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Abstract

The nonlinear dynamics of a bird-like flapping wing robot under randomly uncertain distur-

bances was studied in this study. The bird-like flapping wing robot was first simplified into a

two-rod model with a spring connection. Then, the dynamic model of the robot under ran-

domly uncertain disturbances was established according to the principle of moment equilib-

rium, and the disturbances were modeled in the form of bounded noise. Next, the energy

model of the robot was established. Finally, numerical simulations and experiments were

carried out based on the above models. The results show that the robot is more likely to

deviate from its normal trajectory when the randomly uncertain disturbances are applied in a

chaotic state than in a periodic state. With the increase of the spring stiffness under the ran-

domly uncertain disturbances, the robot has a stronger ability to reject the disturbances. The

mass center of the robot is vital to realize stable flights. The greater the amplitude of ran-

domly uncertain disturbances, the more likely it is for the robot to be in a divergent state.

1. Introduction

In real flights of a bird-like flapping wing robot, the environment is usually not ideal, and

there are inevitably randomly uncertain disturbances [1]. The sources of the randomly uncer-

tain disturbances are mainly from the following: (1) Randomly uncertain changes of external

loads, such as unexpected slight wind, breeze, strong wind, rainy or snowy weather and sand-

storms; (2) Randomly uncertain disturbances generated from the driver, such as vibration of

the motor; (3) Friction in the transmission system; (4) Interference from electromagnetic sig-

nals [2, 3]. These randomly uncertain disturbances exist commonly in the robot flights and

have an important influence on the robot’s dynamics. Thus only in-depth research can ensure

the stability of a bird-like flapping wing robot in real flights.

Researchers have extensively studied randomly uncertain disturbances in recent decades.

For example, Gaussian white noise was used to model the randomly uncertain disturbances in

[4]. X. Leng et al. calculated the randomly uncertain disturbance samples using the power

spectral method and researched rotor bifurcation and chaos under the disturbances [5]. White

noise and Brownian motion were used to model the randomly uncertain disturbances in [6].
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D. D. D. Souza et al studied the randomly uncertain disturbances by characterizing unwanted

terms in the Hamiltonians [7]. A linear time invariant system was also used to generate the

first-order Markov colored noise to model the small random disturbances in [8]. C. G.

Higuera-Chan et al. described the random disturbances with stochastic difference equations,

and assumed the disturbances were observable, independent, and uniformly distributed with a

density ρ [9]. The randomly uncertain disturbances were regarded as bounded noise processes

that were imposed on a system when exploring noise-induced complicated dynamics [10]. Y.

Zhuang et al. described the random disturbances by a 3D laser-based measurement and a

novel place recognition method [11]. From the above studies, it can be obtained that the ran-

domly uncertain disturbances have been described by different mathematical models.

Some dynamic models of flapping wing robots have been established by many researchers

in recent decades. Y. Huang et al. simplified a flapping wing robot into two rigid wings con-

nected by a spring, ignored aerodynamic forces and derived the dynamic model based on the

balance of linear and angular momenta [12, 13]. C. Bose et al. considered the structural model

of a flapping flight as a linkage system, and established the dynamic model in the form of a

Duffing oscillator, and used the lumped vortex method to calculate the aerodynamic force of

the robot [14]. J. Pohly et al. described the dynamic model of a flapping robot with the Navier-

Stokes equation, and obtained the accuracy of a quasi-steady flapping model by analyzing the

aerodynamic responses of the robot [15]. In [16], the dynamic model of a flapping wing robot

was presented with governing equations and boundary conditions, an energy-based barrier

Lyapunov function was used to obtain the robot stability. The efficient and comprehensive

dynamic model of a flapping robot was presented with the bond graph method, which can

clearly obtain power flows [17]. Some complex interactions were taken into account, S. H.

Pourtakdoust et al. used the Euler-Bernoulli torsion beam and the quasi steady aerodynamics

to establish the aeroelastic model of a flexible flapping robot [18].

Many researchers have studied robot dynamics under randomly uncertain disturbances. A

robot dynamic model was established using the Lagrange-Euler equations, and robot dynamics

was established under randomly uncertain disturbances [19]. Bounded noise was used to

describe randomly uncertain disturbances, and the dynamics of a bipedal robot was studied in

[20]. N. E. Khazen et al. studied the balance of humanoid robots under randomly uncertain

disturbances based on the robot dynamics [21]. C. Zaoui et al. established the dynamic model

under uncertain disturbances, and identified the robot’s upper part can reject large distur-

bances based on interactions between dynamic motions and balancing masses [22]. The

dynamic results showed that a robot’s disturbance rejection ability can be improved with hip

springs [23]. Despite the above studies, there are few studies devoted to model dynamics of a

bird-like flapping wing robot under randomly uncertain disturbances.

Researchers have employed some methods to analyze dynamic performances of the robot,

e.g., the phase diagram method, the Poincaré mapping method. L. Sentis et al. described phase

diagrams of the robot CoM (center of mass) with the perturbation theory, the multi-step phase

diagrams showed that the robot can walk successfully in rough terrains [24]. In [25], the stabil-

ity of a passive dynamic walking robot was described by a hybrid Poincaré map, the results

showed the stability only depends upon the impact instant. In [26], the Lyapunov’s method

was used to analyze the stability of three-DOF (degree of freedom) robots. T. Hase et al.

obtained the energy-efficient of a full-actuated robot based on the optimal trajectory planning

method, and evaluated the dynamic performances of the robot with the energy-efficiency [27].

T. Fujikawa et al. investigated the dynamic performances of a small flapping robot by analyzing

its motion based on the computational models, and clarified the effectiveness of the methodol-

ogy by experiment results [28,29].
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The dynamic performances of a bird-like flapping wing robot under randomly uncertain

disturbances were studied in this study. The Sections are arranged as follows: the simplified

physical model is first established based on a real bird-like flapping wing robot in Section 2. In

Section 3 the dynamic model of the robot is established under randomly uncertain distur-

bances; both the mathematical model for the randomly uncertain disturbances and the energy

model are provided in this Section. Section 4 conducts the dynamic simulations and experi-

ments under randomly uncertain disturbances. Section 5 gives the conclusions and discussion.

This study provides an important theoretical basis for the stable flights of a bird-like flapping

wing robot in complex environments.

2. The simplified physical model of a bird-like flapping wing robot

The bird-like flapping wing robot is shown in Fig 1A. The robot consists of two wings, a torso,

and a tail. The airfoil of the robot in Fig 1A is a flat plate. Based on previous researches in the

reference [30], the robot can fly in an ideal environment. As shown in Fig 1B, the physical

model of the robot can be simplified into two rods with massm and length l, ignoring the

trunk and tail [11]. Here, the stiffness of the spring that connects the rods is k, the randomly

uncertain disturbance isM, the angle between the swinging rod and the central axis is α, the
remaining angle between the rod and the central axis is α0, the angle between the central axis

and the vertical line is θ, and the acceleration of gravity is g.

3. The robot dynamic model under randomly uncertain
disturbances

With only gravity and randomly uncertain disturbances considered, a dynamic model for the

bird-like flapping wing robot in Fig 1B is established based on the principle of moment equi-

librium, which is shown in Eq (1) [11].
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Where θ represents the body dynamics, α represents the flapping dynamics. Eq (1) can be

Fig 1. The bird-like flapping wing robot and its simplified physical model.

https://doi.org/10.1371/journal.pone.0232202.g001
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rewritten into Eq (2) for normalization:
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The randomly uncertain disturbancesMi (i = 1, 2) generate independently and can be

expressed in the form of bounded noise [10, 31, 32], which is shown in Eq (6):

Mi ¼ Ai sin½oit þ siBiðtÞ þ gi� ði ¼ 1; 2Þ ð6Þ

where Ai and ωi are the amplitude and frequency of the randomly uncertain disturbances,

respectively, σi is a positive constant, Bi(t) is the unit Wiener process, and γi follows a uniform
distribution within [0, 2π].

Energy E can be expressed by Eq (7):
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4. Simulations and experiments

The dynamic simulations of the robot in an ideal environment were first performed in this sec-

tion. Then randomly uncertain disturbances were added to study the dynamics in periodic

and chaotic states, followed by the dynamic simulations of the robot with different spring stiff-

nesses under randomly uncertain disturbances. Finally, the dynamic performances of the

robot were obtained under randomly uncertain disturbances with different amplitudes.
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4.1 Dynamic simulations under randomly uncertain disturbances in
periodic and chaotic states

In order to integrate over the second order dynamic model shown in Eq (5), let _y ¼ uy and

_a ¼ ua, then the first order dynamic model is obtained, as shown in Eq (8):

_y ¼ uy

_a ¼ ua
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Let k = 32, a
0
¼ p

4
, and an initial state of x

0
¼ ½y; a; _y; _a� ¼ ½p=3; p=6; 0; 0�. The simulation

results of the periodic dynamics in an ideal environment are shown in Fig 2A and 2B. Then let

k = 8, a
0
¼ p

4
, and an initial state of x

0
¼ ½y; a; _y; _a� ¼ ½p=2; p=4; 1:1521; 0�. The simulation

results of the chaotic dynamics in an ideal environment are shown in Fig 2C and 2D.

The simulation results shown in Fig 2 are consistent with the reference [11]. In the following,

the amplitudes of randomly uncertain disturbances were set as A1 = 0.1 and A2 = 0.1, and the

other parameters were the same as that in Fig 2. The dynamic simulations are shown in Fig 3.

From Fig 3A and 3B, it can be obtained that the equilibrium point locates at the center of

the phase diagram, which is similar to Fig 2A and 2B. The y� _y curves in Fig 3A do not over-

lap completely but show a small range of fluctuation. However, no divergent state appears at

the end, which indicates that the randomly uncertain disturbances have affected y� _y some-

what in the periodic state. The curves in Fig 3B are more concentrated than those in Fig 3A,

which indicates the influence of the randomly uncertain disturbances is less on a� _a and

more on y� _y.

The randomly uncertain disturbances with the amplitudes A1 = 0.1 and A2 = 0.1 were

added in the chaotic state, and the dynamic simulations of the robot are shown in Fig 3C–3F.

The fluctuation range of y� _y in Fig 3C is large under the randomly uncertain disturbances.

Fig 2. The dynamic simulations of the bird-like flapping wing robot under an ideal environment.

https://doi.org/10.1371/journal.pone.0232202.g002
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A non-closed curve appears in Fig 3C, which indicates that the robot appears a divergent

dynamic state. The curves in Fig 3D are tangled, which appears to be a chaotic state. Fig 3E

clearly shows that there are some fluctuations in each period. In the last period, the value of θ

decreases gradually and eventually fails to return to the normal orbits. The curves in Fig 3F are

not smooth and exhibit relatively fast fluctuations, but there is no divergent state, which indi-

cates that the influence of the randomly uncertain disturbances is smaller on a� _a than on

y� _y. By comparing Fig 3A–3B with Fig 3C–3F, it can be obtained that the robot stability is

higher in the periodic state than that in the chaotic state under the randomly uncertain

disturbances.

4.2 Dynamic simulations with different spring stiffnesses under randomly
uncertain disturbances

The effect of spring stiffness k on the robot dynamics under randomly uncertain disturbances

was investigated in this section. Let θ = 0, the energy E = 3, the spring stiffness k = 1, 10, 20,

and all other parameters were the same as those in Fig 3A–3B. The dynamic simulations of the

robot with the above parameters are shown in Fig 4.

When the spring stiffness k = 1, Fig 4A shows that the Poincaré mapping points are ran-

domly distributed on the outer surface of the energy sphere. There are fewer Poincaré mapping

Fig 3. The dynamic simulations with the parameters in the periodic or chaotic state under randomly uncertain disturbances
with the amplitude A1 = 0.1 and A2 = 0.1. (a) and (b): phase diagram with the parameters in the periodic state; (c)–(f): dynamic
responses with the parameters in the chaotic state. The red dot indicates the equilibrium point.

https://doi.org/10.1371/journal.pone.0232202.g003
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points near the red line. In Fig 4B, the Poincaré mapping points are randomly distributed,

which indicates that the robot dynamics is irregular. The interval of the swing angle in Fig 4B

is [–2, 3].

When spring stiffness k = 10, the Poincaré mapping points in Fig 4C are no longer ran-

domly distributed on the surface of the energy sphere. Instead, the mapping points form a

number of rings wrapped around the outer surface of the energy sphere. The Poincaré

Fig 4. The dynamic simulations of the robot with different spring stiffnesses under the randomly uncertain

disturbances. (a) and (b): the spring stiffness k = 1; (c) and (d): the spring stiffness k = 10; (e) and (f): the spring stiffness
k = 20. Where (b), (d), and (f) are obtained by projecting the mapping points in (a), (c), and (e) onto the plane in the energy
sphere.

https://doi.org/10.1371/journal.pone.0232202.g004
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mapping points in Fig 4D mainly concentrate in two regions: a small elliptical ring inside and

a large elliptical ring outside. The interval of the swing angle in Fig 4D is [-0.3, 1.8], which is

smaller than that in Fig 4B.

When the spring stiffness k = 20, Fig 4E and 4F show that the Poincaré mapping points are

not broadly distributed over the surface of the energy sphere, but are concentrated in six circles

distributed on the outer surface of the energy sphere. It indicates that the randomly uncertain

disturbances have less influence on the flapping wing robot, and the robot has a good stability.

The interval of the swing angle in Fig 4F is slightly smaller than that in 4(d). In summary, as

the spring stiffness increases, the movements of the robot becomes more stable, and the swing

angle becomes smaller.

4.3 Dynamic simulations under randomly uncertain disturbances with
different amplitudes

To study the influence of different disturbance amplitudes on the robot dynamics, the ampli-

tudes were separately set as Ai = 0.05, 0.5, 5, 20 (i = 1, 2). The other parameters remained the

same as those in Fig 3A and 3B. The above randomly uncertain disturbances were added to the

dynamic system according to Eq (5), and the simulation results are shown in Fig 5.

Fig 5A and 5B are the phase diagrams when imposing the randomly uncertain disturbances

with the amplitude Ai = 0.05 (i = 1, 2). From Fig 5A and 5B, the motion of the robot in each

period is approximately the same, which indicates that the robot has nearly convergent perfor-

mances under the above disturbances.

From Fig 5C–5F, it can be obtained that as the amplitude of the randomly uncertain distur-

bances increases, the robot is more likely to deviate from the equilibrium state. Specifically, the

degree of fluctuation in Fig 5C is between that in 5(a) and 5(e). When the disturbance ampli-

tude was set as Ai = 5 (i = 1, 2), the trajectory of y� _y in Fig 5E–5F is different in each period,

and a� _a shows a large range of fluctuation. By comparing Fig 5C–5F, it can be obtained that

the fluctuation of y� _y is greater than that of a� _a under the randomly uncertain distur-

bances, which indicates the mass center of the robot should be first kept stable for flying stably.

From Fig 5G–5j, it can be obtained that the robot seriously deviates from the normal trajec-

tory when the disturbance amplitude was set as Ai = 20 (i = 1, 2). Fig 5G shows there is a non-

closed curve with large differences in each period. There is also a large fluctuation but no

divergent curve in Fig 5H, which indicates that the disturbances have some influences on

a� _a. In Fig 5I, the fluctuation of curve θ − t increases gradually, and it finally fails to return

to the normal orbit. In summary, as the amplitude of the randomly uncertain disturbances

increases, the fluctuation of the robot dynamic response becomes larger, and the robot is more

likely to deviate from its normal orbit.

4.4 Experiments

During the flights of a bird-like flapping wing robot, the wind speeds applied on the robot are

usually randomly uncertain [1, 33]. The varying wind speed will lead to some randomly uncer-

tain disturbances. Here, flight experiments of the bird-like flapping wing robot were carried

out under different wind speeds. Both the robot shown in Fig 1A and the anemometer shown

in Fig 6 were used in the experiments.

The bird-like flapping wing robot separately flied under the maximum wind speed v1 = 0.5

(km/h), v2 = 4.5(km/h) and v3 = 9.6(km/h), and its flight experiments are shown in Fig 7A–7C

respectively.

It can be obtained from Fig 7A that the bird-like flapping wing robot can stably fly under the

maximumwind speed v1 = 0.5(km/h), as the randomly uncertain disturbances have weak influence
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on the robot dynamics. The maximum wind speed in Fig 7B is v2 = 4.5(km/h), which causes a lot

randomly uncertain disturbances. Under this environment, though the robot still flies in the sky, it

has some unstable states. In Fig 7C, the robot can not fly normally and falls on the ground, due to

the large randomly uncertain disturbances caused by the fastest wind speed v3 = 9.6(km/h).

5. Conclusions and discussion

5.1 Conclusions

The dynamic performances of the bird-like flapping wing robot under randomly uncertain dis-

turbances were studied in this study. The robot was first simplified into the spring-connected

Fig 5. The dynamic simulations under the randomly uncertain disturbances with different amplitudes. (a) and (b): the
amplitude of the disturbances is Ai = 0.05 (i = 1, 2); (c) and (d): the amplitude of the disturbances is Ai = 0.5 (i = 1, 2); (e) and (f):
the amplitude of the disturbances is Ai = 5 (i = 1, 2); (g)-(j): the amplitude of the disturbances is Ai = 20(i = 1, 2).

https://doi.org/10.1371/journal.pone.0232202.g005
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two-rod model, and then the dynamic model was established based on the principle of moment

equilibrium. Then the randomly uncertain disturbances were modeled mathematically in the

form of bounded noise, and the energy model was also established. Finally, some numerical

simulations and experiments of the robot were conducted based on the above models. The

results show that the randomly uncertain disturbances have a greater influence on the robot in

a chaotic state than in a periodic state. As the spring stiffness increases, the stability of the robot

Fig 6. An anemometer used in the experiments.

https://doi.org/10.1371/journal.pone.0232202.g006
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becomes stronger. The mass center is a key factor to ensure fly stably. The greater the amplitude

of the randomly uncertain disturbances, the more likely the robot appears in a divergent state.

5.2 Discussion

During flights of a bird-like flapping wing robot, there are inevitably some randomly uncertain

disturbances from internal friction or weather. These disturbances will prevent the robot from

flying normally. Therefore, it is vital to investigate the robot dynamic performances under the

randomly uncertain disturbances to ensure stable flights.

The dynamic performances of the robot have been studied in this study. Some measures are

concluded to improve the robot stability under randomly uncertain disturbances. To begin with,

the parameters in the periodic state (k = 32, a
0
¼ p

4
and x

0
¼ ½y; a; _y; _a� ¼ ½p=3; p=6; 0; 0�)

instead that in the chaotic state (k = 8, a
0
¼ p

4
and x

0
¼ ½y; a; _y; _a� ¼ ½p=2; p=4; 1:1521; 0�)

Fig 7. The flight experiments of the robot under different wind speeds, where (a): under the maximum wind speed v1 = 0.5(km/
h), (b): under the maximum wind speed v2 = 4.5(km/h), and (c): under the maximum wind speed v3 = 9.6(km/h).

https://doi.org/10.1371/journal.pone.0232202.g007
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should be used during the design and debugging of the robot. Furthermore, it is increasing the

spring stiffness (from k = 1, then k = 10, to k = 20) that can effectively improve the anti-distur-

bance performances of the robot. In the following, the mass center should be given priority to

keep stable in the robot flights, as y� _y is more easy to fluctuate than a� _a. Finally, the ampli-

tude of randomly uncertain disturbances should be reduced during the robot flights, as the distur-

bances with the amplitude Ai = 20 (i = 1, 2) have a larger effect on the flight stability than that

with the amplitude Ai = 5 (i = 1, 2), and the flight stability of the robot is the strongest under the

disturbances with the amplitude Ai = 0.5 (i = 1, 2).

In this study, the dynamic model of the robot was established by referring to the reference

[11], and then the dynamic performances of the robot in the ideal situation were obtained. The

simulation results are consistent with those in the reference [11], which proves the feasibility

of this study. In the references [14,24,34,35], the dynamic performances of the flapping wing

robot were also studied based on different dynamic models. From the results comparison in

the references [11,14,24,34,35], the dynamic performances of the robot are different when dif-

ferent models are established. Even the same model but different parameters are used, different

dynamic performances will be obtained. Therefore, it is vital to establish a corresponding

dynamic model according to the robot prototype.

In this study, the mathematical model of randomly uncertain disturbances was established

based on the bounded noise method, which has been widely used in the previous researches

[10,20,31,32,36–40], and its effectiveness has been effectively proved. Based on the above stud-

ies, the dynamic model of the robot under the disturbances was established for studying the

dynamic performances of the robot. Specially, I have tried to establish the dynamic model of

the robot under randomly uncertain disturbances by using the Reynolds-averaged Navier-

Stokes (RANS) equation [41–43]. However, it is difficult to obtain simulation results as the cal-

culation amount is very large. Therefore, the real robot was simplified into a two-rod model,

and its flight condition was also simplified, which makes the work feasible.

Based on the above models, some conclusions were obtained by carrying out the simula-

tions and experiments. Some useful suggestions on improving the robot stability were got to

guide the design and debugging of the robot. For example, periodic motion parameters should

be used, the spring stiffness should be increased if anti-disturbance performances of the robot

are weak, some measures should be taken to reduce the shaking of the mass center and the dis-

turbance amplitude. As far as I know, these suggestions have rarely studied [44–46]. Though

the above conclusions have been obtained, the following aspects should be further studied in

the future: (1) A complex dynamic model should be established to approach the real robot

under randomly uncertain disturbances, and a method should be proposed to solve the contra-

diction between the model complexity and the calculation feasibility; (2) Some quantitative

conclusions, e.g., the influence mechanism curves of the disturbances on the robot perfor-

mances, should be further studied; (3) Some other experiments under randomly uncertain dis-

turbances, e.g., wind tunnel experiments, vibration and friction experiments, should be

carried out in the future.
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