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Abstract

Background: SARS-CoV-2, the novel coronavirus that causes COVID-19, is a global pandemic with higher mortality and
morbidity than any other virus in the last 100 years. Without public health surveillance, policy makers cannot know where and
how the disease is accelerating, decelerating, and shifting. Unfortunately, existing models of COVID-19 contagion rely on
parameters such as the basic reproduction number and use static statistical methods that do not capture all the relevant dynamics
needed for surveillance. Existing surveillance methods use data that are subject to significant measurement error and other
contaminants.

Objective: The aim of this study is to provide a proof of concept of the creation of surveillance metrics that correct for
measurement error and data contamination to determine when it is safe to ease pandemic restrictions. We applied state-of-the-art
statistical modeling to existing internet data to derive the best available estimates of the state-level dynamics of COVID-19
infection in the United States.

Methods: Dynamic panel data (DPD) models were estimated with the Arellano-Bond estimator using the generalized method
of moments. This statistical technique enables control of various deficiencies in a data set. The validity of the model and statistical
technique was tested.

Results: A Wald chi-square test of the explanatory power of the statistical approach indicated that it is valid (χ2
10=1489.84,

P<.001), and a Sargan chi-square test indicated that the model identification is valid (χ2
946=935.52, P=.59). The 7-day persistence

rate for the week of June 27 to July 3 was 0.5188 (P<.001), meaning that every 10,000 new cases in the prior week were associated
with 5188 cases 7 days later. For the week of July 4 to 10, the 7-day persistence rate increased by 0.2691 (P=.003), indicating
that every 10,000 new cases in the prior week were associated with 7879 new cases 7 days later. Applied to the reported number
of cases, these results indicate an increase of almost 100 additional new cases per day per state for the week of July 4-10. This
signifies an increase in the reproduction parameter in the contagion models and corroborates the hypothesis that economic
reopening without applying best public health practices is associated with a resurgence of the pandemic.

Conclusions: DPD models successfully correct for measurement error and data contamination and are useful to derive surveillance
metrics. The opening of America involves two certainties: the country will be COVID-19–free only when there is an effective
vaccine, and the “social” end of the pandemic will occur before the “medical” end. Therefore, improved surveillance metrics are
needed to inform leaders of how to open sections of the United States more safely. DPD models can inform this reopening in
combination with the extraction of COVID-19 data from existing websites.
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Introduction

Background
The SARS-CoV-2 pandemic is unprecedented [1,2], with high
mortality and morbidity of the virus due to its rapid spread
worldwide [3,4]. Without an effective vaccine [5-7], countries
are at risk for continued spread [8]. Without good health
surveillance, public health leaders are unaware of where and
how the disease is spreading. Effective surveillance can inform
the safe reopening of economies [9-22] by geographical region
[23]. To that end, we submit this proof of concept of the creation
of surveillance metrics that correct for measurement error and
data contamination. This study applies state-of-the-art statistical
modeling to existing data mined from the internet to derive the
best available estimates of the state-level dynamics of
COVID-19 infection to determine if the sustained decline in
SARS-CoV-2 infection that is necessary to reopen is occurring
or, conversely, if reopening without applying best public health
practices is resulting in a resurgence of SARS-CoV-2.

Public health surveillance is defined as the “ongoing systematic
collection, analyses, and interpretation of outcome-specific data
for use in the planning, implementation and evaluation of public
health practice [18].” Unfortunately, existing surveillance
methods suffer from undercounts, bias, and error, and they
mostly include more severe cases [24-32]. Research has
confirmed that best practices for containment of the COVID-19
pandemic include closing borders between countries [33,34],
extreme quarantine measures [35-37], social isolation at home
[38], social distancing [39], hand hygiene [40-42], crowd control
[43], and wearing a mask in public [44,45]; however, health
surveillance must inform where and when to employ these best
practices. Due to delays in reporting of new cases, deaths, and
testing [46-48], these decisions are made based on partial
evidence. Existing models of COVID-19 contagion rely on
parameters such as the basic reproduction number (R0), which
are difficult to measure in real time, and they use static statistical
methods that do not capture all of the relevant dynamics [49],
such as varying specificity and sensitivity of diagnostic testing
or asymptomatic individuals who are never tested and are
unwittingly carrying SARS-CoV-2 [25,50]. The epidemiological
definition of R0 is the average number of people who contract
a disease from a contagious person. It applies specifically to a
population of people who were previously free of infection and
were not vaccinated [51]. Existing surveillance systems use
data that are subject to significant measurement error and other
contaminants [52,53]. Moreover, timely information is needed
to improve statistical methods that extract information from
data sets posted on websites [54-56].

The conventional approach to modeling the spread of diseases
such as COVID-19 is to posit an underlying contagion model
[57] and then to seek accurate direct measurement of the model

parameters, such as reproduction rates or other parameters; these
measurements are sometimes inferred through deaths,
hospitalizations, and caseloads [58], and they often involve
labor-intensive methods that rely on contact tracing to determine
the spread of the disease among a sample population [54,59-61].
For viral epidemics with an incubation period of up to 14 days
[62], weeks if not months are required to generate accurate
parameter estimates, even for simple contagion models. For
example, early estimates of COVID-19 were estimated using
methods developed by Lipsitch [63] applied to data from contact
tracing in Wuhan and Italy; however, the statistical properties
were weak [64-70]. For example, Zhao [65] estimated the serial
interval distribution and R0 based on only six pairs of cases
[71]. These models also rely on underlying assumptions about
immunity, common propensity for infection, and well-mixed
populations, among others. Improvements in these models
typically focus on relaxing these assumptions, such as
disaggregating the population by geography and modeling
within-geography and cross-geography personal interactions
[3]. Martcheva [76] provides an excellent dynamic analysis of
a wide variety of contagion models and their possible dynamics
[72-77]. Unfortunately, they provide limited options for the
statistical inference of parameter values from actual data [76].
The objective of this study is to derive surveillance metrics
using methods that control for data limitations and
contamination.

Methods

Model Development
In contrast to previous studies, we used an empirical approach
that focuses on statistical modelling of widely available
empirical data, such as the number of confirmed cases or the
number of tests, which can inform estimates of the current values
of critical parameters such as the infection rate or reproduction
rate. We explicitly recognized that the data generating process
for the reported data contains an underlying contagion
component; a politico-economic component, such as availability
of accurate test kits; a social component, such as how strongly
people adhere to social distancing measures, mask requirements,
and shelter-in-place policies; and a sometimes inaccurate data
reporting process that may obscure the underlying contagion
process. Therefore, we sought to develop a statistical approach
that can provide meaningful information despite the complex
and sometimes obfuscating data generation process. Our
approach is consistent with the principles of evidence-based
medicine, including controlling for complex pathways that may
include socioeconomic factors such as mediating variables and
policy recommendations, and “based on the best available
knowledge, derived from diverse sources and methods [5].”

There are two primary advantages to this empirical approach.
First, we can apply the empirical model relatively quickly to a
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short data set. This advantage stems from the panel nature of
the model. We used US states as the cross-sectional variable;
therefore, one week of data from 52 states and territories
(including Puerto Rico and the District of Columbia) provides
a reasonable sample size. In addition to enabling parameter
estimation early in a pandemic, using this property, we tested
to see if a shift had occurred in the infection or reproduction
rates of the contagion process in the past week (ie, whether there
is statistical evidence that reopening is associated with an
acceleration in the number of cases).

The second advantage of our approach is that it directly
measures and informs policy-relevant variables. For example,
the White House issued guidance on reopening the US economy
that depends on a decrease in the documented number of cases
and in the proportion of positive test results over a 14-day
period, among other criteria and considerations [23,78-83]. As
noted above, the number and proportion of positive test results
are the outcomes of a data generating process that includes not
only the underlying contagion process but a multitude of
mediating factors as well as idiosyncrasies of the data collection
and a delayed reporting process. We specifically modeled the
number of positive test results in our empirical model, which
provides evidence of direct use in policy dialogue.

Herein, we proceed with a brief discussion of the contagion
models that informed our selection of an empirical model. We
describe the basic dynamic panel data (DPD) approach and its
advantages for analyzing the current pandemic. We obtained
results that validate the model specification, which is a necessary
and important step in the development of a surveillance system
[9-11,14,15,18,20]. We then used the validated model to
interrogate our research question: is reopening associated with
increased infection transmission and a re-emergence of the
pandemic? We approached this research question by statistically
testing whether R-type contagion parameters and, specifically,
the daily and weekly persistence increased during the weeks of
June 27-July 3 and July 4-10, 2020.

Representing Contagion as a DPD Model
Transmission models are typically population-based differential
equations of the form dY/dt = f(Y,X), where Y is a vector of a
population or subpopulation characteristic of interest, such as
the number of exposed or infected individuals; X is a vector of
mediating factors (often omitted); and f is a transition function.
For empirical purposes, we will use difference equations because
the data come in discrete time periods, specifically days. For
example, the sizes of the susceptible, infected, and recovered
populations in the susceptible-infected-recovered (SIR) model
in difference equation form are:

■(S_it- S_(it-1) = - (βS_(it-1) I_(it-1))⁄N_(it-1)
@I_it- I_(it-1) = (βS_(it-1) I_(it-1))⁄N_(it-1) - 〖(γ〗
_R+γ_D)I_(it-1)@■(R_it- R_(it-1)= γ_R I_(it-1)
@D_it- D_(it-1)= γ_D I_(it-1) )) (1)

where S, I, and R are the sizes of the susceptible, infected, and
recovered populations, respectively; D is the number of deaths
due to SARS-CoV-2; N is the size of the total population (S +
I + R + D); and the subscripts denote the time period. The first
line represents the change in the susceptible population, which

decreases when a susceptible individual becomes infected. This
occurs when the susceptible individual interacts with another
individual who is infected, in which case the virus is transmitted
to the susceptible individual with probability I/N. The number
of infected individuals increases by the number of newly
infected individuals and decreases by the number of previously
infected individuals who either recovered or died. The γ
parameters are the probability of recovering or dying. β and the
γ are the unknown parameters of the model. Calibration of
contagion models requires estimation of the true parameter
values.

The availability of state-level data suggests that Equation 1 can
be rewritten in panel regression form as

■(S_it = γ_Si+S_(it-1)- (βS_(it-1) I_(it-1))⁄N_(it-1)
+ε_Sit @I_it = γ_Ii+((1+ βS_(it-1))⁄N_(it-1) - 〖(γ〗
_R+γ_D))I_(it-1)+ε_Iit@■(R_it = 〖γ_Ri+R〗
_(it-1)+γ_R I_(it-1) +ε_Rit @D_it = 〖γ_Di+D〗
_(it-1)+γ_D I_(it-1) +ε_Dit )) (2)

The additional index i refers to the state; therefore, Iit represents
the number of infected people in state i at time t. Consistent
with the panel data specifications, we added a state-specific
“fixed effect” to each of the equations, γi, which represents
time-invariant state characteristics such as population rate. The
ε.it represent error terms.

We apply the dynamic panel data approach to the number of
positive test results per day as reported on internet sites. To
avoid imposing too much specificity, we allowed for some
flexibility in the functional form by including the number of
tests both linearly and quadratically and as a proportion of the
population:

where Pit is the number of new positive test results and Tit is
the number of tests administered in state i on day t; I6.27 and
I7.04 are indicator variables for the time periods from June
27-July 3 and July 4-10, 2020, respectively (latest available
data at the time of analysis); and Popi is the population of state
i (assumed to be constant during the sample). Equation 3 is
readily interpretable. The terms containing a β parameter
represent the dynamic component of the model. The first term
on the right side represents a day-to-day persistence effect (ie,
every new case the previous day is a risk factor that contributes
β1 new cases to the current day’s caseload). The next two terms
allow for shifts in this risk factor (additions or subtractions) for
the weeks beginning June 27 and July 4. Analogously, the next
three terms represent a 7-day persistence effect and shifts in
that effect for the weeks beginning June 27 and July 4. The
7-day persistence effect is the approximate modal time between
viral contraction and the appearance of symptoms; therefore, it
is related to the reproduction rate (R parameter) in structural
contagion models. The final five terms of Equation 3 contain
all the contemporaneous effects in the model (the
nonhomogeneous component of the difference equation), as in,
all the time subscripts occur contemporaneously at time t except
for the state fixed effects, which by definition do not change
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over time. The first of these terms represents state-specific
effects, which are an important control variable in the panel
models. The next two terms are linear and quadratic terms of
the number of tests administered, while the third term is the
number of tests per person. The next three terms represent the
effects of the number of tests administered. The fourth term
allows for a shift or discontinuity in the level of new infections
for the week of July 4-10 because of increasing concern that
the pandemic has re-emerged, particularly in the previous 7
days. We would associate a positive shift with an underlying
increase in infection rates. The final term is an error term that
represents all types of measurement errors.

Data Sources
Case and test data, including the total number of tests
administered and the number of positive results, were taken
from the COVID Tracking Project [84], which compiles data
from multiple sources. Data were accessed from GitHub [85]
after 6 PM on July 10, 2020, so that the data would be complete
for that day. Population estimates were derived from the 2019
annual state estimates from the US Census Bureau [86].

Estimation
There are three problems with the specification of Equation 3
for estimation purposes. First, the inclusion of lagged dependent
variables on the right side means that the errors are
autocorrelated and that the usual exogeneity restrictions are
violated; therefore, least squares estimates are inappropriate.
Second, some variables are omitted, such as all the variables
represented in extensions of the SIR model, and other variables
that represent socioeconomic factors influencing the contagion,
testing, and reporting processes may also have been omitted.
Third, our data set has a relatively short time duration, and the
asymptotic properties of fixed-effects or random-effects panel
data estimators such as statistical efficiency or normality apply
as t→∞. Use of these estimators with small values of t creates
a small-sample problem with unknown or undesirable estimator
properties. We applied the Arellano-Bond approach [87,88],
which has improved properties for small samples and is
appropriate for application to data sets with a small t and large
i.

Fortunately, DPD methods can be used to specifically resolve
these statistical problems [89-95]. DPD models allow direct
estimation of difference equations with panel data, which
resolves multiple problems that appear in the COVID-19 data
[96]. The technique we used was developed by Arellano and
Bond [87], who applied a generalized method of moments
(GMM) approach to a dynamic formulation of employment
equations, such as the influence of employment levels in a
previous period on employment levels in the current period
[97-99]. The basic concept translates to the COVID-19 pandemic
in the sense that the number of infections in the current period
is a function of lagged infection numbers and other variables.
In addition, the DPD removes the individual state effects by
first differencing the model. Regressions that include a lagged
value of the dependent variable violate the exogeneity
restrictions for ordinary least squares and panel estimators such
as fixed or random effect models because the lagged dependent
variable will be correlated with the error term. DPD model

estimation is an application of Hansen’s GMM approach to
difference equations estimated from panel data [97,100-102].
The GMM approach solves the endogeneity problem [103,104].
Rather than minimizing a loss function such as the sum of
squared errors or maximizing a distribution-specific likelihood
function, the GMM approach focuses on the identification of
restrictions, including exogeneity restrictions. In an estimable
model, there are more identifying restrictions than parameters,
and the GMM selects the parameter values that come closest to
satisfying the overidentifying restrictions [105]. In our
application, we used 10 explanatory variables as defined in
Equation 3 and 940 overidentifying restrictions (ie, the same
order of magnitude as the sample size n=1040); therefore, the
degrees of freedom were more than sufficient for statistical
inference. The GMM procedure requires a set of instrumental
variables; in the case of DPDs, the instruments include lags
and/or lag differences in the Y variables. These instruments
help resolve the endogeneity problem as well as the
omitted-variables problem. In addition to addressing the
theoretical concerns inherent in the estimation of any difference
equation model, the DPD approach addresses multiple statistical
issues that are likely to occur in COVID-19 data.

First, the GMM approach is asymptotically efficient; however,
it also has good small sample properties, including samples with
a large cross-section and a small number of time periods [102].
This is especially important for statistical analysis early in
pandemics, when data are not available for a long period of
time, as well as for our testing of whether changes in the
transmission rate (that may have occurred 1 to 2 weeks ago)
have affected the number of positive test results in the past
week.

Second, this approach is robust to omitted variables because of
its reliance on identifying restrictions and instrumental variables.
This is important because we estimate a relatively sparse model
that does not include direct controls for mediating factors, data
collection issues, or reporting idiosyncrasies.

Third, the approach includes statistical testing of the
overidentifying restrictions (ie, whether the empirical model
and estimation technique are statistically valid). For this test,
we used the Sargan chi-square test.

Fourth, this approach corrects for autocorrelation.

A significant drawback to DPD methods is that they are
computationally complex and become very time- and
resource-intensive as the number of observations grows.

We used the Arellano-Bond estimation technique developed
specifically for DPD applications. We implemented the
Arellano-Bond technique using the xtabond command in Stata
16.1 (StataCorp LLC).

Model Validation
To validate the significance of the regression, we used a Wald
chi-square statistic to test the null hypothesis that the
independent variables did not explain the dependent variable

(standard goodness-of-fit measures such as R2 are uninformative
in models with a lagged dependent variable). To test the
appropriateness of the model, we applied the Sargan chi-square
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test. This is a test of the null hypothesis that the (over)identifying
restrictions of the model are statistically met; heuristically, this
null hypothesis means that the model and estimation procedure
are valid. We used α≤5% for tests of statistical significance.

Model Parameters
We report the point estimates and the P values for all model
parameters in Equation 3 as well as additional statistical test
results and P values for combinations of parameters when of
interest. Of interest are the null hypotheses: β2 = 0, β3 = 0, β5

= 0, and β6 = 0. These hypotheses jointly represent the
hypothesis that there has been no change in the persistence of
the pandemic (ie, the number of new COVID-19 cases over the
past two weeks has remained relatively constant). We interpreted
rejection of one or more of the hypotheses as evidence that the
pandemic is evolving differently, with positive parameter values
associated with greater persistence and a re-emergence of the
pandemic.

Surveillance Reporting
We translated the estimation results into a surveillance reporting
context. The dynamic component (Equation 3) is presented in
terms of the persistence rate per 100,000 cases, defined as the
number of new COVID-19 cases in every 100,000 cases that
remained constant, and this component was applied to the

reported infection numbers to determine its effect on the number
of cases per state per day. The contemporaneous component
was applied to the reported infection numbers to determine its
effect on the number of cases per state per day. The two effects
were added to obtain a modeled total number of cases per state
per day, and this number was multiplied by 52 to obtain a
national figure (including the District of Columbia and Puerto
Rico but excluding other territories).

Results

Data
The internet data mining effort resulted in a panel (longitudinal
data set) with 52 “panels” (50 states, the District of Columbia,
and Puerto Rico) using observations from June 13 through July
10, 2020. Before the analysis, outlying and negative values were
crosschecked with other reputable COVID-19 data tracking
websites, including USA Facts [106] and the Johns Hopkins
Coronavirus Resource Center [107]. The data set has m = 52 ×
28 = 1456 observations. Because the model requires 8 days of
observations to account for various lags and differencing, the
model estimation uses n = 52 × 20 = 1040 observations.

Estimation Results
We present the estimation results in Table 1.

Table 1. Arellano-Bond dynamic panel data modeling of the number of daily infections by state from March 20 to July 10, 2020.

P valueCoefficientEstimation

Variables

.310.0630Lagged daily positive cases

.140.0977Lagged daily positive shift, June 27-July 03

.009–0.1727Lagged daily positive shift, July 04-10

<.0010.5188Seven-day lagged daily positive cases

.900.0118Seven-day lagged daily positive shift, June 27-July 03

.0020.2691Seven-day lagged daily positive shift, July 04-10

.6817.7791Constant

<.0010.0520Daily tests

.002–1.54 × 10-7Daily tests squared

<.001–86,527Daily tests / population

Fitness measurements

<.0011489.84Wald test of regression significance (χ2
10)

.59935.52Sargan test of overidentifying restrictions (χ2
946)

.002–9.92Test of lagged daily positive cases + shift July 04-10 = 0 (χ2
1)

Model Validation
To examine the model fit, we applied a Wald chi-square test of
the null hypothesis that there is no explanatory power in the
explanatory variables. The model was statistically significant

(χ2
10=1489.84, P<.001). The Sargan chi-square test failed to

reject the null hypothesis of valid overidentifying restrictions

(χ2
946=935.52, P=.593).

Model Parameter Estimates
The coefficient on the lagged dependent variable of the number
of daily cases that tested positive on the previous day was
positive and statistically significant (0.0630, P<.001). The shift
values for this parameter for the weeks beginning June 27 and
July 4, 2020, are 0.0977 (P=.138) and –0.1727 (P=.009),
respectively. The effective parameter value for the week of July
4 is 0.0630 – 0.1727 = –0.1097 (P=.002).
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The coefficient on the 7-day lagged dependent variable, the
number of daily cases that tested positive 7 days earlier, was
positive and statistically significant (0.5188, P<.001). The shift
values for this parameter for the weeks beginning June 27 and
July 4, 2020, are 0.0118 (P=.897) and 0.2691 (P=.002),
respectively. The effective parameter value for the week of July
4 is 0.5188 + 0.2691 = 0.7879 (P<.001).

The coefficient on the linear term in the number of daily tests
administered was positive and statistically significant (0.0520,
P<.001), and the coefficient on the quadratic term was negative
and statistically significant (–1.54e-07, P=.002). The coefficient
on the number of daily tests per person was negative and
statistically significant (–86,527, P<.001).

Surveillance Results
Table 2 translates the statistical results into a user-friendly,
intuitive surveillance reporting template. The first two rows are
the reported number of cases and tests, respectively. The third

row is the estimated 1-day persistence rate, as in, the number
of cases estimated on the current day for every 10,000 cases the
previous day. The fourth row is the 7-day persistence rate (ie,
the estimated number of cases on the current day for every
10,000 cases 7 days prior). The fifth row is the estimated
dynamic component of the model in terms of the number of
cases per state per day. This was determined by applying the
persistence rates from rows 3 and 4 to the average reported
number of cases and adding the effects. The sixth row is the
estimated contemporaneous component of the model in terms
of number of cases per state per day. The seventh row sums the
dynamic and contemporaneous effects to obtain the total
estimated effect, as in, the estimated number of new positive
test results per state per day. The first column contains the
described information as state averages for the period of June
27 to July 03, 2020. The second column contains the information
for the United States in aggregate. The third and fourth columns
show the same data as the first two columns but for the period
of July 4 to 10, 2020.

Table 2. Dynamic panel data estimation results for the United States from June 27 to July 10, 2020.

July 4-10June 27-July 3Variable

National averageState averageNational averageState average

54,491104847,278909Daily average number of cases for the week

656,74112,630638,61912,281Daily average number of tests for the week

–1106–110616071607Estimated daily persistence rate (per 10,000 cases)

7816781653065306Estimated 7-day persistence rate (per 10,000 cases)

30,92359525,968499Estimated dynamic component (number of cases per day)

25,46449024,254466Estimated contemporaneous component (number of cases
per day)

56,387108450,221966Total number of estimated cases per day

Discussion

Principal Findings
Our primary findings are that the 7-day persistence rate is
statistically significant and important in magnitude and that the
7-day persistence rate increased by almost 50% from the week
of June 27-July 3 to the week of July 4-10 (Table 1). The
increase in the 7-day persistence translates into an increase from
5306 new cases per 10,000 cases 7 days prior to 7816 new cases
per 10,000 cases (Table 2). On average, this resulted in 95 new
cases per state per day. Coupled with a modest increase in the
contemporaneous component, the combined result is an
estimated increase of 118 new cases per state per day or 6166
new cases nationally per day. The increase in the number of
new cases per day is indicative of a shift in the underlying
contagion transmission and corroborative of the statement that
reopening the US economy has increased the contagion
reproduction rate.

The coefficients on the daily lagged dependent variable are
small in magnitude and do not indicate strong day-to-day
persistence. The negative estimated daily persistence rate for
the week of July 4 is indicative of a daily “snaggle-tooth” pattern
in the number of daily cases at the state level. This simply

indicates that a low number of cases on one day is offset by a
high number of cases the next day, probably due to reporting
delays and differential testing periods; this pattern appears
slightly in the US aggregate data and is strongly evident in the
California data. Other states exhibited different snaggle-tooth
patterns, including high-incidence states such as Florida, Texas,
and Georgia.

The contemporaneous component of the model contributed
positively to the number of new daily cases but did not change
significantly over the sample period.

Limitations
While DPD is useful in deriving dynamic estimates of the rate
of transmission of COVID-19, static numbers using traditional
surveillance tools must also be included to obtain a complete
understanding of the pandemic.

Conclusions
The DPD model is a statistically validated analysis of reported
COVID-19 data and an important addition to the
epidemiological toolkit for understanding the progression of
the pandemic. It is important to recognize that this is a
supplementary tool that does not replace detailed contagion
modeling with detailed and specific data for accurate
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representation of contagion model parameters. However, there
are four salient advantages of the DPD approach. First, this
approach enables statistically efficient extraction of information
from existing data sets, including statistical validation of results;
therefore, it is applicable to the most commonly tracked and
reported data in the current pandemic. Second, the tool could
be applied relatively quickly after the pandemic started because
of its ability to model reported data rather than detailed contract
tracing data, which is largely unavailable to date. That is,
changes in the evolution of the pandemic can be confirmed
much more quickly using panel data than using aggregate data.
Third, this approach informs real-time policy decisions,
including decisions based on commonly reported data, such as
reopening state economies. Fourth, the model results can help
inform the parameterization of more traditional contagion
models.

This model is consistent in that it shows a higher reproduction
rate during the most recent 7 days; this confirms that in general,
normal operation should not be resumed in the United States.
Rather, empirically validated public health guidelines such as

wearing masks, social distancing, social isolation, hand washing,
and avoidance of social gatherings should be immediately
adopted to reduce the contagion. In fact, White House guidelines
recommend 14 sustained days of reduced COVID-19–related
deaths, new infection cases, and proportions of positive test
results prior to reopening. That threshold has not been met.
While these findings reflect the national average, it is possible
that some areas within the United States meet the White House
guidelines, even though reopening is contraindicated in general.

The opening of America involves two certainties. First, the
United States will be COVID-19–free only when there is an
effective vaccine. While scientists are working at unprecedented
speed worldwide to develop a SARS-CoV-2 vaccine
[6,108-113], realistically, it will be necessary to rely on best
public health practices to minimize COVID-19 infection and
mortality for at least one more year [110,114-116]. Second, the
“social” end of the pandemic will occur before the “medical”
end [117]; therefore, improved surveillance metrics are needed
to inform health policy on opening sections of America more
safely.
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GMM: generalized method of moments
R0: basic reproduction number
SIR: susceptible-infected-recovered
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