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Background. Drug-resistant tuberculosis poses a growing challenge to global public health. However, the di-
versity and dynamics of the bacterial population during acquisition of drug resistance have yet to be carefully
examined.

Methods. Whole-genome sequencing was performed on 7 serial Mycobacterium tuberculosis (M. tuberculosis)
populations from 3 patients during different stages in the development of drug resistance. The population diversity
was assessed by the number and frequencies of unfixed mutations in each sample.

Results. For each bacterial population, 8–41 unfixed mutations were monitored by the fraction of single-nucleo-
tide polymorphisms at specific loci. Among them, as many as 4 to 5 resistance-conferring mutations were transiently
detected in the same single sputum, but ultimately only a single type of mutant was fixed. In addition, we identified
14 potential compensatory mutations that occurred during or after the emergence of resistance-conferring mutations.

Conclusions. M. tuberculosis population within patients exhibited considerable genetic diversity, which under-
went selections for most fit resistant mutant. These findings have important implications and emphasize the need for
early diagnosis of tuberculosis to decrease the chance of evolving highly fit drug-resistant strains.

Drug-resistant tuberculosis, especially multidrug resis-
tant (MDR) and extensively drug-resistant tuberculo-
sis (XDR-Tuberculosis) is a growing challenge to
global tuberculosis control. Mycobacterium tuberculo-
sis (M. tuberculosis) acquires antibiotic resistance
mainly through chromosomal mutations that either
directly affect the binding site of the drug or mutate
bacterial enzymes involved in activating a pro-drug
[1]. Such mutations often confer fitness defect on the
resulting drug-resistant progeny. However, although

hundreds of resistance-associated mutations have been
identified in vitro and in vivo [2], drug-resistant alleles
in clinical isolates are characterized by the prevalence
of low- or no-cost mutations [3–5], suggesting that se-
lection for drug-resistant alleles with the least fitness
cost may occur in vivo.

Mutations giving rise to drug resistance have also
been studied on serial samples from treated tuberculosis
patients [6, 7]. These studies have documented that
mixed populations of resistant and sensitive M. tubercu-
losis exist in a single clinical sample, and that more than
1 mutation can emerge during treatment. This mixed
state of sensitive and resistant alleles, called heteroresist-
ance [8], was detected in about 20% of sputum samples
containing resistant organisms [9, 10]. Although these
studies consider heteroresistance to be defined by the
presence of both resistant and sensitive alleles in the
same sputum, heteroresistance may also describe a mixed
infection containing different drug resistance–conferring
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alleles, which then may be selected for those with the lowest
fitness cost in vivo.

Drug-resistant clinical isolates are also often found to have
enhanced fitness compared to their apparently isogenic in
vitro selected counterparts (at least as measured by in vitro
growth rate), which suggests the evolution of unidentified
compensatory mutations in vivo [4]. Since most drug resis-
tance–associated alleles impose a fitness cost [4, 11, 12], com-
pensatory evolution may play an important role in the stable
fixation of such mutants within the bacterial population.
However, due to the complexity of compensatory mechanisms,
very few of them have been elucidated in M. tuberculosis [13–
15]. Previous studies on resistant M. tuberculosis have mainly
focused on resistance-conferring mutations, and the potential
compensatory changes have usually been neglected [6, 7].

Recent developments in genome sequencing technologies
provide an unprecedented opportunity to study the diversity of
populations of microorganisms [16]. Effective statistical
approaches to differentiate technical errors from real polymor-
phisms and high-sequencing coverage enable accurate detection
of low-frequency variants in microorganism populations
[17, 18]. Deep sequencing of genes from human immunodefi-
ciency virus and hepatitis C virus has begun to reveal patterns
of within-host diversity and evolution during infections [18, 19].
A study on a series of mixed-population Escherichia coli
samples has uncovered changes in the genetic structure of the
population during long-term in vitro evolution [17]. Despite
these advances, previous whole-genome sequencing studies of
M. tuberculosis have mainly focused on polymorphisms
between transmitted MDR and XDR strains after isolating
single-colony isolates [20–22]. A recent study performed whole-
genome sequencing on serial sputum samples from an
MDR-Tuberculosis patient; however, due to the limitations of
analytical methods, very few resistance-conferring mutations
were characterized and the evolution of bacterial populations
remained unclear [23].

In the present study, we sequenced the bacterial genomes of
serially collected samples from treated tuberculosis patients.
By identifying the genetic variations during antibiotic treat-
ment, we aim to further understand the in vivo evolution of
resistance associated and potential compensatory mutations.

METHODS

Selection of Patients and Samples
M. tuberculosis sputum samples were collected through routine
clinical work and cultured on slopes by local hospitals. After
about 4 weeks, culture-positive slopes were sent to Shanghai
Municipal Center of Disease Control and Prevention (Shanghai
CDC), where the bacteria were harvested to 1mL 15% glycerol
and refrigerated in the specimen bank. Approved by the Ethical
Review Committee of Shanghai CDC, we selected the

tuberculosis patients with serial samples during the treatment,
and strains from the same patient shared identical 16 hyperpoly-
morphic variable-number tandem repeat (VNTR) patterns [24].

The drug susceptibility tests (DSTs) were performed by the
concentration method. The concentration for each antibiotic
was as follows: RIF, 50 μg/mL; INH, 50 μg/mL; SM, 10 μg/mL;
EMB, 5 μg/mL.

Genome Sequencing
In the present study, 0.5 mL of each preserved sample (about
50% of the original culture) was spread onto a fresh
Lowenstein–Jensen plate. After 4 weeks’ culture, all the bacte-
ria colonies were scratched from the plate and the genomic
DNA was extracted following the protocol of cetyltrimethyl-
ammonium bromide–lysozyme method [25]. A 300-base-pair
(bp) paired-end library was constructed for each purified
DNA sample following the standard Illumina paired-end pro-
tocol with a low-cycle polymerase chain reaction during the
fragment enrichment, and sequencing was performed on the
Illumina Genome Analyzer platform with 95 or 115 cycles.
The sequencing data were submitted to the National Center
for Biotechnology Information Sequence Read Archive under
the Accession No. SRA050212.1.

Reads Processing
The pipeline that we applied for analyzing bacteria popula-
tions was a combination of previously published protocols
(see Supplementary Figure 1). The FASTQ data were trans-
formed to the Sanger format, followed by the trimming
of adaptor and low-quality bases at the 3′ ends by Scythe
(https://github.com/ucdavis-bioinformatics/scythe) and Sickle
(https://github.com/ucdavis-bioinformatics/sickle), respective-
ly. Reads alignment was performed by Burrows–Wheeler
Aligner [26]. To improve the accuracy of mutation calling, we
employed 2 reference genomes for this and subsequent pro-
cesses. One is the standard reference strain, M. tuberculosis
H37Rv (GenBank: AL123456) [27] and the other is
CCDC5079 (GenBank: CP001641) [28], a clinical isolate close
to our strains. After duplicates marking and local realignment
by Genome Analysis ToolKit [29], the software Samtools [30]
was used to convert aligned reads into pileup-formatted files.

To ensure the reliability of subsequent analysis, we first dis-
carded low-quality bases with Phred quality scores lower than
20. Then, we removed 2% of sites with the lowest coverage
and loci with coverage higher than twice the average level.
Indels, mobile genetic elements, and PE/PPE and PE-PGRS
gene families that might cause incorrect read alignment were
also excluded.

Distinguishing Sequencing From Real Mutations
For sites with only single mapping result, fixed mutations with
frequency of 100% were first identified. For the other loci with
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heterozygous mapping results, the protocol and parameters
for mutation calling, including base error model, likelihood
ratio test, and bias filtering were referenced from a published
methodology [17].

Identifying Significant Genomic Changes
The detected frequency for each single-nucleotide polymor-
phism (SNP) was calculated by a maximum likelihood ap-
proach [17]. Considering the minimal sequencing depth
included for our analysis, SNPs with frequencies higher than
95% were defined as fixed mutations, while those with fre-
quencies from 5% to 95% were defined as unfixed mutations.
For fixed SNPs that were repeatedly detected in all serial
samples from the same patient, they were grouped as common
fixed mutations that emerged before the sampling intervals.
For unfixed SNPs that were only detected by one reference but
not by the other, they were excluded as false-positive results
caused by reference-specific improper read mapping. The
other SNPs, including a few fixed mutations that were only
observed in part of the samples and unfixed mutations with
varying frequencies, were grouped as characteristic mutations,
representing genetic variations during treatment.

To identify significant genomic changes at a given locus
between serial samples, the numbers of aligned reads harbor-
ing wild and mutated genotype were submitted to the Fisher
exact test. The p value was then multiplied by the total
number of included bases to gain an E value. A significant
genomic change was defined by E value lower than 1.

RESULTS

Patients and Samples
Seven sputum samples from 3 patients (denoted A–C) were
collected for analysis (Figure 1). Patient A was sampled over a
23-month period during which this subject developed isonia-
zid monoresistance. This subject had a record indicating poor

compliance from the 3rd to the 13th month. Patient B was
sampled over an 18-month period during which this subject
acquired rifampin resistance in addition to their initial isonia-
zid and streptomycin resistance. Patient C was a retreatment
case and was sampled over an 11-month treatment for MDR-
Tuberculosis and showed no change in their underlying resis-
tance pattern. In each subject, we verified that the initial and
subsequent samples shared identical 16-VNTR profiles, indi-
cating they originated from the same clonal population. Dif-
ferent VNTR profiles were observed among different patients,
suggesting these 3 cases are epidemiologically unrelated. All
these cases were infected by the Beijing family strains [31], the
most dominant M. tuberculosis genotype in Shanghai.

Genome Sequencing
DNA samples were prepared immediately after growing the
original sputum sample on Lowenstein–Jensen media to avoid
as much as possible enriching for siblings with different
growth rates. For each sample we obtained 3.7 to 20.2 million
115 bp or 95 bp single/paired-end reads corresponding to an
average sequencing depth ranging from 55- to 269-fold, and
these were aligned to the reference genome of M. tuberculosis
H37Rv and CCDC5079, respectively. The sequencing coverage
across the reference genomes was approximately 99%. To
ensure the reliability of our results, we discarded 2% of loci
with the lowest sequencing depth and loci with depth higher
than twice the average level. Indels, mobile elements, and the
PE/PPE-PGRS gene families, which may result in inaccurate
identification of mutations, were also excluded. In total, bases
covering about 90% of the reference genomes were included
for subsequent analysis (see Supplementary Table 1).

Intrapatient Population Diversity
Standard tuberculosis treatment for drug-susceptible disease
usually lasts for 6 months, but for MDR-Tuberculosis treat-
ment, durations are much longer, typically 18–24 months. We

Figure 1. Patients and samples. The treatment durations are indicated as solid lines, which start with a hollow square on the 0th day and end with
a triangle (default) or circle (death). The treatment schedules are presented in grayish shadows, and the poor compliance of patient A is indicated by
the dark gray shadow. Sample information such as collection time points, designations, and resistance profiles are presented in boxes. Abbreviations:
D, Dipasic (isoniazid aminosalicylate); E, ethambutol; H, isoniazid; R, rifampin; S, streptomycin; Th, ethionamide; Z, pyrazinamide.
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hypothesized that during this prolonged treatment, M. tuber-
culosis might generate and accumulate adaptive mutations that
contribute to fitness under antibiotic stress. To characterize
genetic variations that evolved within our samples, we ana-
lyzed SNPs and their corresponding frequencies in each
longitudinal population. After aligning reads to the reference
genomes, we employed a likelihood ratio test and a bias
filter to differentiate real SNPs from technical errors [17].
Then, by comparing the SNPs between serial samples, we
identified characteristic mutations that evolved during
treatment.

With frequency threshold at 5%, this analysis yielded 8–41
characteristic SNPs in each sample (Figure 2A, or see Supple-
mentary Table 2). These included 6–34 “private” SNPs that
were only found in 1 sample and were not found in subse-
quent or prior samples, suggesting microheterogeneity in the
population sampled in the sputum at each time point. Among
the total SNPs in subsequent isolates, 82.7% were found at fre-
quencies lower than 20% (Figure 2B–D). Sixteen SNPs, includ-
ing 6 mutations known to be associated with drug resistance,
were found at frequencies higher than 50%. These SNPs
were mainly (14/16) identified in the second or third sample
and were consistent with the emergence of new mutations in
these treated populations as a result of selection of mutations
conferring drug resistance and other SNPs of adaptive
potential.

Evolution of Drug Resistance–Associated Mutations
We observed heteroresistance in all 3 patients with multiple
mutations associated with drug resistance to isoniazid, rifam-
pin, and ethionamide, respectively. To understand the evolu-
tion of drug resistance, we examined the detailed population
structure of these resistant bacteria over time.

In patient A, the initially untreated population was sensitive
to all drugs (Figure 3A). After 19 months of treatment, the clin-
ical laboratory using standard drug susceptibility testing identi-
fied isoniazid resistance. Our sequencing results at this time
point indicated that the isoniazid resistance was conferred by as
many as 4 independent resistance mutations: 3 in the katG
gene, including V1A (5.1%), D94N (56.8%), and S315R
(19.5%); and a fourth one in the promoter region of inhA, C-
15T (20.0%). Because the genomic distance between these mu-
tations were longer than the sequencing reads, mutated bases at
1 locus were not likely to bias the detection frequency of the
other mutations. The total frequency of these 4 resistance muta-
tions was very close to 100%, suggesting that the treatment of
patient A had successfully eliminated sensitive bacteria and se-
lected for a spectrum of resistant mutants that simultaneously
existed within this subject. Five months later, the inhA C-15T
promoter mutation had become undetectable and the frequen-
cies of katG S315R and V1A had decreased to 0.6% and 0.8%,
respectively. In contrast, the katG D94N allele had expanded to
94.2% of the reads, suggesting this mutant had superior fitness

Figure 2. Characteristic SNPs. A, Venn diagrams showing the number of characteristic SNPs in each sample. B–D, Genomic distribution and frequen-
cies of characteristic SNPs identified in each patient. Different colors represent the serially collected samples. Frequencies are estimated from the
mapping result on M. tuberculosis H37Rv, using a previously described maximum likelihood approach [17]. Abbreviations: M. tuberculosis, Mycobacteri-
um tuberculosis; SNPs, single-nucleotide polymorphisms.
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compared to the other 3. Because of the high sequencing depth
of sample a3, which had about 300-fold coverage on the katG
gene, 2 other mutations at katG G125V (2.6%) and L611R
(1.6%) were also detected as candidate mutants that may also
have caused isoniazid resistance.

For patient B, an initial sputum sample was not available, but
at the 18th month, a mutation in rpoB (L533P) was uniformly
present in the sample (Figure 3B). However, drug-susceptibility
testing indicated the sample remained rifampicin susceptible.
Consistent with this, the rpoB L533P has been previously

reported to confer only low-level rifampin resistance [32]. This
subject remained on first-line therapy for another 18 months
after which sequence analysis revealed that the rpoB L533P
allele had been replaced primarily by rpoB H526Y (76.3%), an
allele associated with high-level rifampicin resistance that
confers a relatively low fitness cost [4].

In the retreatment case of patient C, unfixed mutations
ethA L35R (75.7%) and A341E (16.4%) were simultane-
ously detected in the initial sample, suggesting acquired
ethionamide resistance during the previous treatment.

Figure 3. The dynamic heteroresistance in 3 patients. Resistance-conferring mutations are labeled as M1–M6. A, Dynamic heteroresistance to
isoniazid in patient A. In sample a3, the 4 minor mutations (M2, M3, M5, and M6) are below the frequency threshold of 5% but still detectable.
Therefore, all of them are presented for a comprehensive view. B and C, Unfixed drug resistant mutations in patients B and C, respectively.
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After an 11-month treatment, both mutations remained in
the sample with frequencies at 88.0% and 11.9%, respec-
tively (Figure 3C). Unlike the dynamic evolution of newly
acquired resistance in these patients, the other resistance-
conferring mutations were stable fixed SNPs (Table 1).
These included known mutations at katG S315T, rpoB
S531L, and rpsL K43R, all of which were fixed prior to
our initial sample.

Potential Adaptive Mutations
There were mutations in the bacterial populations that increased
in frequency during treatment, particularly in the case of
patient C, with stable drug-resistance mutations. These results
suggest that adaptive evolution continues to occur in alleles not
related to drug resistance. We hypothesized that mutations with
significant changes in frequencies might be relevant to the pop-
ulation’s fitness. To identify these significant events, we em-
ployed the Fisher exact test to compare the characteristic SNPs
in each serial sample. With E value lower than 1, our process
yielded 19 significantly changed mutations, including 15 nonsy-
nonymous, 2 intergenic, and 2 synonymous mutations that
emerged through genetic hitchhiking (Table 2).

As expected, this analysis identified the emergence of the 3
drug resistance–associated mutations (katG D94N, S315R, and
inhA C-15T) in patient A and 2 rpoB mutations (H526Y and
L533P) in patient B as significant events. In addition to these,
there were 11 nonsynonymous mutations that showed signifi-
cant changes. Seven of these were found in patient C and 5
had risen to frequencies over 80%. It was surprising to find

that the bacterial populations from patient C were so variable
compared with their stable resistance phenotype and corre-
sponding mutations conferring drug resistance. Given that no
significant mutation was detected in population a1 and the
high prevalence of resistant mutants in the other 6 popula-
tions, most of these nonresistance-associated mutations oc-
curred with or after the emergence of resistance-conferring
mutations. Therefore, these mutations suggest that the M. tu-
berculosis population within the host may be undergoing
adaptive evolution to improve the fitness of the bacteria.

Although the relevance between these potential adaptive
mutations and drug resistance was not clear, 7 of them
showed similarity to genes related to cell wall biosynthesis or
membrane proteins. One selected mutation was observed in
fadD32, an essential gene in mycolic acid biosynthesis
[33, 34]. As the fadD32 E444G emerged after the selection of
katG D94N, and the mechanism of isoniazid is to inhibit
mycolic acid synthesis, this SNP might be a compensatory
mutation that improved the fitness of population a3.

DISCUSSION

Using whole-genome sequencing, we have studied the within-
host population diversity and evolution of M. tuberculosis
during treatment for active disease. In all 7 samples, we found
a surprising level of genetic diversity to adapt to antibiotic
stress that as many as 4 to 5 different resistant mutants were
detected in a single sputum sample. These data suggest that
heteroresistance might be a common feature of M. tuberculosis

Table 1. Drug Resistant Mutations Detected in the 7 Samples

A B C

Drug Gene a1 a2 a3 b1 b2 c1 c2

H katG … V1A V1A S315T S315T S315T S315T
D94N D94N

S315R G125V

S315R

L611R

inhA … C-15T … – – … …

R rpoB … … … L533P H526Y S531L S531L
L533P

S rpsL … … … K43R K43R … …

rrs … … … … … A513C A513C
Th ethA … … … … … L35R L35R

A341E A341E

Z pncA … … … … … V180A V180A
E embB … … … … … D354A D354A

Unfixed mutations are highlighted in bold.

Abbreviations: E, ethambutol; H, isoniazid; R, rifampin; S, streptomycin; Th, ethionamide; Z, pyrazinamide.
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Table 2. Significantly Changed Mutations in Each Patient

Patient (Isolate)
Acquired
Resistance Coordinatea

Nucleotide
Change

Mutation
Frequency (%)

Amino Change

DescriptionGene Codon

A (a1–a2–a3) H 209848 GGC - GAC 0 ↗ 79.1 ↗ 98.3 lprO G322D Possible liproprotein lprO
1673425 C - T 0 ↗ 20.0 ↘ 0 inhA -15 Isoniazid-resistant mutation

1689949 T - C 0 ↗ 31.2 ↘ 0 Rv1498c -29 Probable methyltransferase

2155169 AGC - CGC 0 ↗ 19.5 ↘ 0.6 katG S315R Isoniazid-resistant mutation
2155832 GAC - AAC 0 ↗ 56.8 ↗ 93.9 katG D94N Isoniazid-resistant mutation

3116294 CGT - CGC 0 → 0 ↗ 42.5 Rv2811 R52R Conserved hypothetical protein

4261736 GAG - GGG 0 → 0 ↗ 41.3 fadD32 E444G Probable fatty-acid-CoA ligase fadD32; mycolic
acid biosynthesis protein

B (b1–b2) R 589934 CTG - CAG 0 ↗ 74.3 Rv0499 L251Q Diacylglycerol kinase activity

761139 CAC - TAC 0 ↗ 72.0 rpoB H526Y Rifampin-resistant mutation
761161 CTG - CCG 100.0 ↘ 25.5 rpoB L533P Rifampin-resistant mutation

1736605 CGT - CGG 36.4 ↗ 71.2 ileS R29R Isoleucyl-tRNA synthetase ileS

2176563 GTT - GGT 0 ↗ 69.8 Rv1924c V123G Predicted integral membrane protein
C (c1–c2) - 860184 CTC - CCC 0 ↗ 20.0 Rv0767c L176P Uncharacterized HTH-type transcriptional regulator

1596190 GCG - GTG 5.0 ↗ 86.0 Rv1421 A71V Displays ATPase and GTPase activities

1966553 GTG - GCG 41.4 ↗ 89.1 Rv1739c V362A Probable sulphate-transport transmembrane
protein; ABC transporter

2527483 ATG - ATA 5.4 ↗ 88.1 Rv2252 M165I Diacylglycerol kinase; phosphatidylinositol
mannosides (PIMs) biosynthesis

2711906 CTG - CCG 43.0 ↗ 82.2 Rv2414c L324P Conserved hypothetical protein
3460993 CAC - TAC 10.5 ↗ 92.1 Rv3092c H248Y Conserved integral membrane protein

4358154 TAC - TAG 24.7 ↘ 0 Rv3879c Y543* esx-1 secretion-associated protein espK;
hypothetical alanine- and proline-rich protein

Abbreviations: -, No change; *, stop codon; H, isoniazid; R, rifampin.
a Coordinates are inferred on reference genome M. tuberculosis H37Rv.
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population with newly acquired resistance. Although multiple
discrete resistant mutants transiently coexist in the same pop-
ulation, ultimately only a single type of mutant was selected.
The data from patient B imply that the final selection for resis-
tance mutation might be associated with their resistance level
and fitness cost. As we saw, during the 18-month treatment,
an initially fixed mutation rpoB L533P that reportedly associ-
ated with low-level rifampin resistance [35, 36], was outcom-
peted by another candidate that conferred high-level resistance
and relatively low fitness cost [4, 5, 12, 32]. The similar phe-
nomenon was also reported on streptomycin resistance where
the high-cost mutations rpsL K88T or K88R was replaced by
rpsL K43R, a highly resistant mutation with no fitness cost
[6, 7]. The mechanism of selecting high-resistant and low-cost
mutants in vivo and subsequent transmission may contribute
to the high prevalence of these drug-resistant mutants in
reports from clinical isolates [5].

The in vivo selection of low-cost mutations may occur
through competition between different populations of siblings
with different drug-resistant mutations. The competition
between beneficial mutations within a clonal population, or
clonal interference, has been studied in asexual populations like
viruses [37], E. coli [38], and yeast [39], but has been only
rarely reported in M. tuberculosis. Clonal interference is usually
observed in populations with effective population size (Ne)
larger than 2 × 104 [38]. Though the in vivo Ne of M. tuberculo-
sis is not readily measurable, and may differ with patients de-
pending on the extent of disease, the density of M. tuberculosis
in sputum may reach 105–106 colony-forming units (CFU)/mL
[40, 41]. Estimates from nonhuman primate model also report-
ed bacterial burden at about 1.4 × 105 CFU per cm3 of granulo-
ma [42], or 107 CFU per animal [43]. Therefore, we speculate
that the heterozygous community of M. tuberculosis has suffi-
cient Ne to allow for clonal interference during active infection.
It is worthwhile to point out that the heterogeneity of M. tuber-
culosis was usually found in different lesions [44, 45], which
meant the dynamics of drug-resistant mutants in our study
may also be affected by biased sampling from multiple lesions.
Under current design, it is difficult to quantitate the impact of
sampling bias or other uncertainties such as genetic drift.
Therefore, more evidence is required to support the hypothesis
of clonal interference in M. tuberculosis.

Mathematic model predicts that as the population size
increases, clonal interference results in greater fitness improve-
ment [46]. In case of M. tuberculosis, it means that low-cost
drug-resistant mutations are more likely to be selected from
large populations. This conclusion highlights the importance
of sensitive diagnostic tests, which allow for early medical in-
tervention when the bacterial burden and diversity remains
low. Nowadays, novel diagnostic test such as Xpert M. tuber-
culosis/RIF have decreased the limit of detection to 131 CFU/
mL [47], about 100 times more sensitive than conventional

sputum smear microscopy. Strategic application of these sensi-
tive diagnostic tools may have the ability to minimize or
prevent tuberculosis cases with acquired drug resistance.

Previous studies indicate that resistant strains sometimes
acquire additional mutations outside of the affected gene to
improve their fitness through compensatory evolution [4, 48].
However, except for mutations in the ahpC promoter, which
may compensate for the inactivation of katG [14], very few
compensatory mutations have been identified. Recently, com-
pensatory mutations for restoring fitness in rifampin-resistant
strains with lesions in rpoB were identified in the genes rpoA
and rpoC [15]. One of the high-probability compensatory mu-
tations (HCMs) rpoC V483G was also detected in our samples
from patient C. Because this mutation was fixed before our
sampling intervals, the other newly evolved mutations in
patient C may act as compensatory mutations for other resis-
tant phenotypes. Considering the different mechanisms of an-
tibiotics, it is possible that there are many compensatory
changes in different genes to compensate for drug resistance–
associated fitness costs [49]. The dynamic heteroresistance in
our samples indicate that before the stabilization of drug resis-
tant mutations, the compensatory mutations are being rapidly
sampled and the solutions may be very diverse. This might
explain the failure to confirm possible compensatory muta-
tions of KZN MDR/XDR strains in other strains with drug
resistance [50]. Despite the high diverseness of compensatory
mutations, the mutations found in our study and in KZN
strains shared several similarities such as cell wall synthesis
and the metabolism of mycolic acids [50]. These diverse mu-
tations in certain pathways such as cell wall synthesis are not
unexpected given the number of agents used that interfere
with this pathway, and any of them might act as compensatory
mutations. These mutations will need to be studied in vitro in
genetically defined backgrounds to conclusively show they are
genuinely compensatory.

By studying the genetic diversity and dynamics of intrapatient
M. tuberculosis populations, we have just started to understand
the battle between antibiotics and M. tuberculosis. Clonal inter-
ference between different resistant mutations may play a major
role in the selection of low-cost mutations, as well as in the de-
velopment of compensatory changes. These results suggest that
the bacillus has a surprisingly high rate of generating genetic
diversity and can efficiently sample many different solutions to
the challenge of surviving chemotherapy. A better understand-
ing of these dynamics, and their mechanisms, may allow for the
development of treatment strategies to avoid the generation and
stable fixation of drug resistance in M. tuberculosis strains.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases
online (http://jid.oxfordjournals.org/). Supplementary materials consist of
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