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Dynamic pore collapse in porous materials is studied by analyzing the finite deformation of an 
elastic/viscoplastic spherical shell under impulsive pressure loading. Effects of dynamic loading 
rate, pore size, initial porosity, strain-rate sensitivity, strain hardening, thermal softening, and 
mass density of the matrix material on the pore collapse process are examined and results are 
compared with those from quasistatic analyses of both rate-independent and rate-dependent 
matrix materials. Dynamic (inertia) effects are found to be significant or even dominant in 
certain shock wave consolidation conditions. An approximate method is proposed to incorporate 
dynamic effects into quasistatic pore-collapse relations of viscoplastic matrix materials. 
Implications of results of current study are discussed in terms of understanding the processes of 
shock wave consolidation of powders. 

I. INTRODUCTION 

Dynamic consolidation of metallic and ceramic pow- 
ders provides an alternate approach for processing materi- 
als with unique microstructures and, hence, properties. ‘A 
This process holds to be a promising new technology for 
consolidating advanced materials such as nanophase inter- 
metallics and composites. However, several major difficul- 
ties hinder its practical application and remain to be over- 
come, such as criteria for optimization of processing 
parameters (shock pressure, shock duration, etc. ) and the 
cracking of compacts that occurs during shock release to 
ambient pressure. Researchers have continued to improve 
dynamic compaction fixtures, the use of cleaner powders, 
postconsolidation annealing or isostatic hot pressing, and 
other means to address these problems. However, the de- 
termination of shock consolidation processing parameters 
and prevention of cracking depends upon the detailed un- 
derstanding of the dynamic consolidation process at both 
continuum and microstructural levels. 

The densification and bonding of particles are accom- 
plished by the passage of a strong shock wave through an 
initially porous material. During the densification most of 
the energy is deposited near the particle surfaces and the 
resulting heating produces melting of the particle surfaces 
that solidify rapidly via heat conduction into the interior of 
the particles before release of shock pressure.” The physical 
phenomena of such a dynamic consolidation process at the 
particle level are very complex and remain poorly under- 
stood. Localized energy depositions at interparticle sur- 
faces are thought to be due to local plastic deformation and 
frictional sliding and contribute largely to the particle- 
particle bonding. Berry and Williamson7 presented a com- 
puter simulation of the shock wave compaction of 
stainless-steel cylinders by considering plastic deformation 
at the particle level and predicted indeed highly localized 
plastic deformation and large temperature rises occur at 
particle boundaries during consolidation. Their numerical 
results have been qualitatively confirmed by experimental 
observations.s*9 Several estimates of the shock wave pres- 
sure required for obtaining good compact of metallic pow- 

ders (fully densified with good mechanical strength) have 
been proposed by Schwarz ef aL2 and Gourdin using an 
energy partition and balance approach. Ferreira and 
Meyers” also used a similar energy balance approach by 

including the effect of the matrix material strength on the 
required compaction pressure for various materials. The 
lower bound on the shock duration is also given by 
Schwarz et al.’ by requiring the duration of shock compac- 
tion pulse to exceed the time for the ‘melt to solidify. In all 
of these analyses, the total energy input during shock con- 
solidation is determined through the equation of state of 
porous materials, such as the one iirst described by 
Herrmann” and modified by Carroll and Holti2 and 
Swegle.13 In these porous material models, the volume 
change due to pore collapse is separated from that due to 
volume change of the matrix material. It is assumed that 
the form of the function that relates pressure to specific 
volume and specific internal energy of porous material is 
the same as that of the fully densified matrix material. To 
complete the model, a pore-collapse relation that relates 
pressure p to the distention of the porous material (Y is 
needed and has generally been assumed to be an algebraic 
relation between pressure and distention, a=g(p). The 
matrix material is essentially treated to be elastic/perfectly 
plastic, rate independent, and dynamic effects are ne- 
glected. This type of equation of state of porous materials 
has also been commonly used in computer simulation of 
shock consolidation experiments.’ 

Both high-pressure loading rates and high rates of de- 
formation are encountered in the consolidation process of 
powders by the passage of a shock wave. Shock pressures 
of l-10 GPa or higher are commonly used and typical 
shock rise times are of the order of 100-1000 ns;14*i5 thus, 
the typical pressure rate is l-100 MPa/ns or higher. The 
initial relative density of powders used in shock wave con- 
solidation is usually around OS-O.75 and hence the inelas- 
tic volumetric strain is about 0.347 after consolidation. 
The overall strain rate can be estimated to be of the order 
of lo’-IO7 per second within the shock wave front (divid- 
ing the volumetric strain by the shock wave rise time). 
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Carroll and Holt16 showed that there is a significant differ- 
ence between the static and dynamic pore-collapse rela- 
tions for perfectly plastic and rate-independent matrix ma- 
terials under these pressure rates of shock wave loading. It 
should be also noted that the matrix material model used 
in the dynamic analyses by both Berry and Williamson7 
and Carroll and Halt? is perfectly plastic and rate inde- 
pendent. There iS increasing experimental evidence that 
indicates that some metals become strongly rate dependent 
at very high strain rates. 17-19 While there have been some 
empirical and analytical formulations on the densification 
process of viscoplastic porous materials under quasistatic 
conditions,20-25 there are relatively few on the dynamic 
pore collapse of such matrix materials.8’26 The inertial ef- 
fect combined with strain rate, strain-hardening, and ther- 
mal softening effects on dynamic consolidation of powders 
remains unclear and thus have not been included in the 
determination of consolidation process parameters. The 
applicability of relatively simple results of viscoplastic po- 
rous matrix materials under quasistatic conditions to dy- 
namic loading conditions is also not known. 

Analogous to the work by Carroll and Holt16 on the 
dynamic pore collapse of perfectly plastic, rate- 
independent materials, here the collapse of an elastic/ 
viscoplastic spherical shell under an external impulsive 
pressure loading is studied. The thermal softening effect is 
also included by considering adiabatic heating of the ma- 
trix material due to accumulated plastic work. The col- 
lapse of a spherical shell is an idealization of the consoli- 
dation process and does not consider other effects such as 
the shape and distribution of pores, but it does provide a 
basis in terms of simple analytical and/or numerical solu- 
tions which can be readily obtained, and the effect of dy- 
namic loading, rate-dependent, and temperature- 
dependent behavior of the matrix material on pore-collapse 
process can be directly assessed. Our results indicate that 
parameters characterizing strain rate sensitivity, strain 
hardening, thermal softening, mass density of matrix ma- 
terial, dynamic loading rate, pore size, and initial relative 
density of the porous material play a significant role on the 
pore collapse under impulsive pressure loading, such as the 
characteristic time of densification. For viscoplastic matrix 
materials, rate sensitivity, dynamic effects, and others 
should be assessed carefully in formulating a realistic p-a 

relation for a given material under a particular loading 
condition. For rate-dependent matrix materials, the densi- 
fication process is significantly slowed down at high load- 
ing rates. 

In the following section a complete formulation of fi- 
nite elastic/viscoplastic deformation of a spherical shell is 
presented. In Sec. III results of a series of numerical sim- 
ulations of dynamic pore collapse process are presented. 
Finally, discussions and conclusions of the present study 
are given in Sec. IV. 

II. FINITE DEFORMATION FORMULATION 

Following the approach used by Carroll and Holt16 
and Wilkinson and Ashby,” we study the consolidation of 
porous materials by considering the collapse of a spherical 
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shell under a given external pressure loading p(t). The 
current inner and outer radii r of the spherical shell are a 
and b, respectively, at the time t > 0. The initial inner and 
outer radii R are A and B, respectively (i.e., t=O). The 

initial f. and current f volume fractions of porosity in the 
material are thus given by 

fo=(A/B)3, f=(a/b)3, O<fo<l, O<f<l, (1) 

the initial a0 and current a distentions of the porous ma- 
terial are given by 

1 1 
ao=1-(A/B)5’ a=l-(a/b)%’ 1<ab 16a9 (2) 

and the initial j5, and current p relative densities are given 

by 

(3) 

Because we are interested in the whole pore-collapse pro- 
cess as the final relative density of the porous material 
approaching unity, it warrants a finite deformation analy- 
sis, In this section we outline the finite deformation formu- 
lation for stress wave propagation in elastic/viscoplastic 
materials applied to a spherical shell. The elastic deforma- 
tion and an appropriate constitutive model are also in- 
cluded in our analysis. Tong and co-workers” have pre- 
sented the corresponding finite deformation formulation 
for elastic/viscoplastic materials in plane strain. 

A. Kinematics 

For a spherical shell, let x represent a material element 
in the current configuration (i.e., the spherical coordinates 
at time t > 0) that was initially at X in the reference con- 
figuration (i.e., the spherical coordinates at time t=O). 

The deformation of the spherical shell under a pressure 
loading can be represented by 

x=fZ(X,t) =r(R,t)e,, (4) 

where X =Re, , R is the radial coordinate in the reference 
configuration (A&R<B), r is the radial coordinate in the 
current configuration [a(t)<r(R,t><b(t)], eR is the unit 
basis vector in the radial direction. 

The deformation gradient F is then given by” 

ax 
F=Ei= 

got 

oio 

0 0 f 

rlR2 --g- 0 0 
=o;o 

L 0 0 f 
(5) 

Here 7 is the ratio of the current volume to the reference 
volume of the matrix material, i.e., det F=r](R,t). 

The rate of change of the deformation gradient F is 
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where the radial particle velocity u is defined as u(R,t) 

=ar(R,t)/at. The corresponding spatial velocity gradient 
is 

ijz%E 

I 

3 au 0 0 

L=D+W&F-‘= 0 ” 0, 
r (7) 

I 0 0 ” I 
L rl 

where D= (L+Lr)/2 is the rate of deformation tensor 
and W- (L-Lr)/2 is the spin rate tensor. However, for 
the axisymmetric deformations considered here, W =O and 
thus D = L. 

B. Momentum balance and constitutive relation 

The balance of linear momentum in a spherical coor- 
dinates is given as27 

ar, 2 
z+z (TR-TB)=po$, (8) 

where T, and To are the radial and transverse components 
of the first Piola-Kirchhoff stress tensor T, and p. is the 
mass density of the matrix material in the reference con- 
figuration. The matrix material is considered -to be an 
elastic/viscoplastic solid as the one considered by Tong 
and co-workers.‘9 The material is assumed to be homoge- 
nous, isotropic, and incompressible in plastic deformation, 
and its elastic moduli remains constant during plastic de- 
formation and under moderately high pressures. The rate 
form of constitutive relation for such a solid is (see Tong 
and co-workers” with W = 0 in this case) : 

+-(D-DJ’)T+T(DP-D)=C=:(D-DP), (9) 

where C is the elastic moduli tensor of the matrix material 
and takes the familiar form in Cartesian coordinates as 

C”jk~=/Zes,jskl+~Cte(Giksil+SilSjk), , 

where ;1’ and ,LL~ are the Lame constants. ’ 
The weighted Cauchy stress T is defined as 

(10) 

FTR 0 ( 

0 fTo 0 

0 0 fTo 

1 

t (11) 

and the rate of plastic deformation tensor Iy) is determined 
from the J2 flow rule 

where S=T--5 tr(T)I, ~~~~~~~~~~~ 112) 

where r, is the effective shear stress. The plastic shear 
strain rate p is in general a function of applied stress, tem- 
perature, and internal state variables.28929 The specific form 
of the plastic shear strain rate function used here is chosen 
to be a power law given by Klopp and co-workers,‘7 

0 
l/m 

p=p() I. , 7,=7() 2 
n 8 y 

rr ()C) Yo Bo ’ 
(13) 

where PO, ro, yo, and f3, are reference strain rate, flow 
stress, plastic strain, and temperature, r, y, and 8 are cur- 
rent flow stress, plastic strain, and temperature, m is the 
rate sensitivity, n is the strain-hardening exponent, and Y is 
the thermal softening exponent. 

C. Spherical wave analysis 

For wave analysis it is advantageous to rewrite the rate 
form of elastic/viscoplastic constitutive relation given 
above in terms of the first Piola-Kirchhoff stress tensor T 
(noting only the diagonal components of T, F, D, and Dp 
are nonzero) : 

*==TD+F-l(Ce:~) -~TDP-F-~(C~:DJJ), 

or, in the component form, as 

(14) 

aTR au -- 
at 

-tll(R,t) z-B’(R,t), 

dTe 
,,=A,UW $- B,(R,t), 

in which the coefficients A,, B,, A,, and B2 are 

4 r4 
nl=@T~+(/2-e+2$)-, 

77R 

4= 

(154 

(15b) 

(164 

(16b) 

B2=2 To+--.CL PO-T u-2(ile+pe) ; u. (16d) 
i “9 

The rate form of constitutive equations combining with the 
balance equation of linear momentum, and the compatibil- 
ity condition comprise a system of quasilinear, hyperbolic, 
partial differential equations for TR, To, U, and 77, 
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r aTR 
at=A 1 C&t) aR ?- B1 (R,t), 

aTe 
~=A,(R,t) $- B2(R,t), 

aTR 2 
R+R(TR--TB)=Po~~ 

a7j 12 au 27724 
-= 
at E%E+~* r 

(174 

(17b) 

(17d) 

This system can be written in terms of relations along char- 
acteristics 

(184 

d&=2 (dTR+ B1 dt) - B2 dt, 
dR 
dt==O, (18b) 

h=& (dTR+ B, dt) +T dt, 
dR 
dt=O. (18~) 

1 

For infinitesimal deformations we have 

71--*1, r/R-+1, TR//..f+O, and To/$-O, (19) 

so the above finite difference equations can be easily re- 
duced to a simpler form (for example, see Hopkins3’). 

This system of characteristic relations Eq. ( 18) written 
in the form of a finite difference equations is solved by 
using a second-order accurate integration method,31 ex- 
cept, where large oscillations exist, a first-order accurate 
scheme is used.32 Because the material wave speed c is 
strongly dependent on r/R, an updated nonuniform mesh- 
ing scheme is adopted such that the accuracy of computa- 
tion is maintained while the stability condition &/AR 

=1;<1 is satisfied for all nodes at each time step. For each 
time step, the current radius r and the temperature B are 
updated by 

dr=u dt and de= (&j/cppo)dt, (20) 

where the adiabatic condition is assumed for the spherical 
shell under dynamic loading by shock waves, and cP is the 
heat capacity of the matrix material and p the fraction of 
the plastic work converted to heat. In general p may de- 
pend on plastic strain and strain rate.33 In our present 
analysis we are interested in the consolidation of powders 
by shock wave propagation in which the rate of deforma- 
tion of the bulk matrix material during pore collapse could 
be as high as lo7 per second. Due to the lack of experi- 
mental data on p in the very high strain rate range 
(lo’-10’ per second), /3 is set to be a constant 0.9 in our 
calculations. In the following section, a detailed computa- 
tional analysis of dynamic collapse of a viscoplastic spher- 
ical shell under external pressure is presented. 

1.8 - 

1.4 - 

e 
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-1 1 3 5 7 9 
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FIG. 1. Variation of shear stress (a~-~,,)/p,, with time @/a at various 
locations: r/a= 1 (cavity surface), 2, and 3. pc is the applied pressure, c, 
the elastic spherical wave speed, CI the cavity radius, and Poisson’s ratio 
v=O.29. 

III. COMPUTATIONAL ANALYSIS AND RESULTS 

A numerical scheme for studying collapse of a spher- 
ical shell is implemented using the finite elastic/ 
viscoplastic deformation formulation described above. To 
verify the numerical scheme and to demonstrate the effec- 
tiveness of the current formulation presented here, several 
simple examples of spherical wave propagation are at first 
simulated and compared with those reported in the litera- 
ture. The fnst example is the expansion of a cavity in an 
infinite elastic media when a pressure is applied suddenly 
on the interior surface of the cavity. The numerical result 
as well as the result from the analytical solution (see the 
review by Hopkins3’) is given in Fig. 1. The numerical 
solution agrees with the analytical solution extremely well. 
The second example is the expansion of a cavity in an 
infinite elastic/perfectly plastic rate-independent media 
when a time-dependent pressure is applied on the interior 
surface of the cavity.34 In our formulation, we use a very 
small m = 0.005 along with n = Y=O in our material model 
to represent a perfectly plastic, nearly rate-independent 
material. To avoid using a prohibitively small time step in 
our calculation, a maximum cutoff strain rate of lo9 per 
second is used. The numerical result is given in Fig. 2 along 
with the result by Friedman and co-workers.34 Once again, 
the agreement is excellent. Finally, we simulated the dy- 
namic collapse of an aluminum spherical shell of elastic/ 
perfectly plastic rate-independent behavior when the outer 
surface of the spherical shell under a linearly increasing 
pressure loading and the inner surface of the shell is stress 
free. In particular, we simulated the case considered by 
Carroll and Holti6 as shown in their Fig. 5. Our numerical 
simulation gives essentially the same result (Fig. 3). The 
slight difference between the two results is due to the fact 
that we use m=O.OOS (as opposed to m=O for the rate- 
independent case) to approximate a rate-independent ma- 
terial. Thus, results of the dynamic analysis presented in 
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* current analysis (~0.005) 
-Friedman et al. [34] 

1 1.1 1.2 1.3 1.4 

r/a 

FIG. 2. Variation of radial stress 0,/o,, with distance at the time 
c&/a=O.3. crY is the yield stress of the material, D the cavity radius, c, the 
elastic spherical wave speed, the applied pressure on the cavity surface is 
p(t) = -5o,,exp(-3.5c,t/u), and Poisson’s ratio v=O.25. 

the following with m =0.005 for the matrix material can be 
regarded as a good approximation for a rate-independent 
material. 

In the following we present the results of systematic 
parametric studies through a series of numerical simula- 
tion to illustrate the effect of various factors on the collapse 
of a spherical shell, including strain-rate sensitivity, inertia, 
and transient wave propagation, strain hardening, thermal 
softening, impulsive loading rate, pore size, and initial po- 
rosity. The matrix material is assumed to be pure alumi- 
num in most of the calculations. We also include some of 
the results for pure iron and copper for comparison pur- 
poses. Relevant material parameters for these materials are 
listed in Tables I and II. Some computations of large prob- 
lems have been carried out on a Cray supercomputer at 

, !___4_1 
0 20 40 60 80 

Time (nsec) 

FIG. 3. Dynamic pore collapse of an aluminum hollow sphere of initial 
pore radius ue=ZO pm and initial relative density jSa=O.769 (i.e. initial 
distention ae= 1.3), with an applied external pressure rate p= 10 MPa/ 
ns. 

TABLE I. Selected thermal-mechanical properties of matrix materials. 

Material 

Aluminum 

Iron 

tipper 

Density 
(kg/m’) 

2700 

7800 

8940 

(Sa) 

26 

81 

44 

4 
(GPd 

56 

112 

117 

893 920 

500 1530 

383 1356 

San Diego Supercomputer Center and smaller problems 
are solved on an Ultrix DEC 3 100 workstation. One of the 
important variables is the densification time at which the 
porous material is nearly fully densified. Because of the 
asymptotic nature of pore-collapse process as p-, 1, the 
pore-collapse time or densification time t, is chosen to be 
the time when &=0.98 for illustrative purposes. 

Figure 4(a) shows the effects of strain rate sensitivity 
of the matrix materials and dynamic loading on the col- 
lapse process of a spherical shell under a linearly increasing 
loading with @= IO MPa/ns. For simplicity as well as for 
direct comparison with the results of quasistatic analyses 
by Carroll and HohI for a rigid, perfectly plastic, rate- 
independent material and by Wilkinson and Ashby2’ for a 
rigid, perfectly plastic, rate-dependent material under the 
same loading condition, effects of strain hardening and 
thermal softening are at first not included [i.e., IZ = Y=O in 
our model, Eq. ( 13 )]. The result of the quasistatic analysis 
given by Carroll and Holt16 is 

p= 
I 

PO (O<PGPc) 
1 -fy--tijp/2Q (pc<p)’ 

where ~,=(2re/K7>ln[l/(l---/50>], 

and the result by Wilkinson and Ashby2’ is 

(21) 

VT F(1-p) V3m p 

( ) 
e2 -- 

~=~~~[1-(&jjp)“p 2 To . (22) 

The time in Fig. 4(a) is normalized by to which cor- 
responds to the time when the applied pressure equals the 
yield stress in a perfectly plastic, rate-independent mate- 
rial, i.e., p(to) =v%ro. The time to can be regarded as a 
characteristic time of pore collapse for such a material in 
the quasistatic situation and hence is used as a reference 
time scale. Clearly in both quasistatic and dynamic analy- 
ses, a strong rate sensitivity retards the pore collapse. The 
pore collapse obtained from the present dynamic solution 
in all cases is faster than that predicted by static analysis 
initially but becomes slower at later times. Thus, the dy- 
namic results by Carroll and Holt16 will give a much 
shorter densification time for rate-sensitive materials. Un- 

TABLE II. Viscoplastic parameters for matrix materials. 

00 
Material (;:a) (10%‘) m y. n 0-Q v 

Aluminum 125 1.53 0.254 0.05 0.04 295 -0.4 

Iron 420 4.0 0.20 0.15 0.085 295 -0.6 
Copper 270 5.0 0.20 . . . . . . . . . . . . 
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FIG. 4. Comparison of static and dynamic pore collapse of an,elastic/ 
viscoplastic aluminum spherical shell of initial pore radius uo=20 pm and 
initial relative density jj,=O.769. The material model for plastic defor- 
mation in the current dynamic analysis is given as ~=r~(j/p~)~: (a) 
With an applied external pressure rate p= 10 MPa/ns, &=21.65 ns; (b) 
with an applied external pressure rate i=250 MPa/ns and to=0366 ns. 

der this particular loading rate (relatively slow), the qua- 
sistatic and dynamic results are somewhat quite similar to 
each other when m=0.254 (for pure aluminum) or 
m = 1 .O (the Newtonian viscous material). However, there 
is a large difference between static and dynamic analyses 
for m=0.005 (nearly rate independent) which indicates a 
strong dynamic effect in very weakly rate-sensitive materi- 
als even under relatively slow loading rate. 

Variations of plastic strain rate, plastic shear strain, 
and temperature within the spherical shell are given in 
Figs. 5(a)-5(c), respectively, for pure aluminum. The 
plastic strain rate is indeed of the order lo’-lo7 per second 
(note PO= 1.53 X lo5 per second). Initially the plastic 
strain rate is relatively uniform across the cross section. As 
the pore collapses, the plastic strain rate in the innermost 
region of the shell (R/a04 1) increases dramatically while 
the plastic strain rate reduces gradually in the outer region. 
The accumulated plastic shear strain also becomes nonuni- 
form at the later stage of pore collapse, Fig. 5 (b) . Large- 
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shear strain, as high as 2.86, can be found near the inner 
surface of the shell at the time t/to=4.78 (at which p 
=0.909). At the same time, the temperature increases in 
that region due to adiabatic heating by plastic work to as 
high as 815 K (88% of the melting temperature of the 
matrix material) while the temperature at the outer surface 
of the shell remains relatively low (about 321 K). 

The influence of large plastic strain and temperature 
rise on dynamic pore collapse is examined by incorporating 
strain hardening and thermal softening into the viscoplas- 
tic model and the results are given in Fig. 6 for m=0.254.’ 

As expected, strain hardening slows down pore collapse 
(see the case with n=0.25, Y=O) and thermal softening 
accelerates the process (see the case with n =O, Y= - 1 .O) . 
The result of dynamic pore collapse of pure aluminum 
using parameters given by Klopp and co-workersI (see 
Table 11) is found to be almost identical to the result using 
m = 0.254 and n = Y= 0. The effect of strain hardening ap- 
pears to annul the effect of thermal softening on dynamic 
pore collapse for pure aluminum. Because of this fact, only 
the simple viscoplastic model (m =0.254, n =v=O) is used 
in the following calculations which can also be directly 
compared with the results of quasistatic analyses by Car- 
roll and Halt’” and by Wilkinson and Ashby. 

So far, we have investigated the dynamic pore collapse 
of an aluminum spherical shell under a relatively low pres- 
sure rate of Ij= 10 MPa/ns. Figure 4(b) presents the re- 
sults using the same material parameters as in Fig. 4(a) 
but under a relatively high pressure rate of @=250 MPa/ 
ns. In contrast to the results in Fig. 4(a), there is large 
difference between quasistatic and dynamic analyses for all 
cases: m==0.005,0.254, and 1.0. The difference between the 
dynamic results with m =0.005 and m =0.254 in Fig. 4(b) 
is somewhat smaller than in Fig. 4(a). For m= 1.0, the 
dynamic analysis actually predicts a faster pore-collapse 
rate than that of static analysis for quite a while. 

Figures 7(a) and 7(b) show the effect of pore size on 
dynamic pore collapse of the viscoplastic aluminum spher- 
ical shell (m=0.254) under a low pressure rate of Ij= 10 
MPa/ns and a high pressure rate of &=250 MPa/ns. For 
p=lO MPa/ns, the results by dynamic analysis are very 
similar to those by static analysis for a,=2 and 20 ,um. For 
ao= 100 pm and larger, there is a strong dynamic effect 
even under a relatively slow pressure rate. For a0 = 50 pm, 
the dynamic pore collapse is evidently slower than static 
one but the densification time is shorter. For fi = 250 MPa/ 
ns, the dynamic results for a0 = 20 pm deviate largely from 
static ones. The dynamic effect becomes more dominant for 
larger pores of given initial relative density. The “critical” 
pore size under which both dynamic and static results are 
similar reduces as the applied pressure rate increases. 
There is no effect of pore size in quasistatic analysis. It is 
also interesting to note that the relative density of large 
pore sizes decreases by a large amount initially in our dy- 
namic analysis as shown in Fig. 7 (b), which is due to 
transient wave propagation and elastic deformation. Be- 
cause the relative density is measured by jj= 1 - (a/b)3, 
the rate of reduction in b can be faster than that of a during 
the initial collapse stage, thus it leads to a decrease in p. 
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FIG. 6. Effect of strain hardening and thermal softening on dynamic pore 
collapse of an elastic/viscoplastic aluminum spherical shell: a,=20 pm, 
j&=0.769, p=lO MPa/ns, ~=~,(~/~e)“(r/re)“(e/~e)~, and rc=21.65 
ns: (1) n=O, v=-1.0; (2) n=0.04, v=-0.4; (3) n=v=O; (4) 
n=0.04, v=o; (5) n=0.25, v=o. 

In order to examine the effect of the strength and/or 
mass density-of-matrix materials on dynamic pore col- 
lapse, numerical simulations for pure aluminum, iron, and 
copper are carried out and results are presented in Fig. 
9(a) under the same applied pressure history and in Fig. 
9 (b) with the same static, rate-dependent pore-collapse re- 
sponse. The order of the densification times for aluminum, 
iron, and copper in dynamic analysis in terms of their re- 
spective static pore-collapse characteristic time is just op- 
posite to that in static analysis, Fig. 9(a). This behavior 
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FIG. 5. Variations of (a) plastic shear strain rate, (b) plastic shear 
strain, and (c) temperature rise due to adiabatic heating of plastic work 
within the spherical shell at times f/&,=3.64 (830.833) and t/&=4.78 
(p=O.909): a,=20 pm, jje=O.769, p=lO MPa/ns, ~=rc(j/je)~, and 
te-21.65 ns. R/as= 1 corresponds to the inner surface of the shell, and 
R/uc=1.603 corresponds to the outer surface of the shell. 

This transient phenomenon occurs in all dynamic analyses 
presented here and is more evident for larger pores and at 
higher loading rates. 

The effect of initial relative density on static and dy- 
namic pore collapse of an aluminum spherical shell with 
the same pore size is also studied for both slow and fast 
pressure loading rates and results are given in Pigs. 8(a) 
and 8 (b). The difference between static and dynamic anal- 
ysis results is small for @= 10 MPa/ns but becomes quite 
significant forti= MPa/ns, with &=0.555, 0.769, and 
0.909. The retardation of the collapse process due to dy- 
namic effect is evident for all three different initial relative 
densities. According to our dynamic analysis, the lower the 
initial relative density, the faster the pore collapses com- 
pletely, which is in contrast to the results of quasistatic 
analysis. 
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PIG. 7. Effect of pore size on static and dynamic pore collapse of an 
elastic/viscoplastic aluminum spherical shell: pc=O.769, r=~e(j’/j’e)“, 
ra= 125 MPa, pe= 1.53~ lo5 &‘s, m=0.254: (a) ne=2, 20, 50, 100, 150, 
and 200 pm, with an applied external pressure rate $=lO MPa/ns, 
fa=21.65 ns; (b) ua=2, 20, 50, and 100 pm, with an applied external 
pressure rate @=250 MPa/ns and r,=O.866 ns. 

should be expected because the dynamic effect is more 
dominant if the applied load is higher in comparison to the 
strength of the matrix material. in Fig. 9(b) the pressure 
rate is adjusted for each matrix material such that the 
quasistatic rate-dependent pore collapse is the same for all 
three matrix materials. The results from dynamic analysis 
are quite ditTerent from those of static analysis. The order 
of the densification times for aluminum, iron, and copper 
seems to correspond to the order of pa/p for each matrix 
material, i.e., the higher the density of the matrix material, 
the larger the dynamic effect. 

IV. CONCLUSIONS AND DISCUSSIONS 

The dynamic consolidation is accomplished by the pas- 
sage of a shock wave through the powder. Major physical 
processes (rearrangement, deformation, and heating) oc- 
cur during the den&cation process, i.e., during the shock 
rise time or within the shock front region. According to 
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PIG. 8. Effect of initial relative density on static and dynamic pore col- 
lapse of an elastic/viscoplastic aluminum spherical shell: a~=20 pm, 
pe=O.555, 0.769, and 0.909, r=~c(f/jb)“: (a) with an applied external 
pressure rate @=lO MPa/ns, fe=21.65 ns; (b) with an applied external 
pressure rate p=250 MPa/ns and rc=O.866 ns. 

our computational analysis, the combined effects of inertia 
and strain-rate sensitivity strongly retard the densification 
of porous materials under impulsive loading, Figs. 4(a) 
and 4(b). For a given loading rate, the viscous effect is 
more important when the matrix material becomes 
strongly rate sensitive (m+ 1). The dynamic effect (iner- 
tia) is significant in weakly rate-sensitive matrix materials 
under all typical shock wave loading rates. For three typ- 
ical elastic/viscoplastic materials studied here with 
mzO.2-0.25, the difference in the densification time pre- 
dicted by quasistatic and rate-independent analysis is very 
large. Even though the dynamic and rate-independent 
analysis reduces the difference to some degree its predi- 
cated densification time is still significantly smaller than 
that from the present dynamic and rate-dependent analy- 
sis, especially when the loading rate is moderately high. 
Under the condition given in Fig. 4(a), dynamic effects are 
small, thus the results by quasistatic and rate-dependent 
analysis are applicable to shock wave consolidation of am- 
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FIG. 9. (a) Comparison of static and dynamic pore collapse for alumi- 
num, iron, and copper spherical shells with the same applied external 
pressure rate&250 MPa/ns: a,,=20pm, jjc=O.769, r=~c(f/fc)~. A.lu- 
minum: rc= 125 MPa, A= 1.53X lo5 &, m=0.254, tc=O.866 ns; iron: 
~c=420 MPa, +4.0X 10’ LB/s, m=0.20, t,,=2.910 ns; copper: rc=270 
MPa, jc=5.0X105 t”/, m=0.20, f,,=1.871 ns. (b) Comparison of dy- 
namic pore collapse for aluminum, iron, and copper spherical shells with 
the same static rate-dependent pore collapse: a,=20 pm, pc=O.769, 
~=rc(~/jb)“. Aluminum: rc= 125 MPa, PO= 1.53X 10’ e/s, m=0.20, 
p=250 MPa/ns, pn/p=10.8~10~ s/m’; iron: rc=420 MPa, 
&=4.0X 10’ if/s, m=0.20, +693 MPa/ns, p,Jg= 11.3X lo3 s/m2; cop- 
per: rc=270 MPa, j’o=5.0X10s ;et/s, m=0.20, p=426 MPa/ns, 
pdp=20.9X lo3 s/m’. 

minum powders. Under a higher loading rate [Fig. 4(b)] 
or when the pore size is larger [Figs. 7(a) and 7(b)], dy- 
namic effects become significant or even dominant. For 
Newtonian viscous fluid like solids (m= 1 ), dynamic ef- 
fects are insignificant in most cases and results of quasis- 
tatic and rate-dependent analysis are applicable to dynamic 
consolidation process. The same conclusion has been 
reached for void growth in Newtonian viscous solids by 
Johnson.35 

For simplicity, the pore-collapse time or densification 
time tc under a linearly increasing pressure loading (i.e., 
constant Ij) can be written as 
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t,= (~r~~)g(P,r,Pc,ao,po). (23) 

The pore-collapse time to a good approximation can be 
regarded to be independent of initial porosity or initial 
relative density [see Figs. X(a) and 8(b)]. For quasistatic 
loading and rate-independent matrix materials, gz 1. 
When dynamic effects are insignificant (for example, 
m z 1, or a small pore size or a low pressure rate), gsg, 
for rate-dependent matrix material, where gR is a normal- 
ized quasistatic and rate-dependent pore-collapse time and 
can be computed by using the results for relative density 
rate from quasistatic analysis of rate-dependent, strain- 
hardening, and thermal softening matrix materials. For 
power-law perfectly viscoplastic materials (Wilkinson and 
Ashby”), gR can be obtained as [see Eq. (22)] 

G m/(l+m) 

gR= F 
0 

f 

where 

G= 

s 

PC [l-(l-p)“]“m 
4% 

PO #al--P) 

3m (l+mVm 
&rn - 

i i 

Q-o?0 

l+m 2 P - 
(24) 

For strain-hardening viscoplastic materials, the results 
such as the one by Haghi and AnandZ5 may be used to 
evaluate gR . Finally, when dynamic effects are not negligi- 
ble (the pressure loading rate is high for a given matrix 
material and pore size), gZgRgD, where gD is a nondimen- 
sional parameter, a measure of dynamic effects ( > 1) . The 
dynamic parameter gD may be in general dependent on 
pressure loading rate, viscoplastic properties of matrix ma- 
terials, and initial pore size. For a given matrix material, 
gD may be tabulated for different loading rates or different 
pore sizes. Furthermore, gD can also be used as a criterion 
in determining whether the pressure loading rate is low or 
high for a given matrix material and pore size: The pres- 
sure loading rate is low when gDz 1 and the pressure load- 
ing rate is high when g+ 1. 

Schwarz and co-workers14 reported measurements on 
the temperature rise time of about 60-70 ns during shock 
wave consolidation of copper-constantan powders (60 ,um 
in diameter) for shock pressures between 1.3 and 9.4 GPa. 
The maximum temperature can be regarded to be due to 
the shock wave heating as the powder is being fully densi- 
fied and hence the temperature rise time is a good measure 
of the densification time by shock wave. The relatively 
large rise time is in itself an indicator of dynamic and 
strain-rate effects on consolidation process. The finite’rise 
time is commonly attributed to the time for the shock wave 
passing through l-2 or 3-5 powder particles.‘,” However, 
the temperature rise times measured for two tests no. 801 
and no. 802 are 67 and 63 ns, respectively while the shock 
velocities in copper powder for these two tests are 0.75 and 
2.03 km/s.14 The times for these two shock waves passing 
through 1.5 particles (90 pm> are about 120 and 44 ns, 
respectively. Such a big difference in rise time is not ob- 
served in the experimental measurements, rather, the mea- 
sured temperature rise times are almost identical. The ex- 
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perimental observation could be partly explained in terms 
of the dynamic effects on pore collapse. The shock pres- 
sures in these two experiments are 1.3 and 9.4 GPa, re- 
spectively, and thus the pressure loading rates fi are 19.4 
and 149.2 MPa/ns, respectively. The dynamic effects will 
be stronger in the later test (higher-pressure loading rate) 
and thus retard the densification process. 

As mentioned in Sec. I, constitutive relations of porous 
materials, especially such as the one proposed by 
Herrmann,” are commonly used in computer simulation 
of dynamic consolidation by shock wave propagation. The 
crush curve (i.e., the p-a: relation), however, is often taken 
to be that determined from quasistatic tests and without 
the inclusion of rate effects.“Z’s*36 Acceptable for certain 
rate-insensitive materials under slow (low rate) loading 
conditions,37 the quasistatic rate-independent p-a relation 
cannot be assumed to be valid in general applications of 
shock wave consolidation without careful examination of 
effects of inertia and strain rate. If the quasistatic rate- 
independent p-a relation is used in modeling shock consol- 
idation, the finite rise time of the shock wave (the finite 
width of the shock front) can only be artificially imposed 
(say, by numerical viscosity). On the other hand, from our 
present analysis, it can be seen that the finite rise time is the 
natural consequence of a rate-dependent and dynamic 
pore-collapse process during the passage of the consolida- 
tion shock wave. Thus, a rate-dependent and dynamic p-a 
relation will improve the modeling of physical processes 
during shock wave consolidation. As pointed out by Car- 
roll and Holt,i6 even for perfectly plastic and rate- 
independent materials, a dynamic pore-collapse relation 
becomes extremely complex (a second-order nonlinear or- 
dinary differential equation). However, approximate dy- 
namic p-a relations may be obtained for some simple load- 
ing cases. As a first approximation, quasistatic but rate- 
dependent pore-collapse relations such as the one proposed 
by Wilkinson and Ashby” [Eq. (22)] should be used for 
m =: 1, or a small pore size, or a low pressure rate (i.e., 
when g,z 1). For a given loading condition in which dy- 
namic effects are not negligible (gD> l), a modified quasi- 
static and rate-dependent relation may be used instead. For 
example, Eq. (22) may be modified as 

t4 #31--p) V3m p 

( 1 
‘h -- 

$=D*-p+J [1-(1-p)m]l/m 2 To 9 (25) 

where D* ( < 1) is a nondimensional coefficient to account 
for dynamic effects. Again, for a given matrix material, D* 

can be tabulated for different loading rates or different pore 
sizes. 

The localized melting near particle surfaces is another 
important aspect of shock consolidation. Large tempera- 
ture rises in pore interior surface are predicted by our dy- 
namic pore collapse analysis [Fig. 5 (c)l. Heat conduction 
is neglected here (although it can easily be incorporated 
into our current analysis) because the times required for 
densification process are very short ( =: 100 ns). For some 
low-pressure loading rate cases or if the matrix material is 
very strongly rate sensitive (say, a Newtonian viscous solid 
with m= l), the time for complete consolidation of pow- 

ders may be longer (1 ps or more) and an adiabatic con- 
dition will be no longer valid. While large plastic deforma- 
tion, frictional sliding, and other processes contribute to 
the localized heating, frictional sliding between particles 
has commonly been regarded to be the dominant factor;g*38 
however, the conclusion may not be completely justified. 
The estimate of frictional work using a Coulomb friction 
model (constant coefficient of friction) is questionable for 
very high-pressure contact between particles encountered 
in shock wave loading.3g-41 The sliding friction stress is 
essentially limited by the shear strength of matrix material 
under high pressure.3g’40 For closely or near closely packed 
powders, the relative sliding distance between particles is 
very small (of the order of several micrometers or less). 
Due to surface oxide layer and other contaminations, the 
sliding friction between dry surfaces is also strongly depen- 
dent on the sliding distance such that the friction stress 
during the initial sliding stage is relatively much smaller 
than that in the steady-state stage.40*41 Interparticle sur- 
faces will soften and melt due to the heating by frictional 
sliding and will not transmit any significant friction stress 
afterward. Thus, the frictional working would be much 
smaller than that estimated by simple dry Coulomb fric- 
tion law. 

The plastic work of the viscoplastic matrix material 
during consolidation may be underestimated by assuming 
homogenous deformation of perfectly plastic and rate- 
independent material. The deformation of a spherical shell 
under pressure loading [Fig. 5 (b)] is quite nonuniform and 
the plastic work done upon the pore collapse of porous 
materials can be quite large. Finally, a recent experimental 
study and analysis by Mutz4’ on the fraction of the melt 
after shock wave consolidation concludes that the assump- 
tion of all heat flowing into the particle surface (such as by 
frictional sliding) gives an overestimate of the melt fraction 
and even predicts the possibility of vaporization of the par- 
ticle surface layer which is unrealistic. He found that a 
70% bulk and 30% surface layer partition of heat flow 
from shock energy input (which is similar to viscoplastic 
pore collapse) provides the best agreement with the exper- 
imental data. From available experimental results we con- 
clude that the present dynamic pore-collapse analysis de- 
scribes not only the densification process but also to a 
significant degree the surface melting of particles through 
adiabatic heating due to plastic work. 

One of the implications of our computational results is 
that the dynamic pore collapse of a spherical shell can be 
used to study material response under very large strain and 
strain rates. In particular, because of the strong strain-rate 
and dynamic effects for matrix materials with large m (say, 
0.2-l), the combined experimental and computational in- 
vestigation can be carried out to evaluate such as the rate 

sensitivity of materials at very high strain rates. This may 

also provide a sensitive method to rigorously examine the 
hypothesis whether the behavior of Newtonian viscous flu- 
ids (m = 1) prevails at strain rates higher than 10” per 
second. 

While most efforts have been directed toward the un- 
derstanding of the consolidation process by shock wave,2*4 

2434 J. Appl. Phys., Vol. 74, No. 4, 15 August 1993 W. Tong and G. Ravichandran 2434 

Downloaded 12 Jan 2006 to 131.215.240.9. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



much less attention has been paid to problems of cracking 
in near fully densified compacts due to release tensile 
waves. Our current analysis can be easily eztended to more 
complicated loading paths such as compressive-tensile 
loading and to include more complex ,yiscoplastic models, 
especially those with strain-rate history effects.‘9343 The ef- 
fect of dynamic loading and viscoplastic properties of ma- 
trix materials on void growth (and eventually cracking) in 
compacts can be assessed. Furthern?pre, there is an in- 
creasing application of continuum, phenomenological con- 
stitutive relations of porous material to dynamic ductile 
fracture,44 and spallation.4’ The flow potentials of porous 
materials used in these analyses are based on quasistatic 
results. The correction due to dynamic. effects on void 
growth using those flow potentials can also be examined 
using our analysis. i 
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