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Dynamic path planning of unknown environment has always been a challenge for mobile robots. In this paper, we apply
double Q-network (DDQN) deep reinforcement learning proposed by DeepMind in 2016 to dynamic path planning of unknown
environment. �e reward and punishment function and the training method are designed for the instability of the training stage
and the sparsity of the environment state space. In di	erent training stages, we dynamically adjust the starting position and target
position. With the updating of neural network and the increase of greedy rule probability, the local space searched by agent is
expanded. Pygame module in PYTHON is used to establish dynamic environments. Considering lidar signal and local target
position as the inputs, convolutional neural networks (CNNs) are used to generalize the environmental state. Q-learning algorithm
enhances the ability of the dynamic obstacle avoidance and local planning of the agents in environment.�e results show that, a
er
training in di	erent dynamic environments and testing in a new environment, the agent is able to reach the local target position
successfully in unknown dynamic environment.

1. Introduction

Since deep reinforcement learning [1] was �rst proposed
in 2013 formally, tremendous progress has been made in
the �eld of arti�cial intelligence [2]. Deep Q-network agent
was demonstrated to be able to surpass the performance
of all previous algorithms and achieve a level comparable
to that of a professional human games tester in Atari 2600
games [3–7]. AlphaGo zero [8, 9] has defeated all previous
AlphaGo versions by self-play without using any human
chess spectrum. An agent can be trained to play FPS game
receiving only pixels and game score as inputs [10].�e afore-
mentioned examples fully demonstrate the great potential in
autonomous decision-making �eld a
er the reinforcement
learning of neural network solving the problem of the curse
of dimensionality. In [11, 12], deep reinforcement learning
has been applied to autonomous navigation based on the
inputs of visual information, which has achieved remarkable
success. In [11], Piotr Mirowski et al. highlighted the utility
of un/self-supervised auxiliary objectives, namely, depth
prediction and loop closure, in providing richer training

signals that bootstrap learning and enhance data e�ciency.
�e authors analyze the agent behavior in staticmazes feature
complex geometry, random start position and orientation,
and dynamic goal locations. �eir results show that their
approach enable the agent navigate within large and visually
rich environments that include frequently changing start and
goal locations, but the maze layout itself is static. �e authors
did not test the algorithm in environments with moving
obstacles. If there are moving obstacles in environments, this
means the images collected by cameras may be unknown
for each episode. In [12], Yuke Zhu et al. try to �nd the
minimum length sequence of actions that move an agent
from its current location to a target that is speci�ed by anRGB
image. To solve the problem of a lack of generalization, i.e.,
the network should be retrained for new targets, they specify
the task objective (i.e., navigation destination) as inputs to
the model and addresses problems by introducing shared
Siamese layers to the network. But as it is mentioned in the
paper, in the network architecture of deep Siamese actor-
criticmodel, theResNet-50 layers are pretrained on ImageNet
and �xed during training. �is means that they have to
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collect a large number of di	erent target and scene images
with a constrained background to pretrain the ImageNet
before training the navigation model, indicating that the
generalization ability is still conditioned to the information
of maps in advance.

In this paper, we present a novel path planning algorithm
and solve the generalization problem by means of local path
planning with deep reinforcement learning DDQN based on
lidar sensor information. In the aspect of the recent deep
reinforcement learning models, the original training mode
results in a large number of samples which are moving states
in the free zone in the pool, and the lack of trial-and-error
punishment samples and target reward samples ultimately
leads to algorithm disconvergence. So, we constrain the
starting position and target position by randomly setting
target position in the area that is not occupied by the obstacles
to expand the state space distribution of the pool of sample.

To evaluate our algorithm,we use TensorFlow to build the
DDQN training frameworks for simulation and demonstrate
the approach in real world. In simulations, the agent is trained
in a lower-level and intermediate dynamic environment. �e
starting point and target point are randomly generated to
ensure diversity and complexity of local environment, and
the test environment is a high-level dynamic map. We show
details of the agent’s performance in an unseen dynamic map
in the real world.

2. Deep Reinforcement Learning with
DDQN Algorithm

�e conventional Q-learning algorithm [1] cannot e	ectively
plan a path in random dynamic environment because of the
lack of generalization ability and a large Q table. To solve the
problem of the curse of dimensionality in high dimensional
state space, the optimal action value functionQ inQ-learning
can be parameterized by an approximate value function.

� (�, �; �) ≈ �∗ (�, �) (1)

where � is the Q-network parameter.We approximate the
value of Q in a de�nite environment state by function equa-
tion, which is mainly linear approximation; thus, there is no
need to build a large Q table to determine the corresponding
Q values for di	erent state-actions. Neural network is used to
approximate the linear function which can obtain nonlinear
approximationwith generalization ability. (�, �) is regarded as
the input of the neural network and the output is the value of
Q, where � is the weight of Q-network. Q table is replaced
by Q-network. �e training process is to constantly adjust
the network weights to reduce the bias of the output of Q-
network and the target value of Q. Assuming that the target
value ofQ is denoted by y, thus the loss function ofQ-network
is yielded:

� � (��) = 
�,� [(�� − � (�, �; ��))2] (2)

where iteration i is the current iteration times and (�, �) is
a pair of state-action.

�e update mode of the value of Q is similar to that of
Q-learning; that is,

�� = 
��∼� [� + �max���(��, ��; ��−1) | �, �] (3)

where � is the current reward and � is a discount factor.
Stochastic gradient descent algorithm is adopted to train

the neural network. According to the back propagation of
the derivative value of loss function, the network weights
are constantly adjusted, resulting in the network output
approaching the target value of Q. �e network gradient can
be derived according to (2) and (3).

∇	�� � (��)
= 
 [(� + �max���(��, ��; ��−1) − � (�, �; ��))
⋅ ∇	�� (�, �; ��)]

(4)

Equation (4) indicates that the updates of neural network
and Q-learning are simultaneous. �e Q-network of the
current iteration epoch is updated with the target value of Q
updated from the previous iteration epoch.

Reinforcement learning is known to be unstable or even
to diverge when a nonlinear function approximator such as
a neural network is used to represent the action value (also
known as Q) function [13].�is instability has several causes:
the correlations present in the sequence of observations and
the correlations between the action values (Q) and the target
values. To address these instabilities, DeepMind presents a
biologically inspired mechanism termed experience replay
[14–16] that randomizes over the data. To perform experience
replay, DeepMind stores the agent’s experiences, environ-
ment state, action, and reward at each time-step t in a dataset.
�e pool of data samples is extended with running e-greedy
policy to search the environment. During the learning, train
the network with random data from the pool of stored
samples, thereby removing correlations in the observation
sequence and improving the stability of algorithm.

In 2015, DeepMind improved the original algorithm in
the paper “Human-Level Control through Deep Reinforce-
ment Learning” published in Nature. �ey added a target Q-
network, which is delayed updating in comparison with the
predictedQ-network, to update the target values ofQ, thereby
restraining a big bias of Q resulting from a fast dynamic
updating of the targetQ-network.�e improved loss function
is

� � (��) = 
 [(� + �max���(��, ��; �−� ) − � (�, �; ��))2] (5)

where �� are the parameters of the Q-network at iteration� and �−� are the network parameters used to compute the
target at iteration �.�e target network parameters �−� are only
updated with the Q-network parameters �� every C steps and
are held �xed between individual updates, thus ensuring that
the update of target network is delayed and the estimate of Q
is more accurate.

�e update mode of Q-learning algorithm results in
a problem of overestimate action values. �e algorithm
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estimates the value of a certain state too optimistically,
consequently causing that the Q value of subprime action
is greater than that of the optimal action, thereby chang-
ing the optimal action and a	ecting the accuracy of the
algorithm. To address the overestimate problem, in 2016,
DeepMind presented an improved algorithm in the paper
“Deep Reinforcement Learning with Double Q-Learning”,
namely, Double Q-network algorithm [17], which selected an
action by maximizing the value of the predicted Q-network
and updating the predicted Q-network with the selected
action value in Q-network instead of directly updating the
predicted Q-network with the maximum value of target Q-
network.

�� = 
 [� + �� (��, argmax (� (��, ��; ��)) ; ��−) | �, �] (6)

�e loss function of the improved algorithm is

� � (��) = 
 [(� + �� (��, argmax (� (��, ��; ��)) ; ��−)
− � (�, �; ��))2]

(7)

�e framework illustration ofDDQN is shown in Figure 1.

3. Local Path Planning with DDQN Algorithm

In this paper, we achieve local path planning with deep
reinforcement learning DDQN. Lidar is used to detect the
environment information over 360 degrees.�e sensor range
is regarded as observation window. �e accessible point
nearest to the global path at the edge of the observation
window is considered as the local target point of the local path
planning. �e network receives lidar dot matrix information
and local target point coordinates as the inputs and outputs
the direction of movement.

Considering the computation burden and actual naviga-
tion e	ect, we set angle resolution to be 1 degree and range
limit to be 2meters so each observation consists of 360 points
indicating the distance to obstacles within a two-meter circle
around the robot. �e local target point is the intersection
point of the observation window circular arc and the global
path. If there were several intersection points, the optimal
point would be chosen by heuristic evaluation.

As to the lidar dot matrix information, the angle and
distance can be denoted by [�����, ��������]. We set a
rule that the angles of the lidar points increases clockwise
relative to the front of the mobile robot. 360 points result
in 720 inputs of data. �e relative coordinate of local target
point and the current center coordinate of the mobile robot
body ([Δ�, Δ�]) are also regarded as the input. To achieve
the network output weights of the relative target points in
training and conveniently design the convolutional network,
we make 40 copies of the relative target points as the inputs;
namely, the total inputs are 800 datasets.

�e outputs are �xed-length omnidirectional movements
of eight directions, where the movement length is 10 cm, and
the directions are forward, backward, le
, right, le
 front, le


rear, right front, and right rear, which are denoted by 1 to 8 in
order as follows.

� = [�1, �2, �3, �4, �5, �6, �7, �8] (8)

�e design of positive activation function mainly
accounts for obstacle avoidance and approaching the target
point. �e shortest movement path which satis�ed the
two conditions is the most e	ective. �e rewards and
punishments function is designed as

� =
{{{{{{{{{{{{{

1 (& (�1, �1) = � (�, �))
−0.01(& (�1, �1) ̸= � (�, �)

& (�1, �1) ̸= - (�, �))−1 (& (�1, �1) = - (�, �))
(9)

where & is the current position, � is a local target point,
and o represents an obstacle with expansion processing.
Equation (9) indicates that the rewordwould be -1 if the agent
encountered an obstacle; if the agent arrived at the target
point, it would get a reward +1; in the other states, each step
of movement would cost -0.01. During the training, in order
to continuously improve the cumulative reward, the agent
gradually avoids the obstacle and reaches the target point in
a short path by the method of the trial-and-error learning.

Each lidar detected point receives continuous measure-
ment values changing from0 cm to 200 cm,whichmeans that
the state space tends towards in�nitude and it is impossible
to represent all of the states with Q table. With DDQN, the
generalization ability of neural network makes it possible
that the network is able to approach all states a
er training;
therefore, when the environment changed, the agent could
plan a proper path and arrive at the target position according
to the weights of the network.

To ensure the deep reinforcement learning training con-
verging normally, the pool should be large enough to store
state-action of each time-step and keep the training samples
of neural network be independent identical distribution;
besides, the environment punishment and reward should
reach to a certain proportion. If the sample space was too
sparse, namely, the main states were random movements in
free space, it was di�cult to achieve a stable training e	ect. As
to the instability of DDQN in training and the reward sparsity
of the state space, the starting point is randomly set in the
circle with the target point as the center and the radius L. �e
initial value of L is small, thereby increasing the probability
that the agent reaches the target point from the starting point
in the random exploration and ensuring a positive incentive
in the sample space. �e value of L gradually increases with
the update of neural network and the increase of greedy law
probability. �e local space searched by agent is expanded as
follows.

� =
{{{{{{{{{{{

�min (� ≤ N1)
�min + √ (� − N1)4 (N1 < � < N2)
�max (� ≥ N2)

(10)
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Figure 1: �e framework illustration of DDQN.

where � is the current iteration time-step; �min is the initial
value of �; �max is the maximum value of L; 4 is the search
speed in space; N1 and N2 are thresholds of iteration times
which need to be adjusted according to training parameters.

�e termination of each episode is to achieve a �xed
number of moving steps instead of directly terminating the
current training episode when encountering obstacles or
reaching the target point. �e original training mode results
in a large number of samples which are moving states in
the free zone in the pool, and the lack of trial-and-error
punishment samples and target reward samples ultimately
leads to algorithm disconvergence.

4. The Neural Network in DDQN

Neural network is a primarymethod for reinforcement learn-
ing to enhance the ability of generalization.�e optimization
design of the neural network architecture is able to reduce
over�tting and improve the prediction accuracy with high
training speed and low computational cost.

Considering 800 inputs, if we directly adopted fully
connected layers, the number of parameters needed to be
trained would increase exponentially with the increase of
the layers, resulting in a heavy computation burden and
over�tting. Convolutional neural networks (CNNs) have
made breakthrough progress in the �eld of image recognition
in recent years. CNNs are featured with a unique network
processing mode which is characteristic of local connec-
tion, pooling, sharing the weights, etc. �e unique mode
e	ectively reduces the computational cost, computational
complexity, and the number of the trained parameters. With
the method of CNNs, the image model in the translation,
scaling, distortion, and other transformations is able to
be invariant to a certain degree, thereby improving the

robustness of system to failures. Based on these superior
features, CNNs surpass fully connected neural network in
information processing task where the data are relevant to
each other [18].

�e framework of CNNs is shown in Figure 2. Generally,
the CNNs consist of input layer, convolutional layer, pooling
layer, fully connected layer, and output layer. convolutional
layer adopts local connection; namely, each node is connected
with some nodes of the upper layer. Four adjacent pixels
of input layer form a 2-by-2 local sensory �eld which is
connected with a neuron in convolutional layer. Each local
sensory �eld represents a local feature, and the size of the �eld
can be adjusted arti�cially.

�e next layer of convolutional layer is pooling layer,
which can also reduce the matrix size. �e spatial invariant
feature is obtained by reducing the resolution of the feature
surface [19]. �e number of feature maps in the pooling
layer is equal to the number of convolutional layers, and
each neuron performs a pooling operation on the local
sensory �eld. Pooling is suitable for separating the sparse
features.

A fully connected layer is added a
er one or more
convolutional layers and pooling layers. �e fully con-
nected layer integrates the partial information involved in
category distinguishing in convolutional layers or pooling
layers [20]. Besides, recti�ed linear unit (ReLU) is a recent
used activation functions in CNNs, which can improve
the performance of a CNN. �e output value of the fully
connected layer is directly transferred to the output layer. For
deep reinforcement learning, the output layer is the action
space.

�e lidar data between adjacent points re�ects the dis-
tribution of obstacles and the width of the free zone. �e
convolutional network can e	ectively extract the information
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of these characteristics and reduce the network parameters
greatly. �erefore, the CNNs are used to train the path
planning of local dynamic environment.

In this paper, the architecture of Q-network consists of
three convolutional layers and a fully connected layer. �e
input layer is a three-dimensional matrix with the size of
20×20×2 formed by a vector with 800 elements, where the
data in the third dimension represents the angle and distance
of a lidar point. �e size of the input layer is 20×20×2.
According to the size of the input layer, we design the �rst
convolutional layer, of which the size of the receptive �eld is
2-by-2, the stride is 2-by-2, and the number of feature maps
is set to be 16. �us, the size of the output layer is 10×10×16.
�e kernel size of the second convolutional layer is 2-by-2; the
stride is 2-by-2; and the number of the characteristic plane is
32.�e size of the output of this convolutional layer is 5×5×32.
�e kernel size of the third convolutional layer is 5-by-5; the
stride is 1-by-1; and the number of the characteristic plane is
128. �e size of the output of the third convolutional layer is
1×1×128. �en a three-dimensional structure is transformed
to a one-dimensional vector with 128 elements, which are
connected to the fully connected layer, of which the size is
128-by-256. �e size of the output layer is the number of
the actions, namely, 8. We use ReLU activation function and
Adam optimizer.

5. Local Path Planning Simulation with
Pygame Module

We use the open source machine learning framework Ten-
sorFlow to build the DDQN training framework. Pygame
module is to build dynamic environment. As shown in
Figure 3, the white area denotes obstacles, with the size
of 20-by-20 cm, are moving in a constant speed, and the
corresponding blue arrow represents its moving range and
directions. �e green point denotes a local target position.
�e gray square object represents the mobile robot (agent).
During the training, the local path planning is trained in
the lower-level and intermediate environment. �e starting
point and target point are randomly generated to ensure
diversity and complexity of local environment, and the test
environment is a high-level dynamic map. Two CNNs of the
same architecture are established, which are Q estimation
network and Q target network. �e network parameters are
randomly initialized with normal distribution, of which the
mean value is 0.

�e training policy is a variable random greedy rule.
At the beginning of the training, the pool of experience is
updated by the method of random exploitation because of
the lack of environmental information. �e sample consists
of �ve components, namely, [�, �, �, �1, �], where � denotes
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Figure 4: Training curves of the loss function of Q target network. Each point is the average loss function value achieved per ten epochs.
�e �-axis denotes the value of loss function and �-axis denotes iteration epoch.

the current state; � denotes the adopted action; �1 is the state
a
er taking action; 6 is the reward value obtained for the
current state transition; � is a �ag representing that whether
the current iteration epoch ends. We set the size of the pool
to 40000 samples. If the samples stored in the pool reached
a certain number, the network was to be trained with the
randomly selected samples in the pool. In the �rst 5000 time-
steps of the random exploration, the network parameters
are not updated, but the samples of the pool are increased.
A
er the sample size reaches to 5000, the network is trained
in every four time-step movements. We randomly draw 32
samples in sequence by means of minibatch to update the Q
estimation network and update the Q target network with a
low learning rate to make the parameters of Q target network
approach the parameters of Q estimation network, thereby
ensuring a stable learning of Q target network. If the sample
size of the pool was up to the upper limit, the earliest sample
would be excluded from the pool in the policy of �rst-in
�rst-out a
er a new sample is added, thereby ensuring a
continuous updating of the pool.

According to the actual experimental e	ect, if the posi-
tion of agent and the target point were completely randomly
set at �rst, there would be a large probability that the distance
between the agent and target point was too large, resulting in
that the agent was unable to reach the target point in �xed
steps with random exploration. Consequently, to ensure the
target point being detected by the agent, we set the initial
distance between the agent and target point randomly in a
range of L and gradually increase L with exploration and
training.�is process is also a process of constantly changing
the environmental states which leads to a more extensive
distribution of samples.

During the training process, the values of loss function
of Q estimation network and Q target network decrease
continuously. Figure 4 shows the training curves of the loss
function of Q target network. Each point is the average
loss function value achieved per ten epochs. Figure 4 (1)
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Figure 5: �e average cumulative reward curves. Each point is
the average cumulative reward achieved per hundred episodes. �e�-axis denotes the average cumulative reward and x-axis denotes
iteration epoch.

indicates that, in initial stage of the training, the magnitude
of loss function value is 107. while, as we got from our data,
a
er training for 1000 epochs, actually, the value dropped
to about 10,000 (seen from the �gure, the curve tends to
be close to �-axis); a
er 7000 epochs, as we can see from
Figure 4 (2) that it dropped to less than 1. With the whole
process completed, the loss function value is less than 0.25,
and the Q-network converges successfully. �e cumulative
reward of each iteration is gradually increased; that is, in the
process of exploration, the agent gradually learns to take an
action which can increase the reward. Figure 5 shows the
average cumulative reward curves. Each point is the average
cumulative reward achieved per hundred epochs. �e �gure
indicates that the average reward gradually increases with the
increase of training epochs. A
er training for 30000 epochs,
the reward value tends to be stable and average cumulative
reward is greater than 80. We set the �xed step times to be
100, which means the agent can avoid obstacles in a dynamic



Journal of Robotics 7

State A: encountering moving obstacle No.2

State C: avoiding obstacle No. 3 towards down right

State B: waiting and avoiding obstacle No.2

State D: arriving at target point

1
3

2

1
32

1

2

3
1 3

2

Figure 6: Local path planning in a test map.

environment and quickly reach the target point to obtain a
continuous reward until the current training epoch ends.

A
er training for 40000 epochs, Q estimation network
and Q target network converge. We store the network
parameters and test in an experimental environment map.
�e test is designed as the following. Assuming a global path,
we set several local target points in the lidar searching area
regardless of the positions of the dynamic and static obstacles
to test the agent’s local path planning ability. Figure 6 is a
new environmental map which has never tested in training.
�is map is used to evaluate the generalization ability and the
path planning ability of DDQN in a new unknown dynamic
environment. �ere are three free moving obstacles with
constant speed and the moving directions are denoted by
the blue arrows. In the �gure, state A demonstrates that the
local path is blocked by dynamic obstacle No. 2; then, the
agent waits for the obstacle to move downwards. When the
obstacle is out of the path, the agent moves towards upper
right. As shown in state B, the agent successfully reaches the
third local target. In state C, obstacle No. 3 moves towards
the agent. �e agent perceives obstacle No. 3 before collision
and gets to the sixth local target point by moving toward the
bottom right. In state D, the agent reaches the end point and
completes the path planning without any accident collision
with the obstacles. �e whole process demonstrates that the
agent a
er being trained by DDQN is able to perceive the
moving obstacles in advance with the knowledge of lidar data
in unknown dynamic environment. An intelligent planning

method is presented by Q target network which makes each
step move towards a higher cumulative reward.

6. Test in Actual Environment with
ROS Framework

In order to verify the e	ect of the algorithm in actual
environment, we use an omnidirectional mobile robot based
on Mecanum Wheels and achieve autonomous navigation
with ROS framework [21–23]. �e move base package in
ROS provides local path planning algorithms for user, that
is, dynamic windows method and track-reckoning method.
In this paper, DDQN local path planning algorithm is
transplanted into ROS in the form of plug-ins, which is
encapsulated in the pure virtual function base local planner
of nov core as subclass, namely, DDQN local planner. �e
outputs of the deep reinforcement learning algorithm are
the translational movements of the agent in eight directions.
�en the movements are mapped to actions of moving
forward and turning.�e agent �rstly changes its direction in
situ to the corresponding direction before moving and then
moves forward 10 cm with a preset speed.

�e path planning of the unknown environment is to
navigate without using the prior environment SLAM map.
Figure 7 is a local map. On this map, only local information
is detected by lidar in real-time, where the gray area is
unknown. �e agent avoids obstacles with local path plan-
ning. �e starting position is set to be the current position
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Figure 7: A local environment map.

Figure 8: �e schematic of global path planning in unknown
environment.

of agent and the target point is set to be in unknown area.
�e unknown area between the starting point and the target
point is considered as an available area.�e schematic of path
planning is shown in Figure 8.

�e actual layout of the unknown environment is shown
in Figure 9. In the �gure, the red arrows denote preplanned
global paths, which is blocked by obstacle No. 2; thus the
agent needs to readjust the path to reach the target position
without hitting the obstacles.

�e local path planning is completed by the trained
DDQN algorithm. �e inputs are angles, distance detected
by lidar, and local planning points. �e output is moving
direction. And, meanwhile, the trajectory is smoothed. Dur-
ing the movement, the agent builds map and navigates in
real-time. �e local path planning e	ect of the algorithm
and generalization ability of the convolutional network are
tested in unknown environment. Figure 10 shows the �nal
path.�e agent followed the global path butmodi�ed its path
and successfully avoided the obstacles when it encountered
obstacles. A new environmental map was gradually built in
the process of moving.

�e movement e	ect of the agent in actual environment
is shown in Figure 11. When the agent was in front of the
obstacle with a distance of about 30 cm, it changed direction
and avoided the obstacle on the le
. �e agent approached

Obstacle 
No.3

Obstacle No.2

Obstacle 
No.1

Obstacle 

No.4

Target 
position

Starting 
position

Figure 9: �e actual layout of the unknown environment.

Figure 10: Path planning in unknown environment.

the global path again, �nally arriving at the target point. �e
test veri�es the feasibility and e�ciency of the algorithm in
unknown environment.

7. Conclusions

Deep reinforcement learning solves the problem of curse of
dimensionality well and is able to process multidimensional
inputs. In this paper, we design a speci�c trainingmethod and
reward function, which e	ectively addresses the problem of
disconvergence of the algorithm due to the reward sparsity
of state space. �e experimental results show that DDQN
algorithm is capable and �exible for local path planning
in unknown dynamic environment with the knowledge
of lidar data. Compared with visual navigation tasks, the
local lidar information, which can be transplanted into
more complex environments without retraining the network
parameters, has wider applications and better generalization
performance.
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(4) (5) (6)

Figure 11: �e movements of the agent in actual environment.
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