncertainty by transforming the

NI uncertainty into PR framework. Very recently, in [16]

and [17], strictly negative imaginary controller synthesis

problems considering both state and output feedback have

been addressed applying an ARE-based approach.

Pertaining to NI synthesis that facilitates some tran-

sient performance (e.g. decay rate) via closed-loop pole-

placement, the work of [12] can be referred which provides

a state feedback NI controller synthesis technique exploiting

the notion of α− and D− pole placement introduced in

[19]. However, in many practical applications, some of

the states may not be accessible for external measurement

and hence, output feedback sometimes outperforms state

feedback. Nevertheless, regional pole placement, or pole

placement in general, provides a way of achieving time

domain performance such as reducing peak overshoot and

settling time, increasing decay rate, etc. [20].

Being motivated by the aforementioned developments, this

paper proposes an LMI-based procedure to design a dynamic

output feedback controller applying the α− SNI framework

that ensures robust stability against all stable, strictly proper,

NI uncertainties. Furthermore, it is shown via examples that

the designed controller can also satisfy a certain level of

robust H∞ performance applying µ-analysis.

II. PRELIMINARIES

This section recalls some definitions, lemmas and techni-

cal results from the literature important for developing the

main results. The first definition for NI systems was given

in [1] for stable systems. This was then extended in [2] to

marginally-stable systems having poles in the closed left-half

plane excluding the origin. In this paper, we have used the

definition of NI systems according to [2].

Definition 1: (NI System) [2] A square, real, rational and

proper transfer function matrix M(s) is said to be NI if

1) M(s) has no poles in ℜ{s}> 0;

2) j[M( jω)−M( jω)∗] ≥ 0 for all ω ∈ (0,∞) such that

jω is not a pole of M(s);
3) If jω0 with ω0 ∈ (0,∞) is a pole of M(s), it is at most

a simple pole and the residue matrix K0 = lim
s→ jω0

j(s−

jω0)M(s) is Hermitian and positive semidefinite.

The definition of NI systems have been further extended in

[8], [10] to account for NI systems with single and double

poles at the origin. See also [14] for some recent feedback

stability analysis results allowing poles at the origin. Let us

recall the definition of SNI systems.
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Definition 2: (SNI System) [1] Let M(s) be a square, real,

rational and proper transfer function matrix. M(s) is said to

be SNI if M(s) has no poles in ℜ[s] ≥ 0 and j[M( jω)−
M( jω)∗]> 0 for all ω ∈ (0,∞).
The following lemma characterizes the strongly strict nega-

tive imaginary (SSNI) systems introduced in [5].

Lemma 1: [5] Let

[

A B

C D

]

be a state-space realiza-

tion of a real, rational, proper and square transfer func-

tion matrix M(s). Assume, M(s)−M(−s)T has full normal

rank and the pair (A,C) is observable. Then, A is Hurwitz

and M(s) is SNI with lim
ω→0

j
1

ω
[M( jω)−M( jω)∗] > 0 and

lim
ω→∞

jω [M( jω)−M( jω)∗] > 0 if and only if D = DT and

there exists Y = Y T > 0 such that

AY +YAT
< 0 and B+AYCT = 0. (1)

The conditions necessary and sufficient for the internal

stability of a positive feedback interconnection of stable NI

and SNI systems are next presented.

Theorem 1: [1] Let M(s) be SNI and γ > 0. Then,

the positive feedback interconnection of M(s) and ∆(s) is

internally stable for all stable NI systems ∆(s) that satisfy

∆(∞)≥ 0, ∆(∞)M(∞) = 0 and λmax[∆(0)]< γ−1 if and only

if λmax[M(0)]≤ γ .

1y
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Fig. 1: (a) Positive feedback interconnection of two NI

systems; (b) M−∆ configuration for robust stability analysis.

Towards this end, we set the notations for α− strictly

negative imaginary (abbreviated as α− SNI) systems. The

α− SNI subclass is closely related to the SSNI class of

systems [5] and is defined by a state-space characterization.

Definition 3: Let D = DT and α > 0. Then, R(s) =
[

A B

C D

]

is said to be α− SNI if there exists a real matrix

Y = Y T > 0 such that

AY +YAT +2αY ≤ 0 and B+AYCT = 0. (2)

We now provide some remarks which explore the properties

of α− SNI systems and find the connections between α−
SNI and SSNI systems properties.

Remark 1: The α− SNI systems are inherently stable.

This can be readily established from (2), which implies

AY +YAT < 0 for α > 0 and Y > 0, which in turn ensures

Hurwitzness of A applying [18, Lemma 3.19]. �

Note that the definition of α− SNI systems does not require

a minimal state-space realisation of the underlying system.

In this context, the literature [6], [16] may be referred where

it is shown that most of the analysis and synthesis results

associated with NI, SNI and SSNI systems theory remain

applicable in case of non-minimal system realization.

Remark 2: From Definition 3, one may think that the set

of the α− SNI systems is a subset of the SSNI class having

poles in ℜ[s]≤−α . But, unlike SSNI systems [5], α− SNI

system property does not impose any restrictions on the state-

space realisation. It can be concluded that the set of α−
SNI systems, say R(s), with a completely observable state-

space realisation and R(s)−R(−s)T having full normal rank

belongs to the SSNI class. �

Note that in case of α− SNI systems the full normal rank

constraint on R(s)−R(−s)T is implied by (2) when the B

matrix has full column rank. It is proved in the following

lemma. The same conclusion applies to Lemma 1 as well.

Lemma 2: Let R(s) =

[

A B

C D

]

be an (m×m) α− SNI

system with rank[B] = m. Then, R(s)− R(−s)T has full

normal rank.

Proof. For a given α > 0 and Y > 0, (2) implies AY +
YAT < 0. Then there exists a square and non-singular matrix

L such that AY +YAT = −LT L. For these L and Y , the

transfer function matrix N(s) =

[

A B

LY−1A−1 0

]

acquires

full column rank at s = jω for all ω ∈R since A is Hurwitz

and rank[B] = m via assumption and rank[LY−1A−1] = n. It

implies from [2, Corollary 1]

jω[R( jω)−R( jω)∗] = ω2N( jω)∗N( jω)> 0 (3)

for all ω ∈ R\{0} and R(0)− R(0)T = 0 since R(0) =
CYCT +D=R(0)T . This implies that there does not exist any

continuum interval of ω ∈R for which det[R( jω)−R( jω)∗]
remains zero. This in turn ensures that R(s)−R(−s)T must

have full normal rank. Note minimality is not required. �

In the next section, we will introduce a dynamic output

feedback controller synthesis framework exploiting the α−
SNI property.

III. MAIN RESULTS

A. Problem Formulation

Consider an LTI generalized plant G described by the

following state-space equations

G :











ẋ = Ax+B1w+B2u,

z =C1x+D11w+D12u,

y =C2x+D21w,

(4)

where x(t) ∈ R
n is the state vector of the generalized plant,

u(t) ∈ R
nu represents the control input , y(t) ∈ R

ny is the

measured output, w(t)∈R
m is the exogenous input and z(t)∈

R
m is the objective signal. The matrices A ∈ R

n×n, B1 ∈
R

n×m, B2 ∈ R
n×nu , C1 ∈ R

m×n, C2 ∈ R
ny×n, D11 and D21

are all constant and known. Assume that D12 = 0, (A,B2) is

stabilizable and (A,C2) is detectable. The aim is to synthesize

a full-order dynamic output feedback controller

K :

{

ẋc = Acxc +Bcy,

u =Ccxc +Dcy,
(5)



such that the nominal closed-loop system M(s) is α− SNI

and the generalized plant G is robustly stabilized against all

stable, strictly proper, NI uncertainties ∆(s) with ∆(0)≤ γ−1

for a given γ > 0. The state-space realization of the controller

synthesized nominal closed-loop system M(s), as shown in

Fig. 1b, from w to z is given by

M(s) =

[

Acl Bcl

Ccl Dcl

]

=





A+B2DcC2 B2Cc B1 +B2DcD21

BcC2 Ac BcD21

C1 0 D11



 .

(6)

B. Controller synthesis using α− SNI framework

This subsection provides the main contribution of this

paper. Theorem 2 gives a set of sufficient conditions required

for the existence of a dynamic output feedback controller

K(s) which makes the nominal closed-loop system given

in (6) α− SNI with a given α > 0 and maintains closed-

loop stability in presence of any stable, strictly proper, NI

uncertainty satisfying the DC gain condition.

Theorem 2: Let a generalized plant G be given by (4)

with D11 = DT
11, D12 = 0, (A,B2) stabilizable and (A,C2)

detectable. Let γ > 0, α > 0 and m ≤ 2n. Suppose there exist

matrices Â ∈ R
n×n, B̂ ∈ R

n×ny , Ĉ ∈ R
nu×n, D̂ ∈ R

nu×ny and

symmetric matrices P ∈ R
n×n and X ∈ R

n×n such that




Φ11 +2αP Φ12 +2αI PB1 + B̂D21 + ÂCT
1

⋆ Φ22 +2αX Φ23

⋆ ⋆ 0



≤ 0,

(7)
[

P I

I X

]

> 0, (8)

and C1XCT
1 +D11 < γI, (9)

with the following shorthand

Φ11 = PA+PAT + B̂C2 +CT
2 B̂T

, (10a)

Φ12 = Â+(A+B2D̂C2)
T
, (10b)

Φ22 = XAT +AX +B2Ĉ+ĈT BT
2 , (10c)

Φ23 = B1 +B2D̂D21 +AXCT
1 +B2ĈCT

1 , (10d)

and the symbol ⋆ denotes the elements due to symmetry.

Then, an internally stabilizing controller K(s) is given by

(5) where

Dc = D̂, (11a)

Cc = (Ĉ−DcC2X)M−T
, (11b)

Bc = N−1(B̂−PB2Dc), (11c)

Ac = N−1(Â−PAX −NBcC2X

−PB2CcMT −PB2DcC2X)M−T
, (11d)

and M and N are square and non-singular solutions of the

algebraic equation MNT = I−XP. This controller K(s) forms

a closed-loop system M(s), expressed as in (6), which is α−
SNI and is robust to all stable, strictly proper, NI uncertainty

∆(s) satisfying λmax[∆(0)]≤ γ−1.

Proof. First note that Dcl = DT
cl in (6) and m ≤ 2n. The

proof will proceed via the following steps which establishes

that for M(s) =

(

Acl Bcl

Ccl Dcl

)

to be α− SNI with a given

α > 0, conditions (7)-(9) need to be satisfied.

Step 1: From Definition 3, M(s) =

(

Acl Bcl

Ccl Dcl

)

is α−

SNI with a given α > 0 if there exists Y =Y T > 0 such that
(

AclY +YAT
cl +2αY ⋆

BT
cl +CclYAT

cl 0

)

≤ 0. (12)

Step 2: Since inequality (12) is not in LMI form due

to presence of the terms containing products of unknown

controller variables, a linearising change in controller vari-

ables [19], [20] is required to transform (12) into LMI form.

Partition the closed-loop Lyapunov matrix Y and Y−1 as

follows:

Y =

(

X M

MT •

)

and Y−1 =

(

P N

NT •

)

, (13)

where X and P are symmetric n×n matrices and the symbol

• represents matrices that are not explicitly used in the

linearization process. Note Y−1 exists since Y > 0 via (8)

which has been explained subsequently in step 4. Note also

that X , P, M, N are not independent variables but must satisfy

XP+MNT = I (see [19], [20] for details). Since, M and N

are square and non-singular, the following block matrices

Π1 =

(

P I

NT 0

)

and Π2 =

(

I X

0 MT

)

(14)

are non-singular. Π1 and Π2 are related through the expres-

sion

Y Π1 = Π2 (15)

which is obtained from YY−1 = I. The change of controller

variables are defined as


















Â = PAX +NBcC2X +PB2CcMT +PB2DcC2X +NAcMT
,

B̂ = NBc +PB2Dc,

Ĉ = DcC2X +CcMT
, and

D̂ = Dc.

(16)

Step 3: Applying a congruence transformation on (12)

with the block diagonal matrix diag{Π1, I} and using (15),

we obtain

[

ΠT
1 AclΠ2 +ΠT

2 AT
clΠ1 +2αΠT

1 Π2 ⋆
(

BT
cl +CclYAT

cl

)

Π1 0

]

≤ 0. (17)

Simplifying all the product terms and substituting into (17)

the linearizing change of controller variables given in (16),

we get back condition (7), that is,




Φ11 +2αP Φ12 +2αI PB1 + B̂D21 + ÂCT
1

⋆ Φ22 +2αX Φ23

⋆ ⋆ 0



≤ 0.

Step 4: Positive definiteness of the closed-loop Lyapunov

matrix Y =

(

X M

MT •

)

is guaranteed by (8) via the

congruence transformation shown below

Π
T
1 Y Π1 =

(

P I

I X

)

> 0. (18)



Step 5: The inequality condition (9) is equivalent to

M(0)< γI since M(0) =CclYCT
cl +D11. This in turn implies

λmax[M(0)∆(0)] < 1 via [1]. Thus, the interconnection of

M(s) being α− SNI and ∆(s) being stable NI satisfies all

the assumptions of Theorem 1 as well as the DC loop gain

condition. Therefore, the interconnection is robustly stable.

This completes the proof. �

Remark 3: In order to find square and non-singular so-

lutions of M and N from the expression MNT = I − XP,

methods such as Q−R factorisation, Cholesky factorisation

or Eigen-decomposition can be used. But the easiest solution

is to choose M = I and accordingly, N = I−PX . This choice

of M and N rules out the possibility of getting ill-conditioned

solutions in Matlab due to computational issues. �

IV. ILLUSTRATIVE EXAMPLES

In this section, we will present two illustrative examples to

elucidate the usefulness of the proposed synthesis technique.

A. Example 1

We reconsider the model of an uncertain flexible structure

system with colocated position sensor and force actuator,

as shown in Fig. 2, originally studied in [3], [6] followed

later by [13]. The generalized plant model G of the physical

d

2x
yu

z


2

1s



1
1s 

1
1s 

( )s


y

w

3x

1x


Fig. 2: Block diagram of the simplified model of an uncertain

flexible structure system taken in [6].

system is governed by the following state-space equations.

The output of the system y(t) is subjected to some bounded

disturbance d(t) ∈ R.

G :











ẋ1

ẋ2

ẋ3



=





−1 0 0

1 −1 1

0 1 −1









x1

x2

x3



+





0 0

0 0

1 1





[

w

d

]

+





−2

1

0



u,

[

z

y

]

=

[

0 1 0

0 1 0

]





x1

x2

x3



+

[

0 0

1 1

][

w

d

]

,

and W (s) = ∆(s)Z(s), where W (s) and Z(s) are the Laplace

transform of w(t) and z(t) respectively. In line with [6], ∆(s)
is an SNI uncertainty with ∆(∞) = 0 and ∆(0)≤ 1.

Part I. The control objective is to synthesize a dynamic

output feedback controller K(s) such that the nominal closed-

loop system M(s) becomes α− SNI and the generalized plant

G remains stable closed-loop in presence of any ∆(s) defined

above. Choosing α = 0.8 and applying Theorem 2, we obtain

a feasible solution set of matrices

P =





126.3650 15.0662 83.8253

15.0662 7.8543 15.0240

83.8253 15.0240 126.6103



> 0,

X =





33.3391 −2.0000 −31.8531

−2.0000 0.5764 1.5764

−31.8531 1.5764 30.8991



> 0,

and Â, B̂, Ĉ, D̂ using the CVX toolbox [21]. We fix M = I and

hence, N = I −PX . The controller matrices Ac, Bc, Cc and

Dc are then uniquely reconstructed for this M and N using

the relations (11a)-(11d). The controller K(s) is computed as

K(s) =
3.7491(s+1)(s+1.345)(s+6.358)

(s+36.45)(s+1.386)(s+1.001)

which constitutes the nominal closed-loop system

M(s) =

3.749s5 +33.63s4+
97.04s3 +126.6s2 +77.97s+18.48

s6 +38.09s5 +174.3s4+
336.1s3 +328.9s2 +162s+32.06

from w to z. The closed-loop poles are given by λi(Acl) =
{−33.1278,−1.1847,−0.9259± j0.1564, −0.9264,−1.00}.

It can be readily verified that M(s) is an α− SNI transfer

function with ℜ[λi[Acl ]] < −0.8 for all i. The Nyquist plot

of M(s) given in Fig. 3a also reflects that M(s) is an SNI

transfer function. Now, we find M(0) = 0.5764 and hence,

M(0)∆(0) = 0.5764 < 1, which ensures robust stability in

closed-loop against the given set of ∆(s) having ∆(0) ≤
1 via Theorem 2. In order to show the applicability of

0 0.1 0.2 0.3
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Im
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x
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(a)

( )sz w

( )N s d

y ( )f s

(b)

Fig. 3: (a) Nyquist plot of the α− SNI transfer function M(s)
obtained in Example 1; (b) LFT configuration for robust

performance problem by augmenting a fictitious uncertainty

∆ f (s) with the stable NI uncertainty ∆(s).

the proposed synthesis scheme, we study the disturbance-

attenuation problem in presence of two arbitrarily chosen

strictly proper SNI uncertainties given by ∆1(s) =
1

s+2
and

∆2 = 1
s+20

. A pulse disturbance having amplitude 0.1 and

Ton = 1s is applied to the system under all zero initial con-

dition. Figures 4a-4d compare the closed-loop time response

corresponding to the nominal case and in presence of the



uncertainties. It is observed that the designed controller K(s)
ensures closed-loop stability and also provides satisfactory

transient performance in presence of the uncertainty. The

figures reveal that the percentage deviation from nominal

to perturbed condition in each of the states as well as the

output y(t) remains within 5% only. Moreover, despite the

presence of uncertainty, the control effort u(t) increases to a

negligible extent with respect to nominal level. The plot of

u(t) has not been included due to space constraint.
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Fig. 4: Closed-loop time responses of the designed system

under the nominal as well as perturbed condition subjected

to a pulse disturbance and zero initial condition: (a) State

x1(t), (b) State x2(t), (c) State x3(t), (d) System output y(t).

Part II. Apart from the time domain performance analysis,

we would also like to quantify and measure the robust

H∞ performance of the closed-loop system output (y) from

the disturbance (d) achieved by the designed controller

K(s). Theoretically, robust H∞ performance (RP) is analysed

[18] by recasting the robust performance problem into a

robust stability problem with respect to the augmented, two-

block uncertainty ∆p(s) =

[

∆(s) 0

0 ∆ f (s)

]

, where ∆ f (s) ∈

RH
nd×ny
∞ is a fictitious uncertainty and ∆(s) ∈ RH

m×m
∞ is

the physical uncertainty as depicted in Fig. 3b. To measure

the robust H∞ performance, µ-analysis technique is invoked.

According to [18, Theorem 11.9], robust H∞ performance

with level β of the closed-loop system shown in Fig. 3b is

guaranteed for all stable ∆(s) with ‖∆(s)‖∞ <
1
β

for a given

β > 0 if and only if

sup
ω∈R

µ∆p
(N( jω))≤ β , (19)

where N(s) represents the transfer function mapping from
[

w

d

]

to

[

z

y

]

. Following this approach, in the present

example, we compute an upper bound to µ∆p
(N( jω)) using

the Matlab Robust Control Toolbox for the frequency interval

ω ∈ [10−4,104] and find sup
ω∈[10−4,104]

µ∆P
(N( jω)) ≤ 2.1529.

We also calculate ‖N11(s)‖∞ = ‖M(s)‖∞ = 0.5764. It sig-

nifies that, to satisfy robust stability alone (via Small-gain

Theorem [18]), ‖∆(s)‖∞ <
1

0.5764
= 1.7349; while, to ensure

the robust H∞ performance with level 2.1529 via µ-analysis,

‖∆(s)‖∞ <
1

2.1529
= 0.4645 is required. On the contrary, to en-

sure robust stability according to NI-SNI stability condition,

∆(s) needs to satisfy ∆(0)< 1
M(0) = 1.7349 as M(0) = 0.5746

(as found in Part I). Now, ‖∆(s)‖∞ < 0.4645 is equivalent

to |∆( jω)| < 0.4645 ∀ω ∈ R which implies that the latter

region is a significant restriction of the former region. Thus

the α− SNI synthesis allows a bigger set of uncertainties

compared to the set satisfying the robust H∞ performance.

B. Example 2

Here, we adopt the following MIMO example from [13]

being inspired by [9], where the same example was studied to

show an application of a decentralized static output feedback

controller. The generalized plant G is expressed via (4) with

the following state-space matrices

A =













−4 0 −2 0 0

0 −2 0 2 0

0 0 −2 0 −1

0 −2 0 −1 0

3 0 −2 0 −1













,B1 =













1

1

1

1

1













,

CT
1 =













0

1

0

0

0













,B2 =













1 0 0

1 0 0

0 0 0

0 1 0

0 0 1













,C2 =





1 0 0 0 0

0 1 0 0 0

0 0 0 0 1





and D11 = 0, D12 = 01×4, D21 = 03×1. The uncertainty ∆(s) is

assumed to be any stable, strictly proper, NI transfer function

with ∆(0)≤ 3.6. Similar to Example 1, the control objective

is to synthesize an output feedback controller K(s) which

internally stabilizes G and renders M(s) from w to z α−
SNI. Choosing α = 2, we apply Theorem 2 on G and obtain

a feasible solution set of matrices

X =













24.58 −0.06 −9.69 −2.83 −7.73

−0.06 0.25 0.34 0.03 0.32

−9.69 0.34 24.50 −5.65 10.07

−2.83 0.03 −5.65 31.85 −1.45

−7.73 0.32 10.07 −1.45 34.22













> 0,

P =













21.12 −7.37 1.86 −4.69 −7.69

−7.37 53.42 −10.22 −23.68 −7.41

1.86 −10.22 11.45 −2.81 1.85

−4.69 −23.68 −2.81 39.11 −4.68

−7.69 −7.41 1.85 −4.68 21.14













> 0,

and Â, B̂, Ĉ, D̂. M = I is taken and hence, N = I − PX .

The controller state-space matrices are then reconstructed



according to (11a)-(11d) as given below:

Ac =













−10.40 −9.92 −13.89 −10.27 −9.25

−5.73 −6.89 −5.02 −4.09 −4.20

1.58 0.80 −1.89 0.82 1.83

9.19 2.87 3.17 1.89 6.55

−3.24 −0.09 6.12 0.08 −6.57













,

Bc =













46.38 −4.96 −39.16

−4.96 −65.26 −10.10

19.58 −40.04 31.07

20.32 −8.28 17.61

−39.16 −10.10 −38.19













,Dc = 03×3,

and Cc =





0.27 0.36 0.31 0.36 0.28

−0.04 0.11 0.06 0.096 0.026

0.39 0.23 −0.24 0.20 0.38



 .

We compute the nominal closed-loop system

M(s) =

(s+2.35)(s2 +4.942s+7.379)
(s2 +13.89s+49.69)(s2 +6.256s+13.73)

(s2 +6.423s+18.4)

(s+2.325)(s+3.274)
(s2 +4.967s+7.426)(s2 +6.174s+13.64)

(s2 +5.95s+17.95)(s2 +11.17s+62.71)

,

which has been verified to be SNI with ℜ[λi[Acl ]] < −2.

The Nyquist plot of M(s) shown Fig. 5 confirms that it

is indeed SNI. As M(s) is strictly proper and M(0)∆(0) =
0.2507× 3.6 = 0.9025 < 1, it guarantees that the designed

controller K(s) ensures robust stability of the generalized

plant G against any stable NI uncertainty ∆(s) satisfying

∆(0)≤ 3.6 via Theorem 2.
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Fig. 5: Nyquist plot of the synthesized α− SNI transfer

function M(s) obtained in Example 2.

V. CONCLUSIONS

In this paper, we propose an LMI-based α− SNI synthesis

technique for stable/unstable LTI systems with stable NI

uncertainty. This synthesis technique transforms the nominal

closed-loop system into a subset of the SNI class along with

the closed-loop poles having ℜ[s]≤−α for a given α > 0.

Robust stability is also guaranteed against any stable strictly

proper NI uncertainty satisfying the required DC-gain bound.

Moreover, using the proposed technique, other performance

measures such as, H2 and H∞, can be seamlessly added

by following the approach presented in [20]. In future,

the effectiveness of the controller may be validated in an

experimental set-up of a series elastic actuator.
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