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Abstract— We present an on-line, robust, and efficient path
planner for the redundant Mitsubishi PA-10 arm with 7 degrees
of freedom (DOF) in non-stationary environments. Because of the
specific kinematic model of the arm, path planning can be first
reduced to a redundant 6-DOF problem in a 5D configuration
space, which can be further decomposed into two problems:
(i) 3D position planning in Cartesian space and (ii) planning
in a 3D space composed of two orientation angles and an
explicit parameterization of the arms redundancy. Position and
orientation planning are interweaving and performed “on-the-
fly” without explicit global knowledge of the environment using
two instances of the dynamic wave expansion neural network
(DWENN), an effective method for path generation in arbitrarily
changing environments. The dynamic and explorative nature of
the DWENN algorithm allows to treat stationary and dynamic
obstacles in a unified manner. Through a number of simulative
tests, we show that the planner is capable of reaching both
a satisfactory robustness level and real-time performance, as
required by many practical applications.

I. INTRODUCTION

Path planning for robotic manipulators both in research

environments and for industrial applications is a challenging

problem, in particular if man-machine interaction in conse-

quently highly dynamic environments is considered. In this

context, the ultimate goal of the contemporary robotics re-

search is to provide robotic manipulators with on-line, au-

tonomous, robust, and, when possible, optimal or near-optimal

path planning capabilities.

In contrast to numerous approaches to motion planning for

mobile robots, many methods for robotic manipulators assume

that the environment is stationary. For instance, [1] and [2]

require an off-line precomputation of obstacle configurations

before the path generation is performed. The approach in [3]

generates subgoals to guide the planning in the discretized

configuration space (C-space) of the robot, and exploits par-

allel processes for concurrent search for a valid path. [4] uses

a genetic algorithm with a multi-criteria fitness function for

the end-effector motion planning of a redundant manipulator.

There also exist several approaches to motion coordination

of multiple manipulators. In [5], the time-velocity decomposi-

tion approach is transferred to motion planning of two manip-

ulators. [6] and [7] consider cooperation of two manipulators

in a shared workspace, but since the environment is highly-

structured, the planning is reduced to a 2D case. A purely on-

line approach to collision-free path planning and coordination

of two robot arms is proposed in [8].

Among the most popular approaches are potential field

methods existing in both numerical [9]–[11] and analytical

form [12]–[15]. The well-known drawback of these methods

is that they suffer from the local-minima-problem (which

mainly concerns the analytical representation of potentials

fields). Different prominent techniques for path planning in

higher-dimensional configuration spaces are probabilistic (or

randomized) methods [16]–[19]. They try to approximate the

configuration space, i.e., to capture its connectivity using

random sampling. Recently, however, also deterministic, incre-

mental building of grids in higher-dimensional spaces has been

considered as an alternative to path planning based on random

sampling [20]. In addition, [21]–[23] discuss the heuristic

grid-search and replanning algorithms which try to reduce the

number of grid nodes to be processed during the path search.

Note however that in a dynamic environment the probabilistic

roadmap methods (even in their “light” version – with lazy

collision checking) may fail, since the movement of obstacles

will lead to elimination of roadmap edges, which may destruct

the connectivity of the graph structure.

In this paper, we present a planner for a 7-DOF robot arm,

which, thanks to its dynamic nature, can deal with virtually

any type of environment, be it stationary, dynamic or unknown.

Since path planning within a high-dimensional and dynamic

configuration space suffers from the curse of dimensionality,

we decompose the initial 7-DOF problem into simpler ones.

Particularly, our planner orchestrates two 3D subplanners,

which together solve a redundant 6-DOF in 5D problem. The

remaining 7th DOF corresponds to the last roll joint of the

robot arm and can be handled separately.

Each subplanner is an instance of the original dynamic

wave expansion neural network (DWENN [24]), an efficient

tool for path planning in time-varying and highly dynamic

environments. The main feature of this grid based algorithm

is that its “local” per-node complexity does not directly depend

on the dimensionality of the configuration space.

Since path planning in each instance is done in an on-line,

explorative fashion, all forbidden (obstacle) configurations

of the arm are detected “on-the-fly” and are dynamically

integrated into the path planning process. The global planner,

which masters the two DWENN-based subplanners, exploits

only two simple heuristics: (i) We control the overall number

of steps assigned to each subplanner and (ii) we insert random

steps for an already arrived subplanner, in case the other
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subplanner does not finish within a certain number of trials.

In this work, we report the results of thorough simulative

tests, which reveal that in reasonably cluttered environments

the planner is acceptably robust, and satisfies real-time require-

ments as needed by many real-world applications.

II. PA-10 ROBOT ARM KINEMATICS

The Mitsubishi PA-10 is a 7 axis general purpose robot arm.

It is composed of a succession of roll joints (No. 1, 3, 5 and 7

in Fig. 1) and pitch joints (No. 2, 4 and 6). On the one hand

the existence of a redundant DOF complicates the kinematics,

but on the other hand can be exploited for obstacle avoidance

and generation of smooth trajectories, if represented within

the path planning algorithm. An elegant closed form solution

for the inverse kinematics of redundant robot arms has been

described in [25]. In the following, we give a brief summary

tailored to the PA-10.

Starting from the base of the arm, conceptually each roll

joint and the following pitch joint are combined to a spherical

joint at locations 2, 4 and 6 in Fig. 1. Any given end-effector

position and orientation determines the location of the last

pitch joint 6. Since base joint 2 is fixed and the arm segments

have fixed length, the spherical elbow joint 4 can only move

on a circle around the axis connecting joint 2 and 6. Hence,

the redundancy manifold is a circle in Cartesian space which

can be parameterized by an angle α between 0 and 2π.

Fig. 1. Illustration of the PA-10 redundancy circle. The right picture shows
two blended screen-shots from our simulation, including forearm and hand.

Due to inherent joint range limits some sectors on the re-

dundancy circle yield an invalid arm posture. These forbidden

sectors will be regarded as “internal” obstacles later and still

can be handled by the formalism described in [25]. For any

desired end-effector position and orientation we can freely

choose the redundancy parameter α from a valid range, and

then analytically calculate the corresponding joint angles.

The 7th arm joint controls the rotation of the end-effector

about its roll axis, which can be predetermined without af-

fecting the redundancy motion. Hence, we handle this joint

separately, typically maintaining an upright orientation of

the mounted robot hand during the whole movement. This

effectively reduces the path planning to a redundant 6-DOF

problem in 5D space, consisting of the Cartesian end-effector

position as well as its azimuth and altitude angles relative to

the table. Due to the nearly cylindrical shape of our robotic

hand, this joint indeed can be neglected in collision checks.

III. DISTRIBUTED DYNAMIC PATH PLANNING

Since our approach aims at real time interaction of the

robot with its environment, its planning system has to be

capable of acquiring information about obstacles in an on-line

and dynamic fashion. Additionally, planning takes place in a

redundant 6D configuration space as described in the previous

section. While up to date there are no real-time solutions

available for such high-dimensional planning problems, which

can dynamically integrate obstacle information, the dynamic

wave expansion neural network has been proven to efficiently

solve such problems in up to three dimensions [24]. This

motivates to decompose the originally 6D planning problem

into two 3D problems, which, however, interact in a highly

non-trivial way because both 3D planners refer to a common

real-world situation. This makes a planner’s obstacle landscape

dependent on the other planner’s current configuration.
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0 45 90 135 180 225 270 315
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0 45 90 135 180 225 270 315

CX X X

Fig. 2. The circular obstacle within the workspace induces different obstacle
configurations in angular space (as marked by gray arrows and an X on
the additional angular axis) depending on the actual end-effector position in
Cartesian space. The current orientation of the arm is indicated by a black
arrow and the letter C respectively.

Fig. 2 illustrates the effects of decomposition for a simpler

3-DOF arm. Here the 3D configuration space is split into a

2D positional and a 1D angular space, representing the Carte-

sian position and orientation of the end-effector respectively.

The three shown configurations in positional space lead to

different obstacle configurations if seen from angular space

as illustrated by the gray arrows. The shift of the forbidden

region in angular space becomes evident when looking at the

additionally displayed discretized angular axis in Fig. 2, where

forbidden angular configurations are marked with an X. Vice

versa, forbidden end-effector positions in 2D Cartesian space

change as a function of the end-effector orientation.

Note that we do not require an explicit representation of the

obstacle landscape, neither within the subplanners nor within

the overall planner. Rather, the planner actively explores its

environment which is represented only implicitly within a

continously updated virtual world model. The overall planner

validates every aspired 7DOF arm posture computed from the

current configurations of both subplanners employing colli-

sion checking routines within the world model. Because the

obstacle landscapes of each subplanner strongly depends on

the current configuration of the other planning instance, each

planner has to reset and dynamically re-explore its forbidden

configurations after a move of the other planner. An analytical

computation of the obstacle configurations is possible, but

computationally too costly.
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A. Decomposition into Space and Orientation Planning

We adapt this decomposition principle to path planning for

the PA10 within the remaining 6D configuration space. Specif-

ically, we decompose the problem into two 3D subproblems

governed by two independent subplanners: i) position planning

of the end-effector in Cartesian space, and ii) planning of the

end-effector’s orientation as well as the redundancy angle.

Hence, the configuration space of the first planner P1 is the

Cartesian position within the workspace, while that of the

second planner P2 is spanned by the two orientation angles

azimuth and altitude as well as the angle α describing the

position on the redundancy circle of the arm. Remember that

we factored out the orientation of the end-effector about its roll

axis, which can be handled independently by the 7th joint.

Consequently, this leads to explicit redundancy control and

multiple targets for the subplanner P2, which can be easily

handled by the DWENN algorithm.

B. Coordination and Exploration of Dynamic Obstacles

PATH  PLANNER

POSITION PLANNING

dwenn instance

reset obstacles

if needed

intended
configuration q1

ORIENTATION PLANNING

dwenn instance

reset obstacles

if needed

intented
configuration q2

inverse kinem.,
intended arm

configuration q
fix q1 as an

obstacle

fix q2 as an

obstacle

configuration q
valid ?no no

yes

collision checking
module

configuration q
free ?no no

yes

arm motion control:

move to q

Fig. 3. Flow chart of the global path planning cycle.

The two subplanners are conceptually independent, use no

common global information, and run alternating coordinated

through a mastering planning process P as illustrated in Fig. 3.

The mastering planner selects one of the subplanner instances

Pi to execute the next few robot movements. Before an actual

arm movement is performed, the intended new configuration

of Pi is validated. To this end, the mastering planner combines

the requested configuration of the active subplanner and the

current configuration of the other subplanner and calculates

a corresponding arm posture applying the inverse kinematics.

If this posture cannot be found, violates joint angle limits,

or would generate a collision as checked within the virtual

world model, the requested 3D sub-configuration is marked

as an obstacle within the active planner Pi. In this case,

the subplanner either continues planning using the updated

obstacle configuration, or waits for its next turn assigned by

the master P . Otherwise the arm posture is actuated by the

robot.

Due to the strong dependence of the obstacle landscape of

one planning instance on the current configuration of the other

planning instance, obviously all obstacles become dynamic

from the point of view of each subplanner. Hence, each

subplanner has to reset its acquired obstacle information, every

time the other subplanner actually has moved the robot during

its turn. Since the information about obstacles is collected “on-

the-fly” in an explorative fashion, the planner can naturally

deal with stationary, dynamic, and unknown environments.

C. Coordination Heuristics of the Mastering Planner

The mastering planner has to carefully assign appropriate

planning chunks to each subplanner. On the on hand these

chunks need to have an adequate length to enable the sub-

planners to acquire sufficient obstacle information, on the other

hand these chunks have to coordinated, such that both planners

simultaneously reach their respective 3D target.

If one subplanner Pa reaches its target significantly before

the other planner Pb, the maneuverability of Pb is strongly

restricted which may lead to a deadlock. Specifically, Pb may

not reach its target(s), since all paths to the target(s) are

blocked by obstacles.

To tackle this problem, we apply two heuristics in the

mastering planner P : First, we estimate the remaining path

length of both subplanners and from this calculate the proba-

bility to select a specific subplanner for the next few planning

steps. Statistically, we thereby assign a number of local

planning steps to each subplanner, which is proportional to

its respective remaining path length. This steps-scaling forces

the two planners to arrive at their targets as simultaneously

as possible. Second, if nonetheless we arrive at the deadlock

situation describe above, where planner Pb cannot reach its

target anymore, we insert one random step for Pa after each

N steps of Pb. In our experiments, we found N = 15 to be a

suitable value.

IV. DWENN PATH PLANNING ALGORITHM

Recently, some research in robotics and AI was aimed at

finding techniques for speeding-up and heuristic Al improve-

ment of grid-search methods (their main difficulty being the

exponential growth of complexity in the dimension of the

configuration space). For example, [26] discusses how grid

search can be optimized by heuristically reducing the number

of neighbor expansions (depending on where the parent node

is located in the neighborhood). [27]–[30] discuss incremental

heuristic search algorithms which reduce the number of grid

nodes to be recomputed by reusing the information from

previous searches. Note that none of these algorithms can

overcome the curse of dimensionality of the planning problem.

The DWENN algorithm is a grid-search technique, which

was specifically designed for path planning in highly-dynamic

environments. It is capable of generating dynamic distance

potentials over the discretized configuration space of the robot.
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Fig. 4. Discretized potential field over a 60x60 workspace with 10 targets.
The targets correspond to the minimum value points. In the shown case, the
values of others grid nodes reflect the L∞-distances to the nearest target.

Unlike the heuristic grid replanning techniques which aim

at minimizing the number of expansion nodes, the main

objective of the DWENN algorithm is to produce paths which

do not contain oscillations and tend to be optimal even in an

intensively changing environment.

The DWENN algorithm propagates waves of activity around

one or multiple target configurations. At each instance of

time a new wave emanates from these points and carries the

information about the distance to the target, i.e., it propagates

in such a way, that farther locations in the C-space accumulate

larger activity values (see the illustration in Fig. 4). At each

time step, the robot can move only to the neighboring location

from which the activity has been inherited. The pseudo-code of

a single iteration of the DWENN algorithm is shown in Fig. 5.

Two main features distinguish the DWENN algorithm from

others. First, the update rule incorporates an inhibitory mech-

anism to reset the potential value of a node, if needed, and

initiates propagation of inhibitory waves, which sequentially

reset the activity of the nodes (lines 7, 19–21 in Fig. 5). This

prohibits undesired path detours. Second, the local complexity

of the DWENN algorithm does not depend on the dimension-

ality of the C-space (see [24], an example for a dynamic

environment is presented in [8]).

Other features of the DWENN algorithm include:

• a simple update rule, which employs one addition and some

binary checks only;

• the update rule determines the selective flow of the activity to

the first “valid” neighbor (for which the GOOD NEIGHBOR

function in Fig. 5 returns true);

• the algorithm is parameter-free, i.e., there are no parameters,

which may influence the efficiency of planning;

• the algorithm involves only integer-valued computation; its

complexity grows linearly in the number of grid nodes;

• as reported in [24], DWENN qualitatively outperforms other

existing algorithms (e.g., the algorithms in [31] and [32]).

V. EXPERIMENTAL RESULTS

In our setup, a human-sized forearm and hand are mounted

to the PA-10 as an end-effector, yielding a total length of

1915 mm from the base of the PA-10 to the fingertips. The

additional DOFs of the hand are not taken into account in the

planning process.

00 t← current time step;

01 for each grid node i do

02 if i = target then

03 act(i, t + 1)← 1; // targets have smallest activity

04 else if i = neighbor of a target

05 act(i, t + 1)← act(i, t) + 1;

06 else

07 act(i, t+1)← 0; // inhibitory wave, if no “good” neighbor

08 for each neighbor j of node i,

starting with lastGood(i) do

09 if GOOD NEIGHBOR(j, i, t) then

10 lastGood(i)← j; // store path from i to j

11 act(i, t + 1)← act(j, t) + 2;

12 break; // simply take the first “good” neighbor

13 new configuration ← lastGood(current configuration)

14 bool GOOD NEIGHBOR(j, i, t)

15 return

16 act(j, t) > 0 && // j is part of the activity wave

17 j 6= obstacle && // j is not an obstacle

18 act(j, t) 6= act(j, t− 1) && // j carries new information

19
`

act(i, t− 1) + act(i, t) = 0 ||

20 act(j, t) < act(i, t)
´

21 // if i became inactive at t, last cond. is false for any j

22 // otherwise j should be closer to the target than i

Fig. 5. Single iteration of the DWENN path planning algorithm. Initially, all
potential values act(i, t = 0) are zero. Furthermore, it is assumed that the
neighbors of node i are considered with respect to some preassigned ordering.
It is also assumed that the nodes are expanded consecutively, i.e. first the target
node(s), then its immediate neighbors are added, and so on.

The PA-10 arm is mounted at the center of the ceiling of a

nearly cubic workspace with an edge length of 1600 mm in x

and y-direction. The height of the workspace (z-direction) is

only 1350 mm. Note that the length of the arm and the size

of the rigid end-effector impose serious difficulties for path

planning even within an empty workspace.

For the following experiments, we used a 40x40x25 sized

grid for the position planner (P1), filling the lower 1000 mm

of the workspace, and, thus, corresponding to a sampling

interval of 40 mm along each axis. The combined orienta-

tion/redundancy planner (P2) used a grid of size 30x40x30

(azimuth/altitude/redundancy).

A. Experiment 1: Reachability of Random Targets

In a first experiment, conducted to demonstrate the ef-

fectiveness of the proposed planning strategy, we randomly

generated 10000 target postures from uniform sampling in

the 3D Cartesian space and in the 2D space of azimuth and

altitude orientation of the end-effector. Targets with no valid

discretized solution were rejected. We then let the planner

move to the desired target, always starting from a pre-defined

“home” position (see Fig. 7). We measured the number of steps

as well as the time the planner required to reach its target. If

the planner did not arrive at the target within 500 steps, the

attempt was canceled (which was the case for 12.2% of the
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Fig. 6. Histogram and relative cumulative histogram showing the number
of planning steps for reaching 10000 randomly selected targets. Left: Empty
workspace. Right: With moving obstacle. The lighter bars and the dashed line
apply to the full trial set, the darker bars and the solid line to the reduced
trial set.

trials in an empty workspace). For the accomplished targets,

the planner took 76 steps or 18.2 seconds on average to finish.

The distribution of planning steps is illustrated in Fig. 6. If

we reduce the set to those end-effector targets which have 15

feasible (out of 30 possible) redundant solutions, only 3399

targets remain and the error rate drops to 5.6%. This result

emphasizes the hardness of the problem as well as the ability

of the planner to exploit the redundancy manifold.

To demonstrate the effect of the proposed heuristics em-

ployed in the coordinating planner, we repeated the experiment

without the heuristics, i.e. just with alternating steps of the

subplanners. This led to a failure rate of 14.4%, resp. 7.7%

for the reduced target set.

To demonstrate the ability to handle dynamically moving

obstacles, we repeated the experiment moving a spherical

obstacle up and down in the workspace at a velocity of 4cm/s

(the left sphere in Fig. 7b). This resulted in a slightly increased

error rate of 15.6% resp. 8.1% for the reduced target set.

In real applications, one must somehow handle unsuccessful

planning attempts. For this, we suggest to define workspace-

specific “safe” positions as intermediate targets and to repeat

the planning process from different starting points.

B. Experiment 2: Reachability of the Table Surface

In this experiment, we demonstrate the capabilities of our

path planning system in a task which resembles approaching

movements in the context of grasping, and allows to easily

visualize the results. To this aim, we created a set of targets by

specifying a regular grid of 2D positions on the table (bottom

of the workspace). The target height was fixed to z=50 mm

above the table. To generate target orientations, we sampled

the azimuth and altitude angles of the end-effector orientation,

yielding up to 97 possible targets for each position on the table.

We then measured (1) how many of the targets are theoreti-

cally reachable, i.e. there is at least one valid arm posture, and

(2) how many of these tasks the planner accomplished. Again,

each trial was started from the home position. In a second

and third series, we placed obstacles inside the workspace (the

hemisphere and the two spheres in Fig. 7a and b, respectively).

Fig. 8 illustrates the results of this experiment. Note that

our planner reaches all positions on the table nearly equally

well. Only in the lower right corner the performance decreases

slightly, which is due to violation of joint limits.

(a) (b)

Fig. 7. Home position for all experiments and location of spherical obstacles
for Experiment 2 and 1b.

In the third series (bottom row of Fig. 8) the two spherical

obstacles severely restrict the maneuverability of the arm. Still,

averaged across all table points, our planner manages to reach

85% of the theoretically possible target postures.

VI. CONCLUSION

We presented a real-time path planner for the 7-DOF

Mitsubishi PA-10 arm. The planner combines two 3D path

planning instances responsible for the end-effector’s position

and orientation, respectively. We apply two heuristics which

control the overall number of steps for each subplanner and

initiate random steps in case one subplanner has arrived, while

the other has not. Path planning is performed using the DWENN

algorithm, designed specifically for path generation in highly

dynamic environments. Path generation in each subplanner is

performed on-line, and the obstacle information is collected

“on-the-fly”, which allows the planner to deal potentially

with dynamic and unknown obstacles. The planner has been

thoroughly evaluated in a number of simulative scenarios,

including random target configurations, as well as configu-

rations at the table surface, which is especially important in

the context of grasping. These tests reveal that our planner is

reliable and fast enough for real-world applications.
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