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Abstract: The fifth-generation (5G) network is presented as one of the main options for Industry 4.0
connectivity. To comply with critical messages, 5G offers the Ultra-Reliable and Low latency Commu-
nications (URLLC) service category with a millisecond end-to-end delay and reduced probability of
failure. There are several approaches to achieve these requirements; however, these come at a cost in
terms of redundancy, particularly the solutions based on multi-connectivity, such as Packet Dupli-
cation (PD). Specifically, this paper proposes a Machine Learning (ML) method to predict whether
PD is required at a specific data transmission to successfully send a URLLC message. This paper is
focused on reducing the resource usage with respect to pure static PD. The concept was evaluated on
a 5G simulator, comparing between single connection, static PD and PD with the proposed prediction
model. The evaluation results show that the prediction model reduced the number of packets sent
with PD by 81% while maintaining the same level of latency as a static PD technique, which derives
from a more efficient usage of the network resources.

Keywords: 5G; machine learning; prediction; Industry 4.0; URLLC; multi-connectivity

1. Introduction

Wired communications have been widely used in industrial scenarios as new appli-
cations of automation and Artificial Intelligence (AI) with high mobility are rolled out.
However, wired communications are costly in terms of installation and maintenance and
cannot cover new use cases, such as mobility in factories. As a result, the whole industry
is shifting towards more flexible and adaptable scenarios, resulting in the Industry 4.0
paradigm. Industry 4.0 is the fourth industrial revolution to improve the flexibility of
production and distribution processes where wireless networks have an important part.

The advances in the fields of robotics, AI and Machine Learning (ML) converge
in Industry 4.0 to adapt production to new customer demands, such as an increased
customization, reduced costs and lower environmental impact [1]. Wireless networks are
a major enabler of flexibility in Industry 4.0, allowing easy reconfiguration of production
lines, mobile appliances, such as robots both within and beyond the bounds of factories.

The fifth-generation (5G) radio technology, which has been standardized by the 3rd
Generation Partnership Project (3GPP) members, aims to provide more flexibility to sup-
port new services and applications. Unlike previous technologies, that were focused on
traditional mobile broadband, in 5G new services categories have been defined according
to their requirements:

• Enhanced Mobile BroadBand (eMBB): this service category is an evolution of tradi-
tional mobile broadband, with higher data rates (up to 20 Gbps) and bandwidth. It is
similar to the traditional use of networks by users, such as web browsing or streaming
multimedia content.

• Massive Machine-Type Communications (mMTC): this service category covers mas-
sive connection of devices, with a sporadic and lower volume of data exchange over
the network. It is mainly focused on the Internet of Things (IoT).
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• Ultra-Reliable and Low Latency Communications (URLLC): this service category
aims to cover critical communications, where short messages are exchanged with
requirements of lower latency and higher reliability. The latency requirement varies
from 1 to 15 ms, depending on the application itself. However, in 5G, it is expected to
reach a maximum latency of 1 ms with a reliability target of 1 − 10−5 for a packet size
of 32 bytes at the user plane [2].

URLLC can support use cases, such as closed loop control, hazard sensors, robot
automatization, augmented/virtual reality, drone communications and mobile eHealth.
The latency requirement varies from 1 to 15 ms, while the reliability targets can range
between 1 − 10−5 and 1 − 10−9 [3]. These use cases need advanced radio features and
resource cost techniques to fulfill highly demanding latency and reliability targets. There
are several approaches to achieve such requirements. One technique is the reduction of
the time-slot duration by means of a higher numerology [4,5] and by changing the radio
resource scheduler [6].

Another solution consists of eliminating steps in the connection protocols to reduce
the access time—known as Grant-free transmission [7]. Multi-connectivity [8,9] has been
proposed for the sake of achieving high reliability and low latency. In particular, for the
sake of achieving high reliability, many solutions have been proposed. The studies in [9,10]
are focused on a static threshold (i.e., Reference Signal Received Power (RSRP) or Channel
Quality Indicator (CQI)) that determines the dual connectivity range or Packet Duplication
(PD) activation.

In [11], eMBB/URLLC multiplexing through preemptive URLLC puncturing was
studied, where a Deep Learning Link Adaptation was proposed for eMBB users to maximize
the throughput, while ensuring reliability for eMBB users due to corruption of the packets
derived from URLLC puncturing. In [12], the PD architecture for carrier aggregation and
the dual connectivity approach is presented. The study focuses on how many links are
necessary to fulfill reliability and latency requirements for URLLC. A conservative link
adaptation algorithm for URLLC is proposed in [13], where the base station keeps statistics
of received CQI reports and calculates the maximum channel quality degradation over a
time window.

Moreover, in [14] increasing the number of CQI and Modulation Coding Scheme
(MCS) values is proposed to reduce the gap between the Signal to Interference plus Noise
Ratio (SINR) threshold values and, hence, the radio resource wastage. In [15], two methods
for enhancing the efficiency of data duplication over dual connectivity are proposed. In the
first method, the duplicates of packets already successfully delivered to the User Equipment
(UE) are promptly dropped from the transmission queues of the involved base stations
using an uplink indication provided by the UE.

In the second method, the duplication is only performed when the primary base
station receives a negative acknowledgement (NACK) associated with the transmission. A
Deep Reinforcement Learning method was proposed in [16] to decide which secondary
legs to use to duplicate and transmit the packet for the UE within the dual connectivity
range. The studies above specifically cover Urban Macro (UMa) and Urban Micro (UMi)
scenarios, but not the industrial scenario.

Although these techniques have shown their effectiveness in reducing latency and
packet loss, they come at an additional cost, which derives from a less efficient usage of the
network resources. The usage of these techniques does not add any benefit if the baseline
network can guarantee the requirements of the services/applications at a given moment.
Prediction may allow the base station to decide if a redundant technique is required.

This paper proposes a method to predict the End-to-End (E2E) latency as a Service
Key Performance Indicator (S-KPI) [17] by observing the network conditions right before a
critical transmission in the downlink and, based on that prediction, activate the PD tech-
nique (dynamic algorithm) [12,18] in industrial scenarios. The approach for the prediction
model followed in this paper is based on the solution shown in [19], where Radio Access
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Network (RAN) Key Performance Indicators (KPIs), such as RSRP and Reference Signal
Received Quality (RSRQ), are used to predict the S-KPIs using an estimator based on ML.

In particular, the authors in [19] applied the estimator for video Key Quality Indicators
(KQIs), such as the average buffer size or number of stalls. Nevertheless, the methodology
is independent to the final application and ML algorithm used. In this paper, the same
concept is adopted for the prediction of the E2E latency S-KPI, assuming that the main
contribution of the latency is at the RAN level. As in 5G, it is expected that Mobile Edge
Computing (MEC) [20] will play a central role for URLLC, this assumption is justifiable,
since the path of the packets will be limited to the RAN.

The advantage of this approach is that RAN KPIs can be easily measured by the
network terminals and infrastructure elements. In this paper, the precision of the estimator
is evaluated. The dynamic PD approach using the predictor was evaluated, comparing the
E2E latency performance with single connection and a static PD (that is, always duplicating
the packet regardless of network conditions) techniques and the resource consumption
when using a static vs. a dynamic PD approach (based on the proposed latency predictor).

The remainder of this paper is organized as follows. In Section 2, the materials are
described: first, a brief description of cellular networks in Industry 4.0 and critical applica-
tions is given in Section 2.1; and in Section 2.2, multi-connectivity in 5G is presented. Then,
in Section 3, the proposed system is described. In Section 4, the simulated implementation
details are described. The results are shown in Section 5. Finally, our conclusions are drawn
in Section 6.

2. Background
2.1. Industrial Networks
2.1.1. Wireless Connectivity in Industry

Wired connections have been widely used in industrial networks, such as ProfiNET,
EtherCAT and the set of Time Sensitive Networks (TSN) protocols. Nevertheless, wired
infrastructures are costly in terms of installation and maintenance. These are also not
suitable for novel Industry 4.0 use cases, such as mobile robots.

In wireless technologies, there is a division between two types of networks that enables
different applications. The division is regarding Local Area Networks (LAN) and Wide
Area Networks (WAN). LANs have a coverage range of up to 100 m; covering areas, such
as rooms or even full factories. The main wireless LAN technologies are based on the
IEEE 802.11 family—commonly named WiFi. Moreover, there exist customized solutions
for factories, based on IEEE 802.15.1 and 802.15.4, such as Wireless Interface to Sensors
and Actuators (WISA) and WirelessHART. These technologies operate in an unlicensed
spectrum and suffer from poor scalability [21].

On the other hand, WANs provide a higher coverage range, from distances of a few
kilometers up to whole countries. The most extended and known wireless WANs are the
3GPP-based technologies (GSM, GPRS, EDGE, UMTS, LTE and 5G). As cellular networks
operate at a licensed spectrum, a better performance can be obtained. Cellular networks
provide ubiquitous connectivity beyond the limits of the factory.

This means that production that is geographically distributed can be monitored and
managed using a single network. As WANs may be provided as a service by cellular
network operators, they do not imply the acquisition, installation and maintenance of
infrastructure, allowing multi-tenancy and, therefore, resulting in lower costs [22] and
improved connectivity.

Wireless networks generally suffer from a higher latency and packet loss probability
than wired networks. For this reason, the recent generations of cellular networks have
introduced different optimizations for reducing the latency and also improving reliability.

For 5G, Industry 4.0 is one of the main development verticals, where its applications
have been explored for a special network design. One of the main novelties in 5G is the
introduction of MEC [20]. MEC consists of moving the application servers to the network
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edge, thus, reducing the path that a packet must travel. This approach reduces the latency
for the devices and the network load beyond the RAN.

2.1.2. Critical Applications in Industry 4.0

In the Industry 4.0 paradigm, agility is a key objective in the design of factories. Agility
means the flexibility of the system to changing requirements by replacing or improving
separated modules. Some of the main technologies that allow such agility in factories are
the following:

• Rearrangeable modules in production lines [23]: traditionally, production lines have
been made up of static modules that perform specific operations. These modules,
each controlled by a Programmable Logic Controller (PLC), are interconnected via
wired to the Manufacturing Execution System (MES). By enabling the mobility of
these modules, new combinations of elements into new types of production lines
are possible.

• Automated Guided Vehicle (AGV) [24]: it is common that vehicles driven by workers
perform tasks, such as moving stocks and supplies in factories. In the Industry 4.0
paradigm, due to the customization of production, these kinds of movements increase
exponentially. It is harder to provide supplies in batches; therefore, smaller vehicles
are required with an increase in the number and variety of trips. To achieve this
without increasing the workload, AGVs do this without the need for human drivers.

• Drones [25]: drones are a new category of vehicle that enables novel possibilities in
factories. Applications, such as emergency assistance, surveillance or rapid point-to-
point delivery can be highly optimized with these vehicles.

• Autonomous robots [26]: robots have been extensively adopted in industry since
commercial variants have been available. Nevertheless, early iterations of robotics
technologies were limited in the number of tasks that they could perform and de-
pended strongly on operators programming them correctly. Currently, AI and ML,
along with Simultaneous Location and Mapping (SLAM) and navigation technologies,
are enabling novel functionalities on robots that are much more autonomous and
perform tasks that were previously reserved for workers.

• Connected workers solutions [27]: the development of consumer electronics in the last
years has had a higher impact in the professional area. Gadgets, such as Augmented
Reality (AR) glasses, tablets, haptic interfaces and sensors have shown a productivity
boost in factories.

All of these technologies rely on wireless connectivity. Some of them, such as produc-
tion lines, are already mature technologies where a mobility component is added in the
Industry 4.0 paradigm. In that cases, wired connections need to be changed to wireless [28].

2.2. 5G Multi-Connectivity Overview

Multi-connectivity in 5G New Radio (NR) inherits from the Long Term Evolution
(LTE) Dual Connectivity (DC) concept. LTE DC was first specified in Release 12 [29] and
allows UE to simultaneously send/receive data from different evolved NodeBs (eNBs).
The data split is performed at the Packet Data Convergence Protocol (PDCP) layer of the
transmitting eNB. At the receiving side, the information is decoded from lower layers,
and it is combined at the PDCP layer on the receiver. This process allows boosting the
throughput [30].

In Release 15, multi-RAT DC was specified for DC operation with NR and LTE
nodes [31]. Not only data split but also PD at the PDCP layer is introduced. PD allows
the same packet to be transmitted by different nodes, thus, improving the reliability. The
nodes are commonly known as the Master Node (MN) and Secondary Node (SN) and are
interconnected via a Xn interface. MN is in charge of activating/deactivating PD via Radio
Resource Control (RRC) signaling [12]. If the different links are spatially uncorrelated,
transmitting the duplicate packet can compensate poor channel conditions. This is very
important in industrial scenarios, where the fundamental problems are interference and
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multipath propagation, due to the presence of concrete walls and large metallic machinery
and structures.

Moreover, NR-NR DC for standalone deployments was standardized in Release 16 [31],
in which a UE is connected to one gNB that acts as a MN and another gNB that acts as a
SN. In this paper, NR-NR DC with the PD approach is assumed for the downlink direction.

Packet Duplication for URLLC

PD is a multi-connectivity solution that improves reliability by increasing redundancy
of the transmission. When PD is activated, the PDCP entity in the MN is responsible for
PD, whereas the PDCP entity in the receiver is responsible for detecting and removing
duplicated packets. The PDCP entity duplicates the packet data unit (PDU) to avoid twice
performing functions, such as ciphering, header compression, integrity protection etc. This
PDCP PDU has the same sequence number in both.

Then, the packet is forwarded by MN to the SN via Xn-U interface for transmission to
the UE. The packet will undergo through independent Radio Link Control (RLC), Medium
Access Control (MAC) and physical layer processing at each gNB. This implies that the
packet can be transmitted at different time intervals and over different frequency resources
and that physical transmission aspects, such as beamforming, MCS, ACK/NACK signaling
and the Hybrid Automatic Repeat Request (HARQ) mechanism, are independent.

On the receiver side, multiple copies of the packet are received, and the UE will
forward the first successfully received packet to the higher layers and remove duplicated
packets received later, based on the PDCP sequence number. Figure 1 shows a 5G NR-NR
PD scheme for downlink transmission.

PDCP

RLC

MAC

PHY

RLC

MAC

PHY

Master
Node

Secondary
Node

UE

PDCP PDU shared  
over Xn-U interface

5G Core 
NetworkPacket to be 

duplicated

Independent 
transmission

Figure 1. A downlink packet duplication scheme in a NR-NR DC scenario.

As PD improves reliability, it becomes a suitable mechanism for URLLC, which
demands a higher reliability and low latency. Not only to improve reliability but also
to reduce latency, as independent transmissions are performed by two different gNBs,
as mentioned before. In this case, latency reduction will be dependent on the best link.
Reliability and latency for URLLC are dependent on each other, that is, high reliability is
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consequential only if packets are received within the latency constraint. As a consequence,
PD may be used to improve both the reliability and latency.

Nevertheless, PD operates at the cost of wasting resources on SN. Thus, it is not effi-
cient to always send packets duplicated, as there could be situations where the conditions
are fulfilled by the primary node. For that reason, it is important to provide a dynamic
mechanism for MN that controls the activation/deactivation of PD for URLLC devices, in
order to reduce the resource costs at SN, which may affect other UEs attached on SN.

In this paper, we propose the use of a ML predictor, which, based on channel condi-
tions, predicts the E2E latency for URLLC devices in order to activate/deactivate duplica-
tion for a packet transmission.

3. Proposal

This section describes the proposed solution in order to assess reliability for URLLC
communications by using a dynamic packet duplication algorithm based on ML to reduce
the resource consumption.

3.1. System Description

The objective of the system described in this paper is to provide a prediction of the E2E
latency to assess the need for using PD solution. The proposed system provides an estimator
for downlink transmissions that is trained offline in a server running in the network edge
to reduce the computing workload and memory requirements at the master node.

The end devices may be installed in production line elements, AGVs, drones etc. These
terminals may need to receive messages with a certain guarantee of latency and reliability.
The reliability and latency can be improved by using multi-connectivity, that is, duplicating
the packet via two paths, with the cost of dramatically increasing the amount of radio
resources spent per transmission.

An alternative way, as presented in this paper, is to first predict whether the network
will be able to provide that guarantee without using PD. The MN, right before transmitting,
can estimate if a regular transmission, that is, without extra resources, will be sufficient
or if PD technique needs to be established. When URLLC devices are not involved in any
processor-intensive task, they will measure the latency and report the measurements along
with the KPIs to the system where a ML method will update the estimation model.

Figure 2 shows the overall architecture of the system. There are three main domains:
the device, which contains the sample collection modules; the server, which runs the ML
algorithm and stores a dataset with solved trained cases; and the MN, which contains the
estimator. The device needs to receive URLLC messages, and therefore KPIs and S-KPI are
forwarded to the server, which runs the ML algorithm and is located at the network edge
with computational resources and access to a non-restrictive power source.

The server will collect the data gathered by the devices and generate the ML parame-
ters (prediction model) for the estimator. Finally, the MN uses the estimator to predict the
E2E latency of URLLC devices. Based on the prediction, MN will activate/deactivate PD
for the current packet transmission.

The functions of the different modules of the system are explained below:

• KPI monitor: collects the KPIs from the radio interface at regular intervals.
• S-KPI monitor: reads the information from the URLLC device and measures the latency.
• Training data collector: joins the data generated by the KPI monitor and the S-KPI

monitor. The data joined is used as input to train the ML model.
• Estimator: performs the task of estimating the S-KPI. The primary inputs are the

current KPIs (such as SINR, MCS, HARQ feedback etc.) as measured by the MN. The
output is the estimation of the E2E latency. This module also has a secondary input
that consist in the estimation model extracted from the ML.
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Figure 2. Block diagram of the system.

3.2. KPI to S-KPI Mapping

In cellular networks, performance monitoring (PM) indicators are collected from
different points of the network: gNBs, radio interfaces, core network etc. UE traces can also
be collected, representing the radio PM indicators collected by the terminals. The PMs are
sent to a centralized location where they are analyzed.

Monitoring the network provides many alternatives for detection of problems, analysis
of the performance, among others. Nevertheless, these KPIs contains information from
lower layers of the network, but not on the performance at application layer in the UEs.
Since the development of 5G is centered on the E2E Quality of Service (QoS), this approach
has gained importance in recent years. S-KPIs [17] measure these magnitudes. S-KPIs are
specific to the final application; that is, for a video transmission, relevant S-KPIs include
the average buffer size or the number of stalling, while, for delay-sensitive applications,
the main S-KPI is the E2E latency.

The main inconvenience of S-KPI is that they are difficult to measure. They require
special procedures at the application layer of the device. The E2E latency can only be
measured a posteriori, thus, becoming useless to decide whether a special transmission,
such as PD can be performed at a given time.

To address this, a KPI to S-KPI estimator can be used [19]. This technique allows an
estimation of the S-KPI based on the available KPIs, which are easy to obtain. Since the
KPIs that can be obtained are only a subset of the variables that influence the value of the
S-KPI, the estimator will always have a margin for error, and the formula for the mapping
will not be trivial. In [19], the approach for creating such estimator is with ML techniques.

In this paper, the hypothesis is that, through this mapping, the E2E latency can be
obtained a priori by monitoring the following KPIs:

• Signal to Interference plus Noise Ratio (SINR): includes all the usable signals in
the computation. It is used by some vendors to better determine the CQI to adapt
the modulation.

• Modulation index: indicates the modulation index used from the table of the MCS
when performing a packet transmission. A higher index selects a more efficient
modulation, with a higher spectral efficiency and code rate. Otherwise, a lower
modulation index selects a more robust modulation, with a lower spectral efficiency
and code rate.

• Reception Success: indicates if a packet has been decoded successfully at the receiver
or not. This is used to determine if a packet has suffered a HARQ retransmission,
since the NACK message is indicated by the receiver to the base station.

The hypothesis assumes that the RAN network is the main contributor to the variable
part of the latency. This is due to the jitter being higher at Radio Access Technologies
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(RATs) [32] as opposed to the wired networks present in the trunk [33]. When using MEC,
the processing is done with the gNB or after a negligible network path, and thus the trunk
network component is canceled completely. Latency does not depend directly on the
measured KPIs but instead on factors, such as the network load. Nevertheless, in this paper,
it is assumed that these KPIs represent the overall status of the RAN connection.

Since the relations between the measured KPIs and the factors that determine the
latency are complex, ML is commonly used to find and exploit such relations. In this paper,
ML generates the prediction model that encompasses the complex relations among the
cited KPIs and the latency.

3.3. Random Forests

In this paper, random forests [34] were selected for the implementation of the ML part
of the system. The choice of this method is based on the computation simplicity once the
model has been trained, since fast prediction for URLLC services must be performed.

Random forests are an ensemble method commonly used to resolve several types
of ML learning problems, such as classification and regression. A random forest consists
of a set of decision trees. Each decision tree takes the input to the forest and returns an
estimated value. The structure of the tree is created in the training process. On each tree, a
decision is performed by comparing the input with a threshold. Based on the output of the
comparison, a new comparison is performed with a different input and threshold, which
determines the prediction of the tree.

To improve the accuracy, each decision tree output is aggregated. For regression, the
aggregation method is typically the average of the output of all the trees. A summarized
scheme of the random forests prediction is shown in Figure 3.

Prediction 1 Prediction 2 Prediction N

Average all predictions

Random Forest 
prediction

[…]

[…]

Tree 1 Tree 2 Tree N

Sample Input

Figure 3. Random forest prediction scheme.

Moreover, several parameters must be adjusted before starting the execution, related
to the performance of both the decision trees and the complete set that builds the forest.
Some of the most important configuration parameters are the following:

• Number of decision trees: this establishes the number of trees that constitutes the
forest. This must be chosen in relation to the input dataset to avoid overhead.

• Bootstrap: this parameter decides how each tree is built independently. If it is not
activated, the complete dataset is used for each tree. Otherwise, the initial dataset is
divided into subsets of dataset for each tree.
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• Division criterion: this defines the quality of a split according to the condition set in the
node. The most used criteria for regression are the squared error and absolute error.

• Maximum leaves per tree: this sets the maximum depth of the tree in the forest.
• Maximum samples to split: this determines the maximum number of samples to

consider in order to choose the condition that determines the split.
• Minimum samples to split: this determines the minimum samples needed to consider

a new split.

A training method is applied over a set of labeled samples, (vectors with inputs to the
system and the expected output) to obtain the trees. The training process [34] consists of
randomly selecting a subset of features and a subset of training samples for each tree and
then training it using the CART [35] algorithm without pruning. The random selection of
samples contributes in avoiding overfitting. Once the model has been trained, an evaluation
phase is performed, where only the values of the different inputs are considered, and the
algorithm provides the output. Then, the output of the model and the original are compared
in order to estimate the accuracy of the model.

In the ML scheme proposed in this paper, the labeled samples are collected in the
UEs and transmitted to a server located at the network edge, where different datasets are
collected. The collection of different datasets helps the KPI to S-KPI mapping by capturing
the effects of contextual variables. The ML process is executed in a server, and the estimator
is used by the MN to predict the S-KPI. In particular, the inputs of the algorithm are the
SINR, the modulation index and the reception success, as previously indicated in Section 3.2.
The output will be the E2E latency experienced by the URLLC devices.

3.4. Implementation Considerations

While the measurements in this paper were performed on simulations, it is important
to discuss the issues that arise when this implementation is ported to the real world, in
a real MN and stock UEs. Specifically, in this subsection, the aspects on data collection
requirements, the need for retraining and the hardware and software requirements both on
the MN and the UE are discussed.

Regarding the data, the ML algorithm requires data on KPIs and S-KPIs. KPIs are
easily collected by the Network Monitoring System (NMS), which is part of the maintenance
systems of the MN. The S-KPIs are harder to obtain, since they require the collection of
data in the UEs. Therefore, to obtain real values, a measurement campaign must be done,
including UEs with the appropriate software for capturing and transmitting the S-KPIs.

Another important aspect is the need for retraining the model to adapt it to changes
in the environment. The validity of the model depends on variations in the behavior of
the features that are used in it, which determine the relation between the independent and
dependent variables. Second-order effects, such as contextual factors that are not included
in the model (e.g., geometry of the buildings, weather conditions, power supply variations
etc.). These effects are out of the scope of the tests in this paper; however, on real tests, the
required frequency of retraining would be an important parameter to study.

To implement the proposed functionality in reality, some hardware and software
requirements are posed over both the MN elements and the UEs. Specifically, in the MN,
the software for data collection (KPIs and S-KPIs), as well as the ML algorithm and the
estimator (described in Figure 2) must be implemented in some element of the network.
An important aspect to take into account is the latency of the decision. There are two
possible implementations:

• Implement the data collection and ML stages in the network core. The main advantage
is the availability of large datasets that add diversity to the final model. Another
advantage of this method is that cloud computing resources can be used better. This
is even more important when looking ahead to future 6G networks, where network
elements in the core network for ML and AI are envisioned.

• Implement everything in the network edge. In this case, to gain diversity, a Federated
Learning (FL) mechanism can be used to share model parameters between different
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agents. FL is the collaborative learning, which trains and updates the model through
the joint effort of multiple servers that are deployed in a decentralized manner within
the network.

In both of these cases, the estimator will run in the network edge to minimize latency
in the decision, the KPI collection will be done in the network edge due to the nature of the
task, and the S-KPI collection will be done in the terminals. All these software elements must
be supported by the appropriate hardware equipment. While ML is hardware intensive,
the estimator has a low demand in resources.

Regarding the UE, the hardware and software requirements are quite low. Specifically,
the devices must implement a functionality for capturing S-KPI information and sending
it to the MN (to wherever the data collection function is implemented; either in the edge
or the core). While the requirement is quite low in terms of hardware and software, it
has some complications in the form of privacy and confidentiality issues. Therefore, it is
expected that the use of UEs with the appropriate software is limited to a reduced set of
devices acting over a predefined period of time.

Ownership of the network will also play a central role for this aspect; if the user (in
the case of industry, the owner of the factory) is also the owner of the network equipment
where the data is collected (edge or core), then it is likely that the rate of penetration of
the S-KPI probes is higher in the installed base of UEs and more stable in time. Therefore,
this would also be an advantage of the system architecture where the data collection and
machine learning is done in the edge, and the model parameters are then shared with FL.

4. Tests

The proposed scheme was tested in a simulated 5G network, using ns-3, which is a
free and open-source network simulator that is very popular in research [36]. In particular,
the 5G-LENA module [37] was selected to conduct the simulations. This module focuses
on the new 3GPP NR specifications and includes numerology support, frequency division
multiplexing of numerology and an OFDMA-based scheduler. It also includes beamforming
and HARQ feedback implementation.

In this section, the simulation scenario along with the KPI recollection phase to train
the model are described.

4.1. Simulation Scenario

The scenario consists in an indoor factory, with an area of 4800 m2 and a height of
10 meters. The scenario is based on the one proposed in 3GPP 38.901 (Table 7.8-7) [38],
which was used to calibrate the indoor factory scenario defined in Release 16. In particular,
the Indoor Factory with Dense clutter and High base station (InF-DH) [38] scenario was
selected with a clutter height of 6 m and clutter density of 80%.

Attending to the RAN part, there are two picocells with a height of 8 m, which are
interconnected via Xn interface, with a base station distance of 50 m. Both gNBs operate
with a frequency of 3.7 GHz and a bandwidth of 20 MHz. One transmission/reception
omnidirectional antenna was used in both, picocells and UEs, with 23 dBm as downlink
transmission power. Figure 4 shows the distribution of the scenario simulated.

The slot length configured is set to 0.25 ms, which corresponds to numerology 2, as
defined in the standard [39]; whereas the number of HARQ retransmissions attempts was
set to a maximum of 1, due to URLLC latency constraints. Moreover, the link adaptation
used at gNB for MCS selection is an error model-based, where the MCS is selected to meet
a target transport Block Error Rate (BLER). The MCS table used is Table 1 (up to 64-QAM)
from 3GPP 38.214 [40]. The delay for the scheduling procedure was set as following:

• The packet processing from MAC to PHY layer is fixed at two slots. This is a delay
between the control/data acquisition from the RLC layer by the MAC layer and the
moment at which the data is available to go over the air.
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• The transport block decode latency is set to 100 microseconds at UE and gNB. It is a
delay between the data acquisition from the air by the PHY layer and the moment at
which the data block is available to process at the MAC layer.

• The processing delay needed to decode Downlink Control Information (DCI) and
decode downlink data is set to 0 slots.

• The processing delay needed from the end of downlink data reception to the earliest
possible start of the corresponding ACK/NACK transmission is set to 1 slot.

On each base station, there are 15 UEs attached, whose positions are fixed and ran-
domly selected at the beginning of the simulation. For each UE, a Constant Bit Rate (CBR)
flow of 1 Mbps is sent by the gNB in downlink direction.

On the other hand, there is a URLLC device that is connected to both gNBs simul-
taneously, one acting as a MN and the other one as a SN. The initial position of the
URLLC device is random over the scenario, using a uniform distribution. Then, when
the simulation begins, the URLLC device selects a random direction (where all angles are
equiprobable, since a uniform distribution is used) over 360 degrees and maintains that
direction during 10 s with a speed of 2 m/s.

When the timer expires, a new direction is selected. The URLLC device represents
an AGV that is remotely controlled by the network. To do this, the network sends short
commands, in this case, UDP packets with a periodicity of 10 ms and size of 64 bytes.

In this paper, a MEC [20] is considered to allocate the URLLC service at the network
edge. Thus, the main contribution of the latency comes from the RAN. Table 1 shows the
main configuration parameters of the simulations.

Table 1. The main configuration parameters.

Parameter Value

Channel and propagation loss model 3GPP 38.901
System bandwidth 20 MHz
Center frequency 3.7 GHz

Numerology 2
Scenario InF-DH

Transmission direction Downlink
Modulation Adaptive
Scheduler Round-Robin
UE height 1.5 m

gNB height 8 m
Transmission power 23 dBm
Xn interface delay 100 µs

MAC to PHY delay 2 slots
Transport block decode latency 100 µs

HARQ feedback delay 1 slot
HARQ retranmission attempts 1

Packet size 64 bytes
Packet interval 10 ms

4.2. KPIs Recollection

The first part of the test consists in obtaining a dataset from URLLC devices—that is, a
collection of KPIs in order to train the ML part. To do this, a simulation was performed,
where an URLLC device moves from the entire scenario and recollects different KPIs. This
movement along with the scenario setup is shown in Figure 4.
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Figure 4. UE movement over the entire scenario.

Upon a packet reception at UE, it knows the SINR received if the packet was not
decoded successfully and the modulation index used in the transmission. These KPIs along
with the latency measured are the inputs to train the ML model. Based on these samples, it
is possible to train the model when there are sufficient samples.

Once the ML model was trained, the latency predictor is used by the MN. That is,
based on the actual conditions, such as SINR, modulation index and HARQ feedback of
the previous packet, the estimator predicts the E2E latency. Since URLLC transmission
intervals are very short, we assume that the channel conditions are the same between the
current packet and the previous (since ∆T > Tcoh, Tcoh ≈ λ/2

v ≈ 20 ms is the coherence time
during which channel conditions are stable, where λ is the wavelength and v is the speed),
which is why HARQ feedback from the previous packet was selected as an input.

Based on the output of the estimator, the MN decides whether to duplicate or not the
actual packet taking into account a latency threshold. In this case, the latency threshold
was set at 2 ms.

5. Results and Discussion

This section shows the results obtained by the test explained in Section 4. The first
part of the test consists in obtaining a collection of KPIs in order to train the ML part. This
is explained in Section 4.2. Once the ML model has been trained, the second part of the test
consists in evaluating the accuracy of the predictor, that is, the accuracy of predicting the
latency by MN.

Moreover, new simulations upon the scenario presented in the previous section have
been done, comparing the latency performance and resources consumption between not
using PD (single connection), always duplicating the packet and the dynamic packet
duplication based on the prediction model (which has been trained before, as explained in
Section 4.2), where the duplication is performed when the latency predicted by the model
is higher than a threshold. Upon this test, latency threshold of 2 ms was chosen.

5.1. Prediction Results

This subsection shows the results obtained by the predictor when using the test
samples, to measure the accuracy of the predictor. In the test, there are 59,940 samples—
packets transmitted by the MN to the URLLC device. Figure 5 shows the distribution of the
samples. In general, these distributions show that, as expected, with worse radio conditions,
a higher latency is experienced. This is because, with high attenuation, retransmissions at
lower layers increase.
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The latency with SINR at intermediate values seems to be below or above 2 ms. The
increase on the latency is due to HARQ retransmissions that occur. These retransmissions
occur when there is a suddenly drop of the SINR, commonly in industrial scenarios, and
the modulation index used is still higher (that drop of the SINR was not expected).

This effect is clearly visible in the latency of the modulation index, where robust
modulation decrease the probability of HARQ retransmission. Nevertheless, the higher the
modulation index is, the higher the probability of retransmission is, as SINR drops occurs.
Finally, the latency when the packet decodification was not successful at the PHY layer at
UE (that is, a retransmission needs to be performed) is higher, whereas when the reception
was successful when the latency was lower as expected.

Table 2 shows the results of the estimator in the validation part. In particular, the false
positive rate, the false negative rate and the success rate are given for the predictor for
latency. As mentioned above, the latency predictor estimates whether the latency will be
higher than 2 ms.

(a) (b)

(c)
Figure 5. Latency samples. (a) SINR, (b) Modulation index and (c) Reception Success.

The false positive rate indicates the proportion of times where the actual latency was
lower than the threshold but the estimator predicted it would be higher. In this case, the
false positive rate is 0.0041%. The false negative rate indicates the proportion of times where
the actual latency was higher than the threshold and the estimator failed at predicting this.
Ideally, this value should be close to zero. In the results, the latency estimator has a 0.0615%
of error rate. The success rate indicates the percent of times where the value of latency was
correctly predicted to be either below or above the threshold. In the results, the latency
estimator has a 99.9849% of success rate.

Table 2. Prediction results.

S-KPI False Positive Rate False Negative Rate Success Rate

Latency 0.0041% 0.0615% 99.9849%
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5.2. Packet Duplication Results

This subsection presents the results obtained when the ML algorithm was trained and
the PD approach is used. In particular, a latency comparison between not using PD (single
connection), always duplicating the packet (always PD) and the proposed dynamic PD
algorithm is performed. Furthermore, for the PD techniques, a comparison of the resource
consumption and latency obtained is performed.

Figure 6 shows the empirical cumulative distribution function (ECDF) of the latency
obtained when PD is not used (single connection), when always duplicating the packet and
when activating PD based on the latency prediction using Random Forest, which is the
system proposed in this paper. First of all, as it can be seen, the random forest and always
PD distributions are similar, and they converge at 1.75 ms. The probability of receiving
lower values of latency (below 1 ms) is 70%, 62% and 55% for always PD, random forest
and single connection, respectively. There is a remarkable difference on the probability of
receiving a latency below 2 ms between both PD methods and by transmitting via single
connection. In this case, there is a gap of 20% on the probability.

1.0 1.5 2.0 2.5 3.0 3.5
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0.0
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0.4

0.6

0.8

1.0
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or
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Single connection
Random Forest
Always PD

Figure 6. ECDF of the latency received.

The latency below the threshold rate when using PD and not using PD is shown in
Table 3, where PD techniques demonstrate that improve the reliability by duplicating the
packet incoming for the UE.

Table 3. Latency below the threshold rate for the different techniques.

Technique Latency below Threshold Rate

Single connection 81.6549%
Always PD 95.7891%

PD via Random Forest 95.7541%

The latency gain distribution when PD is activated by the prediction model is shown
in Figure 7. The distribution shows that, when the estimator predicts that latency will be
higher than the threshold, in general, there is a latency gain compared to sending over a
single link. The latency gain helps to improve the reliability of URLLC communications.
The vertical dashed line represents the 75% percentile. In this case, the probability of
reducing the latency more than 1 ms is 75%. Otherwise, the probability of not reducing the
latency so far, that is, between 0.1 and 0.2 ms, is below 20%.
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Figure 7. ECDF of the latency gain when the predictor activates PD.

Table 4 shows the results obtained when using a static PD technique, that is, always
duplicating the packet transmitted and the results obtained when using PD only when the
latency prediction is above the threshold. In particular, the number of packets that have
been sent duplicated, the latency below the threshold rate, the average (packet) latency
reduction rate and the PD reduction rate.

Taking into account the number of packets duplicated, it is remarkable that, when us-
ing random forest, the number of packets duplicated is lower, specifically, the PD reduction
rate is 81.0211%. Both techniques present a similar latency below the threshold rate, with
95.7891% for always PD and 95.7541% when using random forest. That clearly indicates
that a dynamic PD is more suitable, guaranteeing the same level of low latency but without
wasting extra resources.

The average (packet) latency reduction rate measures the proportion of times where
latency was reduced when duplicating the packet. In the results, the average (packet)
latency reduction rate is better when duplicating via random forest than always duplicating,
obtaining a latency reduction rate of 86.5506% for the system proposed and 25.0917% for a
static duplication. The lower rate when always duplicating is due to sending the packet via
two path when conditions are favorable at MN—that is, the latency constraint is fulfilled
by MN link.

Table 4. Comparison results between static and dynamic PD.

PD Technique Number of
Packets Duplicated

Latency below
Threshold Rate

Average (Packet)
Latency Reduction Rate

PD
Reduction

Always PD 59,940 95.7891% 25.0917% Not applicable
PD via

Random Forest 11,376 95.7541% 86.5506% 81.0211%

6. Conclusions

Many solutions have been proposed for URLLC connectivity in order to achieve high
reliability and low latency; however, these typically come at a cost in terms of resource
usage. This paper proposes a scheme to predict the E2E latency in order to determine if the
PD technique is required for downlink transmissions (dynamic PD) and, thus, reduce the
resource wasting.

The proposed algorithm uses a ML approach, where an estimator is running in the
MN. The algorithm was implemented and tested in a 5G simulator, showing high accuracy
for determining whether or not to activate PD for a packet transmission.

Moreover, the PD technique was evaluated using the predictor (once the model is
already trained). The results obtained show that the proposed dynamic PD based on the
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E2E latency prediction is more efficient than always duplicating, obtaining a high PD
reduction rate (81%) and maintaining the same level of latency below the threshold.

In addition, when activating PD based on the predictor, the latency reduction is higher
than when using always duplicating technique, that is, there are so many unnecessary
packets duplicated, where the latency constraint can be fulfilled by a single connection. A
comparison between PD techniques and a single connection was performed, where PD
techniques demonstrate that help to achieve URLLC latency constraint.

As a future line of work, some of the implementation aspects will be studied. A major
milestone toward the real implementation of the system will be the study of FL for the
creation and enrichment of a model. Another important aspect will be the study of the
required model update frequency, which may also be reduced due to FL.
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