IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 17, NO. 1, MARCH 2002 107

Dynamic Phasors in Modeling and Analysis of
Unbalanced Polyphase AC Machines

Aleksandar M. StankovidMember, IEEESeth R. Sanderdlember, IEEEand Timur Aydin

~ Abstract—This paper describes a novel approach to dynam- for power systems. For faster phenomena, the primary tools are
ical modeling of asymmetries in electric machines and polyphase time—domain simulations that make no use of the particular nom-
systems (e.g., the ones caused by unbalanced supply waveformsyy, ) ana\yticalform ofthe variables ofinterest. Time—domain sim-

The proposed technique is a polyphase generalization of the dy- . S .
namic phasor approach from power electronics and electric drives. ulations are not only a significant computational burden, but also

The technique is app|icab|e to nonlinear mode|5’ and offers dis- Oﬁer I|tt|e InSIght intO problem SensitiVitieS to design quantities
tinct advantages in modeling, simulation and control with respect and no basis for design of protection schemes. This type of fun-
to standard time—domain models. In a steady-state, the dynamic damental analytical problem is not mitigated by improvementsin
phasors reduce to standard phasors from ac circuit theory. We per- computational technology.

formed experiments and simulations involving a three-phase in- . . . .
duction motor and a three-phase synchronous permanent magnet The modeling methodology presented in this paper builds on

motor, and we demonstrate that models based on dynamic pha- an existing, bUF nonSY_StematiC knowledge base in th? field of
sors provide very accurate descriptions of observed transients. In power conversion. Various forms of frequency selective anal-

a steady state, our approach yields improved equivalent circuits ysis have deep roots in power engineering in the form of phasor-

thal;t contain coupling between the positive and negative sequencepaseaq dynamical models, and the main advantage of the ana-

subcireuits. lytical approach proposed here is its systematic derivation of
Index Terms—&Generalized averaging, phasor dynamics, phasordynamics.The idea of deriving dynamical models for

polyphase ac machines, unbalanced operation. Fourier coefficients goes back to classical averaging theory. The
dynamical equations for Fourier coefficients are often nonlinear,
|. INTRODUCTION and their analytical usefulness stems from the availability of

. . families of approximationghat are based on physical insights
ANY elements N POWer conversion systems have be%?fered by the underlying frequency decomposition.
un_dergomg_ profound changgs n _recent years. Th'SPhasor dynamic models are typically developed from

process is primarily driven by a desire o increase eﬁ'c'enct’(me—domain descriptions (differential equations) using the

with concomitant reduction in energy costs, in power losses Hacedure that we denote as generalized averaging. In the case
cooling requirement, and in component size. Polyphase po Qr

A d dri h | b ¢ ! nonlinear equations, a key element in the modeling process
converters and Orives have a 1argé number ot COmMpone[yg, development of approximations to the right-hand side
connected in a hierarchical, multilayered structure. The co

ts exhibit vari f i ities due & t_r5'f the time—domain equations at a particular frequency. These
ponents exhibit various types of nonlinearities due to propert proximations are based on the describing function method

of (;nate.:larll.s, geongjetrle? of as?puat_?s eIect;omagnetm f'etl. [, [2], and typically problem-dependent; some general error
afn thSWI ¢ mg modes o dopera 'C.)SI' befcor&tl)nuius o;t)er|a| unds are provided in [2] and [3]. The concept of dynamic
of tnese systems IS made possible by 1eedback control. asors was introduced in [4], and applied to series resonant

control performance becomes critical for overall reliabilit)énd switched mode de—dc converters. Extensions to multifre-
when sudden and poten_tially detrimental_transients are trigs ncy averaging that takes into account interactions between
gergd_ by abrupt change_s in the SySte‘.“ eljwronment and by. ! monics was presented in [5]. This paper extends the concept
variations. Thus a precise characterization of such transie Fsdynamic phasors to polyphase systems, and provides models
i of primary interest, particularly for emerging control an f most commonly used ac machines thué enabling analysis of
protection strategies that are based on signal processing éggplete energy conversion systemé. While approximate, the

microcontrollers. models based on dynamic phasors are large signal descriptions

The voltages and currents in power electronic converters:a11[|J damentally different from models expressed in terms of
electricdrives aretypically periodic, but often nonsinusoidal. Dy- iral vectors [6], as we do not require linearity of the un-

namics of interest for analysis and control are often those of Stlying dynamical model. Spiral vectors, on the other hand
V|at|o"ns from'perlpdlg behawor. This "sinusoidal quasstead;&-re defined in terms of transfer functions, constraining their
state” approximation is widely used to study electromechanic

d . ditis al i bl included i fvare t plication domain to linear (or linearized) models.
ynamics, and itis aimost invariably included in software tools |, gection I, we present basic dynamic phasor concepts and
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synchronous permanent magnet machines are described in pbase ¢ — b — ¢) case, as the general polyphase case follows

tion VI, followed by brief conclusions in Section VII. similarly. Following the standard notation, we introduge=
¢/27/3); thena? = o*. Then a time—domain waveform can be
Il. DYNAMIC PHASORS—CONCEPTS ANDDEFINITIONS written as
A. Single Phase Systems Ta < Lol I [ X
_ JlwsT T * '

The generalized averaging that we perform to obtain ou oy | (1) = Z ¢ V3 o« a1 Lo | (B)
models is based on the property [3], [4] that a possibly complex %« = . a a1 Xae
time—domain waveform(7) can be represented on the interval ™
7 € (t — T, ] using a Fourier series of the form (4)

oo

. hwor and we denote the square transformation matrix withit can
() = k; Kr(t)e (1) be checked that is unitary, asmM—1 = M", whereH de-
- notes complex conjugate transpose (Hermitian). As commonly

wherew, = 2r/T" and X,(t) are the complex Fourier coef-gncq ntered in transforms, scaling factors other thay3 are
ficients which we shall also refer to ahasors.These Fourier possible in the definition of matris1, but they require adjust-

coefficients are functions of time since the interval under COlsents in the inverse transform. The coefficients in (4) are

sideration slides as a function of time. We are interested in cases . N
when only a few coefficients provide a good approximation of Pt 1/t e . @
the original waveform, and those coefficients vary slowly with Koo | () =7 / eI ME Ly | () dr
time. Thekth coefficient (ork-phasor) at time is determined X. ¢ = z.
by the following averaging operation:
1 gt (T)p, e
Xty = [ e i = . @ = | (@hue | @) ©)
Our analysis provides a dynamic model for the dominant Fourier (@), ¢

series coefficients as the window of lengthslides over the Eguation (5) definesiynamicalpositive X, ¢, negativeX;, ¢,
waveforms of interest. More specifically, we obtain a state-spa@@d Zero-sequenc’. , symmetric components at frequency
model in which the coefficients in (2) are the state variables. /s: S

Properties: When original waveformsz(-) are com- Xp,
plexvalued, the phasaK_x = (z)_ equals(z*); (wherez*  — | X, , | (¢)
is the complex conjugate af). However, in the general case X
there are no other relationships among ¢h#)th dynamical =t

phasor of the wavefornX, the (—k)th phasorX_;, and the <i xa('r)> |
-Hcth phasor of the conjugate waveforfe*);. Our interest dr ‘ X,
in complex-valued waveforms stems mostly from their use in ol d ) ’
applications: for example, complex space vectors [7] (whichare = ! 2 () . (t) = jbws | Xne | (B) (6)
scalars in mathematical terms) are widely employed in dynam- d Xze
ical descriptions of electrical drives. In the casaedl-valued <E a:c('r)>

L o

time—domain quantities(¢) = z*(t) and X_, = Xj, so (1) . ) ) ,
can be rewritten as a one-sided summation involving twice théd1€re(-)¢ is defined in (2). Among the salient features of the
real partsk of X (¢)e/%:* for positivek. If, in addition, X}, is proposeql definitions are the comp_atlblhty with conventlonz_:\l
time-invariant, the standard definition of phasors from circufyMMetric components in a periodic steady-state, and a sim-
theory is recovered. ilarity to_ thg single-phase case. Qbserve that (§) is a vecFor
A key fact for our development is that thierivativeof the 9eneralization of (3). In applications, we are interested in

kth Fourier coefficient is given by the following expression; €ases when a finite (and preferably small) number of dynamic

4X, o phasors is used in (4). o _

—=(t) = <_> (1) — jhw, X (t). 3) Properties: From the presented definitions, it follows that

dt dr [y the dynamical symmetrical components odmplexvalued

This formula is easily verified using (1) and (2), and integratiopolyphase quantities are related asdp e = (9 _,,
by parts. The describing function formalism is useful in evah(@nl = <x*>; _pand(z). , = (x*): _,. Inthe case of
ating thekth harmonic of the right-hand side of the time—domaipeal-valued wavéformsé in (4) ranges over the same positive
model((d/dr)x). Another straightforward, but very importantand negative harmonics add, , = X* ,, X, = D S
result is that the phasor set of a product of two time—-domadmd X, , = X* _,. Thus, again the two-sided summation in

variables is obtained from a discrete-tiw@nvolutionof corre-  (4) can be replaced by a one-sided version, so that, for example,
sponding phasor sets of each component.

2 S :
Ta(T) = —= R Xp o+ X o+ X, 77| — X, 0.
B. Polyphase Systems ) V3 ;[ Pt ¢ z 0

The definitions given in (1) and (2) will now be generalized he last term takes care of accounting at 0, whenX,, o =
for the analysis of polyphase systems. Let us consider the th€g , and.X o is real. Note thatin the case of time-independent
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symmetric components, the standard definition from polyphadamental of the ac supply and its multiples, we can include a dy-

circuit theory is again recovered. namic phasor at the pulse width modulation (PWM) frequency
The proposed concepts and notation will be now illustratethd some of its multiples. This hierarchical nature of the dy-
on two examples. namic phasor approach is valuable when models of a system

Example #1: Consider the case of a balanced three phaase needed with varying levels of detail.
waveform in a steady state that contains first two harmonics

Acos(wst) + Bsin(2w;t) IIl. DYNAMIC PHASORS AND SPACE VECTORS
I ) I In modern literature on electric drives [7], it is common to
Xape(t) = Acos <“’st - ?) + Bsin [2 <“’st ?)} introduce the notion of complex space vectors (note that the

phase quantities are assumed tardmxs)

Acos <wst — 4%) + Bsin {2 <wst - 4%)} Z(t) = 2 (za(t) + azy(t) + a*zo(t)). )

In this case, the only nonzero symmetrical components d¥@te that from the mathematical standpoint these are complex
X, 1 = V3A/randX, o = V3B/r, andX; | = X, scalars_ as such,_th_ese quantities can (_ancode two dlre_ct|0nal in-
andX; , = X, ». Note that this agrees with practical notiondormation, what is important in cylindrical structures like stan-
that harmonics of the orde¥% + 1 (wherek is nonnegative dard electric machines. One advantage of the space vector con-
integer) belong to the positive sequence, the harmonics of Pt in electric drive applications is the ease of dealing with
order 3k + 2 to the negative sequence, and harmonics of th@tational coordinate transformations, as they amount to pre-
order3k to the zero sequence [8]. multiplications with complex exponentials [7]. In the case when

Example #2: Consider the case of a possibly coupled threZ€ro-sequence quantities are zero, there is a simple inverse trans-
phase inductor, described by a symmetric maltrand supplied formation

by (possibly unbalanced) voltages at a fixed frequency 7, = R(T) 7, = R(a*T) z. = R(aT) (10)

Vq J iq whereR denotes the real part of a complex quantity. From (4)

v | (1) =L e iy | (7). (7) and (9) it follows that

T oo
1 = 2 jlwsT

Ve be () = 7 > TX, (7). (12)

Then from (5), after substituting (71" = M~*, and (6) R —
V,(t) L(t) L(t) Since phase quantities are real-valued, we taye , = X, ,,

d and i encodes the information about positive and negative se-
_ g1 “ ;
Va(t) | =MTTLM dt In(®) | +3ws | In(®) quence quantities; zero-sequence variables have to be treated
Va(t) I.(t) I.(t) separately. In the special casefof +1 and no zero sequence
(8) component

In a steady state, (8) reduces to the standard result from (1) = Xp 1(1)e/T + XJh ((T)e 79T,
polyphase circuit theory (e.g., [9, p. 875]), as the time deriva-
tive on the right-hand side vanishes. IV. THREE PHASE INDUCTION MOTOR MODEL

Our definition of dynamical symmetrical components differs ) o ) )
from the notion of instantaneous symmetrical components in-AS our first application, we derive a dynamical phasor model
troduced by Lyon [10] in one very important aspect—(5) infor a three pha_se _mductlon machine with unbala_nced supply.
cludes integration over a period of the fundamental waveforfdU" Starting point is the standard model of a squirrel cage in-

and this is absent in [10]. This difference has important cong&ction machine from [7, p. 152], expressed in terms of space
quences—uwhile the (time-varying) transformation used in iyectors in the stationary coordinate frame (this model neglects

stantaneous symmetrical components proved useful in cert{]f Magnetic saturation and slot harmonics)
problems, it does not change the time-varying nature of the - _ < i) Jad d -
) . : . vs = | rs+ Ls Us + L — %

model in phase (a-b-c) coordinatdaring transientsOn the dt dt

other hand, the presence of the integral term in (5) will allow d .

us to develop time-invariant models with an adjustable degree 0=L,, —i; + <

of accuracy, as the key mathematical objects of interest (namely d

the dynamical symmetrical components) will have transient dy< 3P - -

namics that can be derived from the original model. 9 a7 LmS(isty ) = Bur =T (12)
Dynamic phasors can be used for modeling of unbalancethere the subscript corresponds to stator quantities, the sub-

polyphase systems that include power converters (e.g., restifiptr corresponds to rotor quantities, a@&dlenotes the imag-

fiers and inverters) and electric machines. In such analyzes iwary part of a complex quantity. Note that in electrical equa-

can vary the number of phasors at different frequencies to dibns nonlinearity appears in the form of speed-current products,

dress a particular problem. In ac motor examples presentednihile in the mechanical equation it appears in the form of a cur-

this paper, all frequencies are harmonically related. A more geent product.

eral case occurs for example when mechanical torque load haAt this point we assume that currents contaifist harmonic

angular dependence. In another example, in addition to the fi§#; 5, I, » andl; ., I ., respectively), and that the mechan-

n,s) tn, rs

d\ - P - -
v+ Ly — ) tp — Jwr—(Lpts + Lty
re 4 dt) b = Jwr (Lpmis + Lpiy)

- ok
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ical speed contains dc (zeroth) compon&nt, and 2nd har-
monic §€2,. » (due to torque ripple). This is a modeling deci-
sion that can be motivated by simulations of the time—domain
model (12). If more current harmonics and consequently more
torque and speed harmonics are included, the model accuracy
will improve [3], but the model size and complexity will also
significantly increase. A direct application of (3) and (11) then
yields the following model—recall that multiplicative time—do-
main nonlinearities will result in convolution of phasor sets

. d
V, = <7>S + jwsLs + Ly %> I, s

. d
+ <jwern + Lrn a) Ip, r

. d
0= <]wern + Lrn %) Ip, 5

) d
+ |:T1’ + <]wer + Lr %):| IP,T

P
- jQr, 0 5 (L"lIP: s T L”Ipﬂj)

P
- jQ?’, 2 5 (Lrn-[:; s + L’I’I:; 7*)

d Fig. 1. Equivalent circuit of a three phase induction motor with unbalanced
Vi = <7’s —Jwsls + Ls _> I s supply.
dt :
+ <—7’ws L, + L, i) I reference frame analysis [11] is one alternative in such case.
) dt ’ Note that our model, while similar in spirit to [11] in the use
) of averaging and of frequency-domain considerations, differs
0= <_stLm + L %) I from it in two aspects. We present a model that includes the
d mechanical subsystem, and we use the second harmonic in
+ [r,,+ <—jw5L,, + L, _ﬂ I . the mechanical speed to characterize the coupling between
dt ’ the positive and negative sequence subsystems [e.g., compare
— i 0 E(LmIZ LI (44)—(51) of [11] and the second equation in (13)]. This cou-
T2 ’ ’ pling remains valid in the steady state as well. Dynamic phasors
— o P (Londy s + Ly 1) allow for simple inclusion of higher frequency components in
m2 g NP s LI T the mechanical subsystem, and are very effective in revealing
d 2p . . dynamical couplings between various quantities, as we show in
d dt 0= 4 LnS(p, o1y + Ly oInr) = BQro =1L gerivation of a novel equivalent circuit below.
d 2p It is of interest to consider (13) in a steady-state (with all
J at 2 = J_8 Ln(Ip, odn, v = In, o1y, ) time derivatives set to zero). The resulting equivalent circuit

— (B +j2Jw,) 2. (13) involving steady-state phasors for the electrical subsystem is

different from the conventional one [7], as there exists a cou-

This set of nonl'inear equations can be rewritter_1 in state—spetﬁﬁ]g between the positive and negative sequence subcircuits
form after straightforward, but somewhat tedious algebraﬂffoportional tof2,. », as shown in Fig. 1« denotes the slip
manipulations. Note that while (13) comprises six differentigl '_ L.+ L 77L’ = Ly + L, mp = Q. 2/(ws5s) and'

- S mo T ™ my P T, S ’

equations compared to three in (12), the averaged equatjgsg — —Q, »/[ws(2 — s)]. This circuit reduces to the conven-

(13) has a nu.mber of useful features. First, it is a time-ifyna| one when speed ripple is neglected. This new equivalent
variant model; second, inputs and consequently states VRt can be useful in machine design (e.g., for efficiency cal-
slowly compared tav,. Thus, it can be used for significantly ¢, ations in single-phase induction machines [12]), and in cases

faster simulations of transients in an induction machingep the mechanical load does not attenuate the speed ripple
Improvements of two to five times were commonly observe&ough to make it negligible.

in our Matlab implementation that made no special effort in
accelerating the simulations. Equation (13) can also be used for
design of improved, possibly large-signal controllers. Note that
dynamic phasors achieve “simultaneous demodulation” in thatTo illustrate the accuracy of (4) and (13) when compared with
all variables in (13) are constant (“dc”) in a steady state. Th{&2), we explored experimentally and numerically the following
cannot be achieved by a single reference frame transformattamsient: at ~ 1.7 s the supply voltage suddenly changes from
in case of an asymmetrically supplied ac machine. Multipkebalanced set to unbalanced set with different magnitudes. The

V. EXPERIMENTSWITH AN INDUCTION MOTOR
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Fig. 2. Transientin line voltages following a sudden loss of balance in sup

voltages. Solid line—experiment. Dash-dotted line—simulation qj-'){g. 3. Transients in phaseandb currents following a sudden loss of balance

in supply voltages. Solid line—experiment. Dash-dotted line—simulation.

induction motor is a three-phase, isolated Y-connected unit with
the following parameter values, = 2.55 Q,r,. = 2.38 Q,

Li, = L;, = 415mH, L,,, = 82.62mH, P = 4,.J = 4.8¢*

kgm?, B = 0.5¢~*Nms/rad. The supply voltages in experiment
are provided by an HP 6834B programmable AC power sourc
phase voltages arel0 Vrms before the transient which is initi-
ated by a zero crossing of; after the transient;, doublesy, 183
remains unchanged, whilg is set to zero (the numerical values ¢

forvoltages are constrained in all experiments by the characte E_‘”'
ticsofthe available motors). Actualnumerical values ofrms pha ;
voltages were [9.89 9.89 9.89]— [23.83 10.33 0. 1t

185 1

VI. MODEL DEVELOPMENT AND EXPERIMENTS FOR A 180
PERMANENT MAGNET SYNCHRONOUSMACHINE

1791

In Fig. 2 we display the input voltages (solid linexperi-
mentaldata, dash-dotted line—simulation), while in Fig. 3 we 15
show the currents in phasesandb. It turns out that there is
no noticeable difference between the predictions of (4), (12}
and (13). We note a good agreement between the experime| '8
data and the predictions of the averaged model, even though
voltage transient is quite abrupt. The speed transients predic = ]
by (12) and (13) are almost identical—in Fig. 4, we show simt
lation results obtained from (13). Our time—domain dynamici
model of a permanent magnet synchronous machine in 3-phi
machine variables is taken from [13, p. 500]. Space-vector d

1845

namic model in the rotor coordinate frame may be written b ?;, 184}
using (9) and converting the stationary frame variables to t *
i O — Rp—ibr
rotor variables{™ = Ze /%) wask
- Lg+ L . P d Pt
T — - - aT
vs <75+ 2 < “rg +dt>> ‘s ool
Ly— Ly < ) P
+ = der 5 §otwr g A . . . ; . . .
2 2 2 " 182'15.67 1AI38 1.J69 1.7 i sl (1).72 173 1.74 175 1.76
t (s)
d 2p -
Txer =5 gkl (() (;)) ®)

Fig. 4. (a) Mechanical speed transient following a sudden loss of balance in

i

2

20 . /= ok supply voltages. (b) Expanded portion with time axis matching the electrical
+ 3 )\;n ('L’S + ¢ ) — Bw, — T}, (14)  transients.
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ﬁ”

A 115

where the subscript corresponds to stator quantities, the su i

perscriptr corresponds to quantities referred to rotor coordinar | B T
frame, and\,,, is the amplitude of the flux linkages establishec
by the permanent magnet as viewed from the stator phase wil
space vector formalism does not make the mathematical moi

ings. Because of the lack of symmetry alahgndq axes, the 50
more compact—note that (14) involves both the curz'_éraa:nd €
its conjugate. :°
We assume that currents contain the dg é&nd /) and A
£2nd harmonic {,, andl}, respectively—all in rotor reference
frame). Note that fundamental frequency Rw,. /4w, not
ws /2w, as variables are referred to the rotor coordinate fram
The mechanical speed contains the dc (0th) compofent
and 2nd harmonié?,. ». A direct application of (3) and (11)
then yields -

A
0.95 1 1.05
t e

~100

Ly+L, (. P d
Vp =|rs+ ——— ]Qr,o -+ Ip Fig. 5. Sudden loss of balance in supply voltage (magnitud&, pthanges).

2 2 dit Solid line—experiment. Dash-dotted line—simulation.
37 P L,— Ly
AN o ppuitt WL 8§ T T T
Tty T ’ _
L,—Lg (J P d .
" T ) M T ] A
T <2 oyt a)
P Ly+ L P
— Q= L Q=N
Py Ty oo g Am
Le+L, /. . P d =
Vi = ’ — Qo= v I, 1
, <7s+ ) <J 05 + dt)) , §=
7 P L,—Ly4 -2
—=Q 9= ——1
2 %9 2 P
-4
. P L,+L P /
— Q= AL Q=N b J
J ,2 2 2 pr + ,2 2 m e
d 3P (L, — Ly 0 s o
Tt =75 <—2 ((p)" = (L)) s + T - .
3P . "
+ Ty Ay +15); —BQ o =1L Fig.6. Transients in phaseandb currents following a sudden loss of balance
J in supply voltages. Solid line—experiment. Dash-dotted line—simulation.
d 3P
— Q. o=—((L L', r I,
4 de 7T 48 ((La+ Loy In + N dn) VIl. CONCLUSION

This paper describes a novel approach to dynamical modeling
of asymmetries in electric machines and polyphase systems. The
proposed technique is a generalization of the dynamic phasor
This dynamic phasor model is similar to (13), as the modelirgpproach. This technique is applicable to nonlinear models, and
assumptions about linearity of magnetic materials and about fegffers distinct advantages in analysis, simulation, and control. In
guency content of variables are the same. a steady-state, the dynamic phasors reduce to standard phasors

To illustrate the results obtained with (14) and (15), we confrom ac circuit theory. We performed experiments and simula-
pared experimental and numerical data. The permanent magiwis involving a three-phase induction motor and a three-phase
synchronous motor is a three-phase unit with the following paynchronous permanent magnet motor, and we demonstrate that
rameter valuesr, = 1 Q, L, = Lg = 905 mH, P = 4, models based on dynamic phasors provide very accurate de-
J =6.25¢* kgn?, B = 4.58¢ 3 Nms/rad \",, = 0.1625. We  scriptions of observed transients. In a steady state, our approach
consider the case in which the machine is initially supplied byields improved equivalent circuits which contain coupling be-

a balanced voltage supply (phase voltages are 43 Vrms). Theween the positive and negative sequence subcircuits that is pro-

att = 1 s, the supply voltage suddenly changes to an unbgbertional to the steady-state speed ripple.
anced set—, increases to 54 Vrms whilg, andv,. remain un-

changed, as shown (for line voltages) in Fig. 5. In Fig. 6 we REFERENCES
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P
- <B + j2JQ 0 5) Q, 5. (15)
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