
Dynamic partial reconfiguration in FPGAs

Wang Lie, Wu Feng-yan
Dept. of Computer Science ＆ Electronic Information

Guangxi University
Nanning,China

dzxh_wfy@163.com

Abstract—Dynamic parital reconfigurable FPGAs offer new
design space with a variety of benefits: reduce the
configuration time and save memory as the partial
reconfiguration files (bitstreams) are smaller than full ones.
This paper introduces a simple reconfigurable system and
focuses on the advantages of the newest dynamic partial
reconfiguration design flow.

Keywords-FPGA; Dynamic Partial Reconfiguration(DPR) ;
Early Access Partial Reconfiguration(EAPR)

I. INTRODUCTION
Since 80’s the Field Programmable Gate Array (FPGA)

market growing rapidly with varied of application in
different industries.Their great advantage is their flexibility
that arises from their programmable nature as compared to
systems using application specific integrated circuits
(ASICs).There is a new concept evolving in FPGA
industry.The so-called dynamic partial reconfiguration(DPR)
can be exploited in many application fields,for instance to
fulfill space requirements in small portable systems, to create
a system-on-a-chip with a very high level of flexibility, to
realize adaptive hardware algorithms,and so on.

Section 2 describes the definition of dynamic partial
reconfiguration and two different methods are compared.The
advantages of the newest design flow is analysed in
Sect.3,the proposed DPR system is also presented in this
section.Section 4 describes the implementation design flow
of the experimental system on the FPGA platform.In
Sect.5,the results of the experiment is presented.Finally,the
conclusion is given in Sect.6.

II. DYNAMIC PARTIAL RECONFIGURATION
Partial reconfiguration(PR) is the ability to reconfigure

select areas of an FPGA any time after its initial
configuration.

A. Two groups of PR
From the functionality of the design, partial

reconfiguration can be divided into two groups: dynamic
partial reconfiguration(DPR) and static partial
reconfiguration[1]. Dynamic partial reconfiguration,which is
illustrated in figure 1, also known as active partial
reconfiguration, permits to change a part of the device while
the rest of an FPGA is still running. In static partial

reconfiguration the device is not active during the
reconfiguration process. In other words, while the partial
data is sent into the FPGA, the rest of the device is stopped
and brought up after the configuration is completed, as
shown in figure 2.

Figure 1. Dynamic partial reconfiguration

Figure 2. Static partial reconfiguration

Dynamic partial reconfiguration is carried out to allow
the FPGA to adapt to changing hardware algorithms,
improve fault tolerance and resource utilization, to enhance
performance or to reduce power consumption. DPR is
especially valuable where devices operate in a mission-
critical environment that cannot be disrupted while some
subsystems are being redefined.

DPR is not supported on all FPGAs.The Xilinx FPGAs
(i.e. Virtex series) are some of the few devices on the market
allowing dynamic partial reconfiguration.

B. Several styles of DPR
Xilinx inc. suggests in [2] two basic styles of dynamic

reconfiguration on a single FPGA: the Difference-based
partial reconfiguration and the module-based partial
reconfiguration.

Difference-based partial reconfiguration can be used
when a small change is made to the design. It is especially
useful in case of changing Look-Up Table (LUT) equations
or dedicated memory blocks content. The partial bitstream
contains only information about differences between the
current design structure (that resides in the FPGA) and the
new content of an FPGA. Switching the configuration of a

2009 Third International Symposium on Intelligent Information Technology Application

978-0-7695-3859-4/09 $26.00 © 2009 IEEE

DOI 10.1109/IITA.2009.334

446

2009 Third International Symposium on Intelligent Information Technology Application

978-0-7695-3859-4/09 $26.00 © 2009 IEEE

DOI 10.1109/IITA.2009.334

445

module from one implementation to another is very quick, as
the bitstream differences can be extremely smaller than the
entire device bitstream.

Module-based partial reconfiguration uses modular
design concepts to reconfigure large blocks of logic. The
distinct portions of the design to be reconfigured are known
as reconfigurable modules. Because specific properties and
specific layout criteria must be met with respect to a
reconfigurable module, any FPGA design intending to use
partial reconfiguration must be planned and laid out with that
in mind.

In March of 2006, Xilinx introduced the early access
partial reconfiguration(EAPR)design flow along with the
introduction of slice based bus macros.

III. EARLY ACCESS PARTIAL RECONfiGURATION
Designers familiar with XAPP290,partial reconfiguration

for Virtex-II devices, will find two key differences between
the modular-based design PR flow and the EAPR
flow[3,6,7].

A. Advantages of EAPR
1) The requirement described in PR for Virtex-II

Devices for whole-column PR regions is removed. The
EAPR flow now allows for PR regions of any rectangular
size in Virtex-4.

The smallest unit of configuration memory that can be
read or written is a “frame”[4], which spans the entire height
of the device (including I/O blocks) and a fraction of one
column in Virtex-II and Virtex-II Pro. So the area for PRM
has four slice minimum width and always the full height of
the target device.

The latest generation of Virtex FPGAs, the Virtex-4
family, marks a significant change in layout over previous
devices. The configuration architecture is still frame-based,
but a frame spans 16 rows of configurable logic blocks
(CLBs) rather than the full device height[5]. The design rules
of new partial reconfiguration can support more flexible than
previous one.

2) The bus macro is based on slice not tri-buffer.This
enhancement dramatically improves timing performance
and simplifies the process of building a PR design.

Slice-based bus macros provide means of locking the
routing between PRMs and the base design, making the
PRM pin compatible with the base design. As a result all
connections between the PRM and the base design must pass
through the bus macros, except clock signal. Hardwired slice
based bus macro guarantees that routing channels between
modules remain unchanged, avoiding contentions inside the
FPGA and keeping correct inter-module connection even
though each time partial reconfiguration is performed. The
partial reconfiguration design method provides various types
of bus macro in terms of device, direction and synchronicity.
Bus macro must places on the reconfigurable module
boundary.

B. Design based on EAPR

Figure 3. Architecture of the design

Static module is the design remains in operation during
the PR process.Partial Reconfiguration Module(PRM) is the
design module that can be swapped in and out of the device
on the fly,multiple PRMs can be defined for a specific
region.Partial Reconfiguration Region(PRR) is the part of
the FPGA that is set aside for partial reconfigurable
modules.More than one PRRs can be set on the fly.Bus
macros(BM) are pre-placed,pre-routed macros.All non-
global signals between the PRMs and the static modules
must be wired through BMs.

C. Description of the design in this paper
This paper presents a DPR system using the EAPR

flow.In this system, a Gray counter and a Johnson counter
are reconfigurated dynamically on a Xilinx Virtex4-FX12
FPGA chip. The output part is four leds,which are used to
demonstrate the counter.The proposed EAPR-based system
architecture is shown in Fig.3.This system consists of a led
control module and two partial reconfiguration
modules(PRM A1, PRM A2)which are placed on the same
partial reconfiguration region. The led control module which
enable the leds is a part of the static module.

IV. DESIGN FLOW
Each of the steps of the early access partial

reconfiguration design flow is outlined by Figure 4 and
described in detail below[3,6].

447446

Figure 4. EAPR design flow

A. Hardware Description Language (HDL) design and
synthesis
The initial steps in the EAPR design flow are similar to

the initial steps in the standard modular design flow.
1) Top-Level design

The top-level module that does not contain any logic only
contains I/O instantiations, clock primitives, static module
instantiations, partial reconfiguration module instantiations,
and signal declarations. In addition, the top-level module
must define bus macros.The based design and each PRM
must be connected through the bus macro.

2) Base design
The static modules contain logic that will remain

constant during reconfiguration. This step is same with
traditional HDL design method,but the static modules cannot
contain any clock or reset-related primitives.In the proposed
design,the control manager is implemented by the based
design.

3) PRMs design
Similar to the static modules, the partial reconfiguration

modules must also not contain global clock signals, but may
use those from the top-level module.When designing
multiple reconfigurable modules to utilize the same
reconfigurable area, the component name and port
configuration of each module must match the reconfigurable
module instantiation located in the top-level module. The
proposed system has two PRMs which are Gray counter and
Johnson counter.

B. Set Design Constraints
After the HDL design description and synthesis ,the next

step is to set design constraints.Design constraints include
the area group,reconfiguration mode,timing constraint and

location constraints.The area group constraint specifies
which modules in the top-level module are static and which
are reconfigurable.Each module instantiated by the top-level
module is assigned to a group. The reconfiguration mode
constraint is also only applied to the reconfigurable group,
which specifies that the group is reconfigurable. Location
constraints must be set for every pin, clocking primitive, and
bus macro in the top-level design.Bus macros are located so
that they straddle the boundary between the PR region and
the base design.

C. Implement Base Design
Before the static modules are implemented, the top-level

is translated to ensure that the constraints file has been
properly created. The information generated by
implementing the base design is used for PRM
implementation phase. The base design implementation
follows three steps: i.e., translate, map and Place &
Route(PAR).

D. Implement PRMs
After the base design is implemented,each PRM must be

implemented separately and follows base design
implementation steps: translate,map,and PAR.

E. Merge
The final implementation phase is the merge

phase.During the merge phase, a complete design is built
from the base design and each PRM. In this step,many
partial bitstreams for each PRM and initial full bitstreams are
created to configure the FPGA.

V. RESULTS
Firstly,the full bitstream is downloaded to initial the

device,then,the partial bitstreams are downloaded when the
FPGA is running,meanwhile,the leds light along with the
choosed partial bitstreams.The full bitstream is 582KB,while
the partil bitstream is 12KB for Gray counter and 12KB for
Johnson counter.Since the size of the bitstream is directly
proportional to the number of resources being
configured[8],partial reconfiguration utilizes a smaller
bitstream than a full bitstream for the FPGA. The direct
benefit is less space needed for storing the necessary
configurations for operation.As reconfiguration times are
highly dependent on the size and organization of the PRRs,
an additional benefit is that the reconfiguration time is
shorter.

VI. CONCLUSION
In this paper,we have illustrate the clear advantage of

EAPR flow over the XAPP290.Then,we design a experiment
based on EAPR to proof that this method can decrease the
size of bitstreams obviously.

Recently,Xilinx presented a new tool called PlanAhead
to support the EAPR design flow[9,10], this software is the
first graphical environment for partial reconfiguration. Using
PlanAhead design tools as a platform for partial
reconfiguration applications can greatly simplify the
complexities of the dynamic operating environment,

448447

allowing a single device to operate in applications that
previously required multiple FPGAs.

ACKNOWLEDGMENT
We gratefully acknowledges the financial support given

by the Natural Science Foundation of Guangxi
Province,China.

REFERENCES

[1] Matthew G.Parris. Optimizing Dynamic Logic Realizations For
Partial Reconfiguration Of Field Programmable Gate Arrays. B.S.
University of Louisville .2008.

[2] Xilinx,Inc.XAPP290:Two Flows for Partial Reconfiguration:Module
Based or Difference Based [EB/OL].http :/ / www. xilinx. com,2004.

[3] Chang-Seok Choi,Hanho Lee. A Self-Reconfigurable Adaptive FIR
Filter System on Partial Reconfiguration Platform. IEICE TRANS.
INF. & SYST. vol 90, 2006,pp1932-1938.

[4] Virtex-4 Configuration Guide,Xilinx,Inc.
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

[5] P.Sedcole, B.Blodget, T. Becker, J. Anderson, P. Lysaght, Modular
dynamic reconfiguration in Virtex FPGAs .Computers and Digital
Techniques, IEE Proceedings , London,vol 153,issue:3.,2006,pp157-
164.

[6] Xilinx,Inc.UG208:Early Access Partial Reconfiguration User Guide
[EB/OL]. http :/ / www. xilinx. Com.2006.

[7] K.G.Nezami, P.W.Stephens, S.D.Walker, Handel-C Implementation
of Early-Access Partial-Reconfiguration for Software Defined Radio.
Wireless Communications and Networking Conference, 2008.
IEEE. ,2008 ,pp1103 – 1108.

[8] E.J.McDonald, Runtime FPGA Partial Reconfiguration. Aerospace
Conference, 2008 IEEE,Los Angeles,2008,pp1-7.

[9] N. Dorairaj, E. Shiflet, and M. Goosman, “PlanAhead software as a
platform for partial reconfiguration,” Xcell Journal, no. 55, pp. 68–71,
2005.

[10] Xilinx,Inc .Partial Reconfiguration Design with PlanAhead. http://
www. xilinx. Com. 2008.

449448

