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Abstract. In the dynamic Pickup and Delivery Problem with Transfers
(dPDPT), a set of transportation requests that arrive at arbitrary times
must be assigned to a fleet of vehicles. We use two cost metrics that cap-
ture both the company’s and the customer’s viewpoints regarding the
quality of an assignment. In most related problems, the rule of thumb is
to apply a two-phase local search algorithm to heuristically determine a
good requests-to-vehicles assignment. This work proposes a novel solu-
tion based on a graph-based formulation of the problem that treats each
request independently. Briefly, in this conceptual graph, the goal is to
find a shortest path from a node representing the pickup location to that
of the delivery location. However, we show that efficient Bellman-Ford or
Dijkstra-like algorithms cannot be applied. Still, our method is able to
find dPDPT solutions significantly faster than a conventional two-phase
local search algorithm, while the cost of the solution is only marginally
increased.

1 Introduction

The family of pickup and delivery problems covers a broad range of optimization
problems that appear in various logistics and transportation scenarios. Broadly
speaking, these problems look for an assignment of a set of transportation re-
quests to a fleet of vehicles in a way that satisfies a number of constraints and at
the same time minimizes a specific cost function. In this context, a transporta-
tion request is defined as picking up an object (e.g., package, person, etc.) from
one location and delivering it to another; hence the name.

In its simplest form, the Pickup and Delivery Problem (PDP) only imposes
two constraints. The first, termed precedence, naturally states that pickup should
occur before delivery for each transportation request. The second, termed pair-

ing, states that both the pickup and the delivery of each transportation request
should be performed by the same vehicle. The Pickup and Delivery Problem

with Transfers (PDPT) [11, 25] is a PDP variant that eliminates the pairing
constraint. In PDPT, objects can be transferred between vehicles. Transfers can
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occur in predetermined locations, e.g., depots, or in arbitrary locations as long
as the involved vehicles are in close proximity to each other at some time. We
refer to the latter case as transfer with detours, since the vehicles may have to
deviate from their routes.

Almost every pickup and delivery problem comes in two flavors. In static,
all requests are known in advance and the goal is to come up with the best
vehicle routes from scratch. On the other hand, in dynamic, a set of vehicle
routes, termed the static plan, has already been established. Then, additional
requests arrive ad hoc, i.e., at arbitrary times, and the plan must be modified to
satisfy them. While algorithms for static problems can also solve the dynamic
counterpart, they are rarely used as they take a lot of time to execute. Instead,
common practice is to apply two-phase local search algorithms. In the first phase,
a quick solution is obtained by assigning each standing request to the vehicle that
results in the smallest cost increase. In the second phase, the obtained solution
is improved by reassigning requests.

This paper proposes an algorithm for the dynamic Pickup and Delivery Prob-

lem with Transfers (dPDPT). Although works for the dynamic PDP can be
extended to consider transfers between vehicles, to the best of our knowledge,
this is the first work targeting dPDPT. Our solution processes requests inde-
pendently, and does not follow the two-phase paradigm. Satisfying a request is
treated as a shortest path problem in a conceptual graph. Intuitively, the object
must travel from the pickup to the delivery location following the vehicles’ routes
and schedules.

The primary goal in pickup and delivery problems is to minimize the total
operational cost required to satisfy the requests, i.e., the company’s expenses.
Under our dPDPT formulation, a satisfied request is represented as a path p. We
define its operational cost Op as the additional cost (total delay), with respect to
the static plan, incurred by the vehicles in order to accommodate the solution p.
In addition, we consider the promptness of satisfying the request. We define the
customer cost Cp of a path p as the delivery time of the object. These costs are in
general conflicting, as they represent two distinct views. For example, the path
with the earliest delivery time may require significant changes in the schedule
of the vehicles and cause large delays on the static plan. In contrast, the path
with the smallest operational cost could result in late delivery. Our algorithm
can operate under any monotonic combination of the two costs. However, in this
work, we consider operational cost as more important; customer cost is used to
solve ties.

Finding the shortest path (according to the two costs) in the conceptual graph
is not straightforward. The reason is that the weights of the edges depend on
both the operational and customer cost of the path that led to this edge. In fact,
an important contribution of this paper is that we show, contrary to other time-
dependent networks, that the conceptual graph does not exhibit the principle

of optimality, which is necessary to apply efficient Bellman-Ford or Dijkstra-like
algorithms. Hence, one has to enumerate all possible paths. However, despite
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this fact, extensive experimental results show that our method is significantly
faster than a two-phase local search algorithm adapted for dPDPT.

The remainder of this paper is organized as follows. Section 2 reviews re-
lated work and Section 3 formally introduces dPDPT. Section 4 presents our
graph-based formulation and algorithm. Then, Section 5 presents an extensive
experimental evaluation and Section 6 concludes this work.

2 Related work

This work is related to pickup and delivery, and shortest path problems.

Pickup and Delivery Problems.
In the Pickup and Delivery Problem (PDP) objects must be transported

by a fleet of vehicles from a pickup to a delivery location with the minimum
cost, under two constrains: (1) pickup occurs before delivery (precedence), and
(2) pickup and delivery of an object is performed by the same vehicle (pairing).
PDP is NP-hard since it generalizes the well-known Traveling Salesman Problem
(TSP). Exact solutions employ column generation [14, 32, 34], branch-and-cut
[9, 30] and branch-and-cut-and-price [29] methodologies. On the other hand, the
heuristics for the approximation methods take advantage of local search [2, 22,
25, 31].

Other PDP variations introduce additional constraints. For instance, in the
Pickup and Delivery Problem with Time Windows (PDPTW), pickups and de-
liveries are accompanied with a time window that mandates when the action
can take place. In the Capacitated Pickup and Delivery Problem (CPDP), the
amount of objects a vehicle is permitted to carry at any time is bounded by
a given capacity. In the Pickup and Delivery Problem with Transfers (DPDT),
studied in this paper, the pairing constraint is lifted. [11] proposes a branch-
and-cut strategy for DPDT. [25] introduces the Pickup and Delivery Problem
with Time Windows and Transfers and employs a local search optimization ap-
proach. In all the above problems, the transportation requests are known in
advance, hence they are characterized as static. A formal definition of static
PDP and its variants can be found in [3, 10,?].

Almost all PDP variants also have a dynamic counterpart. In this case, a
set of vehicle routes, termed the static plan, has already been established, and
additional requests arrive ad hoc, i.e., at arbitrary times. Thus, the plan must
be modified to satisfy them. A survey on dynamic PDP can be found in [4].
Typically, two-phase local search methods are applied for the dynamic problems.
The first phase applies an insertion heuristic [28], whereas the second employs
tabu search [15, 23, 24]. To the best of our knowledge our work is the first to
address the dynamic Pickup and Delivery Problem with Transfers (dPDPT).

Shortest Path Problems.
Bellman-Ford and Dijkstra are the most well-known algorithms for finding

the shortest path between two nodes in a graph. The ALT algorithms [?,16, 27]
perform a bidirectional A* search and exploit a lower bound of the distance be-
tween two nodes to direct the search. To compute this bound they construct an
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embedding on the graph. There exist a number of materialization techniques [1,
19, 20] or encoding/labeling schemes [6, 7] that can be used to efficiently compute
the shortest path. Both the ALT algorithms and the materialization and encod-
ing methods are mostly suitable for graphs that are not frequently updated,
since they require expensive precomputation.

In multi-criteria shortest path problems the quality of a path is measured by
multiple metrics, and the goal is to find all paths for which no better exists.
Algorithms are categorized into three classes. The methods of the first class
(e.g., [5]) apply a user preference function to reduce the original multi-criteria
problem to a conventional shortest path problem. The second class contains the
interactive methods (e.g., [17]) that interact with a decision maker to come up
with the answer path. Finally, the third class includes label-setting and label-
correcting methods (e.g., [18, 21, 33]). These methods construct a label for every
path followed to reach a graph node. Then, at each iteration, they select the
path with the minimum cost, defined as the combination of the given criteria,
and expand the search extending this path.

In time-dependent shortest path problems the cost of traveling from node ni

to nj in a graph (e.g., the road network of a city) depends on the departure time
t from ni. [8] is the first attempt to solve this problem using a Bellman-Ford
based solution. However, as discussed in [13], Dijkstra can also be applied for
this problem, as long as the earliest possible arrival time at a node is consid-
ered. In the context of transportation systems, the FIFO (a.k.a. non-overtaking)
property of a road network is considered as a necessity in order to achieve an
acceptable level of complexity. According to this property delaying the departure
from a graph node ni to reach nj cannot result in arriving earlier at nj . However,
even when the FIFO property does not hold it is possible to provide an efficient
solution [12, 26] by properly adjusting the weights in graph edges [12].

3 Problem Formulation

Section 3.1 provides basic definitions and introduces the dynamic Pickup and
Delivery Problem with Transfers. Section 3.2 details the actions allowed for sat-
isfying a request and their costs.

3.1 Definitions

Assume that a company has already scheduled its fleet of vehicles to service a
number of requests. We refer to this schedule as the static plan, since we assume
that it is given as input. The static plan consists of a set of vehicles following
some routes; we overload notation ra to refer to both a vehicle and its route.
The route of a vehicle ra is a sequence of distinct spatial locations, where each
location ni is associated with an arrival time Aa

i and a departure time Da
i .

Note that the requirement for distinct locations within a route is introduced to
simplify notation and avoid ambiguity when referring to a particular location.
Besides, if a vehicle visits a location multiple times, its route can always be
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represented as a set of distinct-locations routes. The difference Da
i − Aa

i is a
non-negative number; it may be zero indicating that vehicle ra just passes by ni,
or a positive number corresponding to some service at ni, e.g., pickup, delivery,
mandatory stop, etc. For two consecutive locations ni and nj on ra, the difference
Aa

j −Da
i ≥ 0 corresponds to the travel time from ni to nj .

An ad-hoc dPDPT request is a pair of locations ns and ne, signifying that a
package must be picked up at ns and be delivered at ne. In order to complete
a request, it is necessary to perform a series of modifications to the static plan.
There are five types of modifications allowed, termed actions : pickup, delivery,
transport, transfer without detours, and transfer with detours. Each action, de-
scribed in detail later, results in the package changing location and/or vehicle. A
sequence of actions is called a path. If the initial and final location of the package
in a path are ns and ne, respectively, the path is called a solution to the request.

There are two costs associated with an action. The operational cost measures
the time spent by vehicles in order to perform the action, i.e., the delay with
respect to the static plan. The customer cost represents the time when the action
is completed. Furthermore, the operational cost Op of a path p is defined as the
sum of operational costs for each action in the path, and the customer cost Cp is
equal to the customer cost of the final action in p. Therefore, for a solution p, Op

signifies the company’s cost in accommodating the request, while Cp determines
the delivery time of the package according to p.

Any monotonic combination (e.g., weighted sum, product, min, max, average
etc.) of the two costs could be a meaningful measure for assessing the quality
of a solution. In the remainder of this paper, we assume that the operational
cost is more important, and that the customer cost is of secondary importance.
Therefore, a path p is preferred over q, if Op < Oq, or Op = Oq ∧ Cp < Cq.
Equivalently, we may define the combined cost of a path p as:

cost(p) = M · Op + Cp , (1)

whereM is a sufficiently large number (greater than the largest possible customer
cost divided by the smaller possible operational cost) whose sole purpose is to
assign greater importance to the operational cost. Based on this definition, the
optimal solution is the one that has the lowest combined cost, i.e., the minimum
customer cost among those that have the least operational cost. The dynamic

Pickup and Delivery with Transfers (dPDPT) problem is to find the optimal
solution path.

3.2 Actions

It is important to note that, throughout this paper, we follow the convention
that an action is completed by vehicle ra at a location ni just before ra departs
from ni. Since ra can have multiple tasks to perform at ni according to the static
plan, this convention intuitively means that we make no assumptions about the
order in which a vehicle performs its tasks. In any case, the action will have
concluded by the time ra is ready to depart from ni.
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Consider a path p with operational and customer costs Op and Cp, respec-
tively. Further, assume that the last action in p results in the package being
onboard vehicle ra at location ni. Let p′ denote the path resulting upon per-
forming an additional action E on p. In the following, we detail each possible
action E, and the costs of the resulting path p′, denoted as Op′ , Cp′ , which may
depend on the current path costs Op, Cp.

Pickup

The pickup action involves a single vehicle, ra, and appears once as the first
action in a solution path. Hence, initially the package is at the pickup location
ns of the request, p is empty, and Op = Cp = 0.

We distinguish two cases for this action. First, assume that ns is included in
the vehicle’s route, and let Aa

s , D
a
s denote the arrival and departure times of ra

at ns according to the static plan. In this case, the pickup action is denoted as
Ea

s . No modification in ra’s route is necessary, and thus there is zero additional
operational cost for executing Ea

s . The customer cost for the resulting path p′

becomes equal to the scheduled (according to the static plan) departure time
Da

s from ns; without loss of generality, we make the assumption that the request
arrives at time 0. Therefore,

Op′= 0
Cp′= Da

s

}

for p′ = Ea
s . (2a)

In the second case, the pickup location ns is not in the ra route. Let ni be
a location in the ra route that is sufficiently close to ns; then, ra must take a
detour from ni to ns. A location is sufficiently close to ns if the detour is short,
i.e., its duration, denoted as T a

si, is below some threshold (a system parameter).
Hence, it is possible that a sufficiently close location does not exists for route ra;
clearly, if no such location exists for any route, then the request is unsatisfiable.
When such a ni exists, the pickup action is denoted as Ea

si. Figure 1(a) shows a
pickup action with detour. The solid line in the figure denotes the vehicle route
ra and the dashed line denotes the detour performed by ra from ni to ns to
pickup the package. The operational cost of a pickup action with detour is equal
to the delay T a

si due to the detour. The customer cost of p′ is the scheduled
departure time from ni incremented by the delay. Therefore,

Op′= T a
si

Cp′= Da
i + T a

si

}

for p′ = Ea
si. (2b)

Delivery

The delivery action involves a single vehicle, ra, and appears once as the last
action in a solution path. Similar to pickup, two cases exist for this action. In the
first case, ne appears in the route ra, and delivery is denoted as Ea

e . The costs
for path p′ are shown in Equation 3a. In the second case, a detour of length T a

ie

at location ni is required, and delivery is denoted as Ea
ie. Figure 1(b) presents

an Ea
ie delivery action with detour. The costs for p′ are shown in Equation 3b,
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ra

ni

ns

ra

ni

ns

ra

ni

nj

(a) Ea
si: pickup with detour (b) Ea

ie: delivery with detour (c) Ea
ij : transport

ra

rb

ni

ra

rb

ni

nj
nc

(d) Eab
i : transfer without detour (e) Eab

ij : transfer with detour

Fig. 1. Actions allowed for satisfying a dPDPT request.

where we make the assumption that it takes T a
ie/2 time to travel from ni to ne.

Op′= Op

Cp′= Cp

}

for p′ = pEa
e . (3a)

Op′= Op + T a
ie

Cp′= Cp + T a
ie/2

}

for p′ = pEa
ie. (3b)

Transport

The transport action involves a single vehicle, ra, and corresponds to the
carrying of the package by a vehicle between two successive locations on its
route. Figure 1(c) illustrates such a transportation action from location ni to nj

onboard vehicle ra. As assumed, path p results in the package being onboard ra
at location ni. The transport action, denoted as Ea

ij , has zero operational cost,
as the vehicle is scheduled to move from ni to nj anyway. The customer cost is
incremented by the time required by vehicle ra to travel from ni to nj and finish
its tasks at nj . Therefore,

Op′= Op

Cp′= Cp +Da
j −Da

i

}

for p′ = pEa
ij . (4)

Transfer without detours

The transfer without detours action, denoted as Eab
i , involves two vehicles, ra

and rb, and corresponds to the transfer of the package from ra to rb at a common
location ni, e.g., a depot, drop-off/pickup point, etc. For example, Figure 1(d)
shows such a transfer action via the common location ni. Let Ai

b, D
i
b be the

arrival and departure times of vehicle rb at location ni. We distinguish three
cases.

In the first, the last action in path p concludes after vehicle rb arrives and
before it departs from ni, i.e., A

b
i ≤ Cp ≤ Db

i . Since there is no delay in the
schedule of vehicles, the action’s operational cost is zero, while the customer
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cost of the resulting path p′ becomes equal to the scheduled departure time of
rb from ni. Therefore,

Op′= Op

Cp′= Db
i

}

for p′ = pEab
i , if Ab

i ≤ Cp ≤ Db
i . (5a)

In the second case, the last action in path p concludes before vehicle rb arrives
at ni, i.e., Cp < Ab

i . For the transfer to proceed, vehicle ra must wait at ni until
rb arrives. The operational cost is incremented by the delay, which is equal to
Ab

i − Cp. On the other hand, the customer cost becomes equal to the scheduled
departure time of rb from ni. Therefore,

Op′= Op+Ab
i−Cp

Cp′= Db
i

}

for p′ = pEab
i , if Cp < Ab

i . (5b)

In the third case, the last action in p concludes after vehicle rb is scheduled
to depart from ni, i.e., Cp > Db

i . This implies that rb must wait at ni until the
package is ready for transfer. The delay is equal to Cp−Db

i , which contributes to
the operational cost. The customer cost becomes equal to the delayed departure
of rb from ni, which coincides with Cp. Therefore,

Op′= Op+Cp−Db
i

Cp′= Cp

}

for p′ = pEab
i , if Cp > Db

i . (5c)

Transfer with detours

Consider distinct locations ni on ra and nj on rb. Assume that short detours
from ni and nj are possible, i.e., the detour durations are below some threshold,
and that they have a common rendezvous point. The transfer with detours ac-
tion, denoted as Eab

ij , involves the two vehicles, ra and rb, and corresponds to the
transportation of the package on vehicle ra via the ni detour to the rendezvous
location, its transfer to vehicle rb, which has taken the nj detour, and finally its
transportation to nj . Figure 1(e) illustrates a transfer action between vehicles ra
and rb via a detour to their common rendezvous point nc. Notice the difference
with Figure 1(d) where the transfer action occurs without a detour. To keep the
notation simple, we make the following assumptions: (1) the ni detour travel
time of ra is equal to that of the nj detour of rb, denoted as T ab

ij ; and (2) it takes

T ab
ij /2 time for both ra and rb to reach the rendezvous location.
Similar to transferring without detours, we distinguish three cases. In the

first, the package is available for transfer at the rendezvous location, at time
Cp + T ab

ij /2, after the earliest possible and before the latest possible arrival of

rb, i.e., A
b
j + T ab

ij /2 ≤ Cp + T ab
ij /2 ≤ Db

j + T ab
ij /2. Both vehicles incur a delay in

their schedule by T ab
ij . Therefore,

Op′= Op+2·T ab
ij

Cp′= Db
j+T ab

ij

}

for p′ = pEab
ij , if A

b
j ≤ Cp ≤ Db

j . (6a)

In the second case, the package is available for transfer before the earliest
possible arrival of rb at the rendezvous location, i.e., Cp + T ab

ij /2 < Ab
j + T ab

ij /2.
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Vehicle ra must wait for Ab
j − Cp time. Therefore,

Op′= Op+Ab
j−Cp+2·T ab

ij

Cp′= Db
j+T ab

ij

}

for p′ = pEab
ij , if Cp < Ab

j . (6b)

Finally, in the third case, the package is available for transfer after the latest
possible arrival of rb at the rendezvous location, i.e., Cp + T ab

ij /2 > Db
j + T ab

ij /2.

Vehicle rb must wait for Cp −Db
j time. Therefore,

Op′= Op+Cp−Db
j+2·T ab

ij

Cp′= Cp+T ab
ij

}

for p′ = pEab
ij , if Cp > Db

j . (6c)

4 Solving dynamic Pickup and Delivery with Transfers

Section 4.1 models dynamic Pickup and Delivery with Transfers as a dynamic
shortest path graph problem. Section 4.2 introduces the SP algorithm that iden-
tifies the solution to a dPDPT request.

4.1 The Dynamic Plan Graph

We construct a weighted directed graph, termed dynamic plan graph, in a way
that a sequence of actions corresponds to a simple path on this graph. A vertex
of the graph corresponds to a spatial location. In particular, a vertex V a

i rep-
resents the spatial location ni of route ra. Additionally, there exist two special
vertices, Vs and Ve, which represent the request’s pickup and delivery, respec-
tively, locations. Therefore, five types of edges exist:

(1) A pickup edge Ea
si connects Vs to V a

i , and represents a pickup action by
vehicle ra with a detour at ni. Edge Ea

ss from Vs to V a
s (two distinct

vertices that correspond to the same spatial location ns) represents the
case of pickup with no detour.

(2) A delivery edge Ea
ie connects V a

i to Ve, and represents a delivery action
by vehicle ra with a detour at ni. Edge E

a
ee from Ve to V a

e represents the
case of pickup with no detour.

(3) A transport edge Ea
ij connects V

a
i to V a

j , and represents a transport action
by ra from ni to its following location nj on the route.

(4) A transfer without detours edge Eab
i connects V a

i to V b
i , and represents

a transfer from ra to rb at common location ni.
(5) A transfer with detours edge Eab

ij connects V a
i to V b

j , and represents a
transfer from ra to rb at a rendezvous location via detours at ni and nj .

Based on the above definitions, a simple path on the graph is a sequence of
distinct vertices that translates into a sequence of actions. Further, a solution
for the request is a path that starts from Vs and ends in Ve.

The final issue that remains is to define the weights W of the edges. We
assign edge E a pair of weights w(E) = 〈wO(E), wC(E)〉, so that wO(E) (resp.



10 Panagiotis Bouros, et al.

Pickup Delivery Transport

w(Ea
si) = 〈T a

si, D
a
i+T

a
si〉 (7) w(Ea

ie) = 〈T a
ie, T

a
ie/2〉 (8) w(Ea

ij) = 〈0, Da
j −Da

i 〉 (9)

Transfer

w(Eab
ij ) =







〈2·T ab
ij , Db

j−Cp+T ab
ij 〉, if Ab

j ≤ Cp ≤ Db
j

〈Ab
j−Cp+2·T ab

ij , Db
j−Cp+T ab

ij 〉, if Cp < Ab
j

〈Cp−Db
j+2·T ab

ij , T ab
ij 〉, if Cp > Db

j .

(10)

Table 1. Edge weights

wC(E)) corresponds to the operational (resp. customer) cost of performing the
action associated with the edge E. Recall from Section 3.2 that the costs of
the last action in a sequence of actions depends on the total costs incurred by
all previous actions. Consequently, the weights of an edge E from V to V ′ are
dynamic, since they depend on the costs of the path p that lead to V . Assuming
Op and Cp are the costs of p, and Op′ and Cp′ those of path p′ = pE upon
executing E, we have that w(E) = 〈Op′−Op, Cp′−Cp〉. Table 1 summarizes the
formulas for the weights of all edge types; note that the weights for actions with
no detours are obtained by setting the corresponding T value to zero. In the
formulas, Ab

j , D
a
i , D

a
j and Db

j have fixed values determined by the static plan.
On the other hand, Cp depends on the path p that leads to V a

i .
Clearly, a path from Vs to Ve that has the lowest combined cost according to

Equation 1 is an optimal solution.

Proposition 1. Let R be a collection of vehicles routes and (ns, ne) be a dPDPT

request over R. The solution to the request is the shortest path from vertex Vs to

Ve on the dynamic plan graph GR with respect to cost() of Equation 1.

Example 1. Figure 2(a) pictures a collection of vehicle routes R = {ra(n1, n3),
rb(n2, n6), rc(n4, n8, n9)}, and the pickup ns and the delivery location ne of a
dPDPT request. Locations n1 on route ra and n2 on rb are sufficiently close to
location ns and thus, pickup actions Ea

s1 and Eb
s2 are possible. Similar, the Ec

9e

delivery action is possible at location n9 on route rc. Finally, we also identify
two transfer actions, Eac

34 and Ebc
68, as locations n3, n4 and n6, n8 have common

rendezvous points n5 and n7, respectively.
To satisfy the dPDPT request (ns, ne) we define the dynamic plan graph

GR in Figure 2(b) containing vertices Vs, V
a
1 , V

b
2 , . . . , Ve. Notice that the graph

does not include any vertices for the rendezvous points n5 and n7. Dynamic
plan graph GR contains two paths from Vs to Ve which means that there two
different ways to satisfy the dPDPT request: p1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 , Ve) and

p2(Vs, V
b
2 , V

b
6 , V

c
8 , V

c
9 , Ve). Next, assume, for simplicity, that the detour cost is

equal to T for all possible actions. Further, consider paths p′1(Vs, V
a
1 , V

a
3 ) and
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rc

ra

rb

n9

n3
n4

n5

ns

ne

n1
n2

pickup

n6

n8 n7

delivery

(a) Vehicle routes R

Vs

V1
a

V2
b

V3
a

V6
b

V4
c

V8
c

V
c

V9
c

Ve

(b) Dynamic plan graph GR

Fig. 2. A collection of vehicles routes R, a dPDPT request (ns, ne) over R, and the
dynamic plan graph GR. The solid lines denote the vehicle routes/transport edges while
the dashed lines denote the pickup, delivery and transfer with detour actions/edges.

p′2(Vs, V
b
2 , V

b
6 ), i.e., just before the transfer of the package takes place, and as-

sume that Ac
4 < Cp′

1
< Dc

4 and Cp′

2
> Dc

8 hold. Note, that the operational
cost of the two paths is exactly the same, i.e., Op′

1
= Op′

2
= T , coming from

the pickup of the package at ns. Now, according to Equation 10 and after the
transfers Eac

34 and Ebc
68 take place, we get path p′′1 = p′1E

bc
68 and p′′2 = p′2E

bc
68

with Op′′

1
= 3 ·T < Op′′

2
= 3 ·T +Cp′

2
−Dc

8, and therefore, cost(p′′1) < cost(p′′2).
Finally, since no other transfer incurs in order to delivery the package, this holds
also for paths p1 and p2, i.e., cost(p1) < cost(p2), and thus, the solution to the
dPDPT request (ns, ne) is path p1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 , Ve) with Op1

= 4 · T
and Cp1

= Dc
9 +

3·T
2 .

4.2 The SP Algorithm

According to Proposition 1, the next step is to devise an algorithm that com-
putes the two-criterion shortest path w.r.t to cost() on the dynamic plan graph.
Unfortunately, the dynamic weights of the edges in the graph violate the sub-

path optimality; that is, the lowest combined cost path from Vs to Ve that passes
through some vertex V may not contain the lowest combined cost path from Vs

to V . The following theorem supports this claim.

Theorem 1. The dynamic plan graph does not have subpath optimality for any

monotonic combination of the operational and customer costs.

Proof. Let p, q be two paths from Vs to V
a
i , with costs Op, Cp and Oq, Cq, respec-

tively, such that Op < Oq and Cp < Cq, which implies that for any monotonic
combination of the operational and customer costs, p has lower combined cost
than q. Let p′ and q′ be the paths resulting after traversing a transfer without
detours edge Eab

i .
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Assume that Cp < Cq < Ab
i , so that the second case of Equation 10 applies

for the weight w(Eab
i ) (setting T ab

ij = 0). Then, Op′ = Op + Ab
i − Cp, Oq′ =

Oq + Ab
i − Cq, and Cp′ = Cq′ = Db

i . Assuming that Op − Cp > Oq − Cq, we
obtain that Oq′ < Op′ . Therefore, for any monotonic combination that considers
both costs, q′’s combined cost is lower that that of p′’s. ⊓⊔

As a result, efficient algorithms based on the subpath optimality, e.g., Dijkstra
and Bellman-Ford cannot be employed to compute the shortest path on the
dynamic plan graph. In contrast, an exhaustive enumeration of all paths from
Vs to Ve is necessary, and for this purpose, we introduce a label-setting algorithm
called SP. Note that, in the sequel, we only discuss the case when actions occur
with detours as it is more general.

The SP algorithm has the following key features. First, similar to all algo-
rithms for multi-criteria shortest path, it may visit a vertex V a

i more than once
following multiple paths from the initial vertex Vs. For each of these paths p, the
algorithm defines a label in the form of 〈V a

i , p, Op, Cp〉, where Op is the opera-
tional and Cp the customer cost of path p as introduced in Section 4.1. Second,
at each iteration, SP selects the label 〈V a

i , p, Op, Cp〉 of the most “promising”
path p, in other words, the path with the lowest cost(p), and expands the search
considering the outgoing edges from V a

i on the dynamic plan graph GR. If vertex
V a
i has an outgoing delivery edge Ea

ie, SP identifies a path from initial vertex Vs

to final Ve called candidate solution. The candidate solution is an upper bound

to the final solution and it is progressively improved until it becomes equal to
the final. The role of a candidate solution is twofold; it triggers the termination
condition and prunes the search space. Finally, the algorithm terminates the
search when cost(p) of the most “promising” path p is equal to or higher than
cost(pcand) of the current candidate solution pcand which means that neither p
or any other path at future iterations can be better than current pcand.

Figure 3 illustrates the pseudocode of the SP algorithm. SP takes as inputs:
a dPDPT request (ns, ne) and the dynamic plan graph GR of a collection of
vehicle routes R. It returns the shortest path from Vs to Ve on GR with respect
to cost(). The algorithm uses the following data structures: (1) a priority queue
Q, (2) a path pcand, and (3) a list T . The priority queue Q is used to perform
the search by storing every label 〈V a

i , p, Op, Cp〉 to be checked, sorted by cost(p)
in ascending order. The target list T contains entries of the form 〈V a

i , 0, T a
ie〉,

where V a
i is a vertex of the dynamic plan graph involved in a delivery edge Ea

ie,
List T is used to construct or improve the candidate solution pcand.

The execution of the SP algorithm involves two phases: the initialization

and the core phase. In the initialization phase (Lines 1–4), SP first creates the
pickup Ea

si and delivery edges Ea
ie on the dynamic plan graph GR. For this

purpose it identifies each location ni on every vehicle route ra that is sufficiently
close to pickup location ns (resp. delivery ne), i.e., the duration T a

si (resp. T
a
ie)

of the detour from ns to ni (resp. ni to ne) is below some threshold (a system
parameter). Then, the algorithm initializes the priority queue Q adding every
vertex V a

i involved in a pickup edge Ea
si on GR and constructs the target list T .

In the core phase (Lines 5–17), the algorithm performs the search. It proceeds
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Algorithm SP
Input: dPDPT request (ns, ne), dynamic plan graph GR

Output: shortest path from Vs to Ve w.r.t. cost()
Parameters:

priority queue Q: the search queue sorted by cost() in ascending order
path pcand: the candidate solution to the dPDPT request
list T : the target list

Method:

1. construct pickup edges Ea
si;

2. construct delivery edges Ea
ie;

3. for each pickup edge Ea
si(Vs, V

a
i ) do

push label 〈V a
i , Ea

si, T
a
si, D

a
i +Ta

si〉 in Q;

4. for each delivery edge Ea
ie(V

a
i , Ve) do

insert 〈V a
i , Ta

ie, T
a
ie/2〉 in T ;

5. while Q is not empty do

6. pop label 〈V a
i , p, Op, Cp〉 from Q;

7. if cost(p) ≥ cost(pcand) then return pcand;

8. ImproveCandidateSolution(pcand, T , 〈V a
i , p, Op, Cp〉);

9. for each outgoing transport Ea
ij or transfer edge Eab

ij on GR do

10. extend path p and create p′;

11. compute Op′ and Cp′ ;

12. if cost(p′) < cost(pcand) then

ignore path p′;

13. else

14. push label 〈V ′, p′, Op′ , Cp′〉 in Q where V ′ is the last vertex in p′;

15. end if

16. end for

17. end while

18. return pcand if exists, otherwise null;

Fig. 3. The SP algorithm.

iteratively popping, first, the label 〈V a
i , p, Op, Cp〉 from Q on Line 6. Path p has

the lowest cost(p) value compared to all others paths in Q. Next, SP checks the
termination condition (Line 7). If the check succeeds, i.e., cost(p) ≥ cost(pcand),
then current candidate pcand is returned as the final solution.

If the termination condition fails, the algorithm first tries to improve candi-
date solution pcand calling the ImproveCandidateSolution(pcand, T , 〈V a

i , p, Op, Cp〉)
function on Line 8. The function checks if the target list T contains an entry
〈V a

i , T
a
ie, T

a
ie/2〉 for the vertex V a

i of the current label and constructs the path
pEa

ie from Vs to Ve. If cost(pE
a
ie) < cost(pcand) then a new improved candidate

solution is identified and thus, pcand = pEa
ie. Finally, SP expands the search con-

sidering all outgoing transport and transfer edges from V a
i on GR (Lines 9–17).

Specifically, the path p of the current label is extended to p′ = pEa
ij (transport

edge) or to p′ = pEab
ij (transfer edge), and the operational Op′ and the customer

cost Cp′ of the new path p′ are computed according to Equations 9 and 10. Then,
on Line 12, the algorithm determines whether p′ is a “promising” path and thus,
it must be extended at a future iteration, or it must be discarded. The algorithm
discards path p′ if cost(p′) ≥ cost(pcand) which means that p′ cannot produce a
better solution than current pcand. Otherwise, p′ is a “promising” path, and SP

inserts label 〈V ′, p′, Op′ , Cp′〉 in Q where V ′ is the last vertex in path p′.
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Example 2. We illustrate the SP algorithm using Figure 2. To carry out the
search we make the following assumptions, similar to Example 1. The detour
cost is equal to T for all edges. For the paths p′1(Vs, V

a
1 , V

a
3 ) and p′2(Vs, V

b
2 , V

b
6 ),

i.e., just before the transfer of the package takes place, Ac
4 < Cp′

1
< Dc

4 and
Cp′

2
> Dc

8 hold. Finally, we also assume that Da
1 < Da

3 < Db
2 < Db

6.
First, SP initializes the priority queue Q = {〈V a

1 , (Vs, V
a
1 ), T,D

a
1+T 〉, 〈V b

2 ,
(Vs, V

b
2 ), T,D

b
2+T 〉} and constructs the target list T = {〈V c

9 , T, T/2〉}. Note that
the leftmost label in Q always contains the path with the lowest cost() value. At
the first iteration, the algorithm pops label 〈V a

1 , (Vs, V
a
1 ), T,D

a
1+T 〉, considers

transport edge Ea
13, and pushes 〈V a

3 , p
′
1(Vs, V

a
1 , V

a
3 ), T,D

a
3+T 〉 to Q. Next, at the

second iteration, SP pops label 〈V a
3 , p

′
1(Vs, V

a
1 , V

a
3 ), T,D

a
3+T 〉 from Q, considers

the transfer edge Eac
34 , and pushes 〈V c

4 , p
′′
1(Vs, V

a
1 , V

a
3 , V

c
4 ), 3 · T,Dc

4 + T 〉 to Q
(remember Ac

4 < Cp′

1
< Dc

4). The next two iterations are similar, and thus, after
the fourth iteration we have:

Q = {〈V c
4 , p

′′
1(Vs, V

a
1 , V

a
3 , V

c
4 ), 3 · T,D

c
4 + T 〉, and pcand = null

〈V c
8 , p

′′
2(Vs, V

b
2 , V

b
6 , V

c
8 ), 3 · T + Cp′

2
−Dc

8, Cp′

2
+ T 〉}

Now, at the next two iterations, SP expands path p′′1 considering transport edges
Ec

48 and Ec
89 as Op′′

1
< Op′′

2
. Therefore, at the seventh iteration, the algorithm

pops label 〈V c
9 , (Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 ), 3 · T,D

c
9 + T 〉 from Q. Since the target

list T contains an entry for vertex V c
9 , SP identifies candidate solution pcand =

p1(Vs, V
a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 , Ve) with Op1

= 4 · T and Cp1
= Dc

9 + 3·T
2 . Finally,

assuming without loss of generality that Db
6 > Dc

8 also holds and therefore,
Cp′

2
−Dc

8 = Db
6 + T − Dc

8 > T , at the eighth iteration, the algorithm pops
〈V c

8 , p
′′
2(Vs, V

b
2 , V

b
6 , V

c
8 ), 3 · T + Cp′

2
−Dc

8, Cp′

2
+ T 〉 and terminates the search

because Op′′

2
= 3 · T + Cp′

2
−Dc

8 > 4 · T = Op1
and thus, cost(p′′2) > cost(p1).

The solution to the dPDPT request (ns, ne) is p1(Vs, V
a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 , Ve).

5 Experimental Evaluation

In this section, we present an experimental study of our methodology for solving
dynamic Pickup and Delivery Problem with Transfers (dPDPT). We compare
SP against HT, a method inspired by [15, 24] that combines an insertion heuristic
with tabu search. All methods are written in C++ and compiled with gcc. The
evaluation is carried out on a 3Ghz Core 2 Duo CPU with 4GB RAM running
Debian Linux.

5.1 The HT Method

Satisfying dPDPT requests with HT involves two phases. In the first phase, for
every new dPDPT request, the method employs the cheapest insertion heuristic
to include the pickup ns and the delivery location ne in a vehicle route. The
idea is the following. HT examines every vehicle route ra and for each pair of
consecutive locations ni and ni+1 in ra (forming an insertion “slot”), it computes
the detour cost DS = dist(ni, ns)+dist(ns, ni+1)−dist(ni, ni+1) for inserting
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pickup ns (resp. delivery ne) in between ni and ni+1. The detour cost DS sig-
nifies the extra time vehicle ra must spend and therefore, it increases the total
operational cost. Then, HT selects the best overall insertion, i.e., the route ra
and the “slots”, such that the combined detour cost for inserting both pickup
ns and delivery location ne is minimized.

The second phase of HT takes place periodically after k requests are satisfied
with the cheapest insertion. It involves a tabu search procedure that reduces the
total operating cost. At each iteration, the tabu search considers every satisfied
request and calculates what would be the change (increase or decrease) in the
total operational cost removing the request from its current vehicle route ra and
inserting it to another rb. Then, the tabu search selects the request with the
best combination of removal and insertion, and performs these actions. Finally,
the selected combination is characterized as tabu and cannot be executed for a
number of future iterations.

5.2 Experiments

To conduct our experiments, we consider the road networks of two cities; Old-
ernburg (OL) with 6,105 spatial locations (Figure 4), and Athens (ATH) with
22,601 locations (Figure 5). First, we generate random pickup and delivery re-
quests at each network and exploit the HT method to construct collections of
vehicle routes varying either the number of routes |R|, from 100 to 1000, or the
number of requests |Reqs| involved, from 200 to 2000. Then, for each of these
route collections, we generate 500 random dPDPT requests and employ the SP

and the HT method to satisfy them. For HT, we introduce three variations HT1,
HT3 and HT5 such that the tabu search is invoked once (after 500 requests are
satisfied), three times (after 170) and five times (after 100), respectively. In ad-
dition, each time the tabu search is invoked, it performs 10 iterations. For each
method, we measure (1) the increase in the total operational cost of the vehicles
after all 500 requests are satisfied (sub-figures (a) and (c)) and (2) the total
time needed to satisfy the requests. Finally, note that we store both the road
network and the vehicle routes on disk and that, we consider a main-memory
cache mechanism capable of retaining 10% of the total space occupied on disk.

Examining Figures 4 and 5 we make the following observations. The SP

method requires significantly less time to satisfy the 500 ad-hoc dPDPT requests,
for all the values of the |Reqs| and |R| parameters, and for both the underlying
road networks. In fact, when varying |R|, SP is always one order of magnitude
faster than all three HT variants. In contrast, SP results in slightly increased total
operational cost compared to HT, in most of the cases, and especially for large
road networks as ATH. However, this advantage of HT comes with a unavoidable
trade-off between the increase of the total operational cost and the time needed
to satisfy the ad-hoc dPDPT requests. The more often HT employs the tabu
search, the lower the increase of the total operational cost of the vehicles is. But,
on the other hand, since each iteration of the tabu search needs to examine every
route and identify the best reassignment for all the existing requests, the total
time of HT5 is higher than the time of HT3 and HT1.
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Fig. 4. City of Oldenburg (OL) Road Network.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

200 500 1000 2000

|Reqs|

(min)

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

200 500 1000 2000

|Reqs|

(sec)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

100 250 500 750 1000

|R|

(min)

 0

 5000

 10000

 15000

 20000

 25000

100 250 500 750 1000

|R|

(sec)

(a) Operational cost (b) Total execution (c) Operational cost (d) Total execution
increase time increase time

Fig. 5. City of Athens (ATH) Road Network.

Finally, we notice that as the number of pickup and delivery requests |Reqs|
involved in the initial static plan increases, satisfying the 500 ad-hoc dPDPT
requests, either with HT or SP, results in a lower increase of the total operational
cost but the total time needed to satisfy these requests increases. Notice that this
is true regardless of the size of the underlying road network. As |Reqs| increases
and while |R| remains fixed, the vehicle routes contain more spatial locations.
This provides more insertion “slots” and enables both HT and SP to include the
pickup and the delivery location of a dPDPT request with a lower cost. On the
other hand, HT slows down since it has to examine the reassignment of more
requests during the tabu search, and SP needs more time because the dynamic
plan graph is larger. Similar observations can be made in case of varying the
number of routes |R|.

6 Conclusions

This work studies the dynamic Pickup and Delivery Problem with Transfers
(dPDPT). This is the first work addressing the dynamic flavor of the problem.
We propose a methodology that formulates dPDPT as a graph problem and
identifies the solution to a request as the shortest path from a node representing
the pickup location to that of the delivery location. Our experimental analysis
shows that our method is able to find dPDPT solutions significantly faster than
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a conventional two-phase local search algorithm, while the cost of the solution
is only marginally increased.
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