
RESEARCH Open Access

Dynamic partial reconfigurable hardware
architecture for principal component
analysis on mobile and embedded devices
S. Navid Shahrouzi and Darshika G. Perera*

Abstract

With the advancement of mobile and embedded devices, many applications such as data mining have found their

way into these devices. These devices consist of various design constraints including stringent area and power

limitations, high speed-performance, reduced cost, and time-to-market requirements. Also, applications running on

mobile devices are becoming more complex requiring significant processing power. Our previous analysis illustrated

that FPGA-based dynamic reconfigurable systems are currently the best avenue to overcome these challenges. In this

research work, we introduce efficient reconfigurable hardware architecture for principal component analysis (PCA), a

widely used dimensionality reduction technique in data mining. For mobile applications such as signature verification

and handwritten analysis, PCA is applied initially to reduce the dimensionality of the data, followed by similarity

measure. Experiments are performed, using a handwritten analysis application together with a benchmark dataset, to

evaluate and illustrate the feasibility, efficiency, and flexibility of reconfigurable hardware for data mining applications.

Our hardware designs are generic, parameterized, and scalable. Furthermore, our partial and dynamic reconfigurable

hardware design achieved 79 times speedup compared to its software counterpart, and 71% space saving compared

to its static reconfigurable hardware design.

Keywords: Data mining, Embedded systems, FPGAs, Mobile devices, Partial and dynamic reconfiguration,

Principal component analysis, Reconfigurable hardware

1 Introduction
With the proliferation of mobile and embedded comput-

ing, a wide variety of applications are becoming common

on these devices. This has opened up research and investi-

gation into lean code and small footprint hardware and

software architectures. However, these devices have

stringent area and power limitations, lower cost and time-

to-market requirements. These design constraints pose

serious challenges to the embedded system designers.

Data mining is one of the many applications that are

becoming common on mobile and embedded devices.

Originally limited to a few applications such as scientific

research and medical diagnosis, data mining has become

vital to a variety of fields including finance, marketing,

security, biotechnology, and multimedia. Many of today’s

data mining tasks are compute and data intensive,

requiring significant processing power. Furthermore, in

many cases, the data need to be processed in real time

to reap the actual benefits. These constraints have a

large impact on the speed-performance of the applica-

tions running on mobile devices.

To satisfy the requirements and constraints of the mo-

bile and embedded devices, and also to enhance the

speed-performance of the applications running on these

devices, it is imperative to incorporate some special-

purpose hardware into embedded system designs. These

customized hardware algorithms should be executed in

single-chip systems, since multi-chip solutions might not

be suitable due to the limited footprint on mobile and

embedded devices. The customized hardware provides su-

perior speed-performance, lower power consumption, and

area efficiency [12, 40], compared to the equivalent software

running on general-purpose microprocessor, advantages

that are crucial for mobile and embedded devices.* Correspondence: darshika.perera@uccs.edu

Department of Electrical and Computer Engineering, University of Colorado,

1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA

EURASIP Journal on
Embedded Systems

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25

DOI 10.1186/s13639-017-0074-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-017-0074-x&domain=pdf
http://orcid.org/0000-0001-9106-4381
mailto:darshika.perera@uccs.edu
http://creativecommons.org/licenses/by/4.0/

For more complex operations, it might not be possible

to populate all the computation circuitry into a single

chip. An alternative is to take the advantage of reconfig-

urable computing systems. Reconfigurable hardware has

similar advantages as special-purpose hardware, leading

to low power and high performance. Furthermore, re-

configurable computing systems have added advantages:

a single chip to perform the required operation, flexible

computing platform, and reduced time-to-market. This

reconfigurable computing system could address the

constraints associated with mobile and embedded

devices, as well as the flexibility and performance issues

in processing a large data set.

In [30], an analysis of single-chip hardware support for

mobile and embedded applications was carried out.

These analyses illustrated that FPGA-based reconfigur-

able hardware provides numerous advantages, including

flexibility, upgradeability, compact circuits and area effi-

ciency, shorter time-to-market, and relatively low cost,

which are important for mobile and embedded devices.

Multiple applications can be executed on a single chip,

by dynamically reconfiguring the hardware on chip from

one application to another as needed.

Our main objective is to provide efficient dynamic

reconfigurable hardware architectures for data mining

applications on mobile and embedded devices. In this

research work, we focus on reconfigurable hardware

support for dimensionality reduction techniques in data

mining, specifically principal component analysis (PCA).

For mobile applications such as signature verification

and handwritten analysis, PCA is applied initially to

reduce the dimensionality of the data, followed by

similarity measure.

This paper is organized as follows: In Section 2, we

discuss and present the main tasks in data mining, issues

in mining high-dimensional data, and elaborate on

principal component analysis (PCA), one of the most

commonly used dimensionality reduction techniques in

data mining. Our design approach and development

platform are presented in Section 3. In Section 4, the

partial and dynamic reconfigurable hardware architec-

ture for the four stages of the PCA algorithm is intro-

duced. Experiments are carried out to evaluate the

speed-performance and area efficiency of the reconfigur-

able hardware designs. These experimental results and

analysis are reported and discussed in Section 5. In Sec-

tion 6, we summarize our work and conclude.

2 Data mining techniques
Data mining is an important research area as many ap-

plications in various domains can make use of it to sieve

through large volume of data to discover useful patterns

and valuable knowledge. It is a process of finding corre-

lations or patterns among various fields in large data

sets; this is done by analyzing the data from many differ-

ent perspectives, categorizing it, and summarizing the

identified relationships [6].

Data mining commonly involves any of the four main

high-level tasks [15, 28]: classification, clustering, regression,

and association rule mining. From these, we are focusing on

the mostly widely used clustering and classification, which

typically involves the following steps [15, 28]: pattern

representation, pattern proximity measure, grouping (for

clustering) and labeling (for classifying), and data abstrac-

tion (optional).

Pattern representation is the first step toward clustering

or classification. Patterns (or records) are represented as

multidimensional vectors, where each dimension (or

attribute) represents a single feature [34]. Pattern

representation is often used to extract the most descriptive

and discriminatory features in the original data set; then

these features can be used exclusively in subsequent

analyses [22].

2.1 Mining high-dimensional data

An important issue often arises, while clustering or

classifying, is the problem of having too many attri-

butes (or dimensions). There are four major issues

associated with clustering or classifying high-dimensional

data [4, 15, 24]:

� Multiple dimensions are impossible to visualize.

Also, since the amount of data often increases

exponentially with dimensionality, multiple

dimensions are becoming increasingly difficult to

enumerate [24]. This is known as curse of

dimensionality [24].

� As the number of dimensions increase, the concept

of proximity or distance becomes less precise; this is

especially true for spatial data [13].

� Clustering typically group objects that are related

based on the attribute’s value. When there is a large

number of attributes, it is highly likely that some of

the attributes or features might be irrelevant, thus

negatively affects the proximity measures and the

creation of clusters [4, 24].

� Correlations among subsets of features: When there

is a large number of attributes, it is highly likely that

some of the attributes are correlated [24].

To overcome the above issues, pattern representation

techniques such as feature extraction and feature selec-

tion are often used to reduce the dimensionality before

performing any other data mining tasks.

Some of the feature selection methods used for dimen-

sionality reduction include mutual information [28], chi-

square [28], and sensitivity analysis [1, 56]. Some of the

feature extraction methods used for dimensionality

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 2 of 18

reduction include singular value decomposition [14, 37],

principal component analysis [21, 23], independent

component analysis [20], and factor analysis [7].

2.2 PCA: a dimensionality reduction technique

Among the feature extraction/selection methods, prin-

cipal component analysis (PCA) is the most commonly

[1, 23, 37] used dimensionality reduction technique in

clustering and classification problems. In addition, due to

the necessity of having a small memory footprint of data,

PCA is applied to many data mining applications that are

appropriate for mobile and embedded devices such as:

handwritten analysis or signature verification, palm-print

or finger-print verification, iris verification, and facial

recognition.

PCA is a classical technique [42]: The main idea is to ex-

tract the prominent features of the data set and to perform

data reduction (compression). PCA finds a linear transform-

ation, known as Karhunen-Loeve Transform (KLT), which

reduces the number of the dimensions of the feature vectors

from m to d (where d < <m) in such a way that the “infor-

mation is maximally preserved in minimum mean squared

error sense” [11, 36]. PCA reduces the dimensionality of the

data by transforming the original data set to a new set of

variables called principal components (PCs) to extract the

prominent features of the data [23, 42]. According to Yeung

and Ruzzo [57], “PCs are uncorrelated and ordered, such

that the kth PC has kth largest variance among all PCs; and

the kth PC can be interpreted as the direction that maxi-

mizes the variation of the projection of the data points

such that it is orthogonal to the first (k-1) PCs.” Tradition-

ally, the first few PCs are used in data analysis, since they

retain most of the variants among the data features (in

the original data set), and eliminate (by the projection)

those features that are highly correlated among them-

selves; whereas the last few PCs are often assumed to

retain only the residual noise in the data [23, 57].

Since PCA effectively reduces the dimensionality of

the data, the main advantage of applying PCA on ori-

ginal data is to reduce the size of the computational

problem [42]. Normally, when the number of attributes

of a data set is large, it takes more time to process the

data, since the number of attributes is directly propor-

tional to processing time; thus, by reducing the number

of attributes (dimensions), running time of the system

can be minimized [42]. In addition, for clustering, it

helps to identify the characteristics of the clusters [22],

and for classification, it improves classification accuracy

[1, 56]. The main disadvantage of applying PCA is the

loss of information, since there is no guarantee that the

sacrificed information is not relevant to the aims of

further studies, and also there is no guarantee that the

largest PCs obtained will contain good features for

further analysis [21, 57].

2.2.1 The process of PCA

PCA computation consists of four stages [21, 37, 38]:

mean computation, covariance matrix computation,

eigenvalue matrix, thus eigenvector computation, and

PCs matrix computation. Consider the original input

data set {X}mXn as an mXn matrix, where m is the num-

ber of dimensions and n is the number of vectors.

Firstly, the mean is computed along the dimensions of

the vectors of the data set. Secondly, the covariance

matrix is computed after determining the deviation from

the mean. Covariance is always measured between two

dimensions [21, 38]. With covariance, one can find out

how much the dimensions vary from the mean with

respect to each other [21, 38]. Covariance between one

dimension and itself gives the variance.

Thirdly, eigenanalysis is performed on the covariance

matrix to extract independent orthonormal eigenvalues

and eigenvectors [2, 21, 37, 38]. As stated in [2, 38],

eigenvectors are considered as the “preferential directions”

or the main patterns in the data, and eigenvalues are

considered as the quantitative assessment of how much a

PC represents the data. Eigenvectors with the highest

eigenvalues correspond to the variables (dimensions) with

the highest correlation in the data set. Lastly, the set of

PCs is computed and sorted by their eigenvalues in

descending order of significance [21].

Various techniques can be used to perform PCA

computation. These techniques typically depend on the

application and the data set used. The most common

algorithm for PCA involves the computation of the eigen-

value decomposition of a covariance matrix [21, 37, 38].

There are also various ways of performing eigenanalysis or

eigenvalue decomposition (EVD). One well known EVD

method is cyclic Jacobi method [14, 33]. However, this is

only suitable for small matrices, where number of

dimensions are less than or equal to 10 (m = <10) [14, 37].

For larger matrices [29], where the number of dimensions

are more than 10 (m > 10), other algorithms such as QR

[1, 56], Householder [29], or Hessenberg [29] methods

should be employed. Among these methods, QR algo-

rithm, first introduced in 1961, is one of the most efficient

and accurate methods to compute eigenvalues and

eigenvectors during PCA analysis [29, 41]. It can simul-

taneously approximate all the eigenvalues of a matrix. For

our work, we are using QR algorithm for EVD.

In summary, clustering and classifying high-dimensional

data presents many challenging problems in this big data

era. The computational cost of processing massive

amount of data in real time is immense. PCA can reduce

a complex high-dimensional data set to a lower dimen-

sion, in order to unveil the simplified structures that are

otherwise hidden, while reducing the size of the computa-

tional cost of analyzing the data [21, 37, 38]. Hardware

support could further reduce the computational cost of

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 3 of 18

processing data and improve the speed-performance of

the PCA analysis. In this research work, we introduce

partial and dynamic reconfigurable hardware to enhance

the PCA computation for mobile and embedded devices.

3 Design approach and development platform
For all our experiments, both software and hardware

versions of the various computations are implemented

using a hierarchical platform-based design approach to

facilitate component reuse at different levels of abstrac-

tion. The hardware versions include static reconfigurable

hardware (SRH) and dynamic reconfigurable hardware

(DRH). As shown in Fig. 1, our design consists of differ-

ent abstraction levels, where higher-level functions uti-

lizes lower-level sub-functions and operators: the

fundamental operators including add, multiply, subtract,

compare, square-root, and divide at the lowest level;

mean, covariance matrix, eigenvalue matrix, and PC

matrix computations at the next level; and the PCA at

the highest level.

All our hardware and software experiments are carried

out on the ML605 FPGA development board [51], which

is built on a 40-nm CMOS process technology. The

ML605 board utilizes a Xilinx Virtex 6 XC6VLX240T-

FF1156 device. The development platform includes large

on-chip logic resources (37,680 slices), MicroBlaze soft

processors, and onboard configuration circuitry for

development purpose. It also includes 2-MB on-chip

BRAM (block random access memory) and 512-MB

DDR3-SDRAM external memory to hold large volume

of data. To hold the configuration bitstreams, ML605

board has several external non-volatile memories includ-

ing 128 MB of Platform Flash XL, 32-MB BPI Linear

Flash, and 2-GB Compact Flash. Additional user desired

features could be added through daughter cards attached

to the two onboard FMC (FPGA Mezzanine Connectors)

expansion connectors.

Both the static and dynamic reconfigurable hardware

modules are designed in mixed VHDL and Verilog. They

are executed on the FPGA (running at 100 MHz) to

verify their correctness and performance. Xilinx ISE 14.7

and XPS 14.7 are used for the SRH designs. Xilinx ISE

14.7, XPS 14.7, and PlanAhead 14.7 (with partial recon-

figuration features) are used for the DRH designs.

ModelSim SE and Xilinx ChipscopePro 14.7 are used to

verify the results and functionalities of the designs.

Software modules are written in C and executed on the

MicroBlaze processor (running at 100 MHz) on the

same FPGA with level-II optimization. Xilinx XPS 14.7

and SDK 14.7 are used to verify the software modules.

As a proof-of-concept work [31, 32], we initially pro-

posed reconfigurable hardware support for the first two

stages of the PCA computation, where both the SRH

[31] and the DRH [32] are designed using integer opera-

tors. Unlike our proof-of-concept designs, in this re-

search work, both the software and hardware modules

are designed using floating-point operators, instead of

integer operators. The hardware modules for the funda-

mental operators are designed using single precision

floating-point units [50] from the Xilinx IP core library.

The MicroBlaze is also configured to use single precision

floating-point unit for the software modules.

Fig. 1 Hierarchical platform-based design approach. Our design consists of different abstraction levels, where higher-level functions utilize

lower-level sub-functions

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 4 of 18

The performance gain or speedup resulting from the

use of hardware over software is computed using the

following formula:

Speedup ¼
BaselineExecutionTime Softwareð Þ

ImprovedExecutionTime Hardwareð Þ

ð1Þ

Since our intention is to provide reconfigurable hard-

ware architectures for data mining applications on mo-

bile and embedded devices, we decided to utilize a data

set that is appropriate for applications on these devices.

After exploring several databases, we decided on a real

benchmark data set, the “Optdigit” [3], for recognizing

handwritten characters. The database consists of 200

handwritten characters from 43 people. The data set has

3823 records (vectors), where each record has 64 attri-

butes (elements). We investigated several papers that

used this data set for PCA computations and obtained

source codes written in MatLab for PCA analysis from

one of the authors [39]. Results from the MatLab code

on the optdigit data set are used to verify our results

using reconfigurable hardware designs as well as soft-

ware designs. In addition, a software program written in

C for the PCA computation is executed on a personal

computer. These results are also used to verify our re-

sults from the embedded software and hardware designs.

3.1 System-level design

ML605 consists of large banks of external memory

which can be accessed by the FPGA hardware modules

and the MicroBlaze embedded processor using the

memory controllers. The FPGA itself contains 2 MBs of

on-chip memory [51], which is not sufficient to store the

large volume of data commonly found in many data

mining applications. Therefore, we integrated a 512-MB

external memory, the DDR3-SDRAM [54] (double-data-

rate synchronous dynamic random access memory) into

the system. DDR3-SDRAM and AXI memory controller

run at 200 MHz, while the rest of the system is running

at 100 MHz. As depicted in Fig. 2, the AXI (Advanced

Extensible Interface) interconnect acts as the glue logic

for the system.

Figure 2 illustrates how our user-designed hardware in-

terfaces with the rest of the system. Our user-designed

hardware consists of the user-designed hardware module,

the user-designed BRAM, and the user-defined bus. As

shown in Fig. 2, in order for our user-designed hardware

module (i.e., both the SRH and DRH) to communicate

with the MicroBlaze and the DDR3-SDRAM, it is con-

nected to the AXI4 bus [46] through the AXI Intellectual

Property Interface (IPIF) module, using a set of ports

called the Intellectual Property Interconnect (IPIC).

Through the IPIF module, our user-designed hardware

module is enhanced with stream-in (or burst) data from

the DDR3-SDRAM. The AXI Master Burst [47] provides

an interface between the user-designed module and and

AXI bus and performs AXI4 Burst transactions of 1–16,

1–32, 1–64, 1–128, and 1–256 data beats per AXI4 read

or write request. For our design, we used the maximum

data beats of 256 and burst width of 20 bits. As stated in

[47], the bit width allows a maximum of 2n-1 bytes to

be specified for transaction per command submitted by

the user on the IPIC command interface, thus 20 bits pro-

vides 1,048,575 bytes per command.

With this system-level interface, our user-designed

hardware module (both SRH and DRH) can receive a

signal from the MicroBlaze processor via the AXI bus

Fig. 2 System-level interfacing block diagram. This figure illustrates how our user-designed hardware interfaces with the rest of the system. In this

case, the AXI (Advanced Extensible Interface) interconnect acts as the glue logic to the system

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 5 of 18

and start processing, read/write data/results from/to the

DDR3-SDRAM, and send a signal to the MicroBlaze

when execution is completed. When MicroBlaze sends a

signal to the hardware module, it can then continue to

execute other tasks until the hardware module writes

back the results to the DDR3-SDRAM and sends a

signal to notify the processor. The execution times for

the hardware as well as MicroBlaze are obtained using

the hardware AXI Timer [49] running at 100 MHz.

3.1.1 Pre-fetching technique

From our proof-of-concept work [32], it was observed

that a significant amount of time was spent on accessing

DDR3-SDRAM external memory, which was a major

performance bottleneck. For the current system-level

design, in addition to the AXI Master Burst, we designed

and incorporated a pre-fetching technique to our user-

designed hardware (in Fig. 2) in order to overcome this

memory access latency issue.

The top-level block diagram of our user-designed

hardware is demonstrated in Fig. 3, which consists of

two separate user-designed IPs. User IP1 consists of the

Step X Module (i.e., hardware module designed for each

stage of the PCA computation), the slave registers, and

the Read/Write module; whereas User IP2 consists of

the BRAM.

User IP1 can communicate with the MicroBlaze pro-

cessor using the software accessible registers known as

the slave registers. Each stage of the PCA computation

(Step X module) consists of a data path and a control

path. Both the data and control paths have direct con-

nections to the on-chip BRAM via user-defined inter-

faces. Within the User IP1, we designed a separate Read/

Write (R/W) module to support the pre-fetching tech-

nique. The R/W module translates the IPIC signals to

the control path and vice versa, thus reducing the com-

plexity of the control path.

User IP2 is also designed to support the pre-fetching

technique. User IP2 consists of 1 MB BRAM [45] from

the Xilinx IP Core library. This dual-port BRAM sup-

ports simultaneous read/write capabilities.

3.1.1.1 During the read operation (pre-fetching): The

essential data for a specific computation is pre-fetched

from the DDR3-SDRAM to the on-chip BRAM. In this

case, firstly, the control path sends the read request, the

start address, and the burst length to the R/W module.

Secondly, the R/W module asserts the necessary IPIC

signals in order to read the data from SDRAM via IPIF.

The R/W module waits for the ready-read acknowledg-

ment signal from the DDR3-SDRAM. Thirdly, the data

is fetched (in burst read transaction mode) from the

Fig. 3 Top-level user-designed hardware block diagram. The top-level module consists of our two user-designed IPs

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 6 of 18

SDRAM via R/W module and buffered to the BRAM.

During this step, the control path sends the write

request and the necessary addresses to the BRAM.

3.1.1.2 During the computations: Once the required

data is available in the BRAM, the data is loaded to the

data path in every clock cycle, and the necessary computa-

tions are performed. The control path monitors the data

path and enables appropriate signals to perform the com-

putations. The data paths are designed in pipelined fash-

ion; hence most of the final and intermediate results are

also produced in every clock cycle and written to the

BRAM. Only the final results are written to the SDRAM.

3.1.1.3 During the write operation: In this case also,

initially, the control path sends the write request, the

start address, and the burst length to the R/W module.

Secondly, the R/W module asserts the necessary IPIC

signals in order to write the results to the DDR3-

SDRAM via IPIF. The R/W module waits for the ready-

write acknowledgment signal from the SDRAM. Thirdly,

the data is buffered from the BRAM and forwarded (in

burst write transaction mode) to the SDRAM via R/W

module. During this step, the control path sends the

read request and the necessary addresses to the BRAM.

The read/write operations from/to the BRAM are

designed to overlap with the computations by buffering

the data through the user-defined bus. Our current

hardware designs are fully pipelined, further enhancing

the throughput. All these design techniques led to higher

speed-performance compared to our proof-of-concept

designs. These performance analyses are presented in

Section 5.2.3.

3.2 Reconfiguration process

Reconfigurable hardware designs, such as FPGA-based

designs, are typically written in a hardware description

language (HDL) including Verilog or VHDL [5, 17]. This

abstract design has to undergo the following consecutive

steps to fit into FPGA’s available logic [17]: The first step

is logic synthesis, which converts high-level logic con-

structs and behavioral code into logic gates; the second

step is technology mapping, which separates the gates

into groupings that match the FPGA’s logic resources

(generates net list); the next two consecutive steps are

placement and routing, where placement allocates the

logic groupings to the specific logic blocks and routing

determines the interconnect resources that will carry the

signals [17]. The final step is bitstream generation, which

creates a “configuration bitstream” for programming the

FPGA.

We can distinguish reconfigurable hardware into two

types: static and dynamic. With static reconfiguration, a full

configuration bitstream of an application is downloaded to

the FPGA at system start-up, and the chip is configured

only once and seldom changed throughout the run-time-

life of the application. In order to execute a different appli-

cation, a full configuration bitstream of that application

has to be downloaded again and the entire chip has to be

reconfigured. The system has to be interrupted for every

download and reconfiguration process. With dynamic re-

configuration, a full configuration bitstream of an applica-

tion is downloaded to the FPGA at system start-up, and

the on-chip hardware is configured, but is often changed

during the run-time-life of the application. This kind of

reconfiguration allows changing either parts of the chip or

the whole chip as needed on-the-fly, to perform several

different computations without human intervention and

in certain scenarios without interrupting the system

operations.

In summary, dynamic reconfiguration has the ability

to perform hardware optimization based upon present

results or external stimuli determined at run-time. In

addition, with dynamic reconfiguration, we can run a

large application on a smaller chip by partitioning the

application into sub-circuits and executing the sub-

circuits on chip at different times.

3.2.1 Partial reconfiguration on Virtex 6

There are two different reconfiguration methods that can

be used with Virtex-6 FPGAs: MultiBoot and Partial

Reconfiguration. MultiBoot [19] is a reconfiguration

method that allows full bitstream reconfiguration, whereas

partial reconfiguration [52] allows partial bitstream recon-

figuration. We used partial reconfiguration method for

our dynamic reconfigurable hardware design.

Dynamic partial reconfiguration allows reconfiguring

parts of the chip that requires modification, while

interfacing with the other parts that remain operational

[9, 52]. First, the FPGA is configured by loading an

initial full configuration bitstream for the entire chip

upon power-up. After the FPGA is fully configured and

operational, multiple partial bitstreams can be down-

loaded simultaneously to the chip, and specific regions

of the chip can be reprogrammed with new functionality

“without compromising the integrity of the applications”

running in the remainder of the chip [9, 52]. Partial

bitstreams are used to reconfigure only selective parts of

the chip. Figure 4, which is modified from [52],

illustrates the basic premise of partial reconfiguration.

During the design and implementation process, the logic

in the reconfigurable hardware design is divided into

two different parts: reconfigurable and static. As shown

in Fig. 4, the functions implemented in reconfigurable

modules (RM), i.e., reconfigurable parts, are replaced by

the contents of the partial bitstreams (.bit files), while

the current static parts remain operational, completely

unaffected by the reconfiguration [52].

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 7 of 18

In the late 2010s, partial reconfiguration tools used

Bus Macros [26, 35] which ensures fixed routing

resources for signals used as communication paths for

reconfigurable parts, and when the parts are reconfi-

gured [26]. With the PlanAhead [53] tools for partial re-

configuration, Bus Macros become obsolete. Current

FPGAs (such as Virtex-6 and Virtex-7) have an import-

ant feature: a “non-glitching” (or “glitchless”) technology

[9, 55]. Due to this feature, some static parts of the

design could be in the reconfigurable regions without

being affected by the act of reconfiguration itself, while

the functionality of reconfigurable parts of the design is

reconfigured [9]. For instance, when we partition a

specific region and consider it as a reconfigurable part,

some static interfacing might go through the reconfigur-

able part or some static logic (e.g., control logic) might

exist in the partitioned region. These are overwritten

with the exact program information, without affecting

their functionalities [9, 48].

Internal Configuration Access Port (ICAP) is the

fundamental module used to perform in-circuit reconfig-

uration [10, 55]. As indicated by its name, ICAP is an in-

ternally accessed resource and not intended for full chip

configuration. As stated in [19], this module “provides

the user logic access to the FPGA configuration inter-

face, allowing the user to access configuration registers,

readback configuration data, and partially reconfigure

the FPGA” after initial configuration is done. The proto-

col used to communicate with ICAP is a subset of the

SelectMAP protocol [9].

Virtex-6 FPGAs support reconfiguration via internal

and external configuration ports [9, 55]. Full and partial

bitstreams are typically stored in external non-volatile

memory, and the configuration controller manages the

loading of the bitstreams to the chip and reconfigures

the chip when necessary. Configuration controller can be

either a microprocessor or routines (small state machine)

programmed into the FPGA. The reconfiguration can be

done using a wide variety of techniques, one of which is

shown in Fig. 5 (modified from [9, 52]). In our design, the

full and partial bitstreams are stored in the Compact Flash

(CF), and ICAP is used to load the partial bitstreams. In

this design, the ICAP module is instantiated and controlled

through software running on the MicroBlaze processor.

During run-time, the MicroBlaze processor transmits the

partial bitstreams from the non-volatile memory to the

ICAP to accomplish the reconfiguration processes.

4 Embedded reconfigurable hardware design
In this section, reconfigurable hardware architecture for

the PCA is introduced using partial reconfiguration. This

hardware design can be dynamically reconfigured to ac-

commodate all four stages of the PCA computations. For

mobile applications such as signature verification and

handwritten analysis, PCA is applied initially to reduce the

dimensionality of the data, followed by similarity measure.

We investigated different stages of PCA [8, 21, 37], con-

sidered each stage as individual operations, and provided

hardware support for each stage separately. We then fo-

cused on reconfigurable hardware architecture for all four

stages of the PCA computation: mean, covariance matrix,

eigenvalue matrix, and PC matrix computations. Our

Fig. 4 Basic premise of partial reconfiguration. This figure is modified

from [52]. The functions implemented in RMs are replaced by the

contents of the bit files

Fig. 5 Partial reconfiguration using MicroBlaze and ICAP. This figure

is modified from [9, 52]. The full and partial bitstreams are stored in

the external non-volatile memory

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 8 of 18

hardware design can be reconfigured partially and dynam-

ically from one stage to another, in order to perform these

four operations on the same area of the chip.

The equations [21, 37] for mean and covariance matrix

for the PCA computation are as follows:

Equation for mean:

X j ¼

Xn

i¼1
X ij

n
ð2Þ

Equation for covariance matrix:

Covij ¼

Xn

k¼1
Xki−X i

� �

Xkj−X j

� �

n−1ð Þ
ð3Þ

For our proof-of-concept work [32], we modified the

above two equations slightly in order to use integer

operations for the mean and covariance matrix compu-

tations. It should be noted that we only designed the

first two stages of the PCA computation in our previous

work [32]. For this research work, we are using single

precision floating-point operations for all four stages of

the PCA computations. The reconfigurable hardware de-

signs for each stage consist of a data path and a control

path. Each data path is designed in pipelined fashion;

thus, in every clock cycle, the data is processed by one

module, and the results are forwarded to the next

module, and so on. Furthermore, the computations are

designed to overlap with the memory access to harness

the maximum benefit of the pipelined design.

The data path of the mean, as depicted in Fig. 6, con-

sists of an accumulator and a divider. The accumulator

is designed as a sequence of an adder and an accumula-

tor register with a feedback loop to the adder. Mean is

measured along the dimensions; hence the total number

of mean results is equal to the number of dimensions

(m) in the data set. In our design, the numerator of the

mean is computed for an associated element (dimen-

sion) of each vector and only the final mean result goes

through the divider.

As shown in Fig. 7, the data path of the covariance

matrix design consists of a subtractor, a multiplier, an

accumulator, and a divider. The covariance matrix is a

square symmetric matrix, hence only the diagonal

elements and the elements of the upper triangle have to

be computed. Thus, the total number of covariance re-

sults is equal to m*(m + 1)/2, where m is the number of

dimensions. The upper triangle elements of the covari-

ance matrix are measured between two dimensions, and

the diagonal elements are measured between one

dimension and itself.

In our design, the deviation from the mean (i.e., the

difference matrix) is performed as the first step of the

covariance matrix computation. Apart from using the

difference matrix in subsequent covariance matrix com-

putations, these results are stored in the DDR3-SDRAM

via BRAM, to be reused for the PC matrix computation

in stage 4. Similar to the mean design, the numerator of

the covariance is computed for an element of the covari-

ance matrix and only the final covariance result goes

through the divider.

The eigenvalue matrix computation is the most

complex operation from the four stages of the PCA

computation. After investigating various techniques to

perform EVD (presented in Section 2.2.1), we selected

the QR algorithm [29] for our eigenvalue matrix com-

putation. The data path for the eigenvalue matrix, as

shown in Fig. 8, consists of several registers, two multi-

plexers, a multiplier, a divider, a subtractor, an accumu-

lator, a square-root, and two comparators. The input

data to this module is the mXm covariance matrix, and

the output results from this module is a square mXm

eigenvalue matrix.

Eigenvalue matrix computation can be illustrated

using the two Eqs. (4) and (5) [29] below.

As shown in Eq. (4), the QR algorithm consists of

several steps [29]. The first step is to factor the initial A

matrix (i.e., the covariance matrix) into a product of or-

thogonal matrix Q1, and a positive upper triangular

matrix R1. Second step is to multiply the two factors in

the reverse order, which results in a new A matrix. Then

these two steps are repeated. This is an iterative process

that converges when the bottom triangle of the A matrix

becomes zero. This part of the algorithm can be written as:

Equation for the QR algorithm:

A1 ¼ Q1R1; RkQk ¼ Akþ1 ¼ Qkþ1Rkþ1 ð4Þ

where k = 1,2,3,… and Qk and Rk are from the previous

steps, and the subsequent matrix Qk+1 and positive upper

Fig. 6 Data path of the mean module. Data path consists of an accumulator and a divider

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 9 of 18

triangular matrix Rk+1 are computed using the numerically

stable form of the Gram-Schmidt algorithm [29].

In this case, since the original A matrix (i.e., the

covariance matrix) is symmetric, positive definite, and

with distinct eigenvalues, then the iterations converge to

a diagonal matrix containing the eigenvalues of A in

decreasing order [29]. Hence, we can recursively define:

Equation for eigenvalue matrix followed by the QR

algorithm:

S1 ¼ Q1; Sk ¼ Sk−1Qk ¼ Q1Q2…Qk−1Qk ð5Þ

where k > 1.

During the eigenvalue matrix computation, the data is

processed by four major operations before being written

to the BRAM. These operations are illustrated using

Eqs. (6), (7), (8), and (9), which correspond to the mod-

ules 1, 2, 3, and 4, respectively, in Fig. 8.

For operation 1 (corresponding to Eq. (6) and the mod-

ule 1 in Fig. 8), the multiplication operation is performed

on the input data, followed by the accumulation oper-

ation, and the intermediate result of the multiply-and-

accumulate is written to the BRAM. These results are also

forwarded to the temporary register for subsequent

operations or to the comparator to check for the conver-

gence of EVD.

Ajk ¼
X

m

i¼1

Bji � Cik ð6Þ

For operation 2 (corresponding to Eq. (7) and the module

2 in Fig. 8), the square-root operation is performed on the

intermediate result of the multiply-and-accumulate, and

the final result is forwarded to the BRAM. These results are

also forwarded to the temporary register for subsequent op-

erations and to the comparator to check for zero results.

Ajj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

Bij
2

s

ð7Þ

For operation 3 (corresponding to Eq. (8) and the

module 3 in Fig. 8), the multiplication operation is

performed on the data, followed by the subtraction

operation, and the result is forwarded to the BRAM.

Aik ¼ Aik−Aij � Bjk ð8Þ

For operation 4 (corresponding to Eq. (9) and the

module 4 in Fig. 8), the division operation is performed

on the data, and the result is forwarded to the BRAM.

Fig. 7 Data path of the covariance matrix module. Data path consists of a subtractor, a multiplier, an accumulator, and a divider

Fig. 8 Data path of the eigenvalue matrix module. Data path consists of several registers, two multiplexers, a multiplier, a divider, a subtractor, an

accumulator, a square-root, and two comparators

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 10 of 18

Aij ¼
Aij

Bjj

ð9Þ

More details about the eigenvalue matrix computation

including the QR algorithm can be found in [29].

The data path of the PC matrix computation, as

depicted in Fig. 9, consists of a subtractor, a multiplier,

and an accumulator. As illustrated in the PC matrix

computation Eq. (10), the S elements of the eigenvalue

matrix are multiplied by the difference matrix, which is

already computed and stored in SDRAM in Stage 2. In

this case, ith raw of difference matrix is multiplied by the

jth column of eigenvalue matrix. Total number of PC

results are equal to m*n, where m and n are number of

dimensions and number of vectors, respectively.

Equation for PC matrix:

Zij ¼
X

m

k¼1

Skj� X ik−Xk

� �

ð10Þ

The partial and dynamic reconfiguration process of

the above four stages are as follows: Firstly, the full bit-

stream that includes the reconfigurable module (RM) of

the mean design is downloaded to the FPGA and the

mean computation is performed. After execution of the

mean, the RM for mean sends a signal to the processor.

Secondly, the processor downloads the partial bitstream

for the RM for covariance matrix and the covariance

computation is performed. Loading of the partial bit-

streams and modifying the functionalities of the RM are

done without interrupting the operations of the

remaining parts of the chip. After the execution of the

covariance matrix, the RM for covariance sends a signal

to the processor. Thirdly, the processor downloads the

partial bitstream for the RM for eigenvalue matrix

computation and the eigenvalue analysis is performed.

Finally, after the processor receives the completion sig-

nal from the RM of the eigenvalue matrix computation,

it downloads the partial bitstream of the PC matrix com-

putation, and the PC computation is performed.

As shown in Fig. 5, the partial bitstreams for mean, co-

variance matrix, eigenvalue matrix, and PC matrix mod-

ules are stored in an external non-volatile memory and

downloaded to the region, of the RM, when necessary.

After processing one set of data for all four stages:

mean, covariance matrix, eigenvalue matrix, and PC

matrix; the processor can dynamically and partially

reconfigure the chip again to the mean, without down-

loading the full bitstream. Thus, any number of PCA

computations can be performed for any number of data

sets, without interrupting the operation of the system.

5 Experimental results and analysis
5.1 Space and time analysis

In order to investigate the feasibility of our partial and

dynamic reconfigurable hardware design, cost analysis

on space and time is carried out for static reconfigurable

hardware (SRH) and dynamic reconfigurable hardware

(DRH).

5.1.1 Space saving

As illustrated in Table 1, the total number of occupied

slices and the total number of DSP slices required for

SRH (with mean (hw_v1a), covariance matrix (hw_v1b),

eigenvalue matrix (hw_v1c), and PC matrix (hw_v1d)

computations as separate entities) are 21,237 and 32, re-

spectively. Conversely, the total number of occupied

slices and the total number of DSP slices required for

the DRH (hw_v2) are 6173 and 11, respectively, which is

from the reconfigurable hardware design with the eigen-

value matrix computation module (i.e., the largest RM of

the four).

From these analyses, it is observed that space saving

using partial reconfiguration is about 71% since the same

area of the chip is being reused (by reconfiguring the

hardware on chip from one computation to another) for

all four stages of the PCA computation in DRH design;

thus saving a significant space on chip, which is crucial

for mobile and embedded devices with their limited

hardware footprint.

5.1.2 Space overhead for reconfiguration

As detailed in [43], AXI hardware ICAP (Internal

Configuration Access Port) is used to perform in-circuit

reconfiguration. It enables an embedded processor, such

as the MicroBlaze, to read and write the FPGA’s config-

uration memory through the ICAP. In our design, we

used the MicroBlaze and the ICAP to fetch the full and

partial configuration bitstreams from the SystemACE

Fig. 9 Data path of the PC matrix module. Data path consists of a subtractor, a multiplier, and an accumulator

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 11 of 18

compact flash (CF), and then to download and reconfig-

ure the chip at run-time. The on-chip AXI SystemACE

Interface Controller [44] (also known as the AXI

SYSACE) acts as the interface between the AXI4-Lite

bus and the SystemACE CF peripheral.

As mentioned in Section 3.2.1, the bus macros are obso-

lete with the current PlanAhead tools for partial reconfig-

uration [53]. Also, in our design, we are storing the full

and partial bitstreams in the external CF. As a result, the

only extra hardware required on chip for reconfiguration

is the ICAP and the SystemAce Interface Controller. On

Virtex 6, the resource utilizations for AXI ICAP [43] and

the AXI SystemAce Interface Controller [44] (required for

the CF) are about 436 and 46 slices, respectively, resulting

in a total of 482 slices. These resource utilization numbers

should be regarded as estimates, since there might be

slight variations when these peripherals are combined

with other designs in the system.

In summary, for our design, the reconfiguration space

overhead, which is the extra hardware required on chip for

reconfiguration, is constant and is about 1.28% of the chip.

5.1.3 Time overhead for reconfiguration

The reconfiguration time overhead is the time required

to load and change the configuration from one compu-

tation to another. In our design, the reconfiguration time

overhead is around 681 ms (from Table 3) with the

MicroBlaze running at 100 MHz.

During the design and implementation with PlanA-

head, the partial bitstream for the reconfigurable module

is 351,216 bytes, or 2,809,728 bits. As indicated in [52],

using ICAP at 100 MHz and 3.2 Gbps, a partial bit file

can be loaded in about 2,809,728 bits/3.2 Gbps = 878 μs.

This is significantly less than the measured 681 ms.

After further investigations, it is found that this big

difference is quite normal due to the partial bitstreams

being stored in the CF and also the sequential access na-

ture of the MicroBlaze processor.

The above calculation is correct, provided that ICAP

is continuously enabled. That is, the ICAP should meet

the following requirements at the input of ICAP: Clk is

100 MHz and is applied continuously; Chip Enable of

ICAP is asserted continuously; and write ICAP is

asserted continuously and input data are given in every

input Clk.

In the above scenario, the configuration uses the full

bandwidth of 3.2 Gbps (100 MHz × 32 bits), and the re-

configuration can be completed within 878 μs. However,

MicroBlaze executes instructions sequentially, and the

partial reconfiguration sequence is as follows:

� MicorBlaze requests SystemACE controller to

retrieve data from the CF.

� SystemACE controller reads data from the CF (since

CF is external to the chip, there is access delay).

� MicroBlaze requests this data from SystemACE

controller and stores it in an internal register.

� MicroBlaze writes the data to ICAP.

Because of this sequential execution, partial reconfig-

uration takes about 681 ms. Partial reconfiguration time

is usually in the range of milliseconds for the bit files of

size similar to this case (around 2,809,728 bits).

There is several existing research work on enhancing

the ICAP architecture in order to accelerate the recon-

figuration flow [16, 18, 25, 27]. We are currently investi-

gating these architectures and design techniques, and

planning to explore ways to design and incorporate

similar techniques, which could potentially reduce the

reconfiguration time overhead of our current reconfigur-

able hardware designs.

5.2 Results and analysis for SRH and DRH

We performed the experiments on Optdigit [3] bench-

mark dataset to evaluate both the SRH and the DRH

designs. For our previous proof-of-concept experiments

[32], the data were read directly from the DDR3-

SDRAM, processed, and the intermediate/final results

were written back to the SDRAM. This external memory

access latency incurred a significant performance bottle-

neck. For our current experiments, the data are pre-

fetched from the off-chip DDR3-SDRAM to the on-chip

BRAM [45], processed, and some of the intermediate re-

sults are also stored in the on-chip BRAM, and the final

results are written back to the SDRAM.

Our reconfigurable hardware designs (both SRH and

DRH) are parameterized: i.e., the data size (nXm), the

number of vectors (n), and the number of elements (m)

of the vectors are variables, which can be changed

externally, without changing the hardware architectures.

The experiments are performed using various data sizes

in order to examine the scalability. The number of

Table 1 Space statistics for various configurations: SRH vs. DRH

Configuration Occupied area on chip

Number of
occupied slices

Number of
DSP48E1s

hw_v1a—SRH (mean as a
separate entity)

4991 5

hw_v1b—SRH (covariance
matrix as a separate entity)

5683 8

hw_v1c—SRH (eigenvalue
matrix as a separate entity)

5352 11

hw_v1d—SRH (PC matrix
as a separate entity)

5211 8

hw_v2—DRH with largest
RM (eigenvalue matrix)

6173 11

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 12 of 18

elements is kept the same, and only the number of

vectors is varied to obtain various data sizes. The

number of covariance results depends on the number

of elements.

5.2.1 Execution times for SRH

To evaluate our dynamic reconfigurable hardware

(DRH) design for the four stages of the PCA computa-

tion, we designed and implemented static reconfigurable

hardware (SRH) for the mean (hw_v1a), covariance

matrix (hw_v1b), eigenvalue matrix (hw_v1c), and PC

matrix (hw_v1d) computations as separate entities.

Our intention is to provide hardware support for ap-

plications running on mobile and embedded devices.

Considering the stringent area requirements of these de-

vices, large and complex algorithms such as PCA might

not fit into a single chip. In this case, the algorithm has

to be decomposed into several stages; thus each stage

will fit into the chip at a time. To illustrate this concept,

for SRH, each stage is designed and implemented as sep-

arate entities with full bitstream per stage.

With the SRH design, a full bitstream consisting of the

mean is downloaded and the chip is reconfigured only

once. After the execution of the mean, in order to exe-

cute the covariance matrix, a full bitstream consisting of

the covariance has to be downloaded and the entire chip

has to be reconfigured. This process continues until all

the stages are downloaded, reconfigured, and executed

in the following order: mean (Stage 1)→ covariance

matrix (Stage 2)→ eigenvalue matrix (Stage 3)→ PC

matrix (Stage 4). The system’s operation has to be inter-

rupted for every download and reconfiguration process.

The experiments are performed separately on SRH de-

signs for mean, covariance matrix, eigenvalue matrix,

and PC matrix as individual entities, with varying data

sizes, and the execution times are obtained and

Table 2 Separate execution times for four stages for SRH

Data size No. of vectors Execution time in AXI_clk_cycles

Stage 1 Stage 2 Stage 3/iterations Stage 4 Total

24,448 382 50,866 887,481 351,467,386/361 1,718,363 354,124,096

48,960 765 101,761 1,760,340 235,622,553/242 3,436,911 240,921,565

73,408 1147 152,487 2,630,976 755,125,927/775 5,150,948 763,060,338

97,856 1529 203,239 3,501,560 180,065,909/185 6,865,011 190,635,719

122,368 1912 254,095 4,374,471 259,014,857/266 8,583,585 272,227,008

146,816 2294 304,821 5,245,042 343,858,083/353 10,297,648 359,705,594

171,264 2676 355,586 6,115,652 409,170,278/420 12,011,737 427,653,253

195,712 3058 406,299 6,986,249 215,183,290/221 13,725,774 236,301,612

220,224 3441 457,194 7,859,173 254,209,810/261 5,444,335 277,970,512

244,672 3823 507,920 8,729,744 789,451,894/810 17,158,385 815,847,943

Fig. 10 Graph for covariance matrix for SRH. Execution time vs. data size for static reconfigurable hardware (SRH)

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 13 of 18

presented in Table 2. The execution time for each stage

is measured 10 times, and the average is presented. In

this case, the total execution times (last column of

Table 2) do not include the download and reconfigur-

ation time between entities.

As illustrated in Fig. 10, the execution time for the co-

variance matrix (for SRH) increases linearly with the size

of the data. The mean and the PC matrix showed similar

linear behaviors. Similar to Fig. 12 for DRH design, the

execution time for eigenvalue matrix does not increase

linearly with the size of the original data set. It should

be noted that the input data size to the eigenvalue

matrix is an mXm matrix, where m is the number of

elements of the vectors in the original data set. This m

value is typically a constant for a certain data set; hence

the input data size to the eigenvalue matrix computation

is the same regardless of the size of the original data set.

However, this execution time depends on and increases

linearly with the number of iterations (similar to Fig. 13

for DRH).

5.2.2 Execution times for DRH

With the DRH design, a full bitstream, which consists of

the reconfigurable module (RM) of mean, is down-

loaded, and the mean operation is performed. After the

execution of the mean, the partial bitstream for the RM

of the covariance matrix is downloaded to the specific

region of the chip consisting of the mean module, and

that region is reconfigured to the covariance matrix

operation. Then the covariance matrix operation is

performed. This partial and dynamic reconfiguration

process continues until all the stages of the PCA compu-

tation are downloaded, reconfigured, and executed in

the following order: mean (Stage 1)→ covariance matrix

Table 3 Separate execution times for four stages for DRH

Data
size

No. of
vectors

Execution time in AXI_clk_cycles

Stage 1 S1→S2 reconfig. Stage 2 S2→S3 reconfig. Stage 3/iterations S3→S4 reconfig Stage 4 Total

24,448 382 50,879 68,103,418 887,481 68,121,324 351,467,386/361 68,112,480 1,718,389 558,461,357

48,960 765 101,761 68,097,812 1,760,340 68,108,008 235,622,553/242 68,109,251 3,436,924 445,236,649

73,408 1147 152,487 68,097,604 2,630,976 68,114,545 734,657,700/775 68,109,985 5,150,974 946,914,271

97,856 1529 203,239 68,098,307 3,501,560 68,120,760 180,065,909/185 68,108,534 6,865,011 394,963,320

122,368 1912 254,121 68,093,087 4,374,471 68,118,532 259,014,857/266 68,108,228 8,583,637 476,546,933

146,816 2294 304,821 68,097,653 5,245,029 68,117,134 343,858,083/353 68,112,569 10,297,674 564,032,963

171,264 2676 355,586 68,102,156 6,115,678 68,113,687 409,170,278/420 68,108,523 12,011,737 631,977,645

195,712 3058 406,299 68,102,063 6,986,275 68,119,069 215,183,290/221 68,110,364 13,725,761 440,633,121

220,224 3441 457,194 68,090,545 7,859,173 68,118,434 254,209,823/261 68,110,646 15,444,322 482,290,137

244,672 3823 508,843 68,074,050 8,730,693 68,095,324 789,451,907/810 68,088,858 17,159,321 1,020,108,996

Fig. 11 Graph for covariance matrix for DRH. Execution time vs. data size for dynamic reconfigurable hardware (DRH)

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 14 of 18

(Stage 2)→ eigenvalue matrix (Stage 3)→ PC matrix

(Stage 4). In order to process varying data sizes or differ-

ent data sets, the hardware is again reconfigured to the

first PCA computation, i.e., mean operation, without

downloading the full bitstream or without interrupting

the system’s operation.

Unlike SRH designs, for DRH designs, the execution

times are measured sequentially for consecutive stages of

the PCA computations. The execution times for varying

data sizes are measured 10 times, and the average is pre-

sented in Table 3. The reconfiguration time overhead from

one stage to another are presented in columns 4, 6, and 8.

The values in these three columns demonstrate that the

reconfiguration time does not vary with the size of the

data set. Although there is a slight variation, it is less than

1 ms. This is expected, since the reconfiguration time does

not depend on the number of data being processed but on

the size of the partial bitstream (i.e., the area of the RM).

Similar to the SRH designs, as depicted in Fig. 11, the

execution time for the covariance matrix for DRH in-

creases linearly with the size of the data set. The mean

and the PC matrix showed similar linear behaviors. Fur-

thermore, as shown in Fig. 12, the execution time for

eigenvalue matrix for DRH does not increase linearly

with the size of the original data set, since the input data

size to the eigenvalue matrix computation is an mXm

matrix, and is the same regardless of the size of the ori-

ginal data set (i.e., the number of vectors). However, as

demonstrated in Fig. 13, this execution time increases

linearly with the number of iterations.

From Table 3, it is evident that the eigenvalue matrix,

which is the largest and most complex design, takes the

Fig. 12 Graph for eigenvalue matrix for DRH (execution time vs. data size). Execution time vs. data size for dynamic reconfigurable

hardware (DRH)

Fig. 13 Graph for eigenvalue matrix for DRH (execution time vs. number of iterations). Execution time vs. number of iterations for dynamic

reconfigurable hardware (DRH)

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 15 of 18

longest time to process compared to other three stages,

thus impacting the total execution time. As a result, the

total execution time for the whole process increases

linearly with the number of iterations.

Figure 14 illustrates the percentage of reconfiguration

time (from the total execution time) vs. the number of

iterations for the DRH. For lower number of iterations, a

significant percentage of total time is spent on the

reconfiguration. However, the percentage of recon-

figuration time is amortized and decreases as the num-

ber of iterations increases. This illustrates that the more

compute-intensive the operations are, the smaller the

impact of the reconfiguration time overhead is.

5.2.3 Speed-performance comparison: SRH and DRH vs.

software on MicroBlaze

Additional software experiments are performed using

the MicroBlaze soft processor on the same platform, in

order to evaluate the DRH as well as the SRH. Similar to

the DRH designs, the execution times for the software

designs are also measured in a sequence: mean (Stage

1)→ covariance matrix (Stage 2)→ eigenvalue (Stage

3)→ PC (Stage 4). Execution times are obtained using

varying data sizes. However, only the largest data set of

size 244,672 is used (presented in Table 4) for the per-

formance comparison purposes for the two reconfigur-

able hardware designs and the software designs.

From Table 4, considering the total execution times,

the DRH is 53 times faster, while the SRH is 66 times

faster than the equivalent software (Sw) running on the

MicroBlaze. This difference is due to the time overhead

incurred for reconfiguration for DRH. Although our

SRH is faster than our DRH, the space saving (as

demonstrated in Table 1) using the dynamic and partial

reconfiguration is significant. It is important to consider

these speed-space tradeoffs, especially in mobile and

embedded devices with their limited hardware footprint.

Considering the execution times for individual modules,

SRH and DRH achieved similar speedups, and the speedups

vary from 60 to 79. It is evident that our current reconfigur-

able hardware designs achieved superior speedups (79 times

faster than software on MicroBlaze), compared to our pre-

vious proof-of-concept designs (6 times faster than software

on MicroBlaze) [32]. This significant improvement of

speedups is due to several hardware optimization tech-

niques we incorporated in our current designs including:

Fig. 14 Graph for number of iterations vs. percentage of reconfiguration time from total execution time. The percentage of reconfiguration time

is amortized and decreases as the number of iterations increases

Table 4 Performance Comparison: SRH and DRH vs. Software on MicroBlaze

Execution time in AXI_clk_cycles Speedup

SRH DRH Sw on MicroBlaze SRH vs. Sw DRH vs. Sw

Stage 1 507,920 508,843 30,564,884 60.18 60.07

Stage 2 8,729,744 8,730,693 686,064,039 78.59 78.58

Stage 3 789,451,894 789,451,907 51,909,640,837 65.75 65.75

Stage 4 17,158,385 17,159,321 1,246,451,248 72.64 72.64

Total 815,847,943 1,020,108,996 53,872,721,008 66.03 52.81

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 16 of 18

fully pipelined designs, designing computations to overlap

with memory access, and burst transfer and pre-fetching

techniques to reduce the memory access latency.

6 Conclusions
In this paper, we introduced reconfigurable hardware

architecture for PCA using partial reconfiguration method,

which can be partially and dynamically reconfigured from

mean→ covariance matrix→ eigenvalue matrix→ PC

matrix computations. This design showed a significant

space saving (about 71%), since the same area of the chip is

being reused (by reconfiguring the hardware on chip from

one computation to another) for all the four stages of PCA

computation, which is crucial for mobile and embedded

devices with their limited hardware footprint.

The extra hardware required for reconfiguration is

relatively low compared to the whole chip (about 1.28%)

and remains constant regardless of the size of the recon-

figuration module. Considering the reconfiguration time

overhead, there is a difference between the theoretical

estimate and the experimental value. This is mainly be-

cause we used a MicroBlaze processor as a configuration

controller, which executes instruction sequentially. We

could potentially get similar values as the theoretical

ones, by using a FSM as the configuration controller and

downloading the configuration bitstream using “bit-par-

allel” mode. Furthermore, we are investigating the exist-

ing ICAP architectures and design techniques used in

[16, 18, 25, 27] and planning to explore ways to design

and incorporate similar techniques, to enhance the re-

configuration process.

Our current reconfigurable hardware designs executed

up to 79 times faster than the equivalent software running

on the embedded microprocessor. This is a significant im-

provement from our proof-of-concept designs [32], which

executed up to 6 times faster than their software counter

parts. From our proof-of-concept work [32], it was ob-

served that a large amount of time (93–95%) was spent on

data transfer to/from the external memory, which used to

be a major performance bottleneck. This substantial im-

provement of speedups is mainly due to several hardware

optimization techniques we incorporated in our current

designs: burst transfer and pre-fetching techniques to re-

duce the memory access latency, fully pipelined designs,

designing computations to overlap with memory access.

Our proposed hardware architectures are generic,

parameterized, and scalable. Hence, without changing the

internal hardware architecture, our hardware designs can

be used to process different data sets with varying number

of vectors and with varying number of dimensions; used

for any embedded applications that employ the PCA

computation; executed on different development plat-

forms, including platforms with recent FPGAs such as

Virtex-7 chips.

Power consumption is another major issue in mobile

and embedded devices. As demonstrated in [30],

although reconfigurable hardware typically consumes

less power than microprocessor-based software-only

designs, we are planning and designing experiments to

evaluate the power consumption in reconfigurable

hardware designs for data mining applications.

The results shown in our experiments are encouraging

and demonstrate great potential in implementing data

mining applications such as PCA computation using re-

configurable platform. Complex applications can indeed

be implemented in reconfigurable hardware for mobile

and embedded applications.

Authors’ contributions

DGP has been conducting this research and performed the proof-of-concept

work. SNS is DGP’s student. DGP and SNS have designed the SRH and DRH as

well as the software for the PCA computation. Under the guidance of DGP, SNS

has implemented the reconfigurable hardware for the PCA computations and

performed the experiments. DGP wrote the paper. Both authors read and

approved the final manuscript.

Authors’ information

S. Navid Shahrouzi received his M.Sc. and B.Sc. degrees in Electronics and Electrical

Engineering from University of Guilan (Iran) in 2007 and K.N.Toosi University of

Technology (Iran) in 2004, respectively. Navid is pursuing his Ph.D. and working as

a research assistant in the Department of Electrical and Computer Engineering,

University of Colorado under the guidance of Dr. Darshika G. Perera. His research

interests are digital systems and hardware optimization.

Darshika G. Perera is an Assistant Professor in the Department of Electrical

and Computer Engineering, University of Colorado, USA, and also an

Adjunct Assistant Professor in the Department of Electrical and Computer

Engineering, University of Victoria, Canada. She received her Ph.D. degree in

Electrical and Computer Engineering from University of Victoria (Canada),

and M.Sc. and B.Sc. degrees in Electrical Engineering from Royal Institute of

Technology (Sweden) and University of Peradeniya (Sri Lanka), respectively.

Prior to joining University of Colorado, Darshika worked as the Senior

Engineer and Group Leader of Embedded Systems at CMC Microsystems,

Canada. Her research interests are reconfigurable computing, mobile and

embedded systems, data mining, and digital systems. Darshika received a

best paper award at the IEEE 3PGCIC conference in 2011. She serves on

organizing and program committees for several IEEE/ACM conferences and

workshops and as a reviewer for several IEEE, Springer, and Elsevier journals.

She is a member of the IEEE, the IEEE Computer Society, and the IEEE

Women in Engineering.

Competing interests

The authors declare that they have no competing interests.

Received: 14 July 2016 Accepted: 8 February 2017

References

1. JFD Addison, S Wermter, GZ Arevian, A comparison of feature extraction

and selection techniques, in Proc. of Int. Conf. on Artificial Neural Networks

(ICANN), 2003, pp. 212–215

2. Agilent Technologies, Inc, Principal component analysis, 2005, Santa Clara,

CA, USA http://sorana.academicdirect.ro/pages/collagen/amino_acids/

materials/PCA_1.pdf. Accessed in June 2016

3. E Alpaydin, C Kaynak, Optical recognition of handwritten digits data set.

Available in UCI Machine Learning Repository, July 1998

4. P Berkhin, Survey of clustering data mining techniques. Technical Report,

Accrue Software, 2002

5. K Compton, S Hauck, Reconfigurable computing: a survey of systems and

software. ACM Computing Surveys (CSUR) 34(2), 171–210 (2002)

6. Data mining: what is data mining? http://www.anderson.ucla.edu/faculty/jason.

frand/teacher/technologies/palace/datamining.htm. Accessed in June 2016

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 17 of 18

http://sorana.academicdirect.ro/pages/collagen/amino_acids/materials/PCA_1.pdf
http://sorana.academicdirect.ro/pages/collagen/amino_acids/materials/PCA_1.pdf
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm

7. J DeCoster, Overview of factor analysis, 1998. http://www.stat-help.com/

notes.html. Accessed in June 2016

8. CHQ Ding, X He, Principal component analysis and effective k-means

clustering, in Proc. of SDM, 2004

9. D Dye, Partial reconfiguration of Xilinx FPGAs using ISE design suite, WP374

(v1.1), 2011

10. V Eck, P Kalra, R LeBlanc, J McManus, In-circuit partial reconfiguration of

rocketIO attributes XAPP662 (v2.4), 2004

11. K Fukunaga, Introduction to statistical pattern recognition, 2nd edn.

(Academic, New York, 1990)

12. P Garcia P, K Compton, M Schulte , E Blem, and W Fu. An overview of

reconfigurable hardware in embedded systems. EURASIP Journal on

Embedded Systems, (2006), 1–19

13. A Gnanabadkaran, K Duraiswamy, An efficient approach to cluster high

dimensional spatial data using K-mediods algorithm. European Journal of

Scientific Research 49(4), 617–624 (2011)

14. GH Golub, CF van Loan, Matrix computations, 3rd edn. (John Hopkins

University Press, Baltimore, 1996)

15. DJ Hand, H Mannila, P Smyth, Principles of data mining (The MIT Press,

Cambridge, 2001)

16. SG Hansen, D Koch, J Torresen, High speed partial run-time reconfiguration

using enhanced ICAP hard macro, in Proc. of IEEE International Symposium

on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),

2011, pp. 174–180

17. S Hauck, and A Dehon Reconfigurable computing: the theory and practice

of FPGA-based computing (Morgan Kaufmann Publishers Inc. San Francisco,

CA, USA., 2008)

18. M Hübner, D Göhringer, J Noguera, J Becker, Fast dynamic and partial

reconfiguration data path with low hardware overhead on Xilinx FPGAs, in

Proc. of Reconfigurable Architectures Workshop (RAW’10), 2010

19. J Hussein, R Patel, MultiBoot with Virtex-5 FPGAs and Platform Flash XL,

XAPP1100 (v1.0), 2008

20. A Hyvarinen, A survey on independent component analysis. Neural

Computing Survey 2, 94–128 (1999)

21. JE Jackson, A user’s guide to principal components (John Wiley & Sons, Inc.

Publications, Wiley-Interscience, Hoboken, New Jersey, USA, 2003)

22. AK Jain, MN Murty, PJ Flynn, Data clustering: a review. ACM Computing

Surveys 31(3), 264–323 (1999)

23. IT Jolliffe, Principal component analysis (Springer, New York, 2002)

24. HP Kriegel, P Kröger, A Zimek, Clustering high-dimensional data: a survey on

subspace clustering, pattern-based clustering, and correlation clustering.

ACM Transactions on Knowledge Discovery from Data, (TKDD), New York,

NY, USA, 3(1), 1–58 (2009)

25. V Lai, O Diessel, ICAP-I: a reusable interface for the internal reconfiguration

of Xilinx FPGA, in Proc. of International Conference on Field-Programmable

Technology (FPT), 2009, pp. 357–360

26. D Lim, M Peattie, Two flows for partial reconfiguration: module based and

small bit manipulation, XAPP290, 2002

27. M Liu, W Kuehn, Z Lu, A Jantsch, Run-time partial reconfiguration speed

investigation and architectural design space exploration, in Proc. of IEEE

International Workshop on Field Programmable Logic and Applications (FPL), 2009,

pp. 498–502

28. DC Manning, P Raghvan, and H Schutze, Introduction to information

retrieval. Cambridge University Press (2008)

29. PJ Olver, Orthogonal bases and the QR algorithm. University of

Minnesota, (2008)

30. DG Perera, KF Li, Analysis of single-chip hardware support for mobile and

embedded applications, in Proc. of IEEE Pacific Rim Int. Conf. on

Communication, Computers, and Signal Processing, 2013, pp. 369–376

31. DG Perera, KF Li, Embedded hardware solution for principal component

analysis, in Proc. of IEEE Pacific Rim Int. Conf. on Communication, Computers

and Signal Processing (PacRim’11), 2011, pp. 730–735

32. DG Perera, and KF Li, FPGA-based reconfigurable hardware for compute

intensive data mining applications, In Proc. of 6th IEEE Int. Conf. on P2P,

Parallel, Grid, Cloud and Internet Computing (3PGCIC’11), 2011,

pp.100-108. (Best Paper Award)

33. K Reddy, T Herron, Computing the eigen decomposition of a symmetric

matrix in fixed-point arithmetic, in Proc. of 10th Annual Symp. on Multimedia

Communication and Signal Processing, 2001

34. G Salton, MJ McGill, Introduction to modern information retrieval

(McGraw-Hill, New York, 1983)

35. P Sedcole, B Blodget, T Becker, J Anderson, P Lysaght, Modular dynamic

reconfiguration in Virtex FPGAs. IEE Computers and Digital Techniques

153(3), 157–164 (2006)

36. A Sharma, KK Paliwal, Fast principal component analysis using fixed-point

algorithm. Pattern Recognition Letters 28(10), 1151–1155 (2007)

37. J Shlens, A tutorial on principal component analysis. Institute on Nonlinear

Science, UCSD, Salk Insitute for Biological Studies, La Jolla, CA, USA. (2005).

http://www.cs.cmu.edu/~elaw/papers/pca.pdf. Accessed in June 2016

38. LI Smith, A tutorial on principal component analysis. Cornell University, 2002

39. M Thangavelu, R Raich, On linear dimension reduction for multiclass

classification of Gaussian mixtures, in Proc. of IEEE Int. Conf. on Machine

Learning and Signal Processing, 2009, pp. 1–6

40. TJ Todman, GA Constantinides, SJE Wilton, O Mencer, W Luk, PYK Cheung,

Reconfigurable computing: architectures and design methods. IEE

Computer and Digital Techniques 152(2), 193–207 (2005)

41. LN Trefethen, and D Bau, Numerical linear algebra. (SIAM Bookstore,

Philadelphia, PA, USA, 1997)

42. P Valarmathie, MV Srinath, K Dinakaran, An increased performance of clustering

high dimensional data through dimensionality reduction technique.

Theoretical and Applied Information Technology 5(6), 731–733 (2005)

43. Xilinx, Inc., LogiCORE IP AXI HWICAP, DS817 (v2.03.a) (2012). http://www.

xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_03_a/

ds817_axi_hwicap.pdf. Accessed in June 2016

44. Xilinx, Inc., LogiCORE IP AXI System ACE Interface Controller, DS789 (v1.01.a)

(2012). http://www.xilinx.com/support/documentation/ip_documentation/

ds789_axi_sysace.pdf. Accessed in June 2016

45. Xilinx, Inc., LogiCORE IP Block Memory Generator, PG058 (v7.3) (2012).

http://www.xilinx.com/support/documentation/ip_documentation/blk_

mem_gen/v7_3/pg058-blk-mem-gen.pdf. Accessed in June 2016

46. Xilinx, Inc., LogiCORE IP AXI Interconnect, DS768 (v1.06.a) (2012).

http://www.xilinx.com/support/documentation/ip_documentation/axi_

interconnect/v1_06_a/ds768_axi_interconnect.pdf. Accessed in June 2016

47. Xilinx, Inc., LogiCORE IP AXI Master Burst (axi_master_burst), DS844 (v1.00.a)

(2011). http://www.xilinx.com/support/documentation/ip_documentation/axi_

master_burst/v1_00_a/ds844_axi_master_burst.pdf. Accessed in June 2016

48. Xilinx, Inc., LogiCORE IP AXI SystemACE Interface Controller, DS789 (v1.01.a)

(2011). http://www.xilinx.com/support/documentation/ip_documentation/

ds789_axi_sysace.pdf. Accessed in June 2016

49. Xilinx, Inc., LogiCORE IP AXI Timer, DS764 (v1.03.a) (2012). http://www.xilinx.

com/support/documentation/ip_documentation/axi_timer/v1_03_a/axi_

timer_ds764.pdf. Accessed in June 2016

50. Xilinx, Inc., LogiCORE IP Floating-Point Operator, DS335 (v5.0) (2011).

http://www.xilinx.com/support/documentation/ip_documentation/floating_

point_ds335.pdf. Accessed in June 2016

51. Xilinx, Inc., ML605 Hardware User Guide, UG534 (v1.5) (2011). www.xilinx.com/

support/documentation/boards_and_kits/ug534.pdf, Accessed in June 2016

52. Xilinx, Inc., Partial Reconfiguration User Guide UG702 (v12.3) (2010).

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/

ug702.pdf. Accessed in June 2016

53. Xilinx, Inc., PlanAhead User Guide, UG632 (v 11.4) (2009). http://www.xilinx.

com/support/documentation/sw_manuals/xilinx11/PlanAhead_UserGuide.pdf.

Accessed in June 2016

54. Xilinx, Inc., Virtex 6 FPGA Memory Interface Solutions, DS186 (v1.03.a) (2012).

http://www.xilinx.com/support/documentation/ip_documentation/mig/v3_

92/ds186.pdf. Accessed in June 2016

55. Xilinx, Inc., Virtex-6 FPGA Configuration User Guide UG360 (v3.2) (2010).

http://www.xilinx.com/support/documentation/user_guides/ug360.pdf.

Accessed in June 2016

56. JT Yao, Sensitivity analysis for data mining, in Proc. of 22nd Int. Conf. of Fuzzy

Information Processing Society, 2003, pp. 272–277

57. KY Yeung, and WL Ruzzo, Principal component analysis for clustering gene

expression data. Bioinformatics. 9, 763-774, (2001)

Shahrouzi and Perera EURASIP Journal on Embedded Systems (2017) 2017:25 Page 18 of 18

http://www.stat-help.com/notes.html
http://www.stat-help.com/notes.html
http://www.cs.cmu.edu/~elaw/papers/pca.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_03_a/ds817_axi_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_03_a/ds817_axi_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_03_a/ds817_axi_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds789_axi_sysace.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds789_axi_sysace.pdf
http://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v7_3/pg058-blk-mem-gen.pdf
http://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v7_3/pg058-blk-mem-gen.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v1_06_a/ds768_axi_interconnect.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v1_06_a/ds768_axi_interconnect.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_master_burst/v1_00_a/ds844_axi_master_burst.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_master_burst/v1_00_a/ds844_axi_master_burst.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds789_axi_sysace.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds789_axi_sysace.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_timer/v1_03_a/axi_timer_ds764.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_timer/v1_03_a/axi_timer_ds764.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_timer/v1_03_a/axi_timer_ds764.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/PlanAhead_UserGuide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/PlanAhead_UserGuide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mig/v3_92/ds186.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mig/v3_92/ds186.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf

	Abstract
	Introduction
	Data mining techniques
	Mining high-dimensional data
	PCA: a dimensionality reduction technique
	The process of PCA

	Design approach and development platform
	System-level design
	Pre-fetching technique

	Reconfiguration process
	Partial reconfiguration on Virtex 6

	Embedded reconfigurable hardware design
	Experimental results and analysis
	Space and time analysis
	Space saving
	Space overhead for reconfiguration
	Time overhead for reconfiguration

	Results and analysis for SRH and DRH
	Execution times for SRH
	Execution times for DRH
	Speed-performance comparison: SRH and DRH vs. software on MicroBlaze

	Conclusions
	Authors’ contributions
	Authors’ information
	Competing interests
	References

