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Abstract— We consider dynamic routing and power allocation
for a wireless network with time varying channels. The network
consists of power constrained nodes which transmit over wireless
links with adaptive transmission rates. Packets randomly enter
the system at each node and wait in output queues to be trans-
mitted through the network to their destinations. We establish the
capacity region of all rate matrices (λij) that the system can stably
support—where (λij) represents the rate of traffic originating at
node i and destined for node j. A joint routing and power alloca-
tion policy is developed which stabilizes the system and provides
bounded average delay guarantees whenever the input rates are
within this capacity region. Such performance holds for general
arrival and channel state processes, even if these processes are un-
known to the network controller. We then apply this control al-
gorithm to an ad-hoc wireless network where channel variations
are due to user mobility, and compare its performance with the
Grossglauser-Tse relay model developed in [13].

I. INTRODUCTION

Wireless systems have emerged as a ubiquitous part of mod-
ern data communication networks. Demand for these systems
continues to grow as applications involving both voice and data
expand beyond their traditional wireline service requirements.
In order to meet the increasing demand in data rates that are
currently being supported by high speed wired networks com-
posed of electrical cables and optical links, it is important to
fully utilize the capacity available in wireless systems, as well
as to develop robust strategies for integrating these systems into
a large scale, heterogeneous data network. Emerging micropro-
cessor technologies are enabling wireless units to be equipped
with the processing power needed to implement adaptive cod-
ing techniques and to make intelligent decisions about packet
routing and resource management. It is expedient to take full
advantage of these capabilities by designing efficient network
control algorithms.

In this paper, we develop algorithms for dynamic routing and
power allocation in a wireless network consisting of N power
constrained nodes. Time is slotted, and every timeslot the chan-
nel conditions of each link randomly change (due to external ef-
fects such as fading, user mobility, and/or time varying weather
conditions). Multiple data streams Xij(t) randomly enter the
system, where Xij(t) represents an exogenous process of pack-
ets arriving to node i destined for node j. Packets are dynami-
cally routed from node to node over multi-hop paths using wire-
less data links.

Nodes can transmit data over multiple links simultaneously
by assigning power to the link for each node pair (a, b) ac-
cording to a power matrix P (t) = (Pab(t)), subject to a total
power constraint at each node. Transmission rates over all link
pairs are determined by the power allocation matrix P (t) and
the current channel state S(t) according to a rate-power curve
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Fig. 1. (a) A wireless network with multiple input streams, and (b) a close-up
of one node, illustrating the internal queues.

µ(P , S). Each node contains N − 1 internal queues for storing
data according to its destination (Fig. 1). A controller allocates
power and schedules the data to be routed over the links in reac-
tion to channel state and queue backlog information. The goal
of the controller is to stabilize the system and thereby achieve
maximum throughput and maintain acceptably low network de-
lay.

We establish the network capacity region: The set of all input
rate matrices (λij) that the system can stably support (where λij
represents the rate of data entering node i destined for node j).
This region is determined by considering all possible routing
and power allocation strategies, and can be expressed in terms
of the steady state channel probabilities, the node power con-
straints, and the rate-power function µ(P , S). We emphasize
that this is a network layer notion of capacity, where µ(P , S) is
a general function representing the rate achievable on the wire-
less links under a given physical layer modulation and coding
strategy. This is distinct from the information theoretic capac-
ity of the wireless network, which includes optimization over
all possible modulation and coding schemes and involves many
of the unsolved problems of network information theory. We
do not address the information theoretic capacity in this work,
and use the term capacity to represent network layer capacity.

We present a joint routing and power allocation policy which
stabilizes the system and provides bounded average delay guar-
antees whenever the input rates are strictly inside the network
capacity region. Such performance holds for general Markov
modulated arrival and channel state processes, even if the spe-
cific channel probabilities and packet arrival rates are unknown
to the network controller. The strategy involves solving an op-
timization problem every timeslot. We implement centralized
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and decentralized approximations of the algorithm for an ad-
hoc wireless network, where channel variations are due to user
mobility.

Previous work on power control for wireless systems is found
in [1-7], [23], [25-27]. In [1], a stabilizing power allocation
strategy is developed for a satellite downlink with random in-
puts and time varying channels. Routing over finite buffer
downlinks is considered in [2]. In [3,4], optimal power alloca-
tion policies are developed for minimizing the energy expended
to transmit data arriving to a downlink node with a single trans-
mitter. Scheduling and allocation strategies for networks are
considered in [5-7], where static power allocation policies are
developed to support flows with known traffic rates λij . Game
theory approaches to network problems are considered in [8-
10], where decentralized pricing mechanisms are constructed
to enable the system to reach a static equilibrium point which
maximizes some function of user utility.

Asymptotic analysis of capacity regions for large, static wire-
less networks is provided in [11,12], and for mobile networks in
[13]. Our work is inspired by the approach of Tassiulas in [14],
where a Lyapunov drift technique is used to develop a through-
put optimal link scheduling policy for a multi-hop packet radio
network. Further work on Lyapunov analysis is found in the
switching and scheduling literature [16-19].

The main contributions in this paper are the formulation of
a general power control problem for time varying wireless net-
works, the proof of the capacity region, and the development
of capacity achieving routing and power allocation algorithms
which offer delay guarantees. These algorithms hold for sys-
tems with general arrival and channel processes, including ad-
hoc networks with mobility.

In the next section, we introduce the power allocation prob-
lem for wireless networks. In Section III we establish the capac-
ity region. In Section IV stabilizing power allocation policies
are developed, and in Section V decentralized implementations
are developed for networks with independent channels. Finally,
we implement both a centralized and a decentralized version
of the policy for an ad-hoc wireless network with mobility, and
simulate the system to compare with the Grossglauser-Tse relay
algorithm of [13].

II. THE SYSTEM MODEL

Consider the N node system of Fig. 1. We represent the
channel process by the channel state matrix S(t) = (Sab(t)),
where Sab(t) represents the current state of channel (a, b) (rep-
resenting, for example, attenuation values and/or noise levels).
Channels hold their state for timeslots of length T , with tran-
sitions occurring on slot boundaries t = kT . It is assumed
that channel states are known at the beginning of each timeslot.
Such information can be obtained either through direct mea-
surement (where timeslots are assumed to be long in compar-
ison to the required measurement time) or through a combi-
nation of measurement and channel prediction.1 The channel
process S(t) takes values on a finite state space, and is ergodic
with time average probabilities πS for each state S.

Every timeslot, a controller determines transmission rates by
allocating a power matrix P (t) = (Pab(t)) subject to a total

1Accurate prediction schemes are developed in [20].
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Fig. 2. (a) A set of rate-power curves for improving channel conditions
S1, S2, S3, and (b) a curve restricted to a finite set of operating points corre-
sponding to full packet transmissions. Curves illustrate behavior on link (a, b)
when the single power parameter Pab is increased, in which case the concave
increasing profiles are typical.

power constraint
∑
b �=i Pib(t) ≤ P toti for all nodes i. Addi-

tional power constraints can be introduced, such as constraints
on the number of outgoing links that can be allocated power
when a node is transmitting or receiving. It is therefore useful
to represent the power constraint in the form P (t) ∈ Π, where
Π is a compact set of acceptable power allocations which in-
clude the power limits for each node.

Link rates are determined by a corresponding rate-power
curve µ (P , S) = (µab (P , S)) (see Fig. 2). It is assumed that
data can be split continuously, so that each timeslot the trans-
mission rate µab determines the number of bits that can be trans-
ferred over the wireless link (a, b). Such an assumption is valid
if variable length packets can be split and re-packaged with new
headers for re-sequencing at the destination (we neglect the ex-
tra bits due to such headers in this analysis). Alternately, split-
ting and relabeling can be avoided altogether if all packets have
fixed lengths and the transmission rates µ are restricted to inte-
gral multiples of the packet-length/timeslot quotient L/T .

Note that, in general, the transmission rate over a link (a, b)
of the network depends on the full matrix of power allocation
decisions. This is because communication rates over the link
may be influenced by interference from other channels. For
example, achievable data rates could be approximated by us-
ing the standard CDMA signal-to-interference ratio in the log()
formula for the capacity of a white Gaussian noise channel:

Example Rate-Power Curve: µab (P , S) =

log

(
1 +

αabPab

Nb + αab

G1

∑
j �=b Paj +

1
G2

∑
i �=a αib

∑
j Pij

)
(1)

where G1, G2 ≥ 1 represent the CDMA gain parameters for
signals from the same transmitter and different transmitters, re-
spectively, and Nb and αij represent noise and fading coeffi-
cients (associated with the particular channel state S).

Alternatively, the µab() curves could represent rate curves
for a specific set of coding schemes designed to achieve a suffi-
ciently low probability of error. Note that practical systems rely
on a finite databank of codes, and hence may be restricted to a
finite set of feasible operating points. In this case, rate-power
curves are piecewise constant (see Fig. 2b). In general, we
assume only that µ (P , S) is a piecewise continuous function
of power for each channel state S. More precisely, we assume
the function is upper semi-continuous2, and hence limits are
achieved from above (see [22]).

2I.e., that limP→P∗ µab(P , S) ≤ µab(P ∗, S) for all (a, b) and all S.
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The general rate-power curve description of a wireless link
contains as a special case a wired link with fixed data rate, as
the µab(P , S) function can take a constant value for all power
levels. Note also that a broken or non-existent link can be mod-
eled by a rate-power curve that is zero for all power levels at one
or more channel states. Thus, the general power curve formula-
tion provides the ability to address hybrid networks containing
both wireline and wireless components.

III. STABILITY AND THE NETWORK CAPACITY REGION

Here we develop the region of all data rates for which some
power allocation and routing strategy exists to stabilize the net-
work. We consider all possible control strategies, and begin by
precisely defining the notion of stability.

A. Stability of Queueing Systems

Consider a single queue with an input process X(t) and a
time varying server process µ(t). Because the input stream and
server process could arise from an arbitrary, potentially non-
ergodic routing and power allocation policy, our definition of
queue stability must be robust to handle all possible arrival and
server processes. Let the unfinished work function U(t) repre-
sent the amount of unprocessed bits remaining in the queue at
time t. As a measure of the fraction of time the unfinished work
in the queue is above a certain value M , we define the following
“overflow” function g(M):

g(M) = lim sup
t→∞

1
t

∫ t

0
1[U(τ)>M ]dτ

where the indicator function 1E used above takes the value 1
whenever event E is satisfied, and 0 otherwise.

The above limit3 always exists, so that g(M) ∈ [0, 1].

Definition 1. A single server queueing system is stable if
g(M) → 0 as M → ∞.

Notice that if sample paths of unfinished work in the queue
are ergodic and a steady state exists, the overflow function
g(M) is simply the steady state probability that the unfin-
ished work in the queue exceeds the value M . Stability in
this case is identical to the usual notion of stability defined
in terms of a vanishing complementary occupancy distribution
(see [21,20,14,16,17]). A network of queues is said to be sta-
ble if all individual queues are stable. Consider a network of
K queues with unfinished work levels Uk(t), k = 1, ...,K, and
define:

gk(M) = lim sup
t→∞

1
t

∫ t

0
1[Uk(τ)>M ]dτ

gsum(M) = lim sup
t→∞

1
t

∫ t

0
1[U1(τ)+...+UK(τ)>M ]dτ

Lemma 1. (Network Stability) For a network of K queues, we
have gsum(M) → 0 if and only if gk(M) → 0 for all queues
k ∈ {1, . . . ,K}. In particular, if the network is stable, then
there exists a finite value M such that the unfinished work in all
queues simultaneously falls below the value M infinitely often.

3Where the lim sup of a function f(t) is defined:
lim supt→∞ f(t) = limt→∞

[
supτ≥t f(τ)

]
.

Proof: Note that 1[
∑

k Uk(t)>M ] ≤
∑
k 1[Uk(t)>M/K].

The lemma then follows easily from the definition of stability
and the fact that the lim sup of a sum is less than or equal to the
sum of the lim sups.

B. The Capacity Region Λ
Here we develop the capacity region of all data rates stabi-

lizable by a wireless network characterized by the following
properties:

• An ergodic channel state process S(t) with state probabil-
ities πS

• A piecewise continuous rate-power function µ (P , S)
• A power constraint P ∈ Π for all t (where Π is a compact

set of acceptable power allocations)
For convenience, we classify all data flowing through the net-

work as belonging to a particular commodity c ∈ {1, . . . , N},
representing the destination node for the data. Let X(c)

i (t) rep-
resent the total amount of commodity c bits that arrived to the
network at node i. We assume the X

(c)
i (t) process is rate er-

godic, so that the following rates are well defined with proba-
bility 1:

λic = lim
t→∞

X
(c)
i (t)
t

, (i, c) ∈ {1, . . . , N}2 (2)

Definition 2. The capacity region Λ is the closed region of N×
N rate matrices (λij) with the following properties:

• (λic) ∈ Λ is a necessary condition for network stabil-
ity, where all possible ergodic or non-ergodic stabilizing
power control and routing algorithms are considered (in-
cluding algorithms which have full knowledge of future
events).

• (λic) strictly interior to Λ is a sufficient condition for the
network to be stabilized by a policy which does not have
a-priori knowledge of future events.

It is remarkable that such a set exists, and that full knowl-
edge of future events does not expand the region of stabilizable
rates. Below we describe the set of rate matrices Λ making up
this region, and in Theorem 1 we show this set Λ is the true ca-
pacity region by establishing both the necessary and sufficient
conditions listed above.

To understand the capacity region of a wireless network, we
first define the network graph family Γ:

Γ =
∑

S

πSConvex Hull
{
µ(P , S) | P ∈ Π

}
(3)

where addition and scalar multiplication of sets is used.4

Thus, a rate matrix R = (Rab) is in graph family Γ if and
only if R can be represented as R =

∑
S πSR

S , where each

matrix RS is inside the convex hull of the set of rates achiev-
able by power allocation under channel state S. In the proof of
Theorem 1, we show that graph family Γ can be viewed as the
set of all long-term transmission rates (Rab) that the network
can support on the single-hop wireless links connecting node

4For sets A, B and scalars α, β, the set αA + βB is defined as
{γ | γ = αa + βb for some a ∈ A, b ∈ B}.
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pairs (a, b). A particular power allocation policy gives rise to a
particular rate matrix R = (Rab). Given this matrix, the net-
work can be described as a weighted graph, where weights Rab
can be viewed as link capacities in a traditional wireline net-
work.

Network Capacity Region: The capacity region Λ is the set
of all input rate matrices (λic) such that there exist multi-
commodity flow variables {f (c)

ab } satisfying:

f
(c)
ab ≥ 0 ∀a, b, c (4)

λic =
∑
b f

(c)
ib −

∑
a f

(c)
ai ∀i, c such that i �= c (5)

∑
a λac =

∑
a f

(c)
ac ∀c (6)

(∑
c f

(c)
ab

)
≤ (Rab) for some (Rab) ∈ Γ (7)

where the matrix inequality in (7) is considered entrywise.
Thus, a rate matrix (λic) is in the capacity region Λ if there

exists a point (Rab) ∈ Γ that defines link capacities in a tra-
ditional graph network, such that there exist multi-commodity
flow variables {f (c)

ab } which support the λic rates with respect to
this graph. Note that (4)-(6) indicate the multi-commodity flow
variables {f (c)

ab } represent a feasible routing for commodity c.
Equations (5) and (6) imply that the net influx of commodity c
bits is zero at intermediate nodes i �= c, and is equal to

∑
a λac

at the destination node c.
It can be shown using standard convex analysis techniques

[22] that the set Γ is convex, and that Λ is compact and convex.
Such structural properties are used in the proof of the following
theorem.

Theorem 1. (Capacity Region for a Wireless Network) (a) A
necessary condition for stability is (λic) ∈ Λ. (b) If arrivals
and channel state variations are Markov modulated on a finite
state space, a sufficient condition for stability is that (λic) is
strictly interior to Λ.

Proof: A full proof of (a) is given in Appendix A, where it
is shown that no control algorithm can achieve stability beyond
the set Λ, even if the entire set of future events is known in
advance. Part (b) can be shown constructively by routing data
according to the flow variables {f (c)

ab } and allocating power to
meet the long-term link capacity requirements (Rab) (where the
f

(c)
ab and Rab values correspond to the input rate matrix (λij)

via (4)-(7)). For brevity, we omit a full proof here (the reader is
referred to [23]). In the next section, stability analysis of such a
policy is shown when the arriving data has bounded second mo-
ments, and a bound on average delay is provided when arrivals
and channel states are iid over timeslots.

IV. A STABILIZING POLICY

In the previous section we described the capacity region Λ in
terms of flow variables f (c)

ab and a link matrix (Rab) ∈ Γ which
satisfy (4)-(7). In principle, these values can be computed if the
arrival rates (λic) and channel probabilities πS are known in
advance. This allows us to view power allocation and routing
in a decoupled manner, where data is routed according to flow
variables f (c)

ab , and power is allocated to achieve long-term link

capacities (Rab). Here we construct such a policy and show it
provides a bound on average delay. We then use this analysis to
construct a more practical and robust strategy which offers sim-
ilar performance without requiring knowledge of the input and
channel statistics. We start by presenting a preliminary lemma
which makes use of a well developed theory of Lyapunov drift
(see [21,17,18,16,14]).

A. Lyapunov Drift

Let U(t) = (U (c)
i (t)) represent the matrix of unfinished

work in the wireless network, where (U (c)
i (t)) represents the

amount of commodity c bits in the output queue of node i. De-
fine a non-negative function L(U) of the unfinished work ma-
trix U . Below we present a simple condition which guaran-
tees network stability and provides a performance bound. The
lemma combines the steady state analysis for Lyapunov drift
presented in [21] and the delay analysis in [17] into a simple
statement useful for stability and performance analysis in our
wireless network.

Lemma 2. (Lyapunov Drift) If the Lyapunov function of unfin-
ished work L(U) satisfies:

E {L(U(t+ T )) − L(U(t)) | U(t)} ≤ B −
∑

i,c

θ
(c)
i U

(c)
i (t) (8)

for positive constants B, {θ(c)
i }, then:

lim sup
M→∞

∑

i,c

θ
(c)
i

[
1
M

M−1∑

k=0

E

{
U

(c)
i (kT )

}]
≤ B (9)

Furthermore, if there is a nonzero probability that the system
will eventually empty, then a steady state distribution for un-

finished work exists, with bounded average occupancies U
(c)
i

satisfying
∑
i,c θ

(c)
i U

(c)
i ≤ B.

Proof: Taking expectations of (8) over the distribution of
U(kT ) and summing over k from 0 to M − 1 yields:

E {L(U(MT ))} − E {L(U(0))} ≤

BM −
M−1∑

k=0

∑

i,c

θ
(c)
i E

{
U

(c)
i (kT )

}

Hence, by a simple telescoping series argument similar to the
technique used in [17], we have:

1
M

M−1∑

k=0




∑

i,c

θ
(c)
i E

{
U

(c)
i (kT )

}


 ≤ B + E {L(U(0))} /M

Taking the lim sup of the above inequality as M → ∞ yields
(9). If there is a non-zero probability the system empties5, stan-
dard Lyapunov drift techniques [21,18,17,14] and renewal the-
ory [24] can be used together with (9) to establish the existence
of a steady state unfinished work matrix satisfying the given
inequality.

5The requirement of a non-zero probability that the system empties is neces-
sary to deal with the uncountably infinite state space of unfinished work, similar
to the treatment in [1].
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B. Stability for Known Arrival and Channel Statistics

We now construct a simple policy for stabilizing the system
based on the f

(c)
ab and Rab values associated with a known rate

matrix (λij) and known channel probabilities πS . The policy
is not offered as a practical means of network control, but as a
baseline by which other algorithms can be compared. We first
demonstrate that power can be allocated so that the long-term
link capacities of the network converge to the matrix (Rab).

Lemma 3. (Graph Family Achievability) Let (Rab) be a matrix
within the graph family Γ (defined in (3)). A power control
algorithm which yields

(
lim
t→∞

1
t

∫ t

0
µab (P (τ), S(τ)) dτ

)
= (Rab) (10)

can be achieved by a stationary randomized policy, where ev-
ery timeslot the channel state S(t) is observed and a power
matrix is chosen randomly from a finite set of k allocations
{PS1 , . . . , P

S
k } according to probabilities (qS1 , . . . , q

S
k ).

Proof: Because (Rab) ∈ Γ, by (3) there exist matrices
RS such that: ∑

S

πSR
S = (Rab) (11)

where each RS is in Convex Hull{µ(P , S) | P ∈ Π}. By

Caratheodory’s Theorem [22], any point RS in the convex hull
of the set {µ(P , S) | P ∈ Π} can be expressed as a finite com-
bination of matrices:

RS = q
S
1 R

S
1 + . . .+ q

S
kR

S
k

where the {qSi } values are nonnegative numbers that sum to
1 which represent probabilities for the randomized algorithm,
and R

S
i ∈ {µ(P , S) | P ∈ Π} for each i. Choosing power

allocations {PS1 , . . . , P
S
k } such that µ(PSi , S) = R

S
i and al-

locating power according to the randomized policy ensures
E
{
µ(P (t), S(t)) | S(t) = S

}
= RS (where the expectation

is taken over the {qSi } probabilities). Integrating the resulting
µ(P (t), S(t)) function, we have:

1
t

∫ t

0
µ (P (τ), S(τ)) dτ =

∑

S

||TS(t)||
t

Eempirical

{
µ | S

}

where ||TS(t)|| represents the total time the system is in channel
state S during [0, t], and Eempirical

{
µ | S

}
represents the em-

pirical average rate given channel state S. Taking limits of the
above equality and using ergodicity together with (11) yields
(10).

It can be shown that if the set {µ(P , S) | P ∈ Π} is convex
for each channel state S, then then (10) can be achieved by
a non-random policy which chooses a fixed power matrix PS

whenever in channel state S (see [23]). Note that the policy
of Lemma 3 bases decisions only on the current channel state,
and does not depend on queue backlogs. However, the policy
is rather idealized: The existential nature of Lemma 3 does not
provide any practical means of computing the power values and

probabilities needed to implement the policy. However, this
allocation policy is analyzable and useful for comparison with
other algorithms. Below we develop a control strategy based on
this idealized policy. The values f

(c)
ab and Rab are assumed to

be known.
Randomized Policy for Known System Statistics:
Power Allocation: Every timeslot, observe the channel state

S and allocate power according to the algorithm of Lemma 3,
achieving the long-term link capacity matrix (Rab) with instan-
taneous link rates µab(t).

Routing: For every link (a, b) such that
∑
c f

(c)
ab > 0, trans-

mit commodity cab, where cab is chosen randomly with prob-

ability f
(c)
ab /

∑
c f

(c)
ab . However, use only a fraction

∑
c f

(c)
ab

Rab
of

the instantaneous link rate, so that only Tµab(t)
∑

c f
(c)
ab

Rab
bits are

delivered. If a node does not have enough (or any) bits of a
certain commodity to send over its output links, null bits are
delivered, so that links have idle times which are not used by
other commodities.

For simplicity of exposition, we analyze the above strat-
egy assuming arrivals and channel states are independent from
timeslot to timeslot (a modified analysis to address Marko-
vian dynamics is presented in Subsection E). Every timeslot,
channels independently transition to state S(t) with probabil-
ity πS . Additionally, every timeslot new bits from all com-
modities c independently enter the network as an arrival ma-
trix A(t) = (Aic(t)) with distribution f(A) and expectation
E {(Aic)/T} = (λic). Suppose the rate matrix (λic) is strictly
interior to the capacity region Λ, so that there is a positive
value ε that can be added to each component of (λic) such that
(λic + ε) ∈ Λ. Let (Rab) and {f (c)

ab } represent the network
graph and multi-commodity flow variables, respectively, asso-
ciated with rates (λic + ε) and satisfying (4)-(7). In particular:

(λic + ε) =
∑
b f

(c)
ib −

∑
a f

(c)
ai for i �= c (12)

(∑
c f

(c)
ab

)
≤ (Rab) (13)

We define µab(t) as the total rate offered on link (a, b) for the
timeslot beginning at time t, and define µ

(c)
ab (t) as the trans-

mission rate offered to commodity c traffic, noting that only
a fraction of the full rate is used on any transmission (so that

µ
(c)
ab (t) = µab(t)

∑
c f

(c)
ab

Rab
with probability f

(c)
ab /

∑
c f

(c)
ab , and

zero otherwise). Using (10) and the fact that channel states are
iid, we find that every timeslot the expected rates satisfy:

E {µab(t)} = Rab (14)

E

{
µ

(c)
ab (t)

}
= f

(c)
ab (15)

where the expectation is taken over the random channel state
and the random power allocation of the above control policy.
Thus, the control policy is designed to offer expected transmis-
sion rates equal to the multi-commodity flow variables {f (c)

ab }.

Theorem 2. (Stabilizing Policy for Known Statistics) Consider
an N node wireless network (with timeslot independence prop-
erties of arrivals and channel states as described above), with
capacity region Λ and input rates (λic) such that (λic+ ε) ∈ Λ
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for some ε > 0. Then, jointly routing and allocating power
according to the above randomized policy stabilizes the sys-

tem and guarantees bounded average bit occupancies U
(c)
i

satisfying: ∑

i,c

U
(c)
i ≤ TBN

ε
(16)

where

B =
1
2N

∑

i,c

E

{
(Aic/T )

2
}
+

(µoutmax + µinmax)
2

2
(17)

where µinmax and µoutmax represent the maximum bit rate into and
out of a node, respectively, over all channel states.

Proof: Let Aic(t) represent the new commodity c bits ar-
riving to source i at the beginning of a timeslot t, and let µ(c)

ab (t)
represent the rate offered to commodity c over the (a, b) link
under the given power allocation algorithm. In terms of these
variables, the one-step dynamics of unfinished work satisfies
for all i �= c:

U
(c)
i (t+ T ) ≤ max

(
U

(c)
i (t) − T

∑

b

µ
(c)
ib (t), 0

)
+

T
∑

a

µ
(c)
ai (t) +Aic(t) (18)

where (18) holds as an inequality instead of an equality because
the total bits arriving to node i from other nodes of the network
may be less than T

∑
a µ

(c)
ai (t) if these other nodes have little

or no data to send.
Now define the Lyapunov function L(U) =

∑
i �=c [U

(c)
i ]2.

For ease of notation, we neglect the time subscripts and repre-
sent µ(c)

ab (t) and Aic(t) as µ
(c)
ab and Aic. Squaring both sides of

(18) and noting that max2(x, 0) ≤ x2, we have:

[U (c)
i (t+ T )]2 − [U (c)

i (t)]2 ≤ T 2[Aic/T ]2+

T 2
[(∑

b µ
(c)
ib

)2
+
(∑

a µ
(c)
ai

)2
+ 2Aic

T

(∑
a µ

(c)
ai

)]
+

−2TU
(c)
i (t)

[∑
b µ

(c)
ib −

∑
a µ

(c)
ai − (Aic/T )

]
(19)

Summing (19) over all nodes i and commodities c �= i and
taking expectations (noting that E {Aic/T} = λic), it follows
that:

E {L(U(t+ T )) − L(U(t)) | U(t)} ≤ 2T 2BN +

−2T
∑

i �=c

U
(c)
i (t)

[
E

{
∑

b

µ
(c)
ib −

∑

a

µ
(c)
ai

}
− λic

]
(20)

where B is defined in (17). Note that the B constant used above
was obtained from the second term on the right hand side of
(19) by using the Cauchy-Schwartz inequality for sums and ob-
serving that

∑
c λic ≤ µoutmax. The remaining expectation in

(20) is taken over all possible random channel states, and from
(15) we know E{µ(c)

ab } = f
(c)
ab . Hence, the flow variables can be

directly inserted into (20). These multi-commodity flows were
designed to satisfy rates (λic + ε), hence, directly applying the

multi-commodity flow condition (12) in the expectation of (20)
yields:

E {L(U(t+ T )) − L(U(t)) | U(t)} ≤
2T 2BN − 2Tε

∑

i �=c

U
(c)
i (t) (21)

Applying the Lyapunov Drift Lemma (Lemma 2) to the
above inequality and noting that U (i)

i = 0 for all i proves the
result.

C. A Dynamic Policy for Unknown System Statistics

The stabilizing policy of the above section requires full
knowledge of arrival rates and channel state probabilities, along
with the associated multi-commodity flows and the randomized
power allocations. Here we present a dynamic power control
and routing scheme which requires no knowledge of the arrival
rates or channel model, yet performs better than the previous
policy which does use this information. This surprising result
arises because the dynamic policy considers both the channel
state S(t) and the system backlogs U(t) when making control
decisions. The policy is inspired by the maximum weighted
matching algorithms developed by Tassiulas in [14] for stable
server scheduling in a multi-hop radio network and an N × N
packet switch, and generalizes the Tassiulas algorithm by con-
sidering power allocation with general interference and time
varying channel characteristics. Every timeslot the network
controller observes the channel state S(t) and the matrix of
queue backlogs U(t) = (U (c)

i (t)) and performs routing and
power control as follows.

Dynamic Routing and Power Control (DRPC) Policy:
1) For all links (a, b), find commodity c∗

ab such that:

c∗
ab = arg max

c∈{1,... ,N}

{
U (c)
a (t) − U

(c)
b (t)

}

and define: W ∗
ab = max[U (c∗ab)

a (t) − U
(c∗ab)
b (t), 0]

2) Power Allocation: Choose a matrix P (t) such that:

P (t) = arg max
P∈Π

∑

a,b

µab(P , S(t))W ∗
ab (22)

3) Routing: Over link (a, b), send an amount of bits from
commodity c∗

ab according to the rate offered by the power
allocation. If any node does not have enough bits of a
particular commodity to send over all its outgoing links
requesting that commodity, null bits are delivered.

Note that the W ∗
ab values represent the maximum differential

backlog of commodity c bits between nodes a and b. The policy
thus uses backpressure to find an optimal routing. Retaining the
independence assumptions on arrivals and channels from slot to
slot, we have:

Theorem 3. (Stabilizing Policy for Unknown System Statistics)
Suppose an N-node wireless network has capacity region Λ and
rate matrix (λic) such that (λic + ε) ∈ Λ for some ε > 0,
although these rates and the channel probabilities πS are un-
known to the network controller. Then, jointly routing and allo-
cating power according to the above DRPC policy stabilizes the
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system and guarantees bounded average bit occupancies U
(c)
i

satisfying: ∑

i,c

U
(c)
i ≤ TBN

ε
(23)

where B is defined in (17).

Note that the performance bound of Theorem 3 is identical
to the bound of Theorem 2. However, the bound is established
by showing that the dynamic policy performs better than the
previous policy.

Proof: Again define the Lyapunov function L(U) =∑
i,c[U

(c)
i ]2. The proof of Theorem 2 can be followed up to

(20) to show the Lyapunov drift satisfies:

E {L(U(t+ T )) − L(U(t)) | U(t)} /2 ≤ T 2BN +

−T
∑

i �=c

U
(c)
i (t)

[
E

{
∑

b

µ
(c)
ib −

∑

a

µ
(c)
ai | U(t)

}
− λic

]
(24)

We compare the above drift for the DRPC policy with the cor-
responding drift of the randomized policy of Theorem 2, and
show that the DRPC policy produces a more negative drift for
each U(t). To show this, first note that U (i)

i = 0 for all time,
and hence the i �= c condition in the sum of (24) can be re-
moved. We then switch the sums in (24) to express the portion
of the drift term that depends on the power allocations µ

(c)
ab (t)

as follows:

∑

i,c

U
(c)
i (t)E

{
∑

b

µ
(c)
ib (t) −

∑

a

µ
(c)
ai (t) | U(t)

}
=

∑

ab

∑

c

E

{
µ

(c)
ab | U(t)

}[
U (c)
a (t) − U

(c)
b (t)

]
(25)

The drift of the DRPC policy and the randomized policy
of Theorem 2 can be expressed by using their respective
E{µ(c)

ab (t) | U(t)} values in (25) and (24). Define P ∗
S,U as the

power matrix assigned by the DRPC algorithm of (22) given
backlog and channel state matrices U , and S. For comparison,
we have:
DRPC:

E

{
µ

(c)
ab (t) | U(t)

}
=
{ ∑

S πSµab(P ∗
S,U , S) if c = c∗

ab

0 if c �= c∗
ab

Randomized Algorithm for Known Statistics:

E

{
µ

(c)
ab (t) | U(t)

}
= f

(c)
ab

where the f
(c)
ab values correspond to an associated (Rab) matrix

(see (13),(15)). Comparing the drift terms, we have:

−
∑
ab

∑
c f

(c)
ab

[
U

(c)
a − U

(c)
b

]
≥ −

∑
ab

(∑
c f

(c)
ab

)
W ∗
ab (26)

≥ −
∑

ab

RabW
∗
ab (27)

= −
∑

ab




∑

S

πSR
S
ab



W ∗
ab (28)

≥ −
∑

S

πS max
(RS

ab)∈

{
∑

ab

R
S
abW

∗
ab

}

Conv{µ(P,S)|P∈Π}

(29)

≥ −
∑

S

πS max
P∈Π

∑

ab

µab(P , S)W ∗
ab (30)

= −
∑

ab

∑

S

πSµab(P ∗
S,U , S)W

∗
ab (31)

= −
∑

ab

∑

c

EDRPC

{
µ

(c)
ab (t) | U(t)

}
W ∗
ab (32)

= −
∑
ab

∑
c EDRPC

{
µ

(c)
ab (t) | U(t)

}[
U

(c)
a − U

(c)
b

]
(33)

where (27) follows from (13), and (30) follows from (29) by
noting that maximizing a linear function over the convex hull
of a compact set6 is achieved at a point within the set itself
[22]. Equation (33) follows because the DRPC policy clearly
chooses µcab(t) = 0 for all commodities c if [U (c)

a − U
(c)
b ] ≤ 0.

The term in (33) is an expression for the drift for the DRPC pol-
icy. Hence, the Lyapunov drift under the DRPC policy is more
negative than the drift from the randomized policy of Theorem
2. Thus, the same drift bound in (21) applies, which proves the
theorem.

The asymptotic behavior of the performance bound (23) is
worth noting. The bound grows asymptotically like 1/ε as the
data rates are increased, where ε can be viewed as the ‘distance’
measure of the rate matrix to the boundary of the capacity re-
gion. Such behavior is characteristic of queueing systems, as
exemplified by the standard equation for average delay in an
M/G/1 queue [24].

Note that ε is a quantity added to each of the N2 terms of
the rate matrix so that (λic + ε) ∈ Λ, and hence ε must de-
crease as the number of users N in the network scales. To mea-
sure performance as a function of N , it is appropriate to hold
the parameter δ = Nε constant, where δ can be viewed as the
Euclidean distance to the boundary of the capacity region (see
[19]). In this way, we can use the performance bound (23) to-
gether with Little’s Theorem to obtain a bound on average bit
delay: Dbit ≤ TBN/(λavδ), where λav = 1

N

∑
ij λij is the

average rate transmitted by a user i. In a static network such as
that given by the Gupta-Kumar model ([11], [12]), the data rate
λav necessarily decreases as O(1/

√
N), and hence for a fixed

distance δ from the boundary of the capacity region, the above
bound guarantees an average bit delay of O(N3/2)/δ.

D. Enhanced DRPC

The DRPC algorithm stabilizes the network by making use of
back-pressure, where packets find their way to destinations by

6Although the set Conv{µ(P , S) | P ∈ Π} is not necessarily compact if
the µ() function is not continuous, upper-semicontinuity implies compactness
of the set of all rate matrices which are entrywise less than or equal to a matrix
within this set, and this is sufficient to establish (30).
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moving in directions of decreasing backlog. However, when the
network is lightly loaded, packets may take many false turns,
which could lead to significant delay for large networks. Per-
formance can often be improved by using the DRPC algorithm
with a restricted set of desirable routes for each commodity.
However, restricting the routes in this way may reduce network
capacity, and may be harmful in time varying situations where
networks change and links fail.

Alternatively, we can keep the full set of routes, but program
a bias into the DRPC algorithm so that, in low loading situ-
ations, nodes are inclined to route packets in the direction of
their destinations. We use this idea in the following Enhanced
DRPC algorithm, defined in terms of constants θci > 0 and
V ci ≥ 0.

Enhanced DRPC Algorithm: For all links (a, b), find com-
modity c∗

ab such that:

c∗
ab = arg max

c∈{1,... ,N}

{
θca(U

(c)
a (t) + V ca ) − θcb(U

(c)
b (t) + V cb )

}

and define:

W ∗
ab = θ

c∗ab
a (U c

∗
ab
a (t) + V

c∗ab
a ) − θ

c∗ab

b (U c
∗
ab

b (t) + V
c∗ab

b )

Power allocation and routing is then done as before, solving
the optimization problem (22) with respect to these new W ∗

ab

values.
The Enhanced DRPC algorithm can be shown to be stabiliz-

ing and to offer a delay bound for any constants θci > 0 and
V ci ≥ 0, while supporting the following services.

Shortest Path Service: Define biases V ci to be the distance (or
number of hops) between node i and node c along the shortest
path through the network (where Vii = 0 for all i). These dis-
tances can either be estimated or computed by running a short-
est path algorithm. (It is useful to scale these distances by the
maximum transmission rate of any node to one of its neigh-
bors.) With these bias values, packets are inclined to move
in the direction of their shortest paths—providing low delay in
lightly loaded conditions while still ensuring stability through-
out the entire capacity region.

Priority Service: The weights θci of the DRPC algorithm can
be used to offer priority service to different customers, where
a large θci value gives high priority to commodity c packets in
node i. We note that these values need not be constant, but
can be varied in time. Using Lemma 2, it can be shown that
dynamically varying the weights such that θci (t) ∈ [θmin, θmax]
still ensures network stability, with a performance guarantee of:

lim sup
K→∞

1
K

K∑

k=0

E





∑

i,c

θci (kT )U
(c)
i (kT )




 ≤ TBNθmax
ε

where, formally, the expectation above is taken assuming
θci (kT ) values are known in advance.

E. Markovian Inputs

The DRPC policy can be shown to stabilize the system un-
der general Markov modulated channel and arrival processes.
Specifically, suppose these processes are modulated by a finite

state Markov chain M(t) ∈ {1, . . . , Y }. When the chain is in
state m at the start of a timeslot, arrivals A(t) enter the system
with distribution fm(A), and channel states S(t) are chosen ac-
cording to probability mass function fm(S). We assume the
Markov chain is ergodic so that time average arrival rates and
channel state probabilities converge to (λij) and πS , respec-
tively. Hence, for any small value δ > 0, we can find an integer
K such that time averages of the channel and arrival processes
over K timeslots are within δ of their steady state values, re-
gardless of the initial state of the Markov Chain. Lyapunov
analysis similar to Theorems 2 and 3 for the iid case can be
used in this Markov modulated context by considering a group
of K timeslots as a ‘super-timeslot.’ Similar analysis has been
used in [15] for link scheduling in single-hop networks with
Markovian channel conditions.

Notice that the performance bound for iid inputs in (23)
is linear in the timeslot length. Correspondingly, bounds for
Markovian inputs are linear in the super-timeslot length KT .
The proof of this fact is omitted for brevity. The interested
reader is referred to [23].

V. DISTRIBUTED IMPLEMENTATION

The DRPC algorithm of the previous section involves solv-
ing a constrained optimization problem every timeslot, where
current channel state and queue backlogs appear as parameters
in the optimization. Here we consider decentralized implemen-
tations, where users attempt to maximize the weighted sum of
data rates in (22) by exchanging information with their neigh-
bors. The current neighbors of a node i are the nodes whose
transmissions can be detected at node i. We assume that nodes
have knowledge of the link conditions between themselves and
their neighbors, and are informed of the queue backlogs of their
neighbors via a low bandwidth control channel.

A. Networks with Independent Channels

Consider a network with independent channels, so that the
transmission rate on any given link (a, b) depends only on the
local link parameters: µab(P , S) = µab(Pab, Sab). Assume
that the rate functions µab(Pab, Sab) are concave in the single
power variable Pab for every channel state Sab (representing
diminishing returns in data rate for each incremental increase
in power). These assumptions are valid when all links use or-
thogonal coding schemes, beamforming, and/or when links are
spacially separated such that channel interference is negligible.

In this case, the optimization problem (22) has a simple
decoupling property, where nodes make independent power
control decisions based only on local information. For each
node n ∈ {1, . . . , N}, we have the problem of maximizing∑
b µnb(Pnb, Snb) subject to the power constraint

∑
b Pnb ≤

P totn . This optimization is a standard problem of concave max-
imization subject to a simplex constraint, and can be solved
easily in real time with any degree of accuracy. Its solu-
tion proceeds according to the standard water-filling arguments,
where power is allocated to equalize scaled derivatives of the
µnb(Pnb, Snb) function for a subset of users with the best chan-
nel conditions.
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B. Distributed Approximation for Networks with Interference

Consider a network with rate-power curves described by the
log(1 + SIR) function given in (1). This network has de-
pendent, interfering channels, and the associated optimization
problem (22) is nonlinear, non-convex, and difficult to solve
even in a centralized manner. Here we provide a simple de-
centralized approximation, where nodes use a portion of each
timeslot to exchange control information with neighbors:

1) At the beginning of a timeslot, each node randomly de-
cides to either transmit at full power Ptot or remain idle,
with probability 1/2 for either decision. A control signal
of power Ptot is transmitted.

2) Define Ω as the set of all transmitting nodes. Each node
b measures its total resulting interference

∑
i∈Ω αibPtot,

and sends this scalar quantity over a control channel to all
neighbors.

3) Using knowledge of the interference, attenuation values,
and queue backlogs associated with all neighboring nodes,
each transmitting user a decides to transmit using full
power to the single neighbor b who maximizes the func-
tion:

W ∗
ab log

(
1 +

αabPtot

Nb + 1
G2

∑
i �=a,i∈Ω αibPtot

)

Note that the above algorithm is not optimal, but is designed
to demonstrate a simple distributed implementation. The ran-
dom transmitter selection in the above algorithm is similar to
the technique used in the Grossglauser-Tse relay algorithm of
[13]. However, rather than transmitting to the nearest receiver,
the algorithm chooses the receiver to improve the backlog-rate
metric given in (22). It can be shown to achieve a stability re-
gion that contains the stability region of the relay algorithm
when transmit probability of the relay algorithm is set to 1/2
(which is a near optimal operating point for the relay simula-
tions considered in [13]). In particular, in a fully mobile en-
vironment, it achieves a capacity which does not vanish as the
number of nodes is increased.

VI. IMPLEMENTATION FOR MOBILE AD-HOC NETWORKS

Here we apply the Enhanced DRPC policy to an an ad-hoc
network with mobility and inter-channel interference. Consider
a square network with N users, with user locations discretized
to a K × K grid. The stochastic channel process S(t) is char-
acterized by the following stochastic model of user mobility:
Every timeslot, users keep their locations with probability 1/2,
and with probability 1/2 they move one step in either the North,
South, West, or East directions (uniformly distributed over all
feasible directions). Each user is power constrained to Ptot,
is restricted to transmitting to only one other user in a given
timeslot, and cannot transmit if it is receiving. Power radiates
omnidirectionally, and signal attenuation between two nodes a
and b is determined by the 4th power of the distance between
them (as in [7]), so that fading coefficients are given by:

αab =
{

1/[((xa − xb)2 + (ya − yb)2)2 + 1] if a �= b
∞ if a = b

where (xa, ya), (xb, yb) represent user locations within the net-
work. Note that the extra ‘+1’ term in the denominator is in-
serted to model the reality that attenuation factors αab are kept

below 1 (so that signal power at the receiver is never more than
the corresponding power used at the transmitter). The αaa val-
ues are set to infinity to enforce the constraint that transmitting
nodes cannot receive.

Multi-user interference is modeled similarly to the rate-
power curve given in (1). However, rather than use the log(1 +
SIR) function, we use a rate curve determined by four differ-
ent QAM modulation schemes designed for error probabilities
less than 10−6. The rate function is thus:

µab(P , α) = Φ(SIRab(P , α))

where Φ() is a piecewise constant function of the signal-to-
interference ratio defined by the coding schemes given in Fig.
3. We take the SIRab() function to be the same as that used
in eq. (1), where we assume the CDMA gain parameters are
G1 = G2 = 1.

We consider the Enhanced DRPC algorithm with θci = 1,
V ci = 1 for all i �= c, and V ii = 0, and assume the power/noise
coefficient is normalized to Ptot/Nb = 20∆2, where ∆ is the
minimum distance between signal points in the QAM mod-
ulation scheme. The algorithm is approximated using the
distributed implementation described in the previous section,
where each node transmits using full power with probability
1/2. A centralized implementation is also considered, where
the optimization problem (22) is implemented using a steepest
ascent search on the piecewise linear relaxation of the Φ(SIR)
curve (see Fig. 3). The resulting data rates are then ‘floored’
according the threshold levels of the piecewise constant curve
Φ(SIR). Note that the relaxed problem remains non-linear and
non-convex (because SIR is non-convex in the power variables,
see (1)), and hence the result of the steepest ascent search may
be sub-optimal.

We simulate the centralized and decentralized implementa-
tions of DRPC and compare to the performance offered by the
2-hop relay algorithm presented in [13]. The relay algorithm
restricts routes to 2-hop paths, and hence relies on rapid user
mobility for delivering data. We set the sender density param-
eter of the relay algorithm to 1/2. Note that the relay algo-
rithm was developed to demonstrate non-vanishing capacity for
large networks, and was not designed to maximize throughput
or achieve low delay. Thus, it is not completely fair to compare
performance with the DRPC algorithms. However, the compar-
ison illustrates the capacity gains and delay reductions that can
be achieved in this mobile ad-hoc network setting.

The relay algorithm was designed for nodes to transmit data
at a fixed rate, attainable whenever the SIR for a given wireless
link exceeds a threshold value. For scheduling purposes, we
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Fig. 3. A piecewise constant rate curve for the 4 modulation schemes described
in the table. Scaled power requirements are shown, where ∆ represents the
minimum distance between signal points.
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use the 4 bits/symbol threshold corresponding to the 16 QAM
scheme of Fig. 3. However, in order to make a fair comparison,
once scheduling decisions have been made we allow the relay
algorithm to transmit at rates given by the full Φ(SIR) curve.

Here we consider a small network with 10 users communicat-
ing on a 5×5 square region. Following the scenario of [13], we
assume user i desires communication with only one other user
(namely, user (i + 1) mod N ). Unit length packets arrive ac-
cording to Poisson processes, where 9 of the users receive data
at rate λ1, and the remaining user receives data at rate λ2. In
Fig. 4 we plot the average network delay from simulation of the
three algorithms when the rates (λ1, λ2) are linearly scaled up-
wards to the values (.625, 3.125). From the figure, we see that
the centralized DRPC algorithm provides stability and bounded
delays at more than four times the data rates of the relay algo-
rithm, and more than twice the data rate of the decentralized
DRPC algorithm. Note that the relay algorithm offers the best
delay performance in the low-rate regime. From the graph, it is
apparent that this occurs only when the average occupancy U in
each node of the system is less than 10 packets (note that per-
formance is plotted on a log scale). Performance of the DRPC
algorithms in this low rate regime can be improved by using
parameter values V

(i+1) mod N
i = 2, V ii = 0, V ci = 1 for

c �= i, (i + 1) mod N , which biases packets to 2-hop paths,
although we omit this comparison for brevity. We further note
that the relay algorithm relies on full and homogeneous mo-
bility of all users, while the DRPC algorithms have no such
requirement and can be used for heterogeneous networks with
limited mobility.
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Fig. 4. Simulation results for the DRPC algorithm and the relay algorithm as
rates are increased towards (λ1, λ2) = (0.625, 3.125).

VII. CONCLUSIONS

We have formulated a general power allocation problem
for a multi-node wireless network with time varying channels
and adaptive transmission rates. The network capacity region
was established, and a Dynamic Routing and Power Control
(DRPC) algorithm was developed and shown to stabilize the
network whenever the arrival rate matrix is within the capac-
ity region. Such stability holds for general arrival and channel
processes, even if these processes are unknown to the network
controller. A delay bound was provided for the case when ar-
rivals and channel states are iid from slot to slot.

The algorithm involves solving a constrained optimization
problem each timeslot, where queue backlogs and channel con-
ditions occur as parameters in the optimization. Centralized and
decentralized approximations were considered for a mobile ad-
hoc network. Algorithms which make more effort to maximize
the optimization metric by exchanging backlog and channel in-
formation were shown to have significant performance advan-
tages, as illustrated by the example simulations. We believe that
such dynamic strategies will be useful in the future for enabling
high data rates and low delays.

APPENDIX

Necessary Condition for Network Stability (From Theorem
1): Here we establish that (λij) ∈ Λ is a necessary condition
for stability in a wireless network. The proof uses the following
preliminary lemma:

Lemma 4. (Compact Set Integration) Suppose an instanta-
neous rate matrix µ(t) is integrable and lies within a compact

set Ω for all time. Then 1
t

∫ t
0 µ(τ)dτ lies within the convex hull

of Ω.

Proof: The integral can be expressed as a limit of a sum-
mation with K terms:

1
t

∫ t

0
µ(τ)dτ = lim

K→∞

1
K

K∑

k=1

µ(kt/K)

For each finite value K, the summation represents a convex
combination of points in Ω, and hence is in the convex hull
of Ω. As K tends to infinity, we obtain a sequence of points in
the convex hull of Ω converging to the integral, which is thus a
limit point of the set. Because Ω is compact, the convex hull is
compact and hence contains its limit points.

Theorem 1a. (Necessary Condition for Stability) The condi-
tion (λic) ∈ Λ is necessary for network stability.

Proof: Consider a system with ergodic inputs with rates
(λic), and let process X

(c)
i (t) represent the total bits that have

entered the network during the interval [0, t] for each commod-
ity c ∈ {1, . . . , N}. Suppose the system is stabilizable by some
routing and power control policy, perhaps one which bases de-
cisions upon complete knowledge of future arrivals and channel
states. Note that although the policy stabilizes the system, the
power allocations P (t) are not necessarily ergodic, nor are the
internal bit streams produced by routing decisions. Let U (c)

i (t)
represent the resulting unfinished work function for commod-
ity c in node i under this stabilizing policy. Further, let F (c)

ab (t)
represent the total number of bits from commodity c transmit-
ted over the (a, b) link during the interval [0, t]. We have for all
time:

F
(c)
ab (t) ≥ 0 ∀a, b, c (34)

X
(c)
i (t) − U

(c)
i (t) =

∑
b F

(c)
ib (t) −

∑
a F

(c)
ai (t) ∀i �= c (35)

∑
kX

(c)
k (t) −

∑
k U

(c)
k (t) =

∑
a F

(c)
ac ∀c (36)

∑
c F

(c)
ab (t) ≤

∫ t
0 µab(P (τ), S(τ))dτ ∀(a, b) (37)

where (35) follows because the unfinished work in any node
is equal to the difference between the total bits that have ar-
rived and departed, and (36) follows because the number of
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commodity c bits successfully delivered to node c is equal to
the total commodity c bits that arrived from exogenous sources
minus those bits which are still inside the network. Inequality
(37) holds because the total bits transferred over any link (a, b)
is less than or equal to the offered transmission rate integrated
over the time interval [0, t].

Let TS(t) represent the subintervals of [0, t] during which the
channel is in state S, and let ||TS(t)|| denote the total length
of these subintervals. Fix an arbitrarily small value ε > 0.
Because the channel process S(t) is ergodic on a finite state
space, and because there are a finite number of ergodic input
streams Xc(t), when measured over any sufficiently large in-
terval [0, t] the time average fraction of time in each channel
state and the empirical average data rate of all inputs are simul-
taneously within ε of their limiting values. Furthermore, by the
Network Stability Lemma (Lemma 1), there must exist some
finite value M such that the unfinished work in all queues is
simultaneously less than M at arbitrarily large times. Hence,
there exists a time t̃ such that:

U
(c)
i (t̃) ≤ M for all nodes i and commodities c (38)

M
t̃

≤ ε (39)
∣∣∣Xic(t̃)

t̃
− λic

∣∣∣ ≤ ε (40)

||TS(t̃)||
t̃

≤ πS + ε (41)

Now define variables f (c)
ab

�=F
(c)
ab (t̃)/t̃. Applying inequality (37)

at time t̃, dividing by t̃, and considering entrywise matrix in-
equalities, we have:
(∑

c f
(c)
ab

)
≤
(

1
t̃

∫ t̃
0 µab(P (τ), S(τ))dτ

)
(42)

=
∑
S

||TS(t̃)||
t̃

1
||TS(t̃)||

(∫
τ∈TS(t̃) µab(P (τ), S)dτ

)
(43)

≤
∑
S

||TS(t̃)||
t̃

(µSab) (44)

where the matrices (µSab) in (44) are elements of
Convex Hull{µ(P , S) | P ∈ Π}. Such values are guar-
anteed to exist and satisfy the inequality by the Compact
Set Integration Lemma (Lemma 4). Specifically, this lemma
can be applied using the time average integral in (43) with
the compact set of matrices {γ ≥ 0 | γ ≤ R for some R ∈
Convex Hull{µ(P , S) | P ∈ Π}}. (It is straightforward to
show this set is compact for each S, using compactness of Π
and upper-semicontinuity of µ(P , S) [22]). Using (41) in (44),
we find:

(
∑

c

f
(c)
ab

)
≤
∑

S

πS(µ
S
ab) + ε(µmaxab )Card{S} (45)

where Card{S} represents the number of channel states S, and
µmaxab represents the maximum transmission rate of the (a, b)
link over all channel states and power levels P ∈ Π. Hence, the
right hand side of inequality (45) is arbitrarily close to a point in
Γ (c.f. (7)). Furthermore, (38)-(40) can be used in (35) and (36)
to show that the f

(c)
ab values are arbitrarily close to satisfying the

multi-commodity flow conditions (5), (6). Thus, the input rates
(λic) are arbitrarily close to a point in the capacity region Λ.

Because Λ is compact and hence contains its limit points, it
follows that (λic) ∈ Λ.
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