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Dynamic Planar Range Maxima Queries

Gerth Stølting Brodal1 and Konstantinos Tsakalidis1

MADALGO⋆,
Department of Computer Science,

Aarhus University, Denmark.
{gerth, tsakalid}@madalgo.au.dk

Abstract. We consider the dynamic two-dimensional maxima query
problem. Let P be a set of n points in the plane. A point is maximal if it
is not dominated by any other point in P . We describe two data struc-
tures that support the reporting of the t maximal points that dominate
a given query point, and allow for insertions and deletions of points in P .
In the pointer machine model we present a linear space data structure
with O(log n+ t) worst case query time and O(log n) worst case update
time. This is the first dynamic data structure for the planar maxima
dominance query problem that achieves these bounds in the worst case.
The data structure also supports the more general query of reporting the
maximal points among the points that lie in a given 3-sided orthogonal
range unbounded from above in the same complexity. We can support
4-sided queries in O(log2 n+ t) worst case time, and O(log2 n) worst case
update time, using O(n log n) space, where t is the size of the output.
This improves the worst case deletion time of the dynamic rectangular
visibility query problem from O(log3 n) to O(log2 n). We adapt the data
structure to the RAM model with word size w, where the coordinates of
the points are integers in the range U={0, . . . , 2w−1}. We present a lin-
ear space data structure that supports 3-sided range maxima queries in
O( logn

log logn
+t) worst case time and updates in O( logn

log logn
) worst case time.

These are the first sublogarithmic worst case bounds for all operations
in the RAM model.

1 Introduction

Given a set P of n points in the plane, a point p = (px, py) dominates another
point q = (qx, qy) if both px ≥ qx and py ≥ qy hold. The m points that are not
dominated by any other point in the set are called maximal. The maximal points
are also called the staircase of the set, since when they are sorted by increasing
x-coordinate they are also sorted by decreasing y-coordinate. We consider the
problem of designing a data structure that supports insertions and deletions
of points in the set, and allows reporting the maximal points that dominate a
given query point q (maxima dominance query). Actually we consider the more

⋆ Center for Massive Data Algorithmics - a Center of the Danish National Research
Foundation



y

x

q

y

xxr

y

xxrxℓ

yb

Maxima dominance Maxima contour 3-sided maxima

Fig. 1. Different range maxima queries. Black points are reported.

general 3-sided range maxima queries. That is, given parameters xℓ, xr and yb,
to report the maximal points of the points in the set P ∩ ([xℓ, xr] × [yb,+∞[.
The special case where the query range is ]−∞, xr]×]−∞,+∞[ is also known as
maxima contour queries.

Previous Results The maximal points of a static set of two-dimensional points
can be computed in optimal O(n log n) time [2].1 In the pointer machine lin-
ear space dynamic data structures have been presented that support reporting
all maximal points. They achieve O(m) worst case [8, 9, 3, 13] or amortized [15]
query time. They support deciding whether a given query point lies above or be-
low the staircase (maxima emptiness query) in O(log n) [8, 9, 15] or O(logm) [3,
13] worst case time. Maxima contour queries are supported by the structures
of [3] and [9] in O(log n+ t) worst case time, where t is size of the output.

Regarding updates, the structure of Overmars and van Leeuwen [3] supports
the insertion and deletion of an arbitrary point in O(log2 n) worst case time.
Frederickson and Rodger [8], and independently Janardan [9], improve only the
worst case insertion time toO(log n), preserving the other complexities. D’Amore
et al. [13] improve both the insertion and deletion time to O(log n) worst case,
under the assumption that the updated point has the maximum or minimum
x-coordinate among the points in the set (boundary updates). Kapoor [15] shows
how to support both the insertion and deletion of an arbitrary point in O(log n)
worst case time. The deletion time is improved at the expense of worst case
query time O(m+chng · log n), where chng is the total number of changes that
the update operations have caused to the staircase reported by the latest query
operation. Kapoor modifies the structure such that a sequence of queries, and
n insertions and d deletions of points requires O(n log n+d log n+r) worst case
time, where r is the total number of reported maximal points. The worst case
update time remains O(log n), however the query needs O(r) amortized time.

An application of the maxima contour query is the rectangular visibility
query problem. A point p ∈ P is rectangularly visible from a point q if the
orthogonal rectangle with p and q as diagonally opposite corners contains no
other point in P . The structure of Overmars and Wood [5] supports reporting

1 log n = log2 n



Table 1. Running times for updates and the following query operations. Parameter t is
the number of reported points. “All”: Report all maximal points. “Emptiness”: Is the
query point above or below the staircase? “Dominance”: Report the maximal points
that dominate the query point. “Contour”: Report the maximal points among the
points that lie to the left of a given vertical query line. All structures occupy linear
space. (†only boundary updates, ‡amortized bounds)

Model All Emptiness Dominance Contour Insertion Deletion

[3] PM O(m) O(logm) O(logm+ t) O(log n+ t) O(log2 n) O(log2 n)
[8] PM O(m) O(log n) O(log n+ t) O(min{log2 n+ t, O(log n) O(log2 n)

(t+ 1) log n})
[9] PM O(m) O(log n) O(log n+ t) O(log n+ t) O(log n) O(log2 n)

[13] PM O(m) O(logm) O(logm+ t) - O(log n) O(log n)†

[15] PM‡ O(m) O(log n) O(log n+ t) - O(log n) O(log n)
New PM O(m) O(log n) O(log n+ t) O(log n+ t) O(log n) O(log n)

New RAM O(m) O( logn

log logn
) O( logn

log logn
+ t) O( logn

log logn
+ t) O( logn

log logn
) O( logn

log logn
)

the t points that are rectangularly visible from a given query point in O(log2 n+t)
worst case time, insertions and deletions of points in O(log3 n) worst case time
and uses O(n log n) space, when the structure of [3] is applied. Only the insertion
time is improved to O(log2 n) by applying the structure of [9]. Both the insertion
and deletion time can be improved to O(log2 n) worst case, using O(n log n)
space, at the expense of O(t log n) worst case query time [5, Theorem 3.5].

Our Results In the pointer machine model we present a linear space data struc-
ture that supports maxima dominance queries, and more general 3-sided range
maxima queries inO(log n+t) worst case time. An arbitrary point can be inserted
and deleted in O(log n) worst case time. This is the first dynamic data structure
that achieves the update times of [15], and supports more general range maxima
queries with worst case complexities. Our structure can be generalized to solve
4-sided range maxima queries, namely to report the maximal points of the point
set P ∩([xℓ, xr]×[yb, yt]), in O(log2 n+t) worst case time. Updates take O(log2 n)
worst case time and the space usage is O(n log n). Using our 4-sided range max-
ima structure we can solve the dynamic rectangular visibility query problem
with the same bounds. In the word-RAM model we present a linear space data
structure that supports 3-sided range maxima queries in O( logn

log logn + t) worst
case time, and updates in O( logn

log logn ) worst case time. This is the first dynamic
data structure in the RAM model that supports these operations in sublogarith-
mic worst case time. Both the pointer machine and the RAM data structures
support reporting all maximal points in O(m) worst case time.

Outline of Solution We follow the basic approach of previous structures. We
store the points sorted by x-coordinate at the leaves of a tree, and maintain a
tournament in the internal nodes of the tree with respect to their y-coordinates.
An internal node u is assigned the point with maximum y-coordinate in its
subtree. We observe that the nodes in the subtree of u that contain this point



form a path. We also observe that the maximal points among the points assigned
to the nodes hanging to the right of this path are also maximal among the points
in the subtree of u. We store these points in node u in order to allow the query
algorithm to recursively access only points to be reported.

The implementation of our structures is based on the fact that we can obtain
the set of points we store in a node from the set stored in its child node that
belongs to the same path. In particular if that is the left child, we need to delete
the points that are dominated by the point assigned to the right child and insert
this point into the set. Sundar [7] shows how to implement a priority queue
that supports exactly this operation (attrition) in O(1) worst case time. This
allows us to complete the insertion and deletion of a point to the construction in
O(log n) worst case time. To achieve linear space we implement every path that
contains the same point as a partially persistent priority queue with attrition.
The priority queue with attrition abides by the assumptions for the technique of
Brodal [12] that makes a pointer-based data structure partially persistent, since
it can be implemented as a doubly linked list pointed by a constant number
of additional pointers. We adapt the above construction to the word-RAM by
increasing the degree of the tree to Θ(logε n) for some 0<ε<1. To search and
update a node in O(1) time, we make use of precomputed lookup-tables and the
Q-heap of Fredman and Willard [10].

2 Preliminaries

Partial Persistence Driscoll et al. [6] show a general technique to make pointer
based data structures partially persistent. Suppose that an update operation on
a dynamic data structure creates a new version of the data structure. A dynamic
data structure is called partially persistent when only the latest version can be
updated, and any previous version can be queried given a pointer to it. We obtain
a list of versions called the version list, by ordering the versions such that an
update to version i creates version i+1. A rollback discards the latest version by
reversing the update that created it, and sets its preceding version in the version
list as the new updatable version.

Let D be a dynamic data structure that supports queries in worst case time q
and updates in worst case time u. Under the assumption that D can be modeled
by a graph where the in- and out-degree of each node is bounded by a constant,
Brodal [12] presented a method to make D partially persistent, such that a
query to a particular version can be supported in O(q) worst case time, and
an update to the latest version in O(u) worst case time. This improves the
original partial persistence technique of Driscoll et al. [6], that only achieves
amortized O(u) update time, and enables the rollback operation in O(u) worst
case time. Moreover after performing a sequence of s atomic update operations,
the partially persistent data structure occupies O(s) space.

Priority Queue with Attrition Sundar [7] introduces the priority queue with at-
trition (PQA) that supports the following operations in O(1) worst case time on



a set of elements drawn from a total order: DeleteMax deletes and returns the
maximum element from the PQA, and InsertAndAttrite(x) inserts element
x into the PQA and removes all elements smaller than x from the PQA. The
PQA uses space linear to the number of inserted elements, and is implemented
as a doubly linked list with a constant number of additional pointers. Given a
value x, the elements in the PQA that are larger than x can be reported in
sorted order in O(t+ 1) time, where t is the size of the output.

Red-black Tree A red-black tree [1] is a balanced binary search tree that maintains
a set of n elements drawn from a total order. It supports the following operations
in O(log n) worst case time, using O(n) space: Insert(x) inserts element x into
the tree, Delete(x) deletes element x from the tree, and Predecessor(x)
returns the largest element in the tree that is smaller or equal to element x.

Q-Heap A Q-heap [10] stores a subset of at most log1/4 n integers from the
set U={0, . . . , 2w − 1}. It operates in the RAM with word size w ≥ log n, and
supports the operations Insert(x), Delete(x) and Predecessor(x) in O(1)

worst case time. It uses O(log1/4 n) space, and utilizes an O(n) space global
precomputed lookup-table that needs O(n) preprocessing time.

3 Pointer-Based Data Structure

In this section we present our pointer based data structure that supports 3-sided
range maxima queries in O(log n+ t) worst case time, where t is the number of
reported points. The insertion and deletion of a point are supported in O(log n)
worst case time. The structure occupies O(n) space. Comparisons are the only
allowed computation on the coordinates of the points.

3.1 Data Structure

We store the points sorted by increasing x-coordinate at the leaves of a red-black
tree T . We maintain a tournament on the internal nodes of T with respect to
the y-coordinates of the points. In particular, every internal node u contains the
points px−max(u) and py−max(u) that are respectively the points with maximum
x- and y-coordinate among the points in the subtree of u. The points px−max(u)
allow us to search in T with respect to the x-coordinate. The points py−max(u)
define n disjoint winning paths in T whose nodes contain the same point.

Let u be an internal node. Let u belong to a winning path π. We denote by πu

the suffix of π that starts at node u and ends at the leaf that stores py−max(u).
We denote by Ru the set of right children of the nodes in πu that do not belong
to πu themselves. We denote by MAX(u) the points that are maximal among
{py−max(v) | v ∈ Ru}. We can obtain MAX(u) from the set of points MAX(c),
where c is the child of u that belongs to πu. In particular, if that is the right
child uR then Ru = RuR

and thus MAX(u) = MAX(uR). Otherwise if that is
the left child uL, then Ru = RuL

∪ {uR}. Point py−max(uR) belongs to MAX(u)



since it has the largest x-coordinate among all points in Ru. Moreover, all the
points in MAX(uL) with y-coordinate at most py−max(uR)y should be excluded
from MAX(u) since they are dominated by py−max(uR). See Figure 2 for an
illustration of Ru and MAX(u).

u
Ru

MAX(u)

Fig. 2. The winning path
π is bold. The circular
nodes are in Ru. The
black circular nodes are in
MAX(u).

We implement the sets MAX(u) of the nodes u

along a winning path π as the versions of a par-
tially persistent priority queue with attrition (PP-
PQA). That is, every internal node u stores the y-
coordinates of the points in MAX(u) in a priority
queue with attrition (PQA). If u is the i-th node of π,
then it contains the i-th version of the PPPQA. The
leaf of π contains version 0. The child of u that belongs
to π contains the i−1-th version. If that is uR, the i-th
version and the i−1-th versions have the same con-
tent. Else if that is uL, the i-th version is obtained by
executing InsertAndAttrite(py−max(uR)y) to the
i−1-th version. Moreover, for every point in MAX(u)
we store a pointer to the node of Ru that stores the
point. This node is the highest node of its winning
path. Note that Ru is not explicitly maintained any-
where in the data structure.

Let p be the point with maximum y-coordinate among the points py−max(uL)
and py−max(uR). To extend the winning path that contains p from the child node
to node u, we assign to u the points px−max(uR) and p, and compute MAX(u).

Lemma 1. Extending a winning path from an internal node to its parent node
needs O(1) time and O(1) extra space.

Proof. Points px−max(u) and py−max(u) can be computed from the children of u
in O(1) time. To extend the winning path that contains py−max(uR), we create
the reference to the new version of the PPPQA for the winning path in O(1) time.
To extend the winning path that contains py−max(uL), we record persistently the
operation InsertAndAttrite(py−max(uR)y) and create a reference to the new
version in O(1) worst case time using O(1) extra space [12, 7]. ⊓⊔

Lemma 1 implies that T can be constructed bottom-up in O(n) worst case
time, assuming that the n points are given sorted by increasing x-coordinate.
The total space usage is O(n).

3.2 Query

In the following we describe how to answer 3-sided range maxima queries. This
immediately also gives us maxima dominance and maxima contour queries,
since these are special cases where the query ranges are [qx,+∞[×[qy,+∞[ and
]−∞, xr]×]−∞,+∞[ respectively.



Reporting the maximal points that lie above qy We first show how to report all
maximal points with y-coordinate larger than a given value qy among the points
that belong to a subtree Tu of T rooted at an internal node u. If py−max(u)y≤qy
we terminate since no maximal point of Tu has to be reported. Otherwise we
report py−max(u) and compute the prefix p[1], . . . , p[k] of MAX(u) of points with
y-coordinate larger than qy. To do so we report the elements of the PQA of u
that are larger than qy. Let ui be the node of Ru such that py−max(ui) = p[i].
We report recursively the maximal points in Tui

with y-coordinate larger than
p[i+1]y for i ∈ {1, . . . , k−1}, and larger than qy for i = k. The algorithm reports
the maximal points in Tu in decreasing y-coordinate and terminates when the
maximal point with the smallest y-coordinate larger than qy is reported.

For the correctness of the above observe that the point py−max(u) is the
leftmost maximal point among the points in Tu. The x-coordinates of the rest
of the maximal points in Tu are larger than py−max(u)x. The subtrees rooted
at nodes of Ru divide the x-range ]py−max(u)x,+∞[ into disjoint x-ranges. The
point p′ with maximum y-coordinate of each x-range is stored at a node u′ of Ru.
The points in MAX(u) are maximal among the points in Tu. Let p[i+ 1] be the
leftmost maximal point in Tu to the right of p′. If p′ does not belong to MAX(u)
then none of the points in Tu′ are maximal, since p′y ≤ p[i+ 1]y and p[i+ 1]x is
larger than the x-coordinate of all points in Tu′ . Otherwise p′ belongs to MAX(u)
and more precisely p′ = p[i]. Point p[i] is the leftmost maximal point among the
points in Tu′ . The maximal points among the points in Tu with x-coordinate at
least p[i]x and y-coordinate larger than p[i + 1]y belong to Tu′ . In particular,
they are the maximal points among the points in Tu′ with y-coordinate larger
than p[i+ 1]y.

Lemma 2. Reporting the maximal points with y-coordinate larger than qy among
the points of a subtree of T takes O(t+1) worst case time, where t is the number
of reported points.

Proof. If py−max(u) is not reported we spend in total O(1) time to assess that
no point will be reported. Otherwise py−max(u) is reported. We need O(k + 1)
time to compute the k points in MAX(u) with y-coordinate larger than qy. If
k = 0 we charge the O(1) time we spent in node u to the reporting of py−max(u).
Otherwise we charge the time to compute p[i] and to access node ui to the
reporting of p[i]. In total every reported point is charged O(1) time. ⊓⊔

In order to report all maximal points of P we apply the above algorithm to
the root of T with qy=−∞. The total time is O(m).

3-sided Range Maxima Queries We show how to report all maximal points of
the point set P ∩ ([xℓ, xr]× [yb,+∞[). We search for the leaves ℓ and r of T that
contain the points with the largest x-coordinate smaller than xr and smallest
x-coordinate larger than xℓ, respectively. Let πℓ and πr be the root-to-leaf paths
to ℓ and r, respectively. Let R denote the set of right children of nodes of πℓ \πr

that do not belong to πℓ themselves, and the set of left children of nodes of
πr \ πℓ that do not belong to πr themselves. The subtrees rooted at the nodes u



of R divide the x-range ]xℓ, xr[ into disjoint x-ranges. We compute the maximal
points p[1], . . . , p[k] among the points py−max(u) in R with y-coordinate larger
than yb using [2]. Let ui be the node of R such that py−max(ui) = p[i]. We report
recursively the maximal points in Tui

with y-coordinate larger than p[i+1]y for
i ∈ {1, . . . , k − 1}, and larger than yb for i = k.

Lemma 3. Reporting the maximal points for the 3-sided range maxima query
takes O(log n+ t) worst case time, where t is the number of reported points

Proof. There are O(log n) nodes u in R. The points py−max(u) are accessed in
decreasing x-coordinate. Therefore we can compute the maximal points p[i], i ∈
{1, . . . , k} in O(log n) time [2]. Let p[i] = py−max(ui) for a particular node ui of
R, and let there be ti maximal points to be reported in the subtree Tui

. Since p[i]
will be reported we get that ti ≥ 1. By Lemma 2 we need O(ti) time to report the

ti points. Therefore the total worst case time to report the t =
∑k

i=1 ti maximal
points is O(log n+ t). ⊓⊔

In order to answer whether a given query point q = (qx, qy) lies above or
below the staircase (maxima emptiness query) in O(log n) time we terminate a
3-sided range maxima query for the range [qx,+∞[×[qy,+∞[ as soon as the first
maximal point is reported. If so, then q lies below the staircase. Else if no point
is reported then q lies above the staircase.

3.3 Update

To insert (resp. delete) a point p = (px, py) in the structure, we search for the
leaf ℓ of T that contains the point with the largest x-coordinate smaller than px
(resp. contains p). We traverse the nodes of the parent(ℓ)-to-root search path π

top-down. For each node u of π we discard the points px−max(u) and py−max(u),
and rollback the PQA of u in order to discard MAX(u). We insert a new leaf ℓ′

for p immediately to the right of the leaf ℓ (resp. delete ℓ) and we rebalance T .
Before performing a rotation, we discard the information stored in the nodes that
participate in it. Finally we recompute the information in each node u missing
px−max(u), py−max(u), and MAX(u) bottom-up following π. For every node u we
extend the winning path of its child u′ such that py−max(u) = py−max(u

′) as in
Section 3.1. Correctness follows from the fact that every node that participates
in a rotation either belongs to π or is adjacent to a node of π. The winning path
that ends at the rotated node will be considered when we extend the winning
paths bottom-up.

Lemma 4. Inserting or deleting a point from T takes O(log n) worst case time.

Proof. The height of T is O(log n). Rebalancing a red-black takes O(log n) time.
We need O(1) time to discard the information in every node of π. By Lemma 1
we need O(1) time to extend the winning path at every recomputed node. Thus
we need in total O(log n) time to update the internal nodes of T . ⊓⊔



4 4-sided Range Maxima Queries and Rectangular

Visibility

In the following we describe how to support 4-sided range maxima queries in
O(log2 n + t) worst case time and updates in O(log2 n) worst case time, using
O(n log n) space, by borrowing ideas from [5].

For the rectangular visibility query problem, where we want to report the
points that are rectangularly visible from a given query point q = (qx, qy), we
note that it suffices to report the maximal points p that lie to the lower left
quadrant defined by point q (namely the points where px ≤ qx and py ≤ qy
holds). The rectangularly visible points of the three other quadrants can be
found in a symmetric way. This corresponds exactly to a 4-sided range maxima
query for the range ]−∞, qx]×]−∞, qy]. The rectangular visibility query problem
can be solved in the same bounds, using four 4-sided range maxima structures.

To support 4-sided range maxima queries, as in [5], we store all points sorted
by increasing y-coordinate at the leaves of a weight-balanced B-tree S [16]. In
every internal node u of S we associate a secondary structure that can answer
3-sided range maxima queries on the points that belong to the subtree Su of S.

bi−1 yt

yb

xℓ xr

Su1

Su2

Sui

Suk

Fig. 3. 4-sided range
maxima query.

To perform a 4-sided range maxima query we first
search for the leaves of S that contain the point with
the smallest y-coordinate larger than yb and the point
with largest y-coordinate smaller than yt, respectively.
Let πb and πt be the root-to-leaf search paths respec-
tively. Let L denote the set of nodes of S that are left
children of the nodes in πt \ πb and do not belong to
πt themselves, and the set of nodes of S that are right
children of the nodes in πb \ πt and do not belong
to πb themselves. The subtrees rooted at the nodes
of L divide the y-range ]yb, yt[ into O(log n) disjoint
y-ranges. We consider the nodes u1, . . . , uk of L in decreasing y-coordinate. In
the secondary structure of u1 we perform a 3-sided range maxima query with the
range ]xℓ, xr]×]−∞,+∞[. In the secondary structure of every other node ui of L
we perform a 3-sided range maxima query with the range ]bi−1, xr]×]−∞,+∞[,
where bi−1 is the x-coordinate of the last point reported from the secondary
structures of u1, . . . , ui−1, i.e. the rightmost point that lies to the left of xr

and lies in y-range spanned by the subtrees Su1
, . . . , Sui−1

. See Figure 3 for the
decomposition of a 4-sided query.

To insert (resp. delete) a point in S, we first search S and create a new
leaf (resp. delete the leaf) for the point. Then we insert (resp. delete) the point
to the O(log n) secondary structures that lie on the search path. Finally we
rebalance the weight-balanced B-tree S and reconstruct the secondary structures
at rebalanced nodes.

Theorem 1. Given a set of n points in the plane, the 4-sided range maxima
query problem can be solved using O(n log n) space, O(log2 n+t) worst case query
time, and O(log2 n) worst case update time, where t is the output size.



Proof. There are k=O(log n) nodes in L where we execute a 3-sided range max-
ima query. By Lemma 3 each such query takes O(log n + ti) worst case time,
where ti is the number of reported points. In total the worst case time to report
the t =

∑k
i=1 ti points is O(log2 n + t). Each point p occurs once in every sec-

ondary structure of a node of S that is an ancestor of the leaf that contains p.
There are O(log n) such ancestor nodes, thus the total space is O(n log n). By
Lemma 4 we need O(log n) time to insert and delete a point p from each sec-
ondary structure at an ancestor node. The worst case time to insert and delete p
to the secondary structures that contain it is O(log2 n). When the incremental
rebalancing algorithm of [16] is applied, then for each insertion and deletion to S,
O(1) updates are applied to the secondary structures at each of O(log n) levels
of S. By Lemma 4 each such update needs O(log n) worst case time, thus the
rebalancing costs O(log2 n) worst case time. ⊓⊔

5 3-sided Range Maxima in the RAM Model

In this section we consider the RAM model of computation, where the coor-
dinates are represented by a word of w ≥ log n bits and belong to the range
of integers U = {0, 1, . . . , 2w − 1}. We present a data structure that supports
3-sided range maxima queries in O( logn

log logn + t) worst case time, where t is the
number of reported points. The insertion and deletion of a point are supported
in O( logn

log logn ) worst case time. The occupied space is linear to the number of
stored points.

Structure We store the points of P sorted by increasing x-coordinate at the
leaves of an (a, b)-tree T , such that a = 1

2
log

1

4 n and b = log
1

4 n. The height of
T is O( logn

log logn ). Every node u is assigned the points py−max(u) and px−max(u).

Define Cy(u) = {py−max(ui)y | ui is a child of u} and similarly let Cx(u) be the
x-coordinates of the points with maximum x-coordinate assigned to the children
of u. In every internal node u we store Cx(u) and Cy(u) in two Q-heaps X(u) and
Y (u), respectively. We store two global lookup-tables for the Q-heaps. We store
a global look-up table S that supports 3-sided range maxima queries for a set of

at most log
1

4 n points in rank-space. Every node u stores a reference to the entry
of S that corresponds to the permutation in Cy(u). We adopt the definitions for
the winning paths and MAX(u) from Section 3.1, with the difference that now
Ru denotes the children of nodes v of πu that contain the second maximal point
in cy(v). As in Section 3.1, we implement the sets MAX(u) of the nodes u along
a winning path as the versions of a PPPQA. For every point p in MAX(u) we
store a pointer to the node v of πu whose child is assigned p. The tree and the
look-up tables use O(n) space.

Query To report the maximal points in a subtree Tu with y-coordinate larger
than qy, we first compute the prefix p[1], . . . , p[k] of the points in MAX(u) with
y-coordinate larger than qy, as in Section 3.1. For each computed point p[i] we
visit the node v of πu whose child is assigned p[i]. We use the Y (v) and the



reference to S to compute the maximal points p′[j], j ∈ {1, . . . , k′} among the
points in Cy(v) that lie in the range ]p[i]x,+∞[× ]p[i+ 1]y,+∞[. Let vj be the
child of v such that p′[j] = py−max(vj). We recursively report the maximal points
in the subtree Tvj with y-coordinate larger than p′[j+1]y for j ∈ {1, . . . , k′−1},
and larger than p[i+1]y for j = k′. If i = k and j = k′ we recursively report the
points in Tvj

with y-coordinate larger than qy. Correctness derives from the fact
that p[i]x<p′[1]x< · · ·<p′[k′]x<p[i+1]x and p[i]y>p′[1]y> · · ·>p′[k′]y>p[i+1]y
hold, since p[i] and p′[1] are respectively the first and the second maximal points
among the points in Cy(v). The worst case query time is O(t).

To answer a 3-sided range maxima query, we first use the Q-heaps for the x-
coordinates in order identify the nodes on the paths πℓ and πr to the leaves that
contain the points with smallest x-coordinate larger than xℓ and with largest x-
coordinate smaller than xℓ, respectively. This takes O( logn

log logn ) worst case time.
For each node on πℓ and πr we identify the interval of children that are con-
tained in the x-range of the query. For each interval we identify the child c with
maximum py−max(c) using S in O(1) time. These elements define the set R from

which we compute the maximal points using [2] in O( logn
log logn ) worst case time.

We apply the above modified algorithm to this set, ignoring the maximal points
p′[j] outside the x-range of the query. The worst case time for 3-sided range
maxima query is O( logn

log logn + t).

Update To insert and delete a point from T we proceed as in Section 3.1. To
extend a winning path to a node v we first find the child u of v with the maximum
py−max(u)y using Y (v), i.e. the winning path of u will be extended to v. Then
we set px−max(v) = px−max(uk) where uk is the rightmost child of v, we set
py−max(v) = py−max(u), insert px−max(u)x and py−max(u)y to X(v) and Y (v)
respectively, we recompute the reference to the table S using Y (v), and we
recompute MAX(v) from MAX(u) as in Section 3.1. In order to discard the
information from a node u we remove px−max(u) and py−max(u) from node u

and from the Q-heaps X(v) and Y (v) respectively, and rollback MAX(u). These
operations take O(1) worst case time. Rebalancing involves splitting a node and
merging adjacent sibling nodes. To facilitate these operation in O(1) worst case
time we execute them incrementally in advance, by representing a node as a pair
of nodes. Therefore we consider each Q-heap as two separate parts Qℓ and Qr,
and maintain the size of Qℓ to be exactly a. In particular, whenever we insert
an element to Qℓ, we remove the rightmost element from Qℓ and insert it to Qr.
Whenever we remove an element to Qℓ, we remove the leftmost element from
Qr and insert it to Qℓ. In case Qr is empty we remove the rightmost or leftmost
element from the immediately left or right sibling node respectively and insert
it to Qℓ. Otherwise if both sibling nodes have a elements in their Q-heaps, we
merge them. The total worst case time for an update is O( logn

log logn ) since we

spend O(1) time per node.

Theorem 2. Given a set of n planar points with integer coordinates in the range
U = {0, 1, . . . , 2w−1}, the 3-sided range maxima query problem can be solved in



the RAM model with word size w using O(n) space, O( logn
log logn + t) worst case

query time, and O( logn
log logn ) worst case update time, where t is the output size.

6 Conclusion

In the comparison model, it can be shown that O(log n) update time is optimal
for the attained query time, by reduction from the Insert/Delete/FindMax
problem [11]. In the cell probe model, it can be shown that O( logn

log logn ) time
for the maxima emptiness query of the RAM structure is optimal for the at-
tained update time, by equivalence to the dynamic planar dominance emptiness
problem [14]. Reporting maximal or rectangularly visible points of dimension
larger than two, admits logarithmic factors on the output-sensitive part of the
query complexity [5, 15]. Improving them even for the static case remains an
open problem.
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