
Dynamic Pharming Attacks and Locked Same-origin
Policies for Web Browsers

Chris Karlof, J.D. Tygar, David Wagner
UC Berkeley

Computer Science
Berkeley, CA, USA

{ckarlof,tygar,daw}@cs.berkeley.edu

Umesh Shankar
Google, Inc.

New York, NY, USA
ushankar@google.com

ABSTRACT

We describe a new attack against web authentication, which we call
dynamic pharming. Dynamic pharming works by hijacking DNS
and sending the victim’s browser malicious Javascript, which then
exploits DNS rebinding vulnerabilities and the name-based same-
origin policy to hijack a legitimate session after authentication has
taken place. As a result, the attack works regardless of the authen-
tication scheme used. Dynamic pharming enables the adversary to
eavesdrop on sensitive content, forge transactions, sniff secondary
passwords, etc. To counter dynamic pharming attacks, we propose
two locked same-origin policies for web browsers. In contrast to
the legacy same-origin policy, which regulates cross-object access
control in browsers using domain names, the locked same-origin
policies enforce access using servers’ X.509 certificates and public
keys. We show how our policies help two existing web authenti-
cation mechanisms, client-side SSL and SSL-only cookies, resist
both pharming and stronger active attacks. Also, we present a de-
ployability analysis of our policies based on a study of 14651 SSL
domains. Our results suggest one of our policies can be deployed
today and interoperate seamlessly with the vast majority of legacy
web servers. For our other policy, we present a simple incremen-
tally deployable opt-in mechanism for legacy servers using policy
files, and show how web sites can use policy files to support self-
signed and untrusted certificates, shared subdomain objects, and
key updates.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General – Secu-
rity and protection; H.4.3 [Information Systems Applications]:
Communication Applications – Information Browsers

General Terms

Security

Keywords

Pharming, Web Authentication, Same-origin Policy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

1. INTRODUCTION
Phishing is a social engineering attack in which an adversary

lures an unsuspecting Internet user to a web site posing as a trust-
worthy business with which the user has a relationship [3]. The
broad goal is identity theft; phishers try to fool web visitors into
revealing their login credentials, sensitive personal information, or
credit card numbers with the intent of impersonating their victims
for financial gain. In a more advanced phishing attack known as
pharming [53], the adversary subverts the domain-name lookup
system (DNS), which is used to resolve domain names to IP ad-
dresses. In this attack, the DNS infrastructure is compromised so
that DNS queries for the victim site’s domain (say, google.com)
return an attacker-controlled IP address. This can be accomplished
via several techniques, including DNS cache poisoning and DNS
response forgery. Pharming attacks are particularly devious be-
cause the browser’s URL bar will display the domain name of the
legitimate site, potentially fooling even the most meticulous users.

Although pharming attacks have been relatively rare in prac-
tice, evidence suggests they may become a more serious threat in
the near future. Recent research has exposed complex and sub-
tle dependencies between names and name servers [59], suggest-
ing the DNS infrastructure is more vulnerable to DNS poisoning
attacks than previously thought. The ubiquity of public wireless
access points and wireless home routers introduces new pharm-
ing threats. Users are becoming accustomed to accessing wire-
less routers in airports, restaurants, conferences, libraries, and other
public spaces. Adversaries can set up malicious wireless routers
in these areas that offer free Internet access but redirect users to
spoofed web sites [2]. Also, many users leave the default pass-
word and security settings on their home wireless home routers un-
changed [66]. This enables warkitting attacks [72, 73], a combina-
tion of wardriving and rootkitting, where an adversary maliciously
alters a router’s configuration over a wireless connection. A related
attack is drive-by pharming [70], where a malicious web site serves
content which scans a visitor’s internal network and compromises
home routers with default passwords. After the adversary has com-
promised the victim’s router, she can change the DNS settings or
overwrite the firmware to redirect the victim’s requests.

We describe a new type of DNS attack against web authentica-
tion we call dynamic pharming. In a dynamic pharming attack, the
adversary initially delivers a web document containing malicious
Javascript code to the victim, and then exploits DNS rebinding vul-
nerabilities in browsers to force the victim’s browser to connect to
the legitimate server in a separate window or frame. The adver-
sary waits for the victim to authenticate herself to the legitimate
server, and then uses the malicious Javascript to hijack the victim’s
authenticated session.

Strongest threat model protected against for:

Policy Information used to enforce access Locked web objects Shared locked web objects Untrusted certs

Legacy SOP (protocol,domain,port) phishers phishers phishers

Weak locked SOP (protocol,domain,port, active attackers phishers phishers
validity of cert chain)

Strong locked SOP (protocol,domain,port, active attackers active attackers active attackers
(w/ policy files) server public key)

Table 1: Comparison of our locked same-origin policies with the legacy same-origin policy. This table shows the strongest threat

model under which each policy can isolate a legitimate server’s web objects (e.g., cookies, HTML documents, etc.) from adversaries.

Locked web objects refer to objects retrieved over SSL. Shared locked web objects refer to objects retrieved over SSL which are

intended to be shared among subdomains of a higher-level domain (e.g., domain cookies). Untrusted certs refer to a legitimate server

using a self-signed certificate or a certificate issued by a root CA untrusted by browsers.

Dynamic pharming takes advantage of how browsers currently
implement the same-origin policy. The same-origin policy pro-
hibits a web object from one site from accessing web objects served
from a different site. Browsers currently enforce this by checking
that the two objects’ originating domain names, ports, and proto-
cols match. However, when an adversary controls the domain name
mapping, the legacy same-origin policy does not provide strong
isolation between web objects co-executing in a user’s browser. In
a dynamic pharming attack, malicious Javascript from the pharmer
and content from the legitimate server both appear to have the same
“origin” (i.e., same domain, port, and protocol), and the browser
allows the Javascript to access to the user’s authenticated session.
As a result, the attacker can gain complete control of the session,
enabling her to eavesdrop on sensitive content, forge transactions,
sniff secondary passwords, etc. Since dynamic pharming hijacks
users’ sessions after authentication completes, irrespective of the
authentication mechanism, it can be used to compromise even the
strongest web authentication schemes currently known, including
passwords, authentication cookies, and client-side SSL. We present
dynamic pharming in more detail in Section 3.

1.1 The locked same-origin policies
Since dynamic pharming hijacks a user’s session after initial au-

thentication completes, it is unlikely any future web authentication
protocol developed for currently deployed browsers will resist dy-
namic pharming either. To resist dynamic pharming, we must ad-
dress the root of the problem: we must upgrade the browser’s same-
origin policy. We propose two locked same-origin policies: instead
of comparing domain names to enforce access control, our policies
enforce access control for web objects retrieved over SSL by using
servers’ public keys and X.509 certificates. We refer to web ob-
jects retrieved over SSL as locked web objects because the browser
can clearly associate the public key and X.509 certificate of server
hosting the object with the object. Our first proposal, the weak

locked same-origin policy, isolates a domain’s locked web objects
with valid certificate chains from objects with invalid chains. This
enables browsers to distinguish a legitimate server using a valid cer-
tificate from pharmers using invalid certificates, such as self-signed
certificates or certificates with CN/domain mismatches. Our sec-
ond proposal, the strong locked same-origin policy, enforces access
control using cryptographic identity, namely web sites’ public SSL
keys. In the strong locked same-origin policy, the browser com-
pares the public keys it associates with locked web objects; access
in granted only if they match. We present our locked same-origin
policies in more detail in Section 4 and show a comparison with the
legacy same-origin policy in Table 1.

We show how our policies substantially increase browsers’ re-
sistance to pharming attacks and provide both a solid and neces-

sary foundation for developing pharming resistant authentication.
We show how our policies help two existing web authentication
mechanisms, client-side SSL and SSL-only cookies, resist pharm-
ing and stronger attacks. In addition, we evaluate our policies in
terms of deployability, meaning how well they interoperate with
existing web servers. Based on the results of a study of 14651 SSL
domains, we found strong evidence that the weak locked same-
origin policy can replace the legacy same-origin policy today with
minimal risk of breaking existing web sites (Section 4.4).

Although we did not find similar evidence for the strong locked
same-origin policy, we propose a simple, incrementally deployable
and backwards compatible mechanism for web sites to opt-in using
policy files (Section 4.5). To opt-in, we propose a web site posts a
policy file at a static well-known file name, say pk.txt, which en-
ables a web site to specify how it would like the browser to enforce
the strong locked same-origin policy. Policy files also support flex-
ible server configurations and key updates. In contrast to the weak
locked same-origin policy, the strong locked same-origin policy has
better security properties, is compatible with sites using self-signed
or untrusted certificates, and supports subdomain object sharing.

The locked same-origin policies are similar to work done inde-
pendently and concurrently by Masone et al. on Web Server Key
Enabled Cookies, a new browser policy for protecting authentica-
tion cookies against pharming attacks [41]. However, their pro-
posal falls short of protecting cookies against dynamic pharming
attacks. Also, they do not address pharming attacks against other
web objects or other web authentication mechanisms, e.g., client-
side SSL, nor do they address subdomain object sharing or key up-
dates.

2. PRELIMINARIES

2.1 Threat models
We consider three broad classes of adversaries, classified accord-

ing to their capabilities.

Phishers. We assume a phisher has the following capabilities:

• Complete control of a web server with a public IP address.
We assume a phisher uses a different domain name from the
target domain.

• The ability to send communications such as emails and in-
stant messages to potential victims.

• Mount application-layer man-in-the-middle attacks, represent-
ing a legitimate server to the victim and proxying input from
the victim to the real server as needed.

There have been relatively few documented cases of application-
layer man-in-the-middle attacks [21, 56, 57], most likely because

of the extra effort required to implement the attack. However, re-
searchers have recently discovered a “Universal Man-in-the-Middle
Phishing Kit” [40], a hacker toolkit which enables a phisher to eas-
ily set up a MITM proxy attack against any site she wishes.

Pharmers. An attacker with pharming capability has all the abili-
ties of a phisher, plus

• The ability to change DNS records for the target site, such
that the victim will resolve the target site’s name to the at-
tacker’s IP address.

In practice, such an attack might work through DNS poisoning,
spoofed DNS responses, modifying a user’s /etc/hosts file,
tricking a user to modify her DNS settings, or by social engineer-
ing attacks against a domain name registry. We assume the server
under the pharmer’s control does not have the same IP address as
the victim and cannot receive packets destined to the victim’s IP
address.

Active attackers. An active attacker has all the abilities of a pharmer,
plus

• The ability to control the Internet routing infrastructure and
re-route traffic destined to particular IP addresses.

• Eavesdrop on all traffic.

• Mount active, network-layer, man-in-the-middle attacks.

To date, phishers have been by far the most prevalent class of at-
tacker; however, looking to the future, pharmers and active attack-
ers are a growing threat [2, 59, 70, 72, 73], and it seems prudent to
defend against these more powerful attackers as well, to the extent
possible.

2.2 The legacy same-origin policy
The same-origin policy (SOP) in web browsers governs access

control among different web objects and prohibits a web object
from one origin from accessing web objects from a different ori-
gin [51]. By web objects, we mean HTTP cookies, HTML doc-
uments, images, Javascript, CSS files, XML files, etc. A common
example of “access” is Javascript referencing another object. There
are a few situations our work does not address, and we discuss these
in Section 4.10. In the remainder of this paper, we will use “SOP”
as an abbreviation for “same-origin policy”.

Browsers currently consider two objects to have the same
origin if the originating host, port, and protocol are the same
for both web objects. For example, Javascript executing on
http://www.foo.com/index.html is allowed to access
http://www.foo.com/other.html, but is not allowed
to access https://www.foo.com/secure.html (different
protocol) or http://www.xyz.com/index.html (different
host). Other examples of “web object accesses” subject to the SOP
include determining which cookies to append to an HTTP request,
Javascript document.cookie references, and XMLHTTPRe-
quest.

Note there is a distinction between “access” and “causing to
load”. After the browser receives an HTML page, it processes de-
pendent requests necessary to render the page, such as images, style
sheets, etc. These requests can cause the browser to fetch and load
a web object from a different domain. However, these requests are
not considered violations of the SOP. The document can read cer-
tain metaproperties of the object (e.g., height, width), but the SOP
prevents the document from reading or modifying the content of
the loaded object.

2.3 Secure Sockets Layer (SSL) and X.509
certificates

The Secure Sockets Layer (SSL) and its successor, Transport
Layer Security (TLS), are cryptographic protocols for establishing
end-to-end secure channels for Internet traffic [13, 71]. HTTP over
SSL is also known as HTTPS.

SSL uses X.509 certificates [26] to identify the server partici-
pating in the SSL connection. An X.509 certificate contains the
server’s public key, the domain name of the web site (specified in
the CN subfield of the certificate), the public key of the issuer of the
certificate, the time period for which the certificate is valid, and the
issuer’s signature over these fields. The private key corresponding
to a X.509 certificate can be used to sign another certificate, and so
on, creating a chain of trust. The root of this trust chain is typically
a certificate authority (CA); web browsers ship with the certificates
of some CAs which are deemed to be trusted.

When the client’s web browser makes a connection to an SSL en-
abled web server over HTTPS, the browser must verify the server’s
certificate is valid. This involves numerous checks, but at a high
level the browser must:

• Verify that every certificate in the chain has a valid signature
from its predecessor, using the public key of the predecessor,
and that the last certificate in the chain is from a trusted CA.

• Verify that the CN field of the first certificate in the chain
matches the domain name of the web site the browser in-
tended to visit.

• Verify every certificate has not expired.

If any of these checks fail, the browser warns the user and asks
the user if it is safe to continue. If the user chooses, the user may
permit the SSL connection to continue even though any or all of
these checks have failed. The reason is to ensure compatibility with
misconfigured certificates and SSL servers; a periodic survey by
Security Space shows that approximately 63% of SSL certificates
have such problems [65]. Also, this behavior by browsers allows
web sites to use self-signed certificates if they choose, instead of
paying a CA for a certificate. Unfortunately, asking users whether
to continue anyway in such cases is a serious security vulnerability.
Researchers have shown that users routinely ignore such security
warnings and just click “OK” [5, 10, 77]. In fact, users have be-
come so ambivalent to security warnings, one vendor has developed
“mouse auto-clicker” software, aptly titled “Press the Freakin But-
ton” [58], to automatically click through dialogs like these. Instead
of a dialog box, IE 7.0 uses a full page warning within the browser
window offering similar options (i.e., ignore and continue, or can-
cel connection). Unfortunately, studies suggest that users will ig-
nore a full page warning as well [64]. Accordingly, we consider a
certificate that does not generate any warnings as valid. Otherwise,
we consider it invalid.

After the browser validates the server’s certificate, it participates
in a cryptographic protocol with the server where: 1) the server
proves knowledge of the private key corresponding to the public
key in the certificate, and 2) they negotiate a session key to encrypt
and authenticate subsequent traffic between them. Unlike the cer-
tificate validation step, if there are any errors in this protocol, the
browser closes the connection with no chance of user override.

Client-side SSL. The most common usage of SSL is for server au-
thentication, but in the SSL specification, a server can also request
client-side authentication, where the client also presents an X.509
certificate and proves knowledge of the corresponding private key.
Using client-side SSL, servers can identify a user with her SSL
public key and authenticate her using the SSL protocol.

2.4 Assumptions
We assume that attackers do not have access to the target site’s

server machines or any secrets, such as private keys, contained
thereon. We also assume that many users will ignore certificate
warnings, as researchers have shown that users routinely ignore and
dismiss such warnings [5, 10, 64, 77].

3. DYNAMIC PHARMING ATTACKS
In this section, we show a new attack against web authentication

we call dynamic pharming. In a simple, static pharming attack,
the adversary arranges for the victim’s DNS queries for the target
domain to always return the adversary’s IP address. In contrast, in
a dynamic pharming attack, the adversary causes DNS queries to
return either the legitimate server’s IP or its own IP, depending on
the situation.

We show how an adversary can use dynamic pharming to in-
fect the victim’s browser with malicious Javascript and use this
Javascript to hijack the victim’s session with the target domain’s
legitimate server. Dynamic pharming enables an adversary to com-
promise all known authentication schemes for existing browsers,
including passwords, authentication cookies, and client-side SSL.
In addition, the adversary can eavesdrop on sensitive content, forge
transactions, sniff secondary passwords, and so on.

We now describe how dynamic pharming works. Suppose
the pharmer can control the results of DNS queries for www.
vanguard.com, and users authenticate themselves to www.

vanguard.com using a strong authentication mechanism, say
client-side SSL. We assume users’ machines have been initial-
ized with client-side SSL certificates, and www.vanguard.com
knows the public keys of its users’ certificates.

First, the pharmer initializes the DNS entry for www.vanguard.
com to the pharmer’s IP address, say 6.6.6.6. The pharmer also
indicates in the DNS record that requesters should not cache this
result, i.e., it sets the TTL=0. Now suppose a user Alice visits
https://www.vanguard.com/index.htmlwith the inten-
tion of authenticating herself. The user’s browser will attempt to
establish an SSL connection, requiring the pharmer to present an
X.509 certificate. If the server certificate is not signed by one of the
trusted CAs in the browser or the certificate’s CN does not match
the server’s domain (i.e., www.vanguard.com), the browser will
warn the user and ask her if it is safe to proceed. If the user
heeds the warning and answers “no”, the browser will cancel the
connection and the attack fails. If the user accepts the pharmer’s
certificate—and there is substantial evidence that the user would
(see Section 2.3)—Alice’s browser will establish an SSL connec-
tion to the pharmer at 6.6.6.6 and request index.html.

In response, the pharmer returns a “trojan” index.html doc-
ument. The purpose of this trojan document is to monitor and in-
fluence Alice’s subsequent interactions with the legitimate www.
vanguard.com. The trojan document has the following general
structure:

<html>

<body>

<script>

---MALICIOUS JAVASCRIPT CODE---

</script>

<iframe

src="https://www.vanguard.com/index.html">

</iframe>

</body>

</html>

After the pharmer returns the trojan document to Alice, it up-
dates the DNS entry for www.vanguard.com to the IP address
of the legitimate server for www.vanguard.com, say 1.2.3.4.
This forces the browser to load the legitimate https://www.

vanguard.com/index.html document into the <iframe>
and display it to the user. 1 Since this request is over SSL, the
legitimate server for www.vanguard.com will request client au-
thentication, and the user’s browser will authenticate her using her
private key and certificate.2

After authentication completes, the malicious Javascript in the
outer document takes control and monitors the user’s interactions in
the <iframe> with the legitimate server for www.vanguard.
com. Since the outer document and the <iframe> both have the
same domain (www.vanguard.com) and same protocol (https),
the SOP will allow the malicious Javascript running in the outer
document to access the content in the <iframe>. The trojan ef-
fectively hijacks control of Alice’s session – it can eavesdrop on
sensitive content, forge transactions, sniff secondary passwords,
etc. We show an example of a dynamic pharming attack in Fig-
ure 1.

3.1 Defeating DNS pinning
One complication to mounting this attack is web browsers’ use of

DNS pinning. With DNS pinning, a web browser caches the result
of a DNS query for a fixed period of time, regardless of the DNS
entry’s specified lifetime. Browsers implement DNS pinning to de-
fend against variants of the “Princeton attack” [22], also known as
DNS rebinding attacks. In the “Princeton attack”, a malicious web
server first lures a victim who resides within a firewalled network
containing privileged web servers. We assume these servers are ac-
cessible only to machines behind the firewall. After the victim con-
nects to the malicious server, the adversary changes its DNS entry
to the IP address of a sensitive web server located on the victim’s
internal network. The SOP restricts malicious code from accessing
other domains, but since the adversary’s domain now resolves to
an internal IP address, this attack enables Javascript served by the
adversary to access internal web servers.

DNS pinning poses a problem for dynamic pharming attacks be-
cause once a browser resolves a domain name using DNS, it will
continue to use the IP address and ignore any subsequent changes
the pharmer makes in the DNS system. However, since DNS pin-
ning “breaks the web” in certain scenarios, e.g., dual homed IPv6-
IPv4 servers, dynamic DNS, and automatic failover, browsers im-
plementors have recently relaxed their DNS pinning policies.

As a result, Martin Johns discovered a technique for circumvent-
ing DNS pinning [32]. Johns discovered that a pharmer can force
a victim to renew its DNS entry for a given domain on demand by
rejecting connections from the victim, e.g., by sending an ICMP
“host not reachable” message in response to subsequent attempts
to connect to the server. The browser reacts by refreshing its DNS
entry for the domain.

In the basic dynamic pharming attack, we exploit Johns’s tech-
nique. After the pharmer delivers the trojan document to the user,

1Iframes are HTML elements which enable embedded documents.
To prevent infinite recursion, most browsers disallow nesting where
the URL of the framed document is the same as an ancestor. To
address this issue, the attack could redirect the victim’s first re-
quest to https://www.vanguard.com/index2.html or
arrange so that the legitimate home page from www.vanguard.
com loads in a separate window.
2The authentication process could be more complicated, say with a
supplementary password or explicit login button, but the presence
of any additional login mechanisms does not affect our attack.

������� ��	
��������������������	��������������

��������������������	�������������

��	��������� �!"#�$�%�# &�'(����	����

)�)�)�)

)�)�)�)�������������	��
*+#

,�-�.�/

%�������0�
�����������

1

,�-�.�/�������������	��4

,�-�.�/

�������������	��

3

'��
��
��
���
���
���
1��
��
���
���
2��
$��
��	
��
�

2

3��
��
���
��4
���
����
���
��
���
����
�

���
����
���
���
���
���
���
���
���
�	�
���

5

(��2���$����	���
��2�	5���������
����������������

6

'������ �������*+#
����6�����%�������

*+#���������������0� �'�

*+#���������%�������0���'�

Figure 1: An example of a dynamic pharming attack against www.vanguard.com. (1) Initially, the pharmer arranges for the

victim’s DNS queries for www.vanguard.com to resolve to the pharmer’s IP address, 6.6.6.6. (2) Then, when the victim vis-

its www.vanguard.com, the pharmer returns a trojan document containing malicious Javascript and a iframe referencing Van-

guard’s home page. (3) The pharmer then updates the DNS entry for www.vanguard.com to the IP address of Vanguard’s legiti-

mate server and denies subsequent connections from the victim. (4) This causes the victim’s browser to renew its DNS entry for

www.vanguard.com, and (5) load Vanguard’s legitimate home page in the iframe. (6) After the user authenticates herself, the mali-

cious Javascript in the trojan document hijacks her session with the legitimate server.

it rejects subsequent requests from user’s machine and updates the
DNS entry for www.vanguard.com to the IP address of the le-
gitimate server. Now, when the user’s browser loads the <iframe>,
it will first attempt to contact the pharmer, fail, refresh its DNS en-
try, receive the IP address of the legitimate server, and load the le-
gitimate index.html document into the <iframe>. The attack
continues as before.

3.2 Using round robin DNS
To parallelize dynamic pharming attacks against multiple con-

current users, it is inefficient to repeatedly update the DNS entry
for www.vanguard.com. If the adversary has compromised a
local, root, or authoritative DNS server, or changed the authorita-
tive server of record for www.vanguard.com, the adversary can
selectively respond with the pharmers IP or the legitimate server’s
IP depending on the stage of attack. However, if the adversary only
has the ability to change DNS entries for www.vanguard.com
on a DNS server (e.g., by cache poisoning), this attack is unscalable
because the pharmer must update the DNS entry for each instance
of the attack and reset it after the attack completes.

The pharmer can use round robin DNS entries to make this at-
tack scalable. A round robin DNS entry consists of multiple IP
addresses for a single domain name. The DNS server returns an
ordered list of the IP addresses in response to a query, but rotates
the order for each response. Web sites typically use round robin
DNS to implement load balancing or automatic failover. Browsers
usually connect to the first IP address in the list, and this achieves
some degree of load balancing among clients. When the connec-
tion fails, the browser tries the next IP address on the list, until it
successfully makes a connection.

To leverage round robin DNS entries in a dynamic pharming at-
tack, the pharmers creates a round robin DNS entry containing two
IP address: the pharmer’s IP and the legitimate server’s IP. Roughly
half the DNS responses will be in the order: pharmer’s IP, server’s
IP. In this case, the user will connect to the pharmer first, and the
pharmer will deliver the trojan document. The pharmer rejects sub-
sequent connections from the user, and the user’s browser will au-
tomatically failover to the legitimate server, after which the attack
proceeds as before. For the other half of responses, the user will
be delivered directly to the legitimate server and the pharming at-
tack will silently fail. This shows how an attacker with the ability
to replace a single record, once, (e.g., by cache poisoning) can still
attack thousands or millions of users.

3.3 Discussion
Dynamic pharming attacks do not leverage vulnerabilities in

any particular authentication mechanism; rather, they exploit how
browsers currently enforce the SOP. Since dynamic pharming hi-
jacks the victim’s session after she authenticates herself to the le-
gitimate server, this attack most likely affects all known authentica-
tion mechanisms for current browsers, and probably all future ones
as well.

In some cases, pharming attacks can also steal users’ authentica-
tion credentials, e.g., passwords and authentication cookies. Since
the users’ URL bar will show the correct domain name, even the
most meticulous user might be fooled into revealing her password.
Also, since browsers enforce the SOP based on domain names,
pharmers can steal user’s authentication cookies for the target site.
Although dynamic pharming attacks against client-side SSL au-
thentication do not enable pharmers to steal users’ authentication

credentials (i.e., their private keys), as we have seen, they can com-
promise users’ sessions in real time.

Some web sites use Javascript to detect and prevent framing, e.g.,

if (parent.frames.length > 0)

top.location.replace(document.location);

However, Javascript anti-framing techniques are not sufficient to
resist dynamic pharming. Our attack does not depend on the use of
iframes to be successful. For instance, the attacker could load the
legitimate index.html in another tab or window. The SOP still
allows malicious Javascript access to the second window, and this
situation is much harder for the legitimate site to detect.

3.4 Proof of concept implementation
We implemented a proof of concept dynamic pharming attack

using a pair of Apache SSL web servers (i.e, a pharmer and a target)
and round robin DNS. We tested the attack against two browsers:
Firefox 2.0 running on Debian GNU/Linux 3.1 and Microsoft Inter-
net Explorer 7.0 running on Windows XP Professional SP2. After
the adversary delivers the trojan document, she refuses further con-
nections from the client. This causes the browser to renew its DNS
entry for the target domain and connect to the legitimate server,
after which the adversary hijacks the session with the malicious
Javascript in the trojan document. We found both browsers to be
vulnerable to this dynamic pharming attack.

4. THE LOCKED SAME-ORIGIN POLICY
Since dynamic pharming hijacks a user’s session after initial au-

thentication completes, this attack is independent of the authen-
tication mechanism and affects all known authentication schemes
for current browsers, including passwords, authentication cookies,
and client-side SSL. It is therefore unlikely that any future web au-
thentication protocol developed for existing browsers will resist dy-
namic pharming either. Although dynamic pharming attacks lever-
age the implementation details of DNS pinning, “fixing” DNS pin-
ning to resist DNS rebinding attacks is challenging. DNS pinning
has a lengthy and controversial history in Firefox and Mozilla [47],
and the current implementation is an explicit compromise to sup-
port dynamic DNS and round robin DNS for failover [46, 48].
From the browser’s point of view, a dynamic pharming attack is
indistinguishable from a failure of a site and DNS round robin re-
covery. Lastly, it is unlikely web sites can resist dynamic pharm-
ing attacks effectively. The adversary has the advantage of loading
her document first; she can read and modify all of the legitimate
server’s documents in the victim’s browser, as well as control their
execution environment.

To resist dynamic pharming, we must address the root of the
problem: we must upgrade browsers’ SOP. A SOP based on do-
main names will fail because pharmers control the mapping from
domain name to subject. For web objects retrieved over insecure
HTTP, it is unclear how the browser can distinguish a pharmer from
the legitimate server. However, for objects retrieved over SSL, we
argue browsers should enforce the SOP using cryptographic iden-
tity. We refer to web objects retrieved over SSL as locked web

objects, and we propose two locked same-origin policies to resist
dynamic pharming attacks against them.

We first present the weak locked same-origin policy, which iso-
lates a domain’s locked web objects with valid certificate chains
from objects with invalid chains. We then present the strong

locked same-origin policy, which is based on cryptographic iden-
tity, namely web sites’ SSL public keys.

Both policies only apply new restrictions to locked web objects.
For non-SSL web objects, the legacy SOP (namely, using domain

names) still applies. Like the legacy SOP, both locked SOPs deny
unlocked web objects (that is, objects not retrieved over SSL) ac-
cess to locked web objects. We summarize our policies in compar-
ison to the legacy SOP in Table 1.

4.1 The weak locked same-origin policy
The legacy SOP currently allows access to locked web objects

only from other locked web objects originating from the same do-
main.3 However, the legacy SOP does not distinguish between
locked web objects retrieved from a legitimate server and those
from a pharmer spoofing the server’s domain name, and will al-
low access if the user ignores any certificate warnings. To resist
pharming attacks, the weak locked SOP augments the legacy SOP
by tagging each locked web object with a validity bit indicating
whether the certificate chain corresponding to the SSL connection
over which the object was retrieved contained any errors (e.g., self-
signed certificate, CN/domain mismatch), irrespective of how the
user responded to any certificate warnings. Then, the browser al-
lows a locked web object to access another locked web object if and
only if 1) the legacy SOP would allow access and 2) the validity bits
match.

4.2 The strong locked same-origin policy
With the strong locked SOP, we propose browsers augment the

legacy SOP by tagging each locked web object with the public key
of the other endpoint of the SSL connection (i.e., the web server).
Then, the browser allows a locked web object to access another
locked web object if and only if 1) the legacy SOP would allow
access and 2) the associated public keys match. The strong locked
SOP was inspired by Key Continuity Management [19, 23, 60, 84],
a technique for associating public keys with subjects and taking
defensive action when a subject’s public key unexpectedly changes
in a future interaction.

4.3 Security analysis
Weak locked same-origin policy. If a web server hosting domain
D (i.e., the target domain) uses a valid X.509 certificate signed by
a trusted root CA, the weak locked SOP resists phishing, pharming,
and active attacks against D’s locked web objects (i.e., illegitimate
access by the adversary’s web objects) as long as the adversary is
unable to obtain a valid certificate for D. The weak locked SOP
resists phishing attacks because a phisher has a different domain
name. For pharming and active attacks, the adversary can arrange
for her web objects to have the same name as the target domain,
but if she does not have a valid certificate for the target domain, the
validity bit will be false, while the validity bit of the web server’s
locked objects will be true. Thus, the adversary is denied access.

If the legitimate target site uses an invalid X.509 certificate (e.g.,
expired, CN/domain mismatch, or self-signed), the weak locked
SOP provides no additional protection over the legacy SOP. It re-
sists phishing attacks, but does not protect against pharmers or ac-
tive attackers.

In contrast to the legacy SOP, the weak locked SOP does not
depend on users correctly answering prompts in response to cer-
tificate errors (e.g., if an adversary presents a self-signed certificate
with a spoofed domain name). The browser tags locked web objects
according to the validity of the server’s certificate and its domain
name, and nothing else. However, the weak locked SOP does as-

3Exception: if a web site sets a non SSL-only cookie (i.e., with-
out the secure attribute) over an SSL connection, then this policy
allows the same domain to access the cookie over non-SSL connec-
tions as well. Essentially, a non SSL-only cookie set over an SSL
connection gets downgraded to an unlocked web object.

sume that the trusted root CAs do not issue valid certificates for D

to unauthorized parties. Although CAs take measures to prevent
this, mistakes have been made in the past [45].

Strong locked same-origin policy. If a web server hosting do-
main D uses an X.509 certificate with public key PK, the strong
locked SOP resists phishing, pharming, and active attacks against
D’s locked web objects as long as the adversary does not know the
corresponding private key for PK. As with the weak locked SOP,
the strong locked SOP resists phishing attacks because a phisher
has a different domain name. In order to access D’s locked web
objects, the adversary must pharm D and also arrange for its own
objects to be tagged with PK. However, the browser will only
do this if 1) the adversary presents a X.509 certificate with PK,
and 2) the browser and adversary can successfully establish an SSL
connection. If the adversary tries to present a certificate for PK

and she does not know the private key corresponding to PK, she
will not be able to successfully complete the SSL handshake; the
browser will automatically cancel the connection with no option
of user override. Thus, since the browser will only tag the adver-
sary’s locked web objects with a public key different from PK, the
browser will deny the adversary access to D’s locked web objects.
For the same reason, the strong locked SOP protects D’s locked
web objects against active attackers as well.

As with the weak locked SOP, the strong locked SOP does not
depend on users correctly answering prompts in response to certifi-
cate errors. Furthermore, in contrast to the weak locked SOP, the
strong locked SOP does not require a web site to trust root CAs not
to issue certificates to unauthorized parties for its domain. Enforce-
ment relies only on servers’ public keys.

4.4 Deployability analysis
If our locked same-origin policies are to be successful, they need

to be easy to deploy and backwards compatible; they should not
“break the web” because of problems with deployment or interop-
erability with existing web servers. Since no browser developer
is likely to embrace a policy that makes her browser incompatible
with existing web sites, legacy web servers had better continue to
work even when visited with locked SOP enabled browsers.

Our policies are more restrictive than the legacy SOP, but we
only want to deny access to an attacker – never the legitimate server.
We will “break” a web site if there is a situation where our policy
would deny a legitimate server access to one of its locked web ob-
jects, but the legacy SOP would allow access.

There are a few situations where our policies could potentially
break a web site. For example, suppose server A for xyz.com
has an valid certificate, but server B for xyz.com has an invalid
certificate (or vice versa). Then the weak locked SOP would deny
Javascript from server A from accessing an HTML document from
server B, but the legacy SOP would allow access. This situation
might arise if xyz.com uses round robin DNS for load balancing
and a browser request objects from both servers during a session.
Note that the weak locked SOP will not break a domain which uses
invalid certificates on all its servers (e.g., it uses self-signed cer-
tificates) since objects from these servers have equivalent validity:
they are all invalid.

If server A and server B use different public keys, then the strong
locked SOP would also deny access. However, the strong locked
SOP does not necessarily require the domain to use certificates is-
sued by a root CA trusted by browsers. As long as all servers use
the same public key, the web site can use certificates issued by a
root CA untrusted by browsers or self-signed certificates.

Session caching Persistent caching

Browser of CA certs of CA certs Uses AIA

IE X X X

Firefox X

Table 2: Summary of browser mechanisms used to address

missing and expired intermediate CA certificates. AIA refers

to the optional Authority Information Access X.509 extension.

4.4.1 An SSL server survey

To evaluate the deployability of our policies, we must determine
how many sites we could potentially break; in other words, how
often the above configurations actually arise in practice. To mea-
sure this, we surveyed SSL servers in the real world to determine
how many servers may not currently interoperate with our policies.
We constructed a sample of SSL servers by first crawling the web,
starting from a list of major news, portal, and financial sites. When-
ever we found an HTTPS link, we added the domain in the link to
our sample. For the sake of simplicity, we restricted our study to
the following top-level domains: com, org, net, gov, edu, biz,
info, and name. We excluded international top-level domains.
We found 14651 fully qualified SSL domains from 6192 second-
level domains.4 This corresponds to roughly 6.5% of the number
of SSL domains found by the more extensive monthly SSL survey
conducted by E-Soft and securityspace.com [65].

We are primarily interested in finding domains hosted by multi-
ple servers, since it is these domains that our policies could poten-
tially break. We can discover some servers by looking for use of
round robin DNS; if a server uses round robin DNS, a DNS query
returns a list of IP address. However, Akamai-style load balanc-
ing often considers the physical location of the DNS querier and
may only return the IP address of most appropriate server. To take
Akamai-style load balancing into account, we constructed a list of
servers for each domain by requesting recursive DNS queries to
15 geographically distributed public DNS servers [76].5 Of the
14651 domain names, we found 1464 that resolved to multiple IP
addresses. For each of these domains, we established an SSL con-
nection to each of the domain’s servers and recorded each server’s
certificate chain and public key.

4.4.2 Certificate chain validation: Firefox and IE

The next step was to validate the certificates we collected. To
maximize the practical relevance of our study, we simulated the
validation procedures of Firefox 2.0 and Internet Explorer 7.0. The
validation procedures of Firefox and IE are close to the process we
described in Section 2.3, but there are some differences in how each
browser handles missing and expired intermediate CA certificates.
Intermediate CA certificates are certificates issued by a CA’s root
certificate which it uses to directly issue certificates to web servers.
This results in certificate chains of length 3 or more. Since most
browsers only ship with root CA certificates, to guarantee a client
can verify its chain, a server must also send any intermediate CA
certificates in addition to its own.

Unfortunately, many servers are not configured to send interme-
diate CA certificates. Also, there are several widely used interme-
diate CA certificates which have expired, and although the CA has
reissued a replacement with the same name (and often, the same

4For our study, a second-level domain means the last two com-
ponents of a non-international fully qualified domain name, e.g.,
yahoo.com.
5A limitation of this approach is that we cannot discover multiple
servers behind a front-end load balancer with a single IP address.

public key), many servers have not updated them and are still send-
ing the expired version. We found that Firefox and Internet Ex-
plorer handle these situations slightly differently. We determined
each browser’s validation procedure through source code analysis,
empirical testing, and various public sources [20, 49, 50].

First, both Firefox and Internet Explorer cache the intermediate
CA certificates they encounter during a user’s browsing session and
use this cache to help verify certificate chains. This means if the
user visits a site with a missing intermediate CA certificate, and
previously in the session, the user visited a different site using the
same intermediate certificate, the browser uses the cached copy to
verify the chain. In addition, if the user visits a site which sends
an expired intermediate CA certificate, both Firefox and Internet
Explorer will automatically replace it with the more recent version
if they have seen it previously in the session.

Internet Explorer takes some additional measures to address miss-
ing intermediate CA certificates that Firefox does not. First, in
addition to caching intermediate CA certificates within a session,
Internet Explorer caches these certificates persistently, across ses-
sions. Second, Internet Explorer takes advantage of the Author-
ity Information Access (AIA) extension included in some X.509
certificates. The AIA extension “indicates how to access CA in-
formation for the issuer of the certificate in which the extension
appears” [63]. We found for many server certificates issued by an
intermediate CA certificate, they include the AIA extension with a
URL for the intermediate CA certificate, and Internet Explorer au-
tomatically downloads and uses it to verify the chain. Firefox does
not use the AIA extension. It is unclear exactly why not, but dis-
cussions on Mozilla Bugzilla suggest it might be because some of
the Mozilla developers believe the AIA standard is not well spec-
ified [49]. As a result of these additional mechanisms in Internet
Explorer, Firefox generates more certificate warnings on average
for sites with missing or expired intermediate CA certificates. We
summarize these differences in Table 2.

4.4.3 Evaluation results

Weak-locked same-origin policy. To evaluate the deployability of
the weak locked SOP, we validated the servers’ certificate chains in
our survey using two procedures: Pessimistic Validation and Op-
timistic Validation. Pessimistic Validation models the worse case
scenario: a Firefox user visits a web site with a missing or ex-
pired intermediate CA certificate at the start of a session, or a user
freshly installs IE and visits the same site, and the server certificate
does not support AIA. Through empirical analysis we identified 18
widely used intermediate CA certificates, and for Optimistic Vali-
dation, we assume the user’s browser has cached valid versions of
these certificates. We intend Optimistic Validation to model a long
Firefox session or a “broken in” Internet Explorer installation with
a substantial intermediate CA certificate cache.

Then, for the 1464 fully qualified SSL domains which use mul-
tiple servers, we counted the number of domains which had servers
with both valid and invalid certificate chains, since it is these do-
mains that the weak locked SOP may break. Using Pessimistic
Validation, we found 8 such domains, and for Optimistic Valida-
tion we found 4 domains. For each of the other 1456 domains, its
servers either had all valid certificates or all invalid certificates.

The difference between the Optimistic and Pessimistic Valida-
tion results means we found 4 domains that contained a mix of
servers with missing or expired intermediate certificates and cor-
rectly configured servers. Of the 4 remaining domains which still
cause problems with Optimistic Validation, 3 are probably the re-
sult of virtual hosting issues. For example, of the 3 servers we
found for signin.half.ebay.com, one had a valid certificate,

Percentage of potentially

Policy non-interoperating domains

Weak locked SOP 0.05%

Strong locked SOP 0.6%

Table 3: Summary of our deployability analysis of the locked

same-origin policies using a sample of 14651 SSL domains.

This table shows the percentage of domains in our survey which

may not correctly interoperate with the locked same-origin

policies.

and the other two had CN/domain name mismatch problems. These
two servers presented certificates for signin.ebay.com. The
remaining problem domain was the result of an expired certificate
on one of its servers. When the domain’s administrators updated
their certificates, they probably overlooked this server.

This means the weak locked SOP would potentially break at
most 0.05% of the SSL domains we found in our survey. These
results are strong evidence that browsers could enforce the weak
locked SOP today and still interoperate with the vast majority of
web sites while providing increased protection against pharming
attacks. Furthermore, since the number of problem domains is rel-
atively small, browser developers can conceivably work with these
domains’ administrators to make their servers consistent. In con-
clusion, we can safely deploy the weak locked SOP in a way which
requires minor browser changes, but does not require changes to
the HTTP specification, SSL, or web servers.

Strong locked same-origin policy. To evaluate the deployability
of the strong locked SOP, we counted the number of fully quali-
fied SSL domains with multiple servers that do not use the same
public key on all of the servers. We found 83 such domains, rep-
resenting 0.6% of the total number of SSL domains in our survey.
This is problematic for two reasons. First, it represents an order of
magnitude more servers than that are affected by the weak locked
SOP. Second, unlike before, these servers are not necessarily mis-
configured, so browser developers cannot work with the domain’s
administrators to “fix” the problem. Using a different key on each
server is good security practice, since it limits the scope of key
compromise. In fact, VeriSign explicitly recommends customers
use different public keys on each server [75].

Another problem concerns certificate expiration. The business
model of many CAs is to issue certificates that are valid only for
a relatively modest period of time, e.g., one or two years, and re-
quire customers to renew their certificates when they expire. When
web sites renew their certificates they often follow good security
practice and generate a new public key. Since the strong locked
SOP applies to all locked web objects, if a web site uses persistent
SSL-only cookies to authenticate users (see Section 5), every user’s
cookie will simultaneously “expire” (i.e., become inaccessible by
the server) when the site starts using the new public key, regardless
of the value of the cookie’s expires attribute.

Based on this evidence, we conclude browsers cannot currently
enforce the strong locked SOP without potentially breaking a sig-
nificant number of web sites. However, this does not mean that de-
ploying the strong locked SOP is hopeless; it only means a browser
must first get the site’s explicit cooperation and approval to enforce
it. In the next section, we describe a simple incrementally deploy-
able solution using policy files for the strong locked SOP which
supports multiple public keys and key updates.

4.5 Policy files for supporting multiple keys
and key updates

We propose an incrementally deployable solution where a web
site can opt-in to the strong locked SOP; then, browsers which sup-
port the policy can safely enforce it without the risk of unintention-
ally breaking the site. To opt in, we propose a site’s servers post a
policy file with a static well-known file name, say pk.txt, which
would be periodically retrieved by web clients (over SSL), similar
to robots.txt or favicon.ico. If a browser finds a pk.txt
file, it parses the file and starts enforcing the strong locked SOP for
that domain. If all the domain’s servers use the same public key and
persistent objects are not an issue, a site can simply post an empty
pk.txt, since it will already interoperate with the strong locked
SOP.

If the site uses multiple servers, labeled i = 1 . . . n, with dif-
ferent public keys, then pk.txt on server k contains a list of the
form:

(pk1, {pkk}sk1
), (pk2, {pkk}sk2

), . . . , (pkn, {pkk}skn
)

where pkk is the public key of the server hosting this pk.txt
file and {pkk}ski

represents a signature of pkk by the secret key
corresponding to pki. The browser then verifies each of the sig-
natures, and for i = 1 . . . n, if the ith signature is valid, then it
considers pkk to “speak for” pki. We then extend the strong locked
SOP with the following rule: a browser allows a locked web object
tagged with (D, pkj) to access another locked web object tagged
with (D, pkl) if a policy file attests that pkj speaks for pkl.

Note that pk.txt cannot simply list the public keys
(pk1, pk2, . . . , pkn); otherwise a pharmer can serve the same file
to a victim, and the victim’s browser will infer that the pharmer’s
public key speaks for each of the keys of the legitimate servers.
However, since the pharmer does not know the legitimate servers’
private keys, it will not be able to generate any valid signatures
required for the victim’s browser to infer the “speaks for” relation.

Policy files also address the problem of public key updates dis-
cussed in Section 4.4.3. For example, suppose a web site wants
to renew its certificate with a new public key pknew. Then, sev-
eral months before the certificate expires, the site can include
(pki, {pknew}ski

) in its pk.txt files for each server i, i = 1 . . . n.
Then, users that retrieve pk.txt during this transition period will
not “lose” persistent objects tagged with an old public key.

In conclusion, policy files address the deployability problems
with the strong locked SOP we identified in Section 4.4.3. They
enable us to enforce the strong locked SOP in current browsers in
a way which is incrementally deployable and backwards compat-
ible with legacy servers. The strong locked SOP in conjunction
with policy files requires browser changes and server configuration
changes for sites wishing to take advantage of the policy, but does
not require changes to the HTTP specification or SSL.

4.6 Support for subdomain object sharing
Up until now we have implicitly assumed a web site consists

of a single fully qualified domain name, e.g., www.xyz.com.
More generally, a web site might be composed of several domain
names, e.g., mail.xyz.com, www.xyz.com, login.xyz.
com, and the legacy SOP supports some exceptions which en-
able these sites to share information among subdomains through
certain web objects. For example, a user might authenticate her-
self to the server for login.xyz.com, and this server will set
a domain cookie with domain=xyz.com for authenticating the
user to the other subdomain servers. The user’s browser will
allow any subdomain of xyz.com to access this cookie. An-
other way subdomains can share information is by setting the

DOM property document.domain. For example, if a document
from www.xyz.com sets document.domain=xyz.com, the
browser permits any object from a subdomain of xyz.com to ac-
cess the document.

However, these domain sharing mechanisms are vulnerable to
pharming attacks. For example, if an adversary pharms any host
name in xyz.com, she can steal users’ domain cookies for xyz.
com. Ideally, we would like to enforce our locked same-origin poli-
cies in these situations as well. Fortunately, extending the strong
locked SOP to support subdomain sharing is straightforward with
policy files. The site simply adds the servers’ public keys to its
policy files and we extend the strong locked SOP with the follow-
ing rule: if S is locked web object hosted by server l and is des-
ignated to be shared among subdomains of a higher-level domain
TD (e.g., xyz.com), a browser allows a locked web object tagged
with (D, pkj) to access S if D is a subdomain of TD and a policy
file attests that pkj speaks for pkl.

Unfortunately, it is not clear how to extend the weak locked
SOP to support shared domain objects without any server coop-
eration. An natural candidate extension would be to allow access
if both subdomain servers have valid certificates or invalid cer-
tificates. However, we must have confidence this policy will not
“break the web” and not deny access to a legitimate server when
the legacy SOP would allow access. Roughly, this would require
for each higher-level domain, either all its subdomain servers have
valid certificates or all its subdomain servers have invalid certifi-
cates. Unfortunately, our survey survey shows this is far from the
case. Of the 6192 second-level SSL domains we found, over 1000
did not satisfy this property. This means for browsers enforcing
the weak locked SOP, they must default back to the legacy SOP
for shared domain objects, which provides no protection against
pharming.

4.7 Support for key revocation
To address key compromise, our locked same-origin policies and

policy files can be extended to support expiration times, certificate
revocation lists (CRLs), and the Online Certificate Status Protocol
(OCSP), but for space reasons, we do not go into the details here.

4.8 Active objects
We refer to active objects as web objects containing scripts or ex-

ecutable code. Examples of active objects include Javascript files,
Flash movies, and Java applets. Similar to images and style sheets,
browsers allow web pages to include active objects from other do-
mains. We refer to active objects from domains different from the
enclosing page as cross-domain active objects, and those from the
same domain as the enclosing page as same-domain active objects.

Subtle pharming vulnerabilities can arise even if a web site only
uses same-domain active objects. For example, suppose xyz.com
includes a Javascript file in its home page:

<script type="text/javascript"

src="https://xyz.com/login.js">

Javascript files run directly in the context the page including them.
In the above example, an adversary could use dynamic pharming
against xyz.com to first cache a copy of login.js in the vic-
tim’s browser, and then cause the browser to retrieve the legitimate
home page for xyz.com. As the browser renders the page, it will
use the adversary’s cached copy of login.js, enabling the ad-
versary to hijack the user’s session with the legitimate server for
xyz.com [68]. Similar vulnerabilities exist for Flash movies and
Java applets.

Cross-domain active objects are commonly used in web mashups,
such as www.housingmaps.com, but other web sites also use

them. For example, the home page for www.paypal.com in-
cludes the following element:

<script type="text/javascript"

src="https://www.paypalobjects.com/...">

In this case, the Javascript file from www.paypalobjects.com

will execute in the context of www.paypal.com and the browser
gives it full access to www.paypal.com. An adversary capa-
ble of pharming www.paypalobjects.com will effectively be
able to insert Javascript on the PayPal homepage and hijack users’
sessions. Notice that the adversary does not need to pharm www.

paypal.com for this attack to succeed. Browsers also allow
cross-domain Java and Flash, and there are mechanisms which en-
able Java and Flash to interact with the enclosing document.

In light of these vulnerabilities, a vigilant web site should forgo
the use of Java and Flash, and include all necessary Javascript ex-
plicitly within its web pages. However, this significantly restricts
flexibility and functionality. Unfortunately, we can do little to pro-
tect active objects requested over HTTP. For active objects requested
over HTTPS, we discuss two solutions: 1) YURLs, and 2) extend-
ing the locked SOPs.

4.8.1 YURLs

A YURL [8] consists of a URL and a public key hash, and the
browser can use the hash to authenticate the server. For example,
if browser requests a YURL for xyz.com, the browser uses DNS
to resolve xyz.com to an IP address, and then establishes an SSL
connection with the server. After a connection is established, the
browser compares the public key hash in the YURL against the
public key of the server. If the hash is consistent with the server’s
public key, the browser proceeds with the request; otherwise it can-
cels the connection with no opportunity for user override. YURLs
help active objects resist pharming attacks because they enable web
sites to explicitly specify the server hosting an object by its public
key. Browsers do not currently support YURLs, but the necessary
modifications should be relatively simple and straightforward.

4.8.2 Extending the locked same-origin policies

We can also extend the locked SOPs to help protect same-domain
requests for active objects against pharming attacks. Since in the
strong locked SOP, a web site explicitly specifies the list of valid
public keys for its domain, a browser can safely refuse to load ac-
tive objects from a alleged server for that domain with a different
public key. We can similarly extend the weak locked SOP. If the
server for the enclosing page has valid certificate, then a browser
should only accept a same-domain active object from a server with
a valid certificate. Based on the results of our deployability anal-
ysis, this additional restriction for the weak locked SOP should be
safe.

Unfortunately, this approach will not work for cross-domain ac-
tive objects. Since the enclosing page and the object are from dif-
ferent domains, their certificates are incomparable. Currently, if the
server hosting the object has an invalid certificate, most browsers
and plugins will issue a warning, but as we have seen, users often
ignore and override such warnings.

4.9 Caching and dependent elements
Browsers do not by default persistently cache HTTPS web ob-

jects (except SSL-only cookies), but they do use session caching.
As we demonstrated in Section 4.8, adversaries can use the cache to
launch subtle dynamic pharming attacks. Also, vulnerabilities may
arise if adversaries can control dependent HTML elements, such as
images and style sheets. To resist attacks involving the cache and

dependent elements, browsers and web sites can use the counter-
measures in Section 4.8 to protect these objects as well.

4.10 Limitations
Our locked same-origin policies do not address attacks where the

adversary tricks a victim into installing malicious software such as
executable malware, an ActiveX plugin, or a browser extension.
These objects usually execute with elevated privilege and are not
governed by the SOP.

Security researchers have found DNS rebinding weaknesses in
third-party browser plugin implementations such as Flash, Java,
and Adobe Reader. Some of these weaknesses can be exploited
to launch dynamic pharming attacks, and the locked SOPs do not
address them. Jackson et al. address some of these vulnerabili-
ties [29], and the locked SOPs can work in conjunction with their
solutions to resist dynamic pharming attacks.

The locked same-origin policies do not address problems in the
Javascript language or implementation (e.g., Javascript Prototype
Hijacking) [54], cross-side scripting (XSS) vulnerabilities in servers,
and cross-site request forgery (XSRF) attacks. Other research ef-
forts address XSS vulnerabilities [27, 39, 44, 79, 80] and XSRF
attacks [31, 34, 35], and these techniques complement our work.
We also do not address browser-side cross-site scripting vulnera-
bilities, such as Universal XSS [54].

5. APPLICATIONS TO WEB

AUTHENTICATION
In this section, we discuss how the locked same-origin policies

can help protect two existing browser authentication mechanisms,
client side-SSL and SSL-only cookies, against pharmers and ac-
tive attackers. However, the web authentication problem is actually
two distinct subproblems: the initialization of users’ authentication
credentials and the use of those credentials to authenticate users to
web sites. Our discussion in this section focuses primarily on the
latter, but we discuss initialization briefly.

Client-side SSL. Intuitively, since client-side SSL authenticates
users with end-to-end cryptography, one might expect it would pro-
tect sensitive web sessions against pharming and active attacks,
but unfortunately, the presence of dynamic pharming vulnerabili-
ties proves this is not the case. However, using one of our locked
same-origin policies in conjunction with client-side SSL results in
an authentication scheme with strong security properties. The user
is not required to memorize her private key. After the user im-
ports her private key, her browser uses it automatically. Although
an adversary may be able to trick a user into participating in mu-
tual authentication using SSL, the adversary cannot use this inter-
action to impersonate the user at another web site. Authentication
requires knowledge of the private key, which the user’s browser al-
ways keeps secret. As a result, the browser authenticates the user’s
requests cryptographically and the locked SOP isolates the user’s
authenticated sessions from malicious subjects – even if the adver-
sary is a pharmer or active attacker.

SSL-only cookies. Many web sites use cookies for authentica-
tion [16]. For example, some web sites offer a “remember me”
option, which sets a persistent cookie on a user’s machine. The
browser will present this cookie during subsequent visits to the web
site, enabling the user to bypass the initial login process. Some
existing anti-phishing solutions also use authentication cookies to
complement regular password authentication. Examples include
Bank of America’s SiteKey [4] and similar approaches by ING Di-

rect [28], Vanguard [74], and Yahoo [81]. Before a user is per-
mitted to login from a particular computer, she must “register” it.
The registration process sets a SSL-only persistent authentication
cookie on the user’s computer, and only computers with authenti-
cation cookies are permitted to access the user’s account. In current
browsers, cookie authentication resists phishing attacks but is vul-
nerable to pharming attacks. Our locked same-origin policies pro-
tect SSL-only cookies against pharmers and active attackers. Thus,
in conjunction with browsers enforcing a locked SOP, web sites
can use SSL-only persistent cookies to authenticate users and resist
phishing, pharming, and active attacks.

Other authentication mechanisms. The locked same-origin poli-
cies nicely complement other authentication mechanisms designed
to resist pharming, such as Phoolproof phishing prevention [55]
and Passpet [83]. Our policies help these schemes resist dynamic
pharming attacks.

The registration problem. The initialization of a user’s authen-
tication credentials is commonly known as the registration prob-

lem. The registration problem is a critical element of any web au-
thentication scheme, and a challenging problem on its own right.
For space reasons, we do not attempt to explore potential solutions
here. One key challenge in the registration problem is resisting
registration attacks. Bank of America’s SiteKey and similar anti-
phishing mechanisms have registration attack vulnerabilities [67,
85]. When a SiteKey user initially registers, she gives answers
to several “personal entropy” questions [12], questions to which
a phisher is unlikely to be able to guess the answers, e.g., “What
is the name of your high school mascot?”. Users who need to
register another computer must correctly answer these questions
before receiving an authentication cookie. However, phishers and
pharmers can use a man-in-the-middle registration attack to solicit
the correct answers from unsuspecting victims and obtain valid au-
thentication cookies, making SiteKey insecure against registration
attacks. The problem is that “in-band” (HTTP-based) registration
procedures are normally vulnerable to the same attacks we are try-
ing to prevent. We are exploring registration protocols utilizing
“out of band” channels to distribute authentication credentials.

6. RELATED WORK
Several anti-phishing mechanisms help provide information to

users regarding the trustworthiness of web sites. Since studies have
shown that users can be fooled by misleading domain names and
do not understand browser security indicators [10, 14, 15, 18], sev-
eral researchers and security vendors have developed browser ex-
tensions to make it easier for users to interpret relevant security
information [7, 25, 43, 69], use a blacklist to help identify known
phishing sites [11, 52], or establish trusted paths with sites users
have a relationship with [9, 78, 82]. Recent versions Firefox and In-
ternet Explorer have adopted similar mechanisms. However, these
approaches still expect some degree of diligence from users to re-
liably observe security warnings and indicators to operate securely,
and studies have shown that users still have troubling interpreting
improved security indicators and warnings [30, 64, 77, 78]. In addi-
tion, studies have also shown that many browser extensions which
try to automatically detect phishing sites are often wrong and in-
consistent [86].

Another approach to resisting phishing attacks is better pass-
word management. Passwords are still the dominant method of
web authentication. Password databases included with most mod-
ern web browsers automatically fill in passwords for users. How-
ever, users might still manually disclose their passwords to phish-

ing sites or use the same password for multiple sites. Password
hashing addresses these problems by hashing the user’s secret pass-
word together with a variable, non-secret string (e.g., each site’s
domain name) to produce per-site passwords [1, 17, 24, 37, 38, 62,
83]. Recent work in this area has made usability one of the pri-
mary goals [24, 62, 83], but studies have shown some users still
have trouble using them correctly and securely [6]. Also, if pass-
word hashing scheme generates passwords based on the site’s do-
main [24, 62], it is vulnerable to pharming attacks. Passpet [83]
provides some resistance to pharming attacks, but is still vulnera-
ble to dynamic pharming.

The Phoolproof phishing prevention system uses cell phones to
manage client-side SSL certificates for authentication on behalf of
users [55]. Phoolproof’s designers also noted the importance of
disclosure resistant authentication credentials. In Phoolproof, a
user logs in using a secure bookmark on her cell phone. The cell
phone then 1) initiates an SSL connection to the web site via a
Bluetooth connection with a web browser on the user’s computer;
2) checks the site’s X.509 certificate against the one stored in the
bookmark; and 3) authenticates the user via client-side SSL. Al-
though Phoolproof verifies the site’s certificate in step 2, this proto-
col is still vulnerable to a dynamic pharming attack if the adversary
is able to pharm the user (i.e., serve the user a web page which
appears to come from the target domain) before she activates the
login process.

The locked same-origin policies are similar to work done inde-
pendently and concurrently by Masone et al. on Web Server Key
Enabled Cookies, a new cookie policy which tags SSL-only cook-
ies with the server’s public key and allows access only to a server
which can authenticate itself to the same key [41]. However, their
proposal falls short of protecting cookies against dynamic pharm-
ing attacks. Also, they do not address pharming attacks against
other web objects or other web authentication mechanisms, e.g.,
client-side SSL, nor do they address subdomain object sharing or
key updates.

The locked SOP was inspired by the concept of Key Conti-
nuity Management (KCM), a model for key management first
proven successful by SSH [60, 84] and made more explicit by Gut-
mann [23]. KCM associates public keys with subjects and takes de-
fensive action when a subject’s public key unexpectedly changes.
Garfinkel expands on KCM further, and applies it to S/MIME [19].

Security researchers and browser developers have been aware of
DNS rebinding vulnerabilities since as early as 1996 [22]. In 2001
and 2002, Jim Roskind and Adam Megacz, resp., described fire-
wall circumvention DNS rebinding attacks using DNS records with
short TTLs [42, 61]. DNS pinning was adopted by browsers to de-
fend against these kinds of attacks, but pinning has a lengthy and
controversial history in Firefox and Mozilla [46, 47, 48]. The cur-
rent implementation is an explicit compromise to support dynamic
DNS and round robin DNS for failover. In August 2006, Martin
Johns discovered a reliable technique for circumventing DNS pin-
ning completely [32], and in early 2007, Johns and Kanatoko found
additional DNS rebinding vulnerabilities with Flash and Java [33,
36].

Jackson et al. present a excellent analysis of DNS rebinding
vulnerabilities, including issues with Flash, Java, VPNs, caching,
and proxies [29]. They discuss several countermeasures, including
host name authorization, a technique based on a variant of reverse
DNS lookups. With cooperation from web sites’ DNS servers, host
name authorization enables clients to determine the valid set of do-
main names for a particular IP address. Host name authorization
is promising approach, but since it relies on DNS, it is ineffective
against adversaries capable of subverting DNS.

7. CONCLUSION
We demonstrated how adversaries can use dynamic pharming at-

tacks to hijack users’ authenticated web sessions, irrespective of the
authentication mechanism. Dynamic pharming enables an adver-
sary to eavesdrop on sensitive content, forge transactions, sniff sec-
ondary passwords, etc. To address dynamic pharming attacks, we
introduced two locked same-origin policies, which regulate cross-
object access control using servers’ X.509 certificates and public
keys, rather than domain names. We evaluated the security and
deployability of our approaches and showed how browsers can de-
ploy these policies today to substantially increase their resistance
to pharming attacks and provide both a solid and necessary foun-
dation for developing pharming resistant authentication.

8. ACKNOWLEDGEMENTS
This work was supported in part by National Science Foundation

award number CCF-0424422 (The TRUST Center). We thank Dan
Boneh and Adam Barth for helpful suggestions with policy files.
We thank Ben Adida, Naveen Sastry, Ka-Ping Yee, and Zulfikar
Ramzan for providing useful comments on previous drafts.

9. REFERENCES

[1] Martin Abadi, T. Mark A. Lomas, and Roger Needham.
Strengthening passwords. Technical Report 1997-033, SRC,
September 1997.

[2] P. Akritidis, W.Y. Chin, V.T. Lam, S. Sidiroglou, and K.G.
Anagnostakis. Proximity Breeds Danger: Emerging Threats
in Metro-area Wireless Networks. In Proceedings of the 16th

USENIX Security Symposium, pages 323–338, August 2007.

[3] Anti-phishing working group.
http://www.antiphishing.org/.

[4] Bank of America Sitekey: Online banking security. http:
//www.bankofamerica/privacy/sitekey/.

[5] Stephen Bell. Invalid banking cert spooks only one user in
300. ComputerWorld New Zealand,
http://www.computerworld.co.nz/news.nsf/

NL/-FCC8B6B48B24CDF2CC257002001%8FF73,
May 2005.

[6] Sonia Chiasson, P.C. van Oorschot, and Robert Biddle. A
usability study and critique of two password managers. In
Proceedings of the 15th USENIX Security Symposium, pages
1–16, August 2006.

[7] Tyler Close. Petname tool.
http://petname.mozdev.org/.

[8] Tyler Close. Waterken YURL.
http://www.waterken.com/dev/YURL/httpsy/.

[9] Rachna Dhamija and J. D. Tygar. The Battle Against
Phishing: Dynamic Security Skins. In Proceedings of the

Symposium on Usable Privacy and Security (SOUPS), pages
77–88, July 2005.

[10] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why
phishing works. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, pages 581–590,
2006.

[11] Earthlink Toolbar Featuring ScamBlocker for Windows
Users. http://www.earthlink.net/software/
free/toolbar/.

[12] Carl Ellison, Chris Hall, Randy Milbert, and Bruce Schneier.
Protecting secret keys with personal entropy. Future

Generation Computer Systems, 16(4):311–318, 2000.

[13] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL
Protocol Version 3.0.
http://wp.netscape.com/eng/ssl3/, 1996.

[14] Batya Friedman, David Hurley, Daniel C. Howe, Edward
Felten, and Helen Nissenbaum. Users’ conceptions of web
security: A comparative study. In Proceedings of the

Conference on Human Factors in Computing Systems – CHI

’02 extended abstracts, pages 746–747, 2002.

[15] Batya Friedman, David Hurley, Daniel C. Howe, Helen
Nissenbaum, and Edward Felten. Users’ conceptions of risks
and harms on the web: A comparative study. In Proceedings

of the Conference on Human Factors in Computing Systems

– CHI ’02 extended abstracts, pages 614–615, 2002.

[16] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. Dos
and Don’ts of client authentication on the web. In 10th

USENIX Security Symposium, pages 251–268, August 2001.

[17] Eran Gabber, Phillip B. Gibbons, Yossi Matias, and Alain J.
Mayer. How to make personalized web browsing simple,
secure, and anonymous. In Proceedings of Financial

Cryptography (FC ’97), pages 17–32, 1997.

[18] Evgeniy Gabrilovich and Alex Gontmakher. The homograph
attack. Communications of ACM, 45(2):128, February 2002.

[19] Simson Garfinkel. Design Principles and Patterns for

Computer Systems That Are Simultaneously Secure and

Usable. PhD thesis, Massachusetts Institute of Technology,
2005.

[20] David Goldsmith. How a ’Catch-22’ Turns into a ’Shame on
You’. http:
//isc.sans.org/diary.html?storyid=1230,
March 2006.

[21] Anti-Phishing Working Group. Ebay - Update Your Account
MITM attack. http:
//www.antiphishing.org/phishing_archive/

05-03-05_Ebay/05-03-05_Eba%y.html.

[22] Princeton Secure Internet Programming Group. DNS attack
scenario. http://www.cs.princeton.edu/sip/
news/dns-scenario.html, February 1996.

[23] Peter Gutmann. Why isn’t the Internet secure yet, dammit. In
AusCERT Asia Pacific Information Technology Security

Conference 2004, May 2004.

[24] J. Alex Halderman, Brent Waters, and Edward W. Felten. A
convenient method for securely managing passwords. In
Proceedings of the 14th International World Wide Web

Conference, May 2005.

[25] Amir Herzberg and Ahmad Gbara. Security and
Identification Indicators for Browsers against Spoofing and
Phishing Attacks. Cryptology ePrint Archive, Report
2004/155, 2004.

[26] Russell Housley, Warwick Ford, Tim Polk, and David Solo.
Internet X.509 public key infrastructure certificate and
Certificate Revocation List (CRL) profile.
http://tools.ietf.org/html/rfc3280, 2002.

[27] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung
Tsai, D. T. Lee, and Sy-Yen Kuo. Securing web application
code by static analysis and runtime protection. In
Proceedings of 13th international conference on World Wide

Web (WWW’06), pages 40–52, 2006.

[28] ING direct privacy center. https:
//home.ingdirect.com/privacy/privacy_

security.asp?s=newsecurityfe%ature.

[29] Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao,

and Dan Boneh. Protecting Browsers from DNS Rebinding
Attacks. In 14th ACM Conference on Computer and

Communications Security (CCS ’07), November 2007.

[30] Collin Jackson, Daniel R. Simon, Desney S. Tan, and Adam
Barth. An Evaluation of Extended Validation and
Picture-in-Picture Phishing Attacks. In Proceedings of

Usable Security (USEC’07), February 2007.

[31] Martin Johns. On XSRF and Why You Should Care. Talk at
the PacSec 2006 conference,
http://www.informatik.uni-hamburg.de/

SVS/personnel/martin/psj06johns-e.%pdf,
November 2006.

[32] Martin Johns. (Somewhat) breaking the same-origin policy
by undermining DNS pinning. http:
//shampoo.antville.org/stories/1451301/,
August 2006.

[33] Martin Johns. Using Java in anti DNS-pinning attacks.
http:

//shampoo.antville.org/stories/1566124/,
February 2007.

[34] Martin Johns and Justus Winter. RequestRodeo: Client Side
Protection against Session Riding. In Proceedings of the

OWASP Europe 2006 Conference, refereed papers track,

Report CW448, pages 5 – 17. Departement
Computerwetenschappen, Katholieke Universiteit Leuven,
May 2006.

[35] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel.
Preventing cross site request forgery attacks. In Proceedings

of the Second IEEE Conference on Security and Privacy in

Communications Networks (SecureComm), August 2006.

[36] Kanatoko. Anti-DNS Pinning (DNS Rebinding) + Socket in
FLASH. http:
//www.jumperz.net/index.php?i=2&a=3&b=3,
January 2007.

[37] Alan H. Karp. Site-specific passwords. Technical Report
HPL-2002-39R1, HP Labs, 2002.

[38] John Kelsey, Bruce Schneier, Chris Hall, and David Wagner.
Secure applications of low-entropy keys. Lecture Notes in

Computer Science, 1396:121–134, 1998.

[39] V. Benjamin Livshits and Monica S. Lam. Finding security
vulnerabilities in Java applications using static analysis. In
Proceedings of the 14th USENIX Security Symposium, pages
271–286, August 2005.

[40] Uriel Maimon. Universal Man-in-the-Middle Phishing Kit –
why is this even news? http:
//www.rsa.com/blog/entry.asp?id=1160.

[41] Chris Masone, Kwang-Hyun Baek, and Sean Smith. WSKE:
Web Server Key Enabled Cookies. In Proceedings of Usable

Security (USEC), February 2007.

[42] Adam Megacz. XWT Foundation Advisory: Firewall
circumvention possible with all browsers. http:
//www.megacz.com/research/papers/sop.txt,
July 2002.

[43] Microsoft. Better Website Identification and Extended
Validation Certificates in IE7 and Other Browsers.
http://blogs.msdn.com/ie/archive/2005/

11/21/495507.aspx.

[44] Microsoft. Mitigating cross-site scripting with HTTP-only
cookies.
http://msdn.microsoft.com/workshop/

author/dhtml/httponly_cookies.asp.

[45] Microsoft. Microsoft security bulletin MS01-017: Erroneous
VeriSign-issued digital certificates pose spoofing hazard.
http://www.microsoft.com/technet/

security/Bulletin/MS01-017.mspx, March 2001.

[46] Mozilla Bugzilla bug 149943 – Princeton-like exploit may be
possible. https://bugzilla.mozilla.org/show_
bug.cgi?id=149943.

[47] Mozilla Bugzilla bug 162871 – DNS: problems with new
DNS cache ("pinning" forever). https://bugzilla.
mozilla.org/show_bug.cgi?id=162871.

[48] Mozilla Bugzilla bug 205726 – nsDnsService rewrite.
https://bugzilla.mozilla.org/show_bug.

cgi?id=205726.

[49] Mozilla Bugzilla bug 245609 – Mozilla not getting
certificate issuer from Authority Information Access CA
Issuers, June 2004.

[50] mozilla.dev.security. VeriSign Class 3 Secure Server CA?
http://groups.google.com/group/mozilla.

dev.security/browse_thread/threa%d/

6830a8566de24547/0be9dea1c274d0c5, March
2007.

[51] mozilla.org. The same-origin policy.
http://www.mozilla.org/projects/

security/components/same-origin.html.

[52] Netcraft anti-phishing toolbar.
http://toolbar.netcraft.com/.

[53] Gunter Ollmann. The pharming guide.
http://www.ngssoftware.com/papers/

ThePharmingGuide.pdf.

[54] Stefano Di Paola and Giorgio Fedon. Subverting Ajax. In
23rd Chaos Communication Congress, December 2006.

[55] Bryan Parno, Cynthia Kuo, and Adrian Perrig. Phoolproof
phishing prevention. In Proceedings of Financial

Cryptography (FC’06), February 2006.

[56] Washington Post. Citibank Phish Spoofs 2-Factor
Authentication. http://blog.washingtonpost.
com/securityfix/2006/07/citibank_phish_

spoof%s_2factor_1.html.

[57] Washington Post. Not Your Average Phishing Scam.
http://blog.washingtonpost.com/

securityfix/2007/01/not_your_average_

ama%zon_phishi.html.

[58] PTFB Pro. http://www.ptfbpro.com/.

[59] Venugopalan Ramasubramanian and Emin Gun Sirer. Perils
of transitive trust in the Domain Name System. In
Proceedings of the Internet Measurement Conference (IMC),
October 2005.

[60] Nicholas Rosasco and David Larochelle. How and why more
secure technologies succeed in legacy markets: Lessons from
the success of SSH. In Proceedings of the Second Annual

Workshop on Economics and Information Security, May
2003.

[61] Jim Roskind. Attacks against the netscape browser. Invited
talk, RSA conference, April 2001.

[62] Blake Ross, Collin Jackson, Nicholas Miyake, Dan Boneh,
and John C. Mitchell. Stronger password authentication
using browser extensions. In Proceedings of the 14th

USENIX Security Symposium, pages 17–32, August 2005.

[63] Stefan Santesson and Russell Housley. Internet X.509 Public
Key Infrastructure Authority Information Access Certificate
Revocation List (CRL) Extension.

http://www.ietf.org/rfc/rfc4325.txt, December 2005.

[64] Stuart Schechter, Rachna Dhamija, Andy Ozment, and Ian
Fischer. Emperor’s new security indicators: An evaluation of
website authentication and the effect of role playing on
usability studies. In Proceedings of the 2007 IEEE

Symposium on Security and Privacy, May 2007.

[65] Security Space and E-Soft. Secure Server Survey.
http://www.securityspace.com/s_survey/

sdata/200704/certca.html, May 2007.

[66] Rajiv Shah and Christian Sandvig. Software Defaults as De
Facto Regulation: The Case of the Wireless Internet. In The

33rd Research Conference on Communication, Information,

and Internet Policy, September 2005.

[67] Christopher Soghoian and Markus Jakobsson. A
Deceit-Augmented Man In The Middle Attack Against Bank
of America’s SiteKey Service.
http://paranoia.dubfire.net/2007/04/

deceit-augmented-man-in-middle-atta%ck.

html, April 2007.

[68] Josh Soref. DNS: Spoofing and Pinning. http:
//viper.haque.net/~timeless/blog/11/.

[69] Spoofstick. http://www.spoofstick.com/.

[70] Sid Stamm, Zulfikar Ramzan, and Markus Jakobsson.
Drive-by pharming. Technical Report 641, Indiana
University Computer Science, December 2006.

[71] Win Treese and Eric Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.1.
http://tools.ietf.org/html/rfc4346, 2006.

[72] Alex Tsow. Phishing with consumer electronics – malicious
home routers. In Models of Trust for the Web Workshop at

the 15th International World Wide Web Conference

(WWW2006), May 2006.

[73] Alex Tsow, Markus Jakobsson, Liu Yang, and Susanne
Wetzel. Warkitting: the drive-by subversion of wireless home
routers. Journal of Digital Forensic Practice, 1(3),
November 2006.

[74] Vanguard security center.
https://flagship.vanguard.com/VGApp/hnw/

content/UtilityBar/SiteHelp/Sit%eHelp/

SecurityCenterOverviewContent.jsp.

[75] VeriSign. Licensing VeriSign Certificates Securing Multiple
Web Server and Domain Configurations. http:
//www.verisign.com/static/001496.pdf, June
2005.

[76] VivilProject. List of public DNS servers.

[77] Min Wu, Robert C. Miller, and Simson Garfinkel. Do
security toolbars actually prevent phishing attacks? In
Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, pages 601–610, 2006.

[78] Min Wu, Robert C. Miller, and Greg Little. Web wallet:
Preventing phishing attacks by revealing user intentions. In
Proceedings of the Symposium on Usable Privacy and

Security (SOUPS), pages 102–113, July 2006.

[79] Yichen Xie and Alex Aiken. Static detection of security
vulnerabilities in scripting languages. In Proceedings of the

15th USENIX Security Symposium, pages 179–192, August
2006.

[80] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a wide
range of attacks. In Proceedings of the 15th USENIX

Security Symposium, pages 121–136, August 2006.

[81] Yahoo sign-in seal. http://security.yahoo.com/.

[82] Eileen Ye and Sean Smith. Trusted paths for browsers. In
Proceedings of the 11th USENIX Security Symposium, pages
263–279, August 2002.

[83] Ka-Ping Yee and Kragen Sitaker. Passpet: Convenient
password management and phishing protection. In
Proceedings of the Symposium on Usable Privacy and

Security (SOUPS), pages 32–43, July 2006.

[84] Tatu Ylonen. SSH – secure login connections over the
Internet. In Proceedings of the 6th USENIX Security

Symposium, pages 37–42, 1996.

[85] Jim Youll. Fraud vulnerabilities in SiteKey security at Bank
of America. cr-labs.com/publications/
SiteKey-20060718.pdf, July 2006.

[86] Yue Zhang, Serge Egelman, Lorrie Faith Cranor, and Jason
Hong. Phinding phish: Evaluating anti-phishing tools. In
Proceedings of the 14th Annual Network and Distributed

System Security Symposium (NDSS 2007), February 2007.

