
 Dynamic Pipelining: Making IP-Lookup Truly Scalable

{hasanj, vijay} @ecn.purdue.edu
School of Electrical and Computer Engineering, Purdue University

Jahangir Hasan T. N. Vijaykumar

that
m-
te

rs.
te
m

ugh
ay

een
le
the
s to
ize
the
-
in
st
er
the
le,
ld
id
ly
d,
ay

ll
n
IP-
en-
in
re
ow

ese

ve
ble
pic

w-

r
e-
tri-
but
sing

go-
nd
.1,
Abstract
A truly scalable IP-lookup scheme must address five challenges of
scalability, namely: routing-table size, lookup throughput, imple-
mentation cost, power dissipation, and routing-table update cost.
Though several IP-lookup schemes have been proposed in the past,
none of them do well in all the five scalability requirements. Previ-
ous schemes pipeline tries by mapping trie levels to pipeline stages.
We make the fundamental observation that because this mapping is
static and oblivious of the prefix distribution, the schemes do not
scale well when worst-case prefix distributions are considered. This
paper is the first to meet all the five requirements in the worst case.
We propose scalable dynamic pipelining (SDP) which includes three
key innovations: (1) We map trie nodes to pipeline stages based on
the node height. Because the node height is directly determined by
the prefix distribution, the node height succinctly provides sufficient
information about the distribution. Our mapping enables us to prove
a worst-case per-stage memory bound which is significantly tighter
than those of previous schemes. (2) We exploit our mapping to pro-
pose a novel scheme for incremental route-updates. In our scheme a
route-update requires exactly and only one write dispatched into the
pipeline. This route-update cost is obviously the optimum and our
scheme achieves the optimum in the worst case. (3) We achieve scal-
ability in throughput by simultaneously pipelining at the data-struc-
ture level and the hardware level. SDP naturally scales in power and
implementation cost. We not only present a theoretical analysis but
also evaluate SDP and a number of previous schemes using detailed
hardware simulation. Compared to previous schemes, we show that
SDP is the only scheme that scales well in all the five requirements.

Categories & Subject Descriptors
C.2.6 [Internetworking]: Routers

General Terms
Algorithms, Design, Performance

Keywords
IP-lookup, Scalable, Pipelined, Tries, Longest Prefix Matching

1 Introduction

The pervasive use of the Internet and advances in fiber optics
enabling high line-rates are resulting in an explosion in total traffic

and in the number of hosts on the Internet. Studies have shown
the traffic is doubling almost every three months [18] and the nu
ber of hosts is tripling every two years [5]. These trends transla
into two major problems for IP-lookup mechanisms in core route
First, routers will soon need to look up their routing tables at the ra
of about 2 ns per packet (for a 160 Gbps line-rate and minimu
packet size of 40 bytes). Second, routers will have to search thro
a large number of prefixes in their routing tables (e.g., routers tod
hold a few hundred thousands of prefixes).

While the demand has been increasing, the supply has not b
scaling up. The key component in IP-lookup is the routing-tab
memory which is used to search through the prefixes to locate
one that matches the incoming packet. The IP-lookup scheme ha
satisfy five key scaling requirements: (1) Because memory s
directly affects system cost, lookup speed and power dissipation,
total memory required should grow slowly with the number of pre
fixes. IP-lookup should scale well in memory size and be efficient
storing the ever-increasing number of prefixes. (2) IP-lookup mu
scale in throughput, forwarding packets at increasingly high
speeds to keep up with the ever-increasing line-rates. (3) To keep
complexity of heat removal and the cost of cooling reasonab
power dissipation of IP-lookup must scale well. The power shou
grow slowly with line-rates and number of prefixes, and avo
becoming prohibitive. (4) Because a routing table is typical
unavailable for lookups during the time that it is being update
applying updates should be quick and efficient. Though updates m
be infrequent, a router with slow updates will require partial or fu
duplication of routing-table memory in order to avoid dropping a
increasing number of packets as line-rates grow. Therefore,
lookup must allow simple, incremental, and fast updates indep
dent of the routing table size. (5) IP-lookup must scale well
implementation cost and complexity to remain feasible for futu
table sizes and line-rates. Accordingly, the chip area should gr
slowly with line-rates and number of prefixes. Because routersmust
provide worst-case guarantees for all the five aspects, meeting th
requirements is especially hard.

We propose an IP-lookup mechanism which meets all the fi
scalability requirements in the worst case. The problem of scala
IP lookup is not new; there have been several papers on the to
[1][3][4][11][13][14][15][17][19] which may lead one to believe
that the problem is well-researched, and satisfactorily solved. Ho
ever,all previous schemes satisfyonly two or threeof the require-
ments butnot all five. The unsatisfied requirements will likely rende
the schemes infeasible in the future. Meeting all the five requir
ments with worst-case guarantees for the first time is the key con
bution of this paper. We not only present a theoretical analysis
also evaluate our scheme and a number of previous schemes u
detailed hardware simulation.

Previous IP-lookup schemes can be classified into two cate
ries: TCAMs and trie-based. We list their shortcomings here a
explain the detailed reasons for the shortcomings in Sections 3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’05, August 21–26, 2005, Philadelphia, Pennsylvania, USA.

Copyright ACM 1-59593-009-4/05/0008...$5.00.

he
g of
t of
or-
ro-

ld
g

d to
ay

ost
p-
lve
In

dis-
e is
e-

orst
one
g

ing
of

ion
te-

n
ipe-
ge
ess
3 has
the
con-
he
a-
st

s
nd
t);
00

2

a-
is

e
ibe
e
on
nd

first
sed
3.2, and 4. TCAMs do not scale well in power and implementation
cost at high line-rates. Tries scale well in power but they do not scale
well in throughput if they are not pipelined. Two approaches for
pipelining tries are hardware-level pipelining (HLP) [15], and data-
structure-level pipelining (DLP) [1]. HLP pipelines the routing-table
memory at the hardware level. However, HLP does not scale well in
power and implementation cost because it requires extremely deep
pipelines at high line-rates. DLP pipelines the trie at the data struc-
ture level by placing each trie level in a different memory, so that
different packets simultaneously probe different levels. Because
DLP does not require HLP’s deep hardware pipelining, DLP scales
well in power and implementation cost.

However, DLP has three shortcomings: (1) DLP does not scale
well in size due to large worst-case memory. (2) DLP’s route-update
cost can be madeO(1) by using Tree Bitmap [4], if memory man-
agement overhead is ignored. However, Tree Bitmap almost doubles
the worst-case memory size due to its inability to use leaf-pushing,
and requires over 100 memory accesses, in the worst case, for a
route-update if memory management overhead is considered. (3)
DLP scales for throughput by partitioning the trie into pipeline
stages. However, a trie cannot be partitioned into more stages than
its total height. Hence, DLP’s scalability in throughput is limited by
the maximum height of the trie (i.e., the maximum prefix length),
which is constant.

DLP pipelines the trie by mapping a specific prefix bit (i.e., a
specific trie level), to a specific pipeline stage (e.g., the 12th bit is
mapped to the 2nd stage). We make the fundamental observation that
DLP incurs its first shortcoming because this mapping is completely
static and oblivious of the prefix distribution. For instance, a trie
node examining the 12th bit remains mapped to the same stage irre-
spective of changes to the distribution caused by route updates.
Depending on the distribution, as many nodes as all the prefixes may
fall into the same level (or equivalently, same stage). Unfortunately,
providing worst-case guarantees forany prefix distribution implies
that most stages have to be large enough to hold as many nodes as
all the prefixes. Thus the static mapping’s obliviousness of the prefix
distribution results in large per-stage memory which limits scalabil-
ity in size and throughput.

To solve DLP’s problems, we proposescalable dynamic pipelin-
ing (SDP) which takes prefix distribution into consideration. We
map a trie node to its pipeline stage based on the node height (e.g.,
nodes of height 3 are mapped to the 8th stage). Because the node
height is directly determined by the prefix distribution, the node
height succinctly provides sufficient information about the distribu-
tion. Node heights change when the prefix distribution changes upon
route updates, causing our mapping to bedynamic. In contrast to the
node height, the node level provides no information about the distri-
bution. This dichotomy exists because the level is measured from the
root whose position remains fixed whereas the height is measured
from the leaves whose positions reflect the distribution. For instance,
a trie node at height 3 is guaranteed to have at least three prefixes in
its subtree as long as the subtree uses path compression to address a
peculiar feature of tries. We exploit this guarantee to prove a signifi-
cantly tighter bound on the worst-case per-stage memory than that
of DLP. The height-to-stage mapping is our first innovation which
addresses DLP’s first shortcoming of scalability in size.

The above-mentioned peculiar feature of tries distorts the corre-
lation between node height and distribution: In general, an internal
trie node examines a few prefix bits (e.g., 4). Depending on the
length of a given prefix, many internal nodes are traversed to match

the prefix. If a subtree contains only one prefix, every node in t
subtree has only one child, and the traversal goes through a strin
such one-child nodes. Such strings artificially increase the heigh
the subtree’s nodes, distorting the correlation. To remove this dist
tion, we propose a loss-less adaptation of path compression p
posed by PATRICIA tries [9]. We collapse each string of one-chi
nodes into ajump node, which examines as many bits as the strin
length. Thus jump nodes restore the node’s true height.

Upon route updates, the nodes whose heights are affected nee
be migrated to the correct stage based on their new height. It m
seem that our dynamic mapping would incur high route-update c
due to such migrations. Surprisingly, while our height-to-stage ma
ping causes this problem we exploit the very same mapping to so
the problem via a novel scheme for incremental route-updates.
our scheme, a route-update requires exactly and only one write
patched into the pipeline (at every stage at most one memory writ
done). This route-update cost is obviously the optimum for any pip
lined scheme, and our scheme achieves the optimum in the w
case. In addition, our memory management overhead is exactly
operation. Though Tree Bitmap’s [4] route-update cost includin
memory management isO(1), the constant factor is 2largest stride+
100; whereas SDP’s cost is exactly 1. SDP employs leaf-push
and therefore, does not incur the size and throughput penalties
Tree Bitmap. The route-update scheme is our second innovat
which addresses DLP’s second shortcoming of scalability in rou
update cost.

To attack DLP’s third shortcoming, we make the key observatio
that each stage of a data-structure pipeline can be hardware-p
lined further (similar to [15]). We hardware-pipeline each SDP sta
into adifferentnumber of hardware stages as per the desired acc
rate (e.g., SDP stage 2 has three hardware stages, SDP stage
five hardware stages, and so on). Once we internally pipeline
data-structure stages at the hardware level, the throughput can
tinue to scale irrespective of the maximum height of the trie (i.e., t
maximum prefix length). By combining hardware-level and dat
structure-level pipelining, we avoid [15]’s high implementation co
and [1]’s lack of throughput scalability. This combining is our third
innovation.

Using hardware simulation, we show that for 1 million prefixe
at 160 Gbps line-rate, TCAM requires 6 MB, dissipates 174 W, a
takes up 8.9 cm2 (chip area is a measure of implementation cos
HLP requires 75 MB, dissipates 146 W, and takes up more than 2
cm2; DLP requires 88 MB, dissipates 10 W, takes up 27 cm2 and
fails to work beyond 40 Gbps; In contrast, SDP requires only 2
MB, dissipates 22 W, and takes up 14.9 cm2. Thus, SDP achieves the
four goals of scalability in size, throughput, power and implement
tion cost. SDP’s route-update cost, which is the remaining goal,
the theoretical minimum of one write.

The rest of the paper is organized as follows: In Section 2 w
provide some background on IP-lookup mechanisms. We descr
the details of HLP, DLP and SDP in Section 3. In Section 4 w
briefly review TCAM-based schemes. We describe our evaluati
methodology in Section 5. In Section 6 we present our results, a
finally, we conclude in Section 7.

2 Background

Because we design our IP-lookup scheme based on tries, we
present some background details on IP-lookup and trie-ba
schemes.

h
bit
of
is

it

er-
t-
ace.
le
r-

t-
o

the
nor

e at

s
di-

st-
ed
s in

no-
sed
per-
ket

e-
up.
we

le
nd.

bil-
]
an
eas
P)

)
The IP-lookup mechanism accepts an IP-address, performs a
search-and-match through a routing table, and upon a match, returns
the appropriate link identifier. The IP-lookup task is complicated by
a number of requirements: (1) To avoid denial-of-service attacks and
instabilities in the network [7], a routermustsustain a worst-case IP-
lookup throughput that can handle minimum sized packets stream-
ing in at full line-rate. (2) Given the number of prefixes to design for,
the IP-lookup mechanismmustprovide enough memory to hold all
the prefixes regardless of their distribution. (3) Because of wildcard
bits in prefixes, a given destination IP-address may match with mul-
tiple prefixes. IP routing protocols require that the lookup must
choose the prefix with the longest match.

2.1 Trie-Based IP-lookup Schemes

One of the approaches to matching a destination IP-address
against a set of given prefixes is to match it one bit at a time, narrow-
ing the field of search with each successive bit. Atrie is a tree-like
data-structure designed specifically for such bit-by-bit searching.
For example, given the set of prefixes shown in Figure 1(a) we can
construct the trie shown in Figure 1(b). Each leaf contains the long-
est matching prefix corresponding to the bits encountered along the
path from the root to that leaf. We perform an IP-lookup by starting
at the root and traversing down the trie. At any internal node of level
k (root being level 0), thekth bit (bit 0 being the most significant) in
the destination IP-address determines whether to follow the left
child or the right child. The trie traversal eventually ends at a leaf.

Starting from the shaded node in Figure 1(b), any path that corre-
sponds to a mismatch with prefix P3 must be terminated with a leaf
containing prefix P2 (i.e., the longest prefix that has already been
entirely matched). This method of constructing the trie is calledleaf
pushing. Unfortunately, updating a leaf-pushed trie may be compli-
cated (e.g., if P2 is deleted or modified).

It is possible to construct tries without leaf pushing by placing
prefix information inside internal nodes. However, such schemes
almost double the trie node size, resulting in considerably larger
worst-case memory. The bandwidth demand on the memory is also
increased as the lookup process must read both a prefix and pointer
at each node. In addition, as we traverse down the trie, we must
explicitly check for and remember the longest matching prefix at
each internal node.

2.2 Multiple-bit Stride Tries

When the IP-lookup is not pipelined in any manner, the total
delay for one IP-lookup determines the maximum lookup rate. The
worst-case delay for one lookup is proportional to the trie depth. IP-
lookup rate can be improved by reducing the trie depth which in turn
can be reduced bystridingmore than one bit at each internal node. If
the stride is 2 bits at each internal node, the worst case depth of the
trie is reduced by a factor of 2 (i.e., 16), and so on.

In Figure 2(a), prefix P1 has a length of only one bit. If we wis
to stride 2 bits at the root, P1 must be expanded into all the 2-
combinations implied by the original prefix P1. The process
expanding prefixes in order to align them with stride boundaries
calledcontrolled prefix expansion[17]. Figure 2(b) shows the rout-
ing table of Figure 2(a) after controlled prefix expansion for a 2-b
stride at each node.

Unfortunately, controlled prefix expansion causes a non-det
ministic increase in the routing-table size due to replication of poin
ers and prefixes, and consequently increases the total memory sp
The size of the routing-table in Figure 2(b) is twice that of the tab
in Figure 2(a) for the same original number of prefixes. If the unde
lying 1-bit trie is sparse, controlled prefix expansion will inadver
ently inflate the data structure’s size. Striding multiple bits als
aggravates the route-update cost in leaf-pushed tries.

In the example we have presented, each internal node has
same stride. However, using the same stride is neither necessary
optimal in terms of storage space or lookup delay.Variable stride
tries andLevel Compressed(LC) tries [11] determine the stride at
each node in accordance with whether the trie is sparse or dens
that particular location. In contrast, compression schemes likeLulea
[3] and Tree Bitmap[4] maintain a fixed stride trie and compres
away the redundant replication instead. Tree Bitmap may be ad
tionally extended to support variable strides. However, for a wor
case prefix distribution, variable striding and compression-bas
schemes do not benefit the total memory size much, as we discus
Section 6.

2.3 The Need for Pipelined Tries

Tomorrow’s routers will have to perform IP-lookups into routing
tables of hundreds of thousands of prefixes, at the rate of a few na
seconds per lookup. With such a large number of prefixes, trie-ba
schemes require such a large amount of worst-case memory that
forming even one memory access may take longer than the pac
inter-arrival time. The problem is aggravated by the fact that tri
based schemes perform multiple memory accesses for one look
To meet the demand for high lookup rates under such constraints,
obviously need to pipeline IP lookup so that performing multip
lookups in parallel delivers a net lookup rate that meets the dema

3 Pipelined and Scalable IP-Lookup

The observation that pipelining can be used to solve the scala
ity problem of IP-lookup is not new. Previous proposals [15] [1
have addressed this problem with some form of pipelining. [15] c
be thought of as a hardware-level pipelined (HLP) scheme, wher
[1] can be thought of as a data-structure-level pipelined (DL
scheme.

Fig. 1. (a) The prefixes in a routing table (b) a trie constructed
from the given prefixes

0*
1*
101*

P1
P2

0

1

P3

P1

P2

P2

P3

0

0

1

1
(a) (b)

Fig. 2. (a) The routing table after controlled prefix expansion (b
The 2-bit stride trie constructed from the table in (a)

00*
01*
10*
11*
1010*
1011*

P1
P1
P2
P2
P3
P3

00

01 10
11

P1

P1 00

P2

P2

P2 P3

P3
01 10

11

(a) (b)

0*
1*
101*

P1
P2
P3

(c)

the
r-
is-
se
rd-
t.
be

lity

ry
the

sed
de

by
te
es
ase

for

n,
ies

x
d,
we

wo
2

ent
ie
is

he

just

ce
We describe these schemes to explain why they do not scale well
and then explain our scheme and how it scales.

3.1 Hardware-Level Pipelining

We can view the IP-lookup process ask memory accesses, where
k is the number of levels in the multi-bit trie. For a given line-rate we
know the required IP-lookup rate, say one lookup everyt seconds.
For the given number of prefixes we can determine the total memory
required by the trie, and henced, the total delay of one memory
access. In order to meet the demanded lookup rate, HLP [15] hard-
ware-level pipelines the entire memory holding the trie intok*d/t
stages.

Figure 3 shows, at a high level, the hardware steps involved in
accessing a memory. Memory is typically organized as a two-dimen-
sional array. Thedecodestep usesx higher-order bits of thex+y-bit
memory address to identify which of the 2x rows is being accessed.
Thememory array accessstep performs the actual access of the cho-
sen memory row. And themultiplex step selects the desired word
from the 2y words in the row and feeds it to the output. To optimize
access times, circuit designers subdivide the memory array into
many subarrays. Using the subarrays reduces memory (sub)array
access time but increases decode and multiplex times for an overall
reduction in access time. The decode and multiplex steps essentially
look like decision trees and they can be pipelined into smaller stages
by splicing up these trees. The memory-array-access step consists of
reading from (writing to) the memory cells to (from) bitline wires.
Because designing the bitline wires to carry multiple values is hard,
for all practical purposes this step is atomic and cannot be pipelined.
Therefore, even if decode and multiplex steps are pipelined into
many fast stages, the throughput would be limited by the delay of
the memory-array-access step. The time taken to perform this
atomic step is proportional to the size of the memory array.

To reduce the delay of the atomic step, HLP [15] aggressively
divides the memory array into a larger number of smaller subarrays.
Such division does not come for free, however. It makes the decode
and multiplex complicated, and does not scale well in terms of
power dissipation and implementation cost. As we show in the
experimental evaluation, such aggressive pipelining leads to prohibi-
tive chip area (implying high implementation cost) and power dissi-
pation. Therefore, HLP is not a scalable solution.

3.2 Data-Structure-Level Pipelining

We have seen that if the entirek-level trie resides in one large
memory, then the bandwidth demanded by that memory isk times
the lookup rate needed. To solve this problem, DLP [1] places each
level of the trie in a different memory, so that each memory is
accessed only once per packet lookup. Therefore, the bandwidth that
each memory must individually supply does not incur the factor-of-k
multiplier.

Because DLP partitions the trie data-structure such that each

level is placed in a separate memory stage, DLP can overlap
lookups for multiple packets by accessing different levels (in diffe
ent memories) for different packets at the same time. Thus, DLP d
sociates the lookup rate from the total delay of one lookup. Becau
DLP does not rely on expensive memory technologies or deep ha
ware pipelining, it scales well in power and implementation cos
There are, however, three remaining challenges that must
addressed in order to make DLP truly scalable, namely: scalabi
in memory size, in route-update cost, and in lookup throughput.

3.2.1 DLP’s Scalability Problems in Memory Size
The total memory requirement of DLP is the sum of the memo

size of each stage. In order to provide worst-case guarantees,
space provided at each memory stage should be sufficient forany
prefix distribution. Because DLP assigns each node to a stage ba
on which trie level the node belongs to (i.e., which bit each no
examines), the worst-case per-stage memory size is determined
the worst-case node count per level of the trie. It is important to no
that the well-known average-case properties of randomly-built tre
are not relevant here because we are concerned with worst-c
guarantees.

In the ensuing analysis of worst-case per-stage memory size
DLP, we consider a 1-bit trie for simplicity. Striding multiple bits
causes inflation in memory size due to controlled prefix expansio
and will not lower the worst-case bound. As such, our bound appl
to multibit tries as well.

Imagine a prefix distribution in which allN prefixes have length
W (W being the length of an IP-address), and the firstlog2N bits of
each prefix are unique (i.e., the prefixes cover allN values that the
first log2N bits can take). The 1-bit trie corresponding to this prefi
distribution is shown in Figure 4. To establish that this trie, indee
represents the worst-case memory requirement at each level,
make two observations: (1) In a 1-bit trie, each node can have t
children, therefore no prefix distribution can have more thank

nodes at thekth level. (2) There are onlyN prefixes therefore no level
can have more thanN nodes. Thus we see that the 1-bit trie in
Figure 4 does in fact represent the worst-case memory requirem
per level. Accounting only for the rectangular bottom-half of the tr
in Figure 4, we see that the total memory required by this trie
greater thanN * (W-log2N) nodes. It is important to note that the
rectangular part is not due to leaf-pushing, rather it is a result of t
specific prefix distribution. For a million prefixes DLP’s memory
requirement exceeds 80 MB, in contrast the storage needed for
the prefixes is only 6 MB, illustrating DLP’s scalability problem in
memory size. Note that, though a variable-stride trie may redu

Fig. 3. The hardware steps involved in a memory access

Memory
Array
Access

M
ultiplexD

ec
od

er

Fig. 4. The 1-bit trie corresponding to the worst-case prefix
distribution.N is the number of prefixes,W is the length of an IP-

address in bits

N

log2N

W - log2N

the
is

nd

e of
he
nd

e,

x
ts
ions
oot

t of

tri-
n
-

ort
rst
al-

n
af
of
at
f-

ight
-

es

re
f

total space in the average case, for the prefix distribution shown in
Figure 4 its worst-case memory size would be no better.

3.2.2 DLP’s Scalability Problems in Route-update Cost
Because DLP uses a multibit trie with leaf pushing, a single

route-update may affect an entire subtree which has arbitrarily many
nodes. [1] proposes a number of optimizations for applying fast
incremental route-updates in a pipelined fashion. However, all the
optimizations are heuristics which improve only the average-case
route-update cost. The worst-case route-update cost of DLP remains
unbounded even with the optimizations.

Techniques like Tree Bitmap [4] can be used to achieve anO(1)
bound on the route-update cost. By avoiding leaf-pushing Tree Bit-
map ensures that an update needs to modify only one trie node
achieving theO(1) bound. However, because Tree Bitmap cannot
use leaf-pushing, it almost doubles the size of each trie node (see
Section 2.1). [4] explains an implementation to avoid the doubling
of the node size, where only the pointers are stored in the nodes and
the prefixes are stored in a parallel copy of the trie. Obviously, the
second copy must also be maintained in fast memory (as it must be
accessed at IP-lookup rates), almost doubling the total memory size.
Further, the trie nodes in Tree Bitmap have variable sizes due to
variation in strides and compressions. Route-updates result in
repeated allocations and deallocations of such variable sizes, caus-
ing fragmentation and under-utilization of memory. This fragmenta-
tion necessitates a complex memory management scheme for
compaction [4][14], which must be invoked whenever memory for a
new node is allocated. The memory accesses for the compaction
appear as an overhead in the route-update cost. We found that the
worst-case memory management overhead of Tree Bitmap [4]
exceeds 100 memory accesses for a single route-update. ([4] reports
1852 memory accesses based on an analysis which is more conser-
vative than ours.) Though a pipelined update scheme such as [1]
could be leveraged to reduce the effective compaction cost, such
reduction would be sensitive to the distribution of the memory
accesses across the pipeline stages. In the worst case there may be
no reduction at all. Hence, we see that previous schemes do not scale
well in worst-case route-update cost.

3.2.3 DLP’s Non-Scalability in Throughput
Because the pipeline’s throughput is limited by the slowest stage

DLP proposes a dynamic programming algorithm to minimize the
size of the largest stage. This algorithm takes as inputs a prefix dis-
tribution and the number of levels in a fixed-stride trie, and returns
the strides for each level such that the size of the largest level is min-
imized. The size of the largest stage can be lowered by increasing
the number of levels in the trie (i.e., reducing the stride at each
level). In the limit, even if each level strides only one bit, there can
be only as many levels as bits in an IP-address (32). With 1 million
prefixes, the 1-bit trie shown in Figure 4, has a largest memory stage
of 5 MB which, realistically speaking, may not be accessed faster
than 6 ns or so. When the demanded lookup-rate exceeds this limit,
DLP does not work. For truly scalable throughput the depth of the
pipeline should not be limited by the number of bits in an IP-address
(32).

3.3 Scalable Dynamic Pipelining

To address the problems of IP-lookup scalability, we propose
scalable dynamic pipelining (SDP). We begin by taking a closer
look at why traditional tries have such a large worst-case memory

requirement. We observe that previous schemes like [1] pipeline
trie by mapping a specific level of the trie to a specific stage. Th
mapping is strictlystatic and oblivious to the prefix distribution.
Consider, for example, the set of prefixes shown in Figure 5 (a), a
the corresponding 1-bit trie in Figure 5 (b). The node labelledX is in
the second level of the trie and hence placed in the second stag
the pipeline. Imagine that we remove prefix P3 from the table, t
resulting trie is shown in Figure 5 (c). Even though the structure a
the memory requirements of the subtree rooted atX have changed
significantly,X remains mapped to the second stage of the pipelin
oblivious of this change.

We make the key observation that while thelevel of X does not
change, theheightof X does change in response to the new prefi
distribution (height of leaves being zero). This dichotomy exis
because the height is measured from the leaves whose posit
reflect the distribution, whereas the level is measured from the r
whose position remains fixed. Specifically, the height ofX is 2 in
Figure 5 (b) and becomes 1 in Figure 5 (c). We see that the heigh
X is correlated to the number of prefixes in the subtree rooted atX.
Because the node height is directly determined by the prefix dis
bution, it succinctly provides information regarding the distributio
which is sufficient for achieving a tight worst-case bound on mem
ory. However, there is one peculiar feature of tries which can dist
the correlation between node height and prefix distribution. We fi
turn our attention to this distorting feature before presenting an an
ysis of worst-case per-stage memory size for SDP.

3.3.1 Jump Nodes
The way a trie is constructed, an internal node that stridesk bits

must have an array of 2k pointers, one for each possible child. Ofte
there may be only one child and the remaining pointers are null (le
pushing may eventually insert a longest matching leaf in place
such nulls). In Figure 5 (a) and (b) the prefix distribution is such th
it results in a long string of one-child nodes (ignoring the lea
pushed copies of P4). The height of nodeY is 3, though the number
of unique prefixes in the subtree rooted atY is just 2. The presence
of the string of one-child nodes artificially increases the height ofY.
Because the correlation becomes distorted in such a case, the he
of Y does not faithfully inform us about the underlying prefix distri
bution.

To address this problem we collapse strings of one-child nod
into a singlejump node. We call it a jump node because it allows the
lookup to jump over the string of one-child nodes. Jump nodes a
similar toskip nodesin [4] and can be thought of as an adaptation o

Fig. 5. (a) A table of prefixes (b) The corresponding 1-bit trie (c)
The 1-bit trie with P3 deleted (d) The trie with jump nodes

0*
00*
000*

P1
(a) (b)

(d)

Mism
atc

h
Match

Jump 010

P3 P2

P1

P4

P4

P5 P4

P3 P2

P1

P5P4

1*
1010*

P2
P3
P4
P5

X Y

(c)

P2 P1

P4

P4

P5 P4

X Y

Y

ry
otal

bit
n

rie
ory
to
ory

l of
the
the

he
the
ge

he
ed
usly

z-
a

lly

lar

ong
leaf

4,

ht
path compression in PATRICIA tries [9]. A jump node collapses
strings usingloss-less compressionby storing and matching all the
jump bits. In contrast, PATRICIA tries use a form oflossy compres-
sion that examines only the first bit out of the string being com-
pressed.

In addition to pointers, a jump node also stores thejump bits, the
string of bits corresponding to the path collapsed. A jump node need
store only two pointers, one for the path that matches the jump bits,
and the other for a mismatch. Because any node may be a jump
node, the default size for every SDP node must budget for the jump
bits in addition to two pointers. Because a string of one-child nodes
may have any arbitrary length, each SDP node must budget for the
maximum number of jump bits possible (i.e., 32). Although the
space for jump bits causes an increase in the overall size of every
node, we show in Section 6.2 that the drastic reduction in the num-
ber of worst-case per-stage nodes (due to dynamic pipelining), dom-
inates this increase to result in a much lower worst-case total
memory bound compared to a statically pipelined trie. The increase
in trie-node size also increases the bandwidth demanded from the
memory. However, because 1-bit trie nodes are small compared to
multibit trie nodes, the eventual bandwidth demand stays relatively
small.

Figure 5(d) shows the trie of Figure 5(b) after the string of one-
child nodes has been collapsed into a single jump node. In
Figure 5(d) the height ofYhas been reduced to 1 which is correlated
to the number of prefixes in the subtree rooted atY. Thus, jump
nodes remove the artificial increase in height due to strings of one-
child nodes, and restore the correlation between node height and
prefix distribution. On a tangent, note that the jump node also
removes all but one copy of the leaf-pushed node P4. Because jump-
nodes remove one-child nodes, in a 1-bit trie they effectively remove
all the nulls that leaf-pushing would try to fill up. Consequently, a
route-update modifiesonly one trie node and does not propagate
down to entire subtrees.

The use of jump nodes results in two key properties which we
will use in Section 3.3.2 to prove a worst-case per-stage memory
bound for dynamic pipelining: (1) Because we stride only one bit at
trie nodes, there is no controlled-prefix-expansion, and hence no
replication of the same prefix. Jump nodes remove nulls, eliminating
unnecessary copies of leaf-pushed nodes. Thus, the number of
leaves in the data-structure is equal to the number of prefixes. (2) In
SDP every internal node, whether that be a 1-bit trie node or a jump
node, is guaranteed to have two children.

3.3.2 Per-Stage Memory Bound
As observed in [11], before pipelining, the total memory required

by a trie with jump nodes does not exceed the number of nodes in a
binary search tree (i.e., 2N for N prefixes), as shown in Figure 6(a).

However, it is important to realize that bounding the total memo
does not bound the per-stage memory. Figure 6(b) shows the t
memory required by anunpipelinedtrie with jump nodes (shaded
triangular region) compared to the total memory required for a 1-
trie (the containing boundary), for the worst-case prefix distributio
shown in Figure 4. However, as Figure 6(c) illustrates, when the t
is pipelined by partitioning it across stages, the per-stage mem
usage varies greatly depending on the prefix distribution. In order
provide worst-case guarantees, the space provided at each mem
stage should be sufficient forany prefix distribution. If we were to
assign a node to a particular memory stage based on which leve
the trie it belongs to (as DLP does), then even with jump nodes
worst-case per-stage memory requirement remains equal to
impractical size derived in Section 3.2.1.

As noted in Section 3.3, the height of nodes is correlated to t
prefix distribution. If we assign nodes to pipeline stages based on
height of the nodes, then we expect to obtain a tighter per-sta
memory bound. Formally, the heighth of an internal node is defined
to be the length of the longest path from that node to any of t
leaves below it. ([14] briefly discusses how tries may be pipelin
and suggests mapping levels to stages, but the paper erroneo
uses the termheightwhen it actually meansdepth.) For example, the
height of the shaded node in Figure 7(a) is 4. LetWbe the number of
bits in an IP address.W is both the maximum height of the trie, and
the total number of memory stages in the dynamic pipeline. Utili
ing the two key properties stated in Section 3.3.1, we now prove
bound on the worst-case per-stage memory size for dynamica
pipelined tries with jump nodes.
Lemma 1:The number of leaves in a subtree rooted at a particu
node is no less than the height of that node.
Proof: If the height of a node ish, then there is at least one pathP,
from that node to some leaf, that ish nodes long including the leaf.
Figure 7(b) shows such a path for some arbitrary node. There areh-1
internal nodes alongP. For each of theh-1 internal nodes, there is an
alternate path that could be taken instead ofP when traversing the
trie. In Figure 7(b) we indicate, as shaded nodes, the first node al
every such alternate path. Each shaded node must either be a

Fig. 6. (a) A binary search tree withN leaves (b) memory size of a trie with jump-nodes for the worst-case prefix distribution of Figure
compared to size of 1-bit trie (c) The space taken at various levels by a trie with jump-nodes, for various prefix distributions

W - log2N

(a)

N

(b)

N

log2Nlog2N

(c)

Fig. 7. (a) The height of a node (b) The relation between heig
and the number of leaves beneath a node.

4

3

2

1

(a) (b)

h

0

w
ie.
than
ut
y

e
n-

lf.
nly
ith
dow
ro-
e
es
u-
To

P-
a-
IP-
er,
n

rites
-
e
hat
sis-
the

kup
is
of
es.
ute
ht-
has
tion
tion
all
te-

nt
ns
two

n
of

t of
tors
c-
ed
and
to

kup
itself, or must be an internal node that leads to at least one leaf.
Because all leaves are unique, the alternate paths must contain at
leasth-1 leaves in total. Thus the number of leaves in the entire sub-
tree is at leasth.
Lemma 2: Given any distribution ofN prefixes, there can be no
more thanN/h internal nodes with heighth.
Proof: In an SDP trie there are as many leaves as there are prefixes.
Therefore the total number of leaves in the trie can be no more than
N. From lemma 1 we know that each node of heighth accounts for at
leasth unique leaves. Assume that the number of nodes with height
h exceedsN/h, then there must be more thanN leaves in total, con-
tradicting the initial property ofN leaves. Therefore, the number of
internal nodes with heighth, can be no more thanN/h.
Theorem 1:If we assign all nodes with heighth, in an SDP trie, to
the (W-h)th pipeline stage, then we need to provide space for only
min(N/(W-k) , 2k) nodes at thekth pipeline stage.
Proof: We need to prove two bounds —N/(W-k) and 2k— in order to
obtain the expression given in Theorem 1. To obtain the first bound,
we observe that if all nodes with heighth are assigned to the (W-h)th

stage, then from lemma 2 it suffices to provideN/h space at the (W-
h)th pipeline stage. In other words, for thekth stage, it is sufficient to
provide space forN/(W-k) nodes. To obtain the second bound, we
recall that internal nodes in an SDP trie have two children, therefore
the total number of nodes at thekth levelof the trie cannot exceed 2k.
But, we need to establish that the number of nodes at thekth stage
cannot exceed 2k. Each node along a path from the root must lie in a
different stage, therefore an internal node at levelk of the trie cannot
fall in a stage earlier than thekth. Equivalently we can also say that
an internal node at levelk of the trie cannot have a height of more
thanW-k, which means it will not get placed in a stage earlier thank.
Therefore, the space requirement of thekth stage is no greater than
space requirement of thekth level of the trie, thus proving the second
bound. For any value ofk, we need to provide only as much space at
thekth stage as the minimum of the two bounds, which proves Theo-
rem 1.

Assigning nodes to stages based on their height is our first inno-
vation. For 1 million prefixes, for instance, the worst-case total
memory required by SDP is just 22 MB, a four-fold reduction over
the latest static pipelining scheme [1]. We now to briefly describe
the overall system architecture for SDP.

3.3.3 System Architecture
SDP is implemented usingW stages (whereW is the number of

bits in an IP-address), each consisting of an SRAM memory which
is sized in accordance with the results of Section 3.3.2. An IP-
lookup is provided with the location of the root of the trie, and it is
dispatched into the first stage of the pipeline. The lookup performs
“NOPs” until it reaches the stage containing the root node. In addi-
tion, the lookup also performs “NOPs” in the intervening stages
when the heights of a node and its child differ by more than one.
When the lookup emerges off the end of the pipeline, the IP-lookup
has completed. The pipeline concurrently sustains as many lookups
in flight as the number of stages. We will now explain the mecha-
nism of applying route-updates.

To update the SDP trie upon route changes, we need to maintain
information about the height of the nodes. However, keeping the
node heights and other auxiliary information within the trie itself
would increase its size and slow down the lookup rate. Further, we
would require frequent interruption of the IP-lookup stream in order
to examine or modify this auxiliary information. To address this

issue, we borrow the idea of ashadow triefrom [1]: a copy of the
trie containing all the required auxiliary information. The shado
trie is accessed only during the construction or update of the tr
Because route-updates are orders of magnitude less frequent
lookups, not only is it unnecessary to pipeline the shadow trie, b
we can implement it using slow and cheap memory (DRAM). Toda
the cost of 128 MB of high performance DRAM is so trivial that th
addition of a shadow trie has no effect on total system cost. Mea
while, all IP-lookups are performed on the fast, pipelined trie itse

When the router receives route-updates, we first apply them o
to the shadow trie, modifying the data-structure in accordance w
the route-updates. Because the modifications access only the sha
trie and the IP-lookups access only the SDP trie, they can both p
ceed concurrently without interrupting each other. Following th
modification of the shadow trie, we compute the eventual chang
that are required in the SDP trie. The required changes are form
lated into node-writes and are then dispatched to the SDP trie.
apply the changes, we borrow a pipelinedwrite-bubblescheme from
[1]. In this scheme, a write operation interrupts the stream of I
lookups by using up the turn of a single IP-lookup. The write oper
tion marches down the pipeline stage-by-stage just like an
lookup, except that it performs writes instead of reads. Furth
while the write operation is in a particular stage, IP-lookups ca
access the other stages. This observation allows us to dispatch w
into the pipeline, interleaved with lookups. A write operation is sim
ply equivalent to a “bubble” in the lookup stream. However, th
writes must obviously be performed in a manner which ensures t
no read operation may encounter the data-structure in an incon
tent or erroneous state. We address this concern after we analyze
cost of pipelined incremental route-updates.

3.3.4 Optimum Cost Incremental Route-updates
The cost of route-updates can be represented by the IP-loo

throughput that is lost to write-bubbles. When a route-update
applied to a trie, it generally causes the insertion or removal
nodes, and can obviously change the height of a number of nod
We first apply the route-updates to the shadow trie and recomp
the heights of affected nodes. Then, in order to maintain the heig
to-stage mapping of SDP, we migrate every node whose height
changed to the stage that corresponds to its new height. In addi
to the node migrations, a route-update also results in the crea
(deletion) of a node for the prefix being added (removed). Rec
that because SDP uses a 1-bit trie with jump-nodes, any rou
update needs to modify (including insert or remove)only onetrie
node (Section 3.3.1). We refer to this node as theprefix-node.
Together, the migrations and the prefix-node modification accou
for the total cost for a route-update. It may seem such migratio
may hurt the worst-case route-update cost. However, we make
key observations which enable us to bound the cost ofany route-
update by the optimum of strictly one write-bubble only.

Our first key observation is that, by virtue of the very definitio
of height, the insertion or deletion of a node can affect the height
only its ancestors, andcannotaffect the height of any descendants.

A node insertion (deletion) may increase (decrease) the heigh
all its ancestors. In the worst case the number of affected ances
can beW-1(i.e. the maximum height of the trie minus one). Our se
ond key observation is that the prefix-node itself and all the affect
ancestors, each belong in a uniquely different stage, both before
after the migration. Hence, a route-update requires one write
every stage of the pipeline in the worst case. Just as an IP-loo

ates
il-
an-
ory
n IP-
ent

i-
es-
e.
zes
ap
ry

tion.

ver-
e to

n,
d all
ith
g-

y
ole
nt

ts to

ta-
een
zed.
ng
a-

t,
ait

ss.
m-
em-
ted
ust
p-
ent
rd-
rly
ile
bin-
r
s

P

can perform a read operation in every stage of the pipeline, a write-
bubble can perform a write in every stage of the pipeline. Therefore,
we can send a single write-bubble into the pipeline and migrate the
ancestors to their new stages and write to the prefix node. Obviously,
this single write bubble represents the optimum route-update cost in
any pipelined IP-lookup scheme.

The write-bubble itself does not contain all the data that are to be
written to various stages. The write-bubble simply reserves each
pipeline stage for one cycle, ensuring that no lookup is accessing
that stage. Typically a lookup processor or custom logic performs
the necessary computation at each memory stage during a lookup.
The same processor or logic is responsible for supplying the new
data through the data bus of each memory stage, when the write-
bubble reaches that particular stage.

Unlike multibit trie nodes, the size of 1-bit trie nodes is small and
constant, therefore our assumption that a single memory write oper-
ation is wide enough to write an entire trie node is justified. In SDP a
single write-bubble is sufficient for handling the worst-case route-
update. Note that the conclusion of this cost analysis is significant:
node migrations are literallyfree; SDP reduces a seemingly
unbounded factor in route-update cost to the equivalent of a non-
existent factor. Thus, we exploit the dynamic height-to-stage map-
ping to obtain both scalability in total memory size, and optimum
route-update cost.

Figure 8 illustrates an intuitive way to understand this marked
difference between the update cost of SDP and that of leaf-pushed
trie schemes. In SDP the region that is affected by an update to node
X is only the highlighted path from nodeX to the root. In contrast, in
a leaf-pushed trie scheme an update to nodeX must be propagated
down into the entire shaded subtree.

Recall that we mentioned at the end of Section 3.3.3 that when
write-bubbles interleave with IP-lookups we must never allow the
IP-lookups to read the SDP trie in an inconsistent state. Specifically,
each pointer must be valid when dereferenced. We can trivially fulfil
this requirement by observing that a write-bubble modifies at most
one node in each stage. Because only one node is re-written in any
given stage, the stage previous to it contains only one pointer that
can be potentially invalid. When a write-bubble modifies a pointer in
a node in stages, only the lookups that are upstream to the write-
bubble observe the modified pointer. After modifying the pointer the
write-bubble arrives into the next stage (s+1) and writes out the new
node being pointed to. By the time an upstream lookup arrives into
stages+1 and dereferences the pointer in question, the write-bubble
has already written out the new node. Thus, we guarantee data-struc-
ture consistency. The lookups that are downstream to the write-bub-
ble read and dereference the pointer before it is ever touched by the
write-bubble.

3.3.5 Memory Management Overhead
The process of applying route-updates allocates and dealloc

memory for inserting and deleting nodes in the trie. Hence, the ab
ity to apply incremental route-updates necessitates a memory m
agement scheme for the routing-table memory. Because mem
management appears as an overhead in the route-update cost, a
lookup scheme must include the worst-case memory managem
overhead for obtaining itstrue worst-case route-update cost. Prev
ous IP-lookup schemes use multibit tries, often with some compr
sion mechanism [3][4][11], resulting in nodes that vary in siz
Repeated allocations and deallocations of such non-uniform si
leads to fragmentation and underutilization of memory. Tree Bitm
[4] and Segmented Hole Compaction [14] use complex memo
management schemes to compact away the memory fragmenta
Thus, even though Tree Bitmap guaranteesO(1) route-update cost,
in the worst case its memory management scheme can add an o
head of more than 100 memory accesses to any route-update du
compaction operations.

In contrast, we use only 1-bit trie nodes without compressio
ensuring that all nodes have the same size across all levels an
stages. Hence, all memory allocations and deallocations deal w
one size. Consequently, our routing-table memory incurs no fra
mentation whatsoever, and we obviate the need for complex memor
management schemes like Tree Bitmap [4] and Segmented H
Compaction [14]. Thus, after accounting for memory manageme
overhead, the total worst-case route-update cost of SDP amoun
exactly and only one write-bubble.

3.3.6 Scalability in Lookup Rate
As we have pointed in Section 3.2.3, the lookup rates for da

structure pipelining cease to scale once the strides have b
reduced to 1, and the size of the largest stage has been minimi
For 1 million prefixes, the size of the largest memory stage usi
SDP is 3.8 MB, which means that SDP pipelined from only a dat
structure perspective can manage only upto 40 Gbps line-rate.

The underlying assumption in data-structure pipelining is tha
before a packet’s lookup can access a particular stage, it must w
for the lookup that is currently in that stage to complete its acce
However, we can internally pipeline, at the hardware level, the me
ory of each SDP stage so that a packet’s lookup can access the m
ory of an SDP stage before the downstream lookups have comple
their access of that memory. The degree to which an SDP stage m
be hardware-pipelined is equal to the ratio of the required looku
rate to its access delay, which depends on its size. Thus, differ
SDP stages may be hardware-pipelined to different number of ha
ware stages. We see from the example in Figure 9 that the ea
memory stages are small and may require shallow or no HLP, wh
the later stages are larger and may require deeper HLP. This com
ing of hardware-level and data-structure-level pipelining fo
throughput scalability is our third innovation. The combining make

Fig. 8. Difference between the update cost of SDP and that of leaf-
pushed trie schemes

X

Fig. 9. An example of the per-stage memory requirement for SD
and the corresponding degree of HLP

W

N

2k at the

N/(W-k) at
the kth level

kth level

1
2
3
3
3
4
5

T
he

 d
eg

re
e

of
 H

LP
re

qu
ire

d
w

ith
in

ea
ch

 S
D

P
 s

ta
ge

e,
nd
ve
in
nt

ay
vel.
us
es
ion
es-
nat-
se
e
alf
r of
that
LC

a
t-
ge
4,
t
se
ap
re-
a

e
to

is

ints
t-
e the
lly,

Bit-

els
pect
ne

a)
tted
he

is
s

otal

re
r-

e,
.

throughput independent of the size of the SDP stages, obviating [1]’s
minimization of the largest stage.

4 Brief Review of TCAM-based Schemes

A Content Addressable Memory (CAM) is a type of memory
that is designed specifically for search tasks. A CAM simulta-
neously compares all memory locations against the input key to find
matching entries. A Ternary Content Addressable Memory (TCAM)
is simply a CAM which supports wild card bits in the entries. IP-
lookup is performed by supplying the destination IP-address to the
TCAM, which finds the matching prefixes in one operation. TCAMs
must have an arbitration scheme to choose the longest match when
multiple prefixes match. Most arbitration mechanisms generally
require sorting the prefixes by their lengths before placing them in
the TCAM, complicating the process of route-updates. [13] pro-
poses an efficient way to update TCAMs via incremental and par-
tial-order sorting.

Because a single access activatesall memory locations, as
opposed to just one, a TCAM dissipates a lot more power compared
to RAM. [19] presents a scheme to improve TCAM power by reduc-
ing the number of memory locations searched. However, [19] needs
to restructure the layout of prefixes in the TCAM subbanks when the
distribution undergoes non-trivial changes, complicating the route-
update cost.

Even today, TCAM access delays are longer than packet inter-
arrival times. Therefore, TCAMs are pipelined at the hardware level,
which further worsens their power dissipation and implementation
cost.

5 Methodology

Because the IP-lookup memory in trie-based schemes must pro-
vide high bandwidth, SRAM is the choice of memory technology
for tries, both today and in the expected future. TCAMs on the other
hand, can be built using CAM-styled memory. To evaluate the
implementation cost, power and timing for these two types of mem-
ories we utilize CACTI 3.2 [2]. CACTI is a tool that models accu-
rately the area, power, and timing of SRAM and CAM structures.
Because the stock version of CACTI cannot handle memories as
large as 75 MB, we modify CACTI according to our needs. Using
the modified versions of CACTI we determine the area, power and
timing details for HLP, DLP, TCAM, and SDP. We validated our
evaluation methodology by modelling SRAMs and TCAMs with the
parameters of commercially available products, and we verified that
our results closely match the power and timings quoted by vendors
of such products [8][10].

We evaluate previous schemes and SDP over a wide spectrum of
routing-table sizes, and of line-rates. We evaluate each scheme
under worst-case guarantees both for lookup-rates, and for prefix
distributions. Due to lack of space we present experimental results
only for 100nm CMOS technology. We performed the same experi-
mental evaluations for a range of CMOS technologies and found that
the results are qualitatively the same.

6 Experimental Results

We now present a detailed experimental evaluation that compares
SDP against previously proposed IP-lookup schemes — HLP, DLP,
and TCAM. Recall that a truly scalable IP-lookup scheme must

meet all the five requirements of scalability in routing-table siz
lookup throughput, implementation cost, power dissipation, a
routing-table update cost. We present evaluations for four of the fi
scalability requirements. The remaining requirement is scalability
throughput which is implicit in the x-axes of the graphs we prese
for the other requirements.

Because HLP places the entire trie in one large memory, it m
use any trie scheme that is not pipelined at the data-structure le
For a fair evaluation we must pick the best choice out of the vario
schemes available. Recall from Section 2.2, that multi-bit strid
increase the total memory size of a trie due to redundant replicat
of pointers and prefixes in trie nodes. Variable-striding and compr
sion-based schemes can help reduce total memory size by elimi
ing such redundant replication. However, for the worst-ca
distribution shown in Figure 4, the top half (triangular region) of th
trie has no redundant replication whatsoever, and the bottom h
(rectangular region) uses up space because of the large numbe
nodes and not because of inflated node sizes. Hence, schemes
target average case memory size such as variable stride tries,
tries [11] (which is essentially a variable stride trie [17]), and Lule
scheme [3], will do no better than a fixed stride trie for the wors
case distribution. Though Tree Bitmap [4] may reduce the lar
number of nodes in the bottom half (rectangular region) of Figure
it would require large strides (e.g., 6 or 8) for any significan
improvement. Such large strides will adversely affect the worst-ca
route-update cost as explained in Section 6.5. Further, Tree Bitm
almost doubles the total memory requirement (Section 3.2.2), the
fore any saving in the number of trie nodes would be offset by
multiplicative factor of about 2. Hence, in the evaluation of HLP w
choose the fixed-stride multi-bit trie of [17] with strides chosen
minimize worst-case total memory size.

By varying k, the number of levels in a multi-bit trie, we can
obtain a wide design-space for DLP and HLP. We explore th
design space first in order to choose optimal values ofk for these
two schemes. We then evaluate, in detail, the optimal design-po
of DLP and HLP, TCAM, and SDP. We first compare the total wors
case memory requirement of each scheme, and we then compar
power dissipation and implementation cost of each scheme. Fina
we compare the route-update cost of SDP against that of Tree
map [4], the best previous scheme for route-updates.

6.1 Optimal Design Point for Previous Proposals

As we mentioned in Section 3.2, increasing the number of lev
in DLP decreases the worst-case size of the largest stage. We ex
the largest stage to be minimized when each level strides only o
bit (i.e.,k = W, the number of bits in an IP-address(32)). Figure 10(
shows the worst-case size of the largest memory-stage plo
againstk, for various routing-table sizes. Observe that though t
per-stage memory isminimizedwhen k = 32, it does not decrease
appreciably beyondk = 16. We therefore choosek = 16, so that the
per-stage memory is effectively minimized, and the total memory
halved compared to that ofk = 32 (because there are only half a
many stages). Coincidentallyk = 16 represents the optimal design
point for both worst-case per-stage memory size and worst-case t
memory size.

Recall that HLP employs one large memory to hold the enti
multi-bit trie, and hardware-pipelines the memory to a depth propo
tional to k. We are interested in reducing the total memory siz
while keepingk small in order to reduce hardware complexity

ne
B
B
P
ires
t of
e
ry

ith
ary
the
ting
a-
ssi-
ed
rd-
ot,

for
160
ler

e-
em-
pa-
00

c)
Increasingk reduces the total memory size by reducing the extent of
controlled prefix expansion. Because the opportunity for this reduc-
tion is small when the trie is dense (as is the case in the worst-case
prefix distribution of Figure 4), we expect only diminishing returns
ask is increased. In Figure 10(b) we show the worst-case total mem-
ory size plotted againstk, for various routing-table size. Observe that
beyondk = 8, the total memory size does not decrease appreciably.
In order to minimize total memory size while keeping hardware
complexity within reason, we choosek = 8 as the optimal design
point for HLP.

6.2 Worst-case Total Memory Size

In Section 3 we presented expressions for obtaining the worst-
case memory sizes for DLP, HLP and SDP. Recall that, due to a
much tighter bound, we expect the worst-case total memory size of
SDP to be much smaller than that of DLP and HLP. Because the per-
bit implementation area of TCAMs is higher than that of SRAMs
(used in HLP, DLP and SDP), comparing raw memory sizes is not a
useful comparison. However, we show the memory requirement for
TCAM because it represents a lower bound on memory size (it is the
size for storing only all the prefixes.)

Because the total memory requirement is independent of the
line-rate, we need to vary only the routing-table size while evaluat-
ing the memory requirement of various schemes. Figure 10(c) shows
the worst-case total memory size plotted against the routing-table
size, for the various schemes. For a routing table of 1 million pre-
fixes the node sizes for DLP and HLP are 80 bits and 100 bits
respectively, whereas for SDP the size is 72 bits because each node

must also budget for the jump bits. For a routing-table size of o
million prefixes DLP and HLP require memories as large as 84 M
and 75 MB respectively, whereas SDP and TCAM require 22 M
and 6 MB respectively. Across all routing-table sizes, DLP and HL
require roughly the same amount of memory, whereas SDP requ
four times smaller memory on average. The memory requiremen
TCAM is, on average, another factor-of-four smaller than SDP. W
see that DLP and HLP do not scale well in worst-case total memo
size as the number of prefixes increase.

6.3 Power Dissipation

Because the power dissipated in accessing a memory varies w
both the size of the memory and the rate of access, we must v
both the routing-table size and the line-rate when evaluating
power dissipation of various schemes. Recall that we are evalua
worst-case power dissipations. TCAMs activate all memory loc
tions in a single access in the worst-case, therefore their power di
pation is expected to be much higher than that of the trie-bas
schemes. We expect HLP’s dissipation to be large because it ha
ware-pipelines the memory aggressively. Recall that DLP does n
therefore we expect its power dissipation to be small. However,
the same reasons, DLP cannot achieve high line-rates such as
Gbps. We expect the power dissipation of SDP to be slightly smal
than that of DLP because of a smaller memory size.

Figure 11 shows the power dissipation plotted against the lin
rate, for the various schemes. Because we must also vary the m
ory size while evaluating power dissipation, we present three se
rate graphs for three different routing-tables sizes: (a) 250,0

Fig. 10. (a) Worst-case per-stage memory versus trie-levels for DLP (b) Worst-case total memory versus trie-levels for HLP (A
comparison of total worst-case memory versus routing table size for various IP-lookup schemes

20

10

4 8 1612 24 32
k (number of levels in trie)

Pe
r-S

ta
ge

 M
em

or
y (

M
B

)

5

15

150k prefixes
250k prefixes
500k prefixes
750k prefixes

1m prefixes

150k prefixes
250k prefixes
500k prefixes
750k prefixes

1m prefixes
HLP
DLP
TCAM
SDP

(a)

4 8 1612 24 32
k (number of levels in trie)

(b) (c)
Number of Prefixes (thousands)

150 250 500 750 1000

100

80

60

40

20To
ta

l M
em

or
y

(M
B

)

To
ta

l M
em

or
y

(M
B

)

100

75

50

25

Fig. 11. Comparison of power dissipation versus line-rate for various schemes with tables sizes of (a) 250,000 (b) 500,000 (c) 1 million

HLP
DLP
TCAM
SDP

HLP
DLP
TCAM
SDP

HLP
DLP
TCAM
SDP

Line-Rate (Gbps)
2.5 10 40 160

(a)

P
ow

er
 d

is
si

pa
tio

n
(W

) 40

30

20

10

Line-Rate (Gbps)
2.5 10 40 160

(b)

60

40

20

P
ow

er
 d

is
si

pa
tio

n
(W

)

Line-Rate (Gbps)
2.5 10 40 160

(c)

100

75

50

25

P
ow

er
 d

is
si

pa
tio

n
(W

)

the
el
e-

ard-

for
ver-
e.
hip
ing-

il-

ely
to
up

ory
em-
of

bps

re-

in
do

n-
see

].
n-
nd
ute-
ns.

be
is
trie

s
f-
prefixes (b) 500,000 prefixes, and (c) 1 million prefixes. In the evalu-
ation of hardware-pipelined memories, we ignore the area and
power overhead of pipeline latches, giving an unfair advantage to
HLP. SDP uses hardware-pipelining to a much smaller extent than
HLP, therefore its advantage is minimal.

Observe that the results for all routing-table sizes are qualita-
tively similar, therefore we comment only on the results correspond-
ing to 1 million prefixes (Figure 11(c)). Due to TCAM’s brute-force
searching it dissipates as much 42 W at 40 Gbps line-rate, and 174
W at 160 Gbps line-rate. Fork = 8, HLP needs to aggressively pipe-
line the memory, even more so for high line-rates. When dealing
with 160 Gbps line-rate, HLP must access the memory every 0.25
ns. We see that pipelining 75 MB of SRAM to such depth dissipates
prohibitive amounts of power. HLP dissipates as much as 25 W for
40 Gbps line-rate, and 146 W for 160 Gbps line-rate. Note that,
because DLP does not scale to 160 Gbps line-rate, its 160 Gbps
data-point is absent in all graphs. DLP dissipates 10 W at 40 Gbps
line-rate. For 160 Gbps line-rate, SDP hardware-pipelines the indi-
vidual memory-stages, albeit to a less extent than HLP, and hence
incurs some penalty in power dissipation. SDP dissipates 5.5 W for
40 Gbps line-rate, and 22 W for 160 Gbps line-rate. The difference
in power dissipation between SDP and DLP is primarily due to
memory size, whereas between DLP and HLP it is primarily due to
aggressive hardware-pipelining.We see that HLP and TCAM do not
scale well in power dissipation as the routing-table sizes and line-
rates increase.

6.4 Implementation Cost

The cost of implementing chips in silicon is proportional to
approximately the fourth power of their area [6]. Hence, we evaluate
the chip area of various schemes to ascertain their scalability in
implementation cost. Although the total memory requirement of
TCAM is fairly small, we do not expect its chip area to be as small
because, for circuit-level reasons, CAM-styled memories cannot be
designed to have the same high density as RAM. In the absence of
hardware pipelining, the area taken up by a memory is proportional
to its size in bytes. In the presence of hardware-pipelining the area
grows exponentially with the depth of pipelining. Because DLP does
not hardware-pipeline the memory, we expect its chip area to stay
constant across line-rates. For small values of line-rates, we do not
expect any of the schemes to incur any significant hardware-pipelin-
ing. Therefore for low line-rates, we expect DLP, HLP and SDP to
take up chip areas in accordance with their memory sizes (i.e., we
expect DLP and HLP to take up similar areas and SDP to take up

four times lesser area than theirs). For high line-rates, we expect
area of HLP to grow in comparison to DLP due to hardware-lev
pipelining. We also expect the area of SDP to increase at high lin
rates, however not by the same trend as HLP because SDP’s h
ware-pipelining is not nearly as aggressive as HLP.

Figure 12 shows the chip area plotted against the line-rate,
the various schemes. Recall that we ignore the area and power o
head of pipeline latches in HLP, giving it an unfair advantag
Because we must also vary the memory size while evaluating c
area, we present three separate graphs for three different rout
tables sizes: (a) 250,000 prefixes (b) 500,000 prefixes, and (c) 1 m
lion prefixes.

We see that the results for all routing-table sizes are qualitativ
similar, therefore we comment only on the results corresponding
500,000 prefixes (Figure 12(b)). For 40 Gbps line-rate HLP takes
20.8 cm2, and for 160 Gbps it takes more than 150 cm2 of chip area.
This drastic increase occurs because HLP must access the mem
every 0.25 ns, and in order to achieve such an access rate, the m
ory array must be split to an extremely fine extent. The chip area
DLP stays constant at 13.3 cm2 for all line-rates except 160 Gbps.
Because DLP does not scale to 160 Gbps line-rate, its 160 G
data-point is absent in all graphs. SDP takes up an area of 6.3 cm2 at
40 Gbps, whereas at 160 Gbps it takes up an area of 7.5 cm2. We see
that the SDP’s area is larger for high line-rates due to hardwa
pipelining. TCAM takes up about 4.1 cm2 for all line-rates. We see
that the chip area of TCAM, unlike its memory size as evaluated
Section 6.2, is not smaller than that of SDP. Note that because we
not model the priority-encoder in TCAM, its evaluated area is a co
servative result and we expect the actual area to be larger. We
that HLP does not scale well in implementation cost.

6.5 Cost of Route-Updates

TCAMs can be updated efficiently by using techniques like [13
[1] proposes, for DLP, a number of optimizations for fast, increme
tal route-updates, however all the optimizations are heuristics a
improve only the average-case update-cost. The worst-case ro
update cost of DLP remains unbounded even with the optimizatio
HLP also has an unbounded worst-case route-update cost.

However, the route-update scheme of Tree Bitmap [4] can
applied to HLP and DLP to reduce the route-update cost. Th
scheme, which is the best to date, requires the update of only one
node in the worst-case. This one node may contain 2k pointers in the
worst-case, wherek is the largest stride in the trie. For small value
of k (e.g., 2 or 3), a single memory write may be wide enough to su

Fig. 12. Comparison of chip area versus line-rate for various schemes with table sizes of (a) 250,000 (b) 500,000 (c) 1 million prefixes

HLP
DLP
TCAM
SDP

HLP
DLP
TCAM
SDP

HLP
DLP
TCAM
SDP

2.5 10 40 160

(a)

Line-Rate (Gbps)

20

10

15

5T
ot

al
 A

re
a

(c
m2)

2.5 10 40 160

(b)

Line-Rate (Gbps)

30

20

10

T
ot

al
 A

re
a

(c
m2)

2.5 10 40 160

(c)

Line-Rate (Gbps)

60

40

20T
ot

al
 A

re
a

(c
m2)

our
is-
he
se.

n-
lly

are
all
es
e

r

l
d-

ft-

n-

r
t.

ut-
u-

n

ok-

ed
n

ing

t

fice, but for larger values ofk (e.g., 6 or 8) Tree Bitmap may require
multiple memory writes. In addition to writing the trie node upon a
route-update, Tree Bitmap can incur substantial worst-case memory
management overhead as mentioned in Section 3.3.5. Accounting
for this overhead, the eventual worst-case route-update cost can
exceed 100 memory operations. Hence Tree Bitmap does not scale
well in worst-case route-update cost. In addition, it incurs the pen-
alty of almost doubling the size of each trie node due to the absence
of leaf pushing (Section 3.2.2). In our evaluations above
(Section 6.2 through Section 6.4), we do not penalize the total mem-
ory size of HLP and DLP. The results presented in those sections
must be viewed with the understanding that HLP and DLPdo not
scale in route-update cost. If HLP and DLP incorporate Tree Bitmap
to achieve a better worst-case route-update cost, their worst-case
total memory sizes would be almost twice as large than the sizes
shown in Section 6.2. Yet, even with Tree Bitmap their worst-case
route-update cost could exceed 100 memory operations.

In contrast, the worst-case route-update cost in SDP is provably
optimum, as it amounts to exactly and only one write-bubble. Owing
to the uniform size of its trie nodes, SDP does not need complex
memory management schemes with compaction and defragmenta-
tion. Hence, we see that SDP scales well in worst-case route-update
cost.

6.6 Summary of Results

We see that dynamic pipelining is the only IP-lookup scheme
that is truly scalable in routing-table size, lookup throughput, imple-
mentation cost, power dissipation, and routing-table update cost. In
contrast, all other IP-lookup schemes do not scale well in a number
of these requirements. HLP does not scale well in total memory size,
power dissipation, route-update cost, and implementation cost. DLP
does not scale well in total memory size, lookup throughput, and
route-update cost. TCAMs do not scale well in implementation cost
and power dissipation. For a routing-table of 1 million prefixes, and
a line-rate of 160 Gbps, HLP requires 75 MB, dissipates 146 W, and
takes up more than 200 cm2. TCAM requires 6 MB, dissipates 174
W, and takes up 8.9 cm2. DLP requires 88 MB, dissipates 10 W,
takes up 27 cm2 and fails to work beyond 40 Gbps. In contrast, SDP
requires only 22 MB of memory, dissipates 22 W, and takes up 14.9
cm2.

7 Conclusions

A truly scalable IP-lookup scheme must address five challenges
of scalability, namely: routing-table size, lookup throughput, imple-
mentation cost, power dissipation, and routing-table update cost.
Though several IP-lookup schemes have been proposed in the past,
all of the schemes satisfy only two or three of the requirements but
not all five. Previous schemes pipeline tries by mapping trie levels to
pipeline stages. We made the fundamental observation that because
this mapping is static and oblivious of the prefix distribution, the
schemes do not scale well when worst-case prefix distributions are
considered. This paper is the first to meet all the five requirements in
the worst case. We proposed scalable dynamic pipelining (SDP)
which includes three key innovations: (1) We map trie nodes to pipe-
line stages based on the node height, which succinctly provides suf-
ficient information about the distribution. Our mapping enables us to
prove a worst-case per-stage memory bound which is significantly
tighter than those of previous schemes. (2) We exploit our mapping

to propose a novel scheme for incremental route-updates. In
scheme a route-update requires exactly and only one write d
patched into the pipeline. This route-update cost is obviously t
optimum and our scheme achieves the optimum in the worst ca
(3) We achieve scalability in throughput by simultaneously pipeli
ing at the data-structure level and hardware level. SDP natura
scales in power and implementation cost. Using detailed hardw
simulation, we showed that SDP is the only scheme that achieves
the five scalability requirements. Our results confirm that schem
like SDP will be necessary for future routers to keep up with th
scaling trends of the Internet.

References

[1] Anindya Basu and Girija Narlikar. Fast Incremental Updates fo
Pipelined Forwarding Engines. InProceedings of INFOCOM ‘03,
2003.

[2] CACTI. http://research.compaq.com/wrl/people/jouppi/CACTI.htm
[3] M. Degermark, A. Brodnik, S. Carlsson and S. Pink. Small Forwar

ing Tables for Fast Routing Lookups. InProcedings of SIGCOMM
‘97 1997.

[4] W. Eatherton, Z. Dittia, G. Varghese. Tree Bitmap: Hardware/So
ware IP Lookups with Incremental Updates.ACM SIGCOMM
Compter Communication Review, 34(2) 97-122, 2004.

[5] Mathew Gray. Internet Growth Summary.http://www.mit.edu/peo-
ple/mkgray/net/internet-growth-summary.html, 1996.

[6] J. L. Hennessy and D. A. Patterson. Compter Architecture: a Qua
titative Approach.Morgan Kaufman Publishers. 2002

[7] V. Kumar, T. Lakshman and D. Stiliadis. Beyond Best Effort: Route
Architectures for Differentiated Services of Tomorrow’s Interne
IEEE Communications Magazine 36(5) 152-164, 1998

[8] Integrated Device Technology, Inc.http://www.idt.com.
[9] D. R. Morrison. PATRICIA - Practical Algorithm to Retrieve Infor-

mation Coded in Alphanumeric.Journal of the ACM,15(4)514-534,
Oct. 1968.

[10] NetLogic Microsystems, Inc.http://www.netlogicmicro.com.
[11] S. Nilsson and G. Karlsson. Fast Address Look-up for Internet Ro

ers. InProceedings of The IEEE Conference on BroadBand Comm
nications Technology.1998.

[12] Routing Information Service.http://www.ris.ripe.net.
[13] D. Shah and P. Gupta. Fast Updating Algorithms for TCAMs. I

Proceedings of IEEE MICRO,21(1)36-47, Feb 2001.
[14] Sandeep Sikka and George Varghese. Memory-Efficient State Lo

ups with Fast Updates. InProceedings of SIGCOMM ‘00, 2000
[15] Timothy Sherwood, George Varghese and Brad Calder. A Pipelin

Memory Architecture for High Throughput Network Processors. I
Proceedings of the 30th Annual ISCA, pages 288-299, 2003.

[16] K. Sklower. A Tree-Based Routing Table for Berkeley Unix. InPro-
ceedings of the 1991 Winter Usenix Conference. 1991.

[17] V. Srinivasan and George Varghese. Fast Address Lookups Us
Controlled Prefix Expansion.ACM Transactions on Computer Sys-
tems, 17(1):1–40, February 1999.

[18] Alan Tammel. How to Survive as an ISP. InProceedings of Net-
world Interop 97, 1997.

[19] F. Zane, G. Narlikar and A. Basu. CoolCAMs: Power-Efficien
TCAMs for Forwarding Engines. InProceedings of INFOCOM ‘03,
2003.

	Abstract
	Categories & Subject Descriptors
	General Terms
	Keywords
	1 Introduction
	2 Background
	2.1 Trie-Based IP-lookup Schemes
	Fig. 1. (a) The prefixes in a routing table (b) a trie constructed from the given prefixes

	2.2 Multiple-bit Stride Tries
	2.3 The Need for Pipelined Tries
	Fig. 2. (a) The routing table after controlled prefix expansion (b) The 2-bit stride trie constru...

	3 Pipelined and Scalable IP-Lookup
	3.1 Hardware-Level Pipelining
	Fig. 3. The hardware steps involved in a memory access

	3.2 Data-Structure-Level Pipelining
	3.2.1 DLP’s Scalability Problems in Memory Size
	Fig. 4. The 1-bit trie corresponding to the worst-case prefix distribution. N is the number of pr...

	3.2.2 DLP’s Scalability Problems in Route-update Cost
	3.2.3 DLP’s Non-Scalability in Throughput

	3.3 Scalable Dynamic Pipelining
	3.3.1 Jump Nodes
	Fig. 5. (a) A table of prefixes (b) The corresponding 1-bit trie (c) The 1-bit trie with P3 delet...

	3.3.2 Per-Stage Memory Bound
	Fig. 6. (a) A binary search tree with N leaves (b) memory size of a trie with jump-nodes for the ...
	Fig. 7. (a) The height of a node (b) The relation between height and the number of leaves beneath...

	3.3.3 System Architecture
	3.3.4 Optimum Cost Incremental Route-updates
	Fig. 8. Difference between the update cost of SDP and that of leaf- pushed trie schemes

	3.3.5 Memory Management Overhead
	3.3.6 Scalability in Lookup Rate
	Fig. 9. An example of the per-stage memory requirement for SDP and the corresponding degree of HLP

	4 Brief Review of TCAM-based Schemes
	5 Methodology
	6 Experimental Results
	6.1 Optimal Design Point for Previous Proposals
	Fig. 10. (a) Worst-case per-stage memory versus trie-levels for DLP (b) Worst-case total memory v...

	6.2 Worst-case Total Memory Size
	6.3 Power Dissipation
	Fig. 11. Comparison of power dissipation versus line-rate for various schemes with tables sizes o...

	6.4 Implementation Cost
	Fig. 12. Comparison of chip area versus line-rate for various schemes with table sizes of (a) 250...

	6.5 Cost of Route-Updates
	6.6 Summary of Results

	7 Conclusions
	References
	[1] Anindya Basu and Girija Narlikar. Fast Incremental Updates for Pipelined Forwarding Engines. ...
	[2] CACTI. http://research.compaq.com/wrl/people/jouppi/CACTI.html
	[3] M. Degermark, A. Brodnik, S. Carlsson and S. Pink. Small Forwarding Tables for Fast Routing L...
	[4] W. Eatherton, Z. Dittia, G. Varghese. Tree Bitmap: Hardware/Software IP Lookups with Incremen...
	[5] Mathew Gray. Internet Growth Summary. http://www.mit.edu/people/mkgray/net/internet-growth-su...
	[6] J. L. Hennessy and D. A. Patterson. Compter Architecture: a Quantitative Approach. Morgan Kau...
	[7] V. Kumar, T. Lakshman and D. Stiliadis. Beyond Best Effort: Router Architectures for Differen...
	[8] Integrated Device Technology, Inc. http://www.idt.com.
	[9] D. R. Morrison. PATRICIA - Practical Algorithm to Retrieve Information Coded in Alphanumeric....
	[10] NetLogic Microsystems, Inc. http://www.netlogicmicro.com.
	[11] S. Nilsson and G. Karlsson. Fast Address Look-up for Internet Routers. In Proceedings of The...
	[12] Routing Information Service. http://www.ris.ripe.net.
	[13] D. Shah and P. Gupta. Fast Updating Algorithms for TCAMs. In Proceedings of IEEE MICRO, 21(1...
	[14] Sandeep Sikka and George Varghese. Memory-Efficient State Lookups with Fast Updates. In Proc...
	[15] Timothy Sherwood, George Varghese and Brad Calder. A Pipelined Memory Architecture for High ...
	[16] K. Sklower. A Tree-Based Routing Table for Berkeley Unix. In Proceedings of the 1991 Winter ...
	[17] V. Srinivasan and George Varghese. Fast Address Lookups Using Controlled Prefix Expansion. A...
	[18] Alan Tammel. How to Survive as an ISP. In Proceedings of Networld Interop 97, 1997.
	[19] F. Zane, G. Narlikar and A. Basu. CoolCAMs: Power-Efficient TCAMs for Forwarding Engines. In...

