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ABSTRACT 
Portable systems require long battery lifetime while still 
delivering high performance. Dynamic power management 
(DPM) policies trade off the performance for the power con- 
sumption at the system level in portable devices. In this 
work we present the time-indexed SMDP model (TISMDP) 
that we use to derive optimal policy for DPM in portable 
systems. TISMDP model is needed to handle the non- 
exponential user request interarrival times we observed in 
practice. We use our policy to control power consumption on 
three different devices: the SmartBadge portable device [18], 
the Sony Vaio laptop hard disk and WLAN card. Simula- 
tion results show large savings for all three devices when 
using our algorithm. In addition, we measured the power 
consumption and performance of our algorithm and com- 
pared it with other DPM algorithms for laptop hard disk 
and WLAN card. The algorithm based on our TISMDP 
model has 1.7 times less power consumption as compared 
to the default Windows timeout policy for the hard disk 
and three times less power consumption as compared to the 
default algorithm for the WLAN card. 

1. INTRODUCTION 
Battery-operated portable systems demand tight constraints 
on energy consumption. System-level dynamic power man- 
agement [1] algorithms increase the battery lifetime by selec- 
tively placing idle components into lower power states. Sys- 
tem resources can be modeled using state-based abstraction 
where each state trades off performance for power [2]. State 
transitions are controlled by commands issued by a power 
manager (PM) that  observes the workload of the system and 
decides when and how to force power state transitions. The 
power manager makes state transition decisions according to 
the power management policy. The choice of the policy that 
minimizes power under performance constraints (or maxi- 
mizes performance under power constraint) is a constrained 
policy optimization problem which is very important for all 
portable systems. 
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Several heuristic power management policies have been in- 
vestigated in the past for controlling hard disks and inter- 
active terminals. The most common policy for hard disks 
is a timeout policy implemented in most operating systems. 
The drawback of this policy is that  it wastes power while 
waiting for the timeout to expire. 

Timeout policy is also at the heart of the power management 
implementation in new IEEE 802.11 standard for wireless 
LANs. Power management is implemented at medium a c -  

c e s s  control (MAC) and physical layers [23]. The standard 
requires that  a central access point (AP) send out a bea- 
con every lOOms followed by a traffic indication map (TIM). 
Each card that desires to communicate has to actively listen 
for the beacon in order to synchronize the clock with AP, 
and for the TIM to find out if any data is arriving for it. If it 
does not need to transmit  or receive, the card can then go to 
low-power state until  the next beacon. The IEEE standard 
does not address the power management implementation at 
the system level. If the card is turned off when it is not 
being used, much larger power savings can be observed. 

Another group of policies studied in the past are predictive 
policies for hard disks [3, 14, 15, 9] and for interactive ter- 
minals [4, 5, 16]. Predictive policies force the transition to 
a low power state as soon as a component becomes idle if 
the predictor estimates that the idle period will last long 
enough. A wrong estimate can cause both performance and 
energy penalties. 

All heuristic policies discussed above have to be tested with 
simulations or measurements to assess their effectiveness and 
as such do not offer any globally optimal results. The pol- 
icy optimization technique proposed by Paleologo et al. [6, 7] 
solves the policy optimization problem with globally optimal 
results using an approach based on discrete-time Markov de- 
cision processes (DTMDP). The DTMDP approach requires 
that all state transitions follow stationary geometric distri- 
bution, which is not true in many practical cases. Non- 
stationary user request rates can be treated using an adap- 
tive policy interpolation procedure presented in [17]. A lim- 
itation of both stationary and adaptive DTMDP policies is 
that decision evaluation is repeated periodically, even when 
the system is in the sleep state, thus wasting power. For 
example, for a 10 W processor, the DTMDP policy with pe- 
riod of ls would waste as much as 1800 J of energy out of the 
battery during a 30min break. The advantage of the discrete 
time approach is that decisions are re-evaluated periodically 
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so the decision can be reconsidered thus adapting better to 
arrivals that  are not truly geometrically distributed. 

An extension to the DTMDP model is a cont inuous- t ime  
Markov  decision process (CTMDP) model [10, 11]. In CT- 
MDP power manager (PM) issues commands upon event oc- 
currences instead of at discrete time settings. System tran- 
sitions are assumed to follow exponential distribution. We 
:show that  models that are exclusively based on the exponen- 
tial arrival times in the idle state can have high energy costs 
and large performance penalty because the power manager 
makes one decision as soon as the system goes idle. If the 
decision is to stay awake, the system will wait until another 
.'~rrival before revising the decision, possibly missing large 
idle times, such as a lunch break. CTMDP model was fur- 
ther generalized with s e m i - M a r k o v  decis ion process model  
(SMDP) [12]. SMDP model can treat a general distribution 
occuring at the same time with an exponential distribution. 
]In [12] the hard disk transition to and from the sleep state 
was modeled using uniform distribution, while the exponen- 
tial distribution still represented the user request arrivals. 
Some measurements constrasting CTMDP and SMDP are 
shown in [13]. 

Although exponential distribution model can be used to 
model arrivals in the active states, we show that  the arrivals 
in the idle states are better modeled with Pareto distribution 
after filtering out small interarrival times. Non-exponential 
arrival distribution coupled with uniform transition distri- 
bution requires the t ime- indexed  Markov  chain S M D P  model  
(TISMDP) which we present in this work. The policy opti- 
mization problem based on the time-indexed SMDP model 
can be solved exactly  and in polynomial time by solving a lin- 
ear optimization problem. This model combines the advan- 
tages of event-driven SMDP model with discrete-time MDP 
:model. Policy decisions are made in event-driven manner 
in all states but  idle state thus saving power by not forcing 
policy re-evaluations. In the idle state, policy decision are 
re-evaluated until  the transition is made into the sleep state, 
thus saving power during longer breaks. 

"We not only obtain globally optimal results for policy op- 
timization using the TISMDP model, but  we also present 
simulation and, more importantly, real measurements of a 
][aptop hard disk and WLAN card. Our measurement results 
show that  reduction in power can be as large as 1.7 times 
for the hard disk and 3 times for the WLAN card with a 
small performance penalty. As the SmartBadge operating 
system does not have API for controlling power states of its 
components, we simulated the effect out algorithm has on 
]power savings based on previously collected user trace. 

The rest of the paper is organized as follows. Section 2 
describes the stochastic models of the system components. 
'The models are based on the experimental data collected. 
:Next we present the time-indexed semi-Markov decision pro- 
cess model for the dynamic power management policy opti- 
mization problem in Section 3. Our model guarantees opti- 
mal power management policy given the stochastic models 
we derived from the measurements. We show simulation 
:results for the SmartBadge, followed by simulated and mea- 
sured results of the hard disk and the WLAN card in Sec- 
Lion 4. Finally, we summarize our findings in Section 5. 

2. SYSTEM MODEL 
The optimization of energy consumption under performance 
constraint (or vice versa) is performed for three different de- 
vices: a hard disk in a laptop computer, a personal commu- 
nication interactive device, SmartBadge [18], and a WLAN 
card [24]. 

F i g u r e  1: S y s t e m  M o d e l  

The system modeled consists of the user, device (hard disk, 
SmartBadge or WLAN card) with queue (the buffer associ- 
ated with the device) as shown in Figure 1. The power man- 
ager observes the all event occurrences of interest and makes 
decisions on what state the system should transition to next, 
in order to minimize energy consumption for a given perfor- 
mance constraint. Each system component is described in 
the next sections. 

2.1 User Model  
We collected 11hr user request trace for the laptop hard 
disk running a Windows operating system with standard 
software. In the case of the SmartBadge, we monitored the 
accesses to the server. For WLAN card we used t cpdump 
utility [25] to get the user request arrival times for two dif- 
ferent applications (telnet and web browser). 

: /  
-2 2 4 6 8 18 12 14 16 18 28 22 24 26 28 30 

Interarrival Time (s) 

F i g u r e  2: U s e r  r e q u e s t  arr ivals  in a c t i v e  s t a t e  for 
h a r d  d isk  

The request interarrival times in the active state (the state 
where one or more requests are in the queue) for all three 
devices are exponential in nature. Figure 2 shows exponen- 
tial cumulative distribution fitted to measured results of the 
hard disk. Similar results have been observed for the other 
two devices in the active state. Thus we can model the 
user (service requestor or SR) in active state with rate Ash 
and the request interarrival time ~ where the probability 
of the hard disk or the SmartBadge receiving a user request 
within time interval t follows the cumulative probability dis- 
tr ibution shown below. 

E s n ( t )  = 1 - e - x s n t  (1) 
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The exponential distribution does not model well arrivals in 
the idle state. The model we use needs to accurately describe 
the behavior of long idle times as the largest power savings 
are possible over the long sleep periods. We first filter out 
short user request interarrival times in the idle state in order 
to focus on longer idle times. Thus, all arrivals within time 
period smaller than the filter interval are just considered to 
be one long busy period. We found that  filter intervals from 
0.5s to about 2s are most appropriate to use for the hard 
disk, while for the SmartBadge and the WLAN card filter 
intervals are considerably shorter (50-200ms) since these de- 
vices respond much faster than the hard disk. 

0.o01 

11m* (=) 

F i g u r e  3: H a r d  d isk  idle s t a t e  a r r iva l  ta i l  d i s tr ibu-  
t i o n  

Figure 3 shows measured tail distribution of idle periods 
fitted with Pareto and exponential distributions for the hard 
disk and Figure 4 shows the same measurements for the 
WLAN card. The Pareto distribution shows a much better 
fit for the long idle times as compared to the exponential 
distribution. The Pareto cumulative distribution is defined 
in Equation 2. Pareto parameters are a = 0.9 and b = 0.65 
for the hard disk, a = 0.7 and b -- 0.02 for WLAN web 
requests and a = 0.7 and b ----- 0.06 for WLAN telnet requests. 
SmartBadge arrivals behave the same way as the WLAN 
arrivals. 

E s R ( t )  = 1 - at -b (2) 
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F i g u r e  4: W L A N  idle  s t a t e  arrival  ta i l  d i s t r i b u t i o n  
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Since Pareto distribution of arrivals in the idle state is not 
memoryless as the exponential distribution is, the optimiza- 
tion model needs to include the time-indexing of the states. 
The new model is presented in Section 3. 

2.2 Portable Devices 
Portable devices typically have multiple power states. The 
hard disk interface supports the ACPI standard [2]. The 
hard disk we used has three states that  can be observed from 
the filter driver we have implemented: active, idle and sleep 
state. The SmartBadge has three power states: active, idle 
and standby. The wireless card has multiple power states: 
two active states, transmitting, receiving, and two inactive 
states, doze and off. We will treat WLAN's doze state as a 
low-power idle state. The goal of power management pol- 
icy is to maximize the time each device spends in its low 
power state (standby, sleep and off respectively), with good 
performance. 

1.2 
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F i g u r e  5: H a r d  d i sk  s e r v i c e  t i m e  d i s t r i b u t i o n  

In the active state, the device services requests coming from 
the user. Service times on the hard disk most closely follow 
an exponential distribution as shown in Figure 5. We found 
similar results for the SmartBadge and the WLAN card. 
The average service time is defined by ~ where Asp is 
the average service rate. Equation 3 defines the cumulative 
probability of the device (service provider or SP) servicing 
a user request within time interval t. 

E s p ( t )  = 1 - e - x s P t  (3) 

2.2.1 Hard Disk 
The Fujitsu MHF 2043AT hard disk we used in our exper- 
iments supports two states in which the disk is spinning - 
idle and active with average power consumption of 0.95W. 
When the data is being read or written on the disk, power 
consumption is 2.5W, but  since the service rate is very high, 
the average power is 0.95W. The hard disk automatically 
transitions into idle state as soon as it is done reading or 
writing to the disk. The transition from sleep to active state 
requires spin-up of the hard disk, which is very power inten- 
sive; in this case 2.1W. While in the sleep state, the disk 
consumes only 0.13W. 

The power manager can control the transitions between the 
idle and the sleep state. Once in the sleep state, the hard 
disk waits for the first service request arrival before returning 
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back to the active state. The transition between active and 
sleep states are best described using uniform distribution, 
where to and tl can be defined as t~w - A t  and tare + At 
respectively. The cumulative probability function for the 
uniform distribution is shown below. 

0 t < t o  
E s v ( t )  = t- to to < t < t l  (4) 

tl - - t o  - -  -- 

1 t>_tl 
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Figure 6: H a r d  d isk  t r a n s i t i o n  f r o m  sleep to  ac t ive  
state 

Figure 6 shows the large error that  would be made if transi- 
tion to sleep state were approximated using an exponential 
distribution. The transition from the active state into the 
sleep state takes on average 0.67s with variance of 0.1s. The 
transition back into the active state is much longer, requir- 
ing 1.6s on average with 0.5s variance. 

2.2.2 SmartBadge 
The SmartBadge, shown in Figure 7, is an embedded system 
consisting of the Sharp's display, WLAN RF link, StrongAKM- 
1100 processor, Micron's SDRAM, FLASH, sensors, and mo- 
dem/audio analog front-end on a PCB board powered by 
the batteries through a DC-DC converter. The initial goal 
in designing the SmartBadge was to allow a computer or a 
human user to provide location and environmental informa- 
tion to a location server through a heterogeneous network. 
The SmartBadge could be used as a corporate ID card, at- 
tached (or built  in) to devices such as PDAs and mobile 
telephones, or incorporated in computing systems. 

Figure 7: 

! 
S m a r t B a d g e  

The SmartBadge supports two lower power states: idle and 
standby. The idle state is entered immediately by each com- 
ponent in the system as soon as that  particular component 

is not accessed. The standby state transitions can be con- 
trolled by the power manager. Similar to the hard disk, the 
transition from standby into the active state can be best 
described using the uniform probability distribution. Com- 
ponents in the SmartBadge, the power states and the transi- 
tion times of each component from standby into active state 
are shown in the Table 1. Note that  the SmartBadge has 
two types of data memory - slower SRAM (1MB, 80ns) from 
Toshiba and faster DRAM (4MB, 20ns) from Micron that  is 
used only during MPEG decode. 

T a b l e  1: S m a r t B a d g e  component s  
Component 

Display 
RF Link 
SA-IIO0 
FLASH 

Active 
Pwr (mW) 

1000 
1500 
400 
75 

Idle 
Pwr (mW) 

1000 
1000 
170 

SRAM 115 17 
DRAM 400 I0 

Total 3.5 W 2.2 W 

Standby [ tare 
Pwr (taW) (ms) 

100 100 
100 80 
0.1 10 
0.023 0.6 
0.13 5.0 
0.4 4.0 
200 mW [ 150 ms ] 

2.2.3 WLAN card 
Lucent's wireless card has multiple power states: two active 
states, transmitting, receiving, and two inactive states, doze 
and off. Transmission power is 1.65W, receiving lAW,  the 
power consumption in the doze state is 0.045W [24] and in 
off state it is 0W. When the card is awake (not in the off 
state), every lOOms it synchronizes its clock to the access 
point (AP) by listening to AP beacon. After that  it listens 
to TIM map to see if it can receive or t ransmit  during that  
interval. Once both receiving and transmission are done, it 
goes to doze state until  the next beacon. This portion of the 
system is fully controlled from the hardware and thus is not 
accessible to the power manager that  has been implemented 
at the OS level. 

The power manager can control the transitions between the 
doze and the off states. Once in the off state, the card waits 
for the first user request arrival before returning back to 
the doze state. We measured the transitions between doze 
and off states using cardmgr utility. The transition from the 
doze state into the off state takes on average tare = 62ms  
with variance of tvar = 31ms.  The transition back takes 
t~v~ = 34ms with tvar = 21ms variance. The transition 
between doze and off states are best described using uniform 
distribution. 

2.3 Queue 
Portable devices normally have a buffer for storing requests 
that are have not been serviced yet. Since we did not have 
access to the detailed information about the real-time size of 
each queue, we measured the queue size of maximum 10 jobs 
with an experiment on a hard disk using a typical user trace. 
Because the service rate in the SmartBadge and WLAN card 
is higher, and the request arrival rate is comparable, we as- 
sume that  the same maximum queue size can be used. As 
the requests arriving at the hard disk do not have priority 
associated with them, and the SmartBadge requests by def- 
inition do not have priority, our queue model contains only 
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the number of jobs waiting service. Active and sleep states 
can be differentiated then by the number of jobs pending for 
service in the queue. 

3. T H E O R E T I C A L  B A C K G R O U N D  
Power manager (PM) observes user request arrivals, the 
number of jobs in the queue at run time and the time elapsed 
since last entry into idle state. In our system, the only de- 
cisions PM can make is whether to leave the device in idle 
state or turn  it off completely. If it is left on, the device will 
wait in the idle state until the first request arrives from the 
user. Upon arrival of request, it transitions into active state. 
If the PM turns the device off or places it into sleep state, 
the system starts a transition between idle and off state. If 
during the transition time a request arrives from the user, 
the device starts the transition to active state as soon as 
transition to off state is completed. If no request arrives 
during the transition to off state, the device stays off (or 
asleep) until the next request arrives. Upon request arrival, 
the transition back into active state starts. Once transition 
into active state is completed, the device services requests, 
and then again returns to idle state. 

In this section we present the power management optimiza- 
tion problem formulation. Our goal is to minimize perfor- 
mance penalty under energy consumption constraint (or vice 
versa). We first present the average-cost semi-Markov de- 
cision process optimization problem [8] and then extend it 
into time-indexed SMDP for modeling general interarrival 
times. We use upper-case bold letters (e.g., M) to denote 
matrices, lower-case bold letters (e.g., v) to denote vectors, 
calligraphic letters (e.g., S) to denote sets, upper-case letters 
(e.g., S) to denote scalar constants and lower-case letters 
(e.g., s) to denote scalar variables. 

ao a 2~,,,'~-'~{~....._ 
¢ ~ a, 
So - ~ ~ s~ 

s~ 
U)  S 2 

I I I I 
t o t 1 t2 t 3 

T i m e  

Figure 8: S M D P  Progression 

Figure 8 shows a progression of the SMDP through event 
occurrences, called decision epochs. The power manager 
makes decisions at each event occurrence. Inter-event time 
set is defined as T -- {tl, s.t. i = 0, 1, 2 , . . .  ,T} where each 
ti is the time between the two successive event arrivals We 
denote by si E S the system state at decision epoch i. Com- 
mands are issued whenever the system state changes. We 
denote by ai E .4 an action (or command) that is issued 
at decision epoch i. When action ai is chosen in system 
state sl, the probability that the next event will occur by 
time tl is defined by the cumulative probability distribution 
E(ti[s~, ai). Also, the probability that the system transition 
to state si+l at or before the next decision epoch ti is given 
by p(Si+l It,, si, ai). 

The SMDP model also defines cost metrics. The average 
cost incurred between two successive decision epochs (events) 
is defined in Equation 5 as a sum of the lump sum cost 
k(si,ai) incurred when action ai is chosen in state si, fol- 
lowed by the cost incured at rate c(si+l,sl,ai) as long as 
the system is in state Si+l after choosing action al in state 
8 i .  

cost(s, ai) = k(si, a i )+  (5) 
oo 

f [E(du[si,ai) ~ f e(si+l,s~,ai)p(si+l[ti,sqa,)]dt 
0 S i + l  0 

With this formalizam the policy optimization is to find a 
policy such that Equation 5 is minimized. The policy opti- 
mization problem can be solved in polynomial time (in S. A) 
with linear programming [8]. The linear programming (LP) 
formulation of the average-cost SMDP problem can be nat- 
urally extended with performance constranits. The LP for- 
mulation used in this work to obtain the optimal policy is 
shown below. 

LP: min E ~--~ cost . . . .  9~(s,a)f(s,a) (6) 
s e S  a e A  

s.t. E f (s ,a ) - -E~m(s ' ] s ,a ) f ( s ' ,a )  =0 
s e a  s ,  e $  s e a  

E E  y(s'a)f(s'a) = 1 
s e S  a e A  

y~ costp~rf(s, a)f(s, a) < Constraint 
s e S  s e A  

where the probability of arriving to state 8i+1 given that  the 
action ai was taken in state si are defined by: 

c o  

m(s,+x[si,ai) =/p(si+llt~,s,,al)E(dt]si,ai) (7) 

0 

and the expected time spent in each state is given by: 

~(s,,a,)= / t  ~ p(s,+,lt,,s,,a,)ECdtlsi,a,) (81 
0 S i + l e S  

The A - S  unknowns in the LP, f(s, a), called state-action 
frequencies, are the expected number of times that the sys- 
tem is in state s and command a is issued. It  has been shown 
that the exact and the optimal solution to the SMDP policy 
optimization problem belongs to the set of Markovian ran- 
domized stationary policies [8]. A Markovian randomized 
stationary policy can be compactly represented by associat- 
ing a value x(s, a) _< 1 with each state and action pair in 
the SMDP. The probability of issuing command a when the 
system is in state s, x(s, a), is defined in Equation 9. 

f (~ , ,ad 
• (s,, a~) = ~o,,A f(s,, a~) (9) 

The average-cost SMDP formulation presented above is based 
on the assumption that at most one of the underlying pro- 
cesses in each state transition is not exponential in nature. 
On transitions where the processes are not exponential, time- 
indexed Markov chain formulation needs to be used to keep 
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F i g u r e  9: T i m e - i n d e x e d  S M D P  s t a t e s  

the history information [19]. Time-indexing is done by di- 
viding the time line into a set of intervals of equal length 
At. The original state space is expanded by replacing one 
idle and one sleep with queue empty state with a series 
of time-indexed idle and sleep empty states as showing in 
Figure 9. Note that  time-indexed SMDP can contain non- 
indexed states. If an arrival occurs while in the idle state, the 
system transitions automatically to the active state. When 
no arrival occurs during the time spent in a given idle state 
the power manager can choose to either stay awake, in which 
case the system enters the next idle state or to transition 
into sleep state. When the transition to sleep occurs from 
an idle state, the system can arrive to the sleep state with 
queue empty or with jobs waiting in the queue. The sleep 
state with queue empty is indexed by the time from first en- 
try into idle state from active state, much in the same way 
idle states are indexed, thus allowing accurate modeling of 
the first arrival. The LP formulation for average-cost SMDP 
still holds, but  the cost, probability and expected time func- 
tions have to be redefined for time-indexe d states in SMDP. 
Namely, for time-indexed states Equation 5 is replaced by: 

~_, c(si+l,si ,ai)y(sl ,ai)  (10) 
S I + l e S  

cost(si, ai) = k(si, ai) -I- 

and Equation 8 by: 

y(si ,ai)  = 

t i + A t  
( 1 -  E(t))dt 

(11) 
1 - ~(t,) 

t l  

Similarly, the probability of getting an arrival is defined us- 
ing the time indices for the system state where tl _< t _< 
ti + At: 

p~ ( 8 1 + 1 1 t i ,  si, ai) = E(t l  + At) -- E(ti) (12) 
I - E(ti)  

Finally, the probability of transitioning to the next idle 
state defined in Equation 7 is set to m(si+llsi,al) = 1 - 
p(si+lltl ,si ,ai) and of transitioning back into the active 
state is m(si+i  [si, ai) = p(si+i Iti, sl, al). The general cumu- 
lative distribution of event occurrences is given by E(ti).  For 
example, E(t~) defines the probability of getting a Pareto 
distributed arrival in the idle state by time ti. 

In a specific case of Pareto distribution, it can be shown 
that the probabilities of going to sleep are monothonically 
increasing and can thus be interpreted as randomized time- 
out. Such policies filter out short idle times, and then with 
an increasing probability give command to go to sleep until  
the timeout value, at which point the system goes to sleep 
(or is turned off). Thus we can simplify the implementation 
of power manager (PM). If the PM's decision upon entry to 
idle state is to leave the device active, the PM waits until  
the time where the probability of transition to sleep or off 
state is greater than zero. From that  point on, the deci- 
sion is reevaluated every At seconds until  either the device 
is turned off or a user request arrives and the device tran- 
sitions into the active state. At each evaluation the PM 
generates a random number using a pseudo-random number 
generator. If the number generated is less than probability 
of going to sleep for the current time interval, the PM shuts 
down the card. Otherwise the device stays in the idle state 
until either the next evaluation time or until  request arrives 
that forces the transition into active state. Once the device 
is turned off, it stays off until  the first request arrives, at 
which point it transitions into active state. 

4. R E S U L T S  
We perform the policy optimization using lp_solve, the solver 
for linear programs [20]. The optimization runs in just  un- 
der 1 minute on a 300MHz Pent ium processor. We first 
verified the optimization results using simulation. Inputs to 
the simulator are the system description, the expected time 
horizon, the number of simulations to be performed and the 
policy. The system description is characterized by the power 
consumption in each state, the performance penalty, and the 
function that  defines the transition time probability density 
function and the probability of transition to other states 
given a command from the power manager. Note that  our 
simulation used both probability density functions (pdfs) we 
derived from data and the original traces. When using pdfs, 
we just  verified the correctness of our problem formulation. 
With real traces we were able to verify that  indeed pdfs we 
derived do in fact match well the data from the real system, 
and thus give optimal policies for the real systems. The 
results of the optimization are in close agreement with the 
simulation results. 

4.1 S m a r t B a d g e  
The simulated power and performance tradeoffs for the Smart- 
Badge with our TISMDP policy are shown in Figure 10. 
Performance penalty is defined as the percent of time sys- 
tem spends in a low-power state with non-empty queue. In 
general, the goal is to have as few requests as possible wait- 
ing for service. For systems with hard real-time constraint, 
this penalty can be set to large values to force less agressive 
power management, thus resulting is less requests queued up 
for service. In systems where it is not as critical to meet time 
deadlines, the system can stay in a low-power state longer, 
thus accumulating more requests that  can be serviced upon 
return to the active state. 

Because of the particular design characteristics of the Smart- 
Badge, the tradeoff curves of performance penalty and power 
savings are very close to linear. When probability of going 
to sleep is zero, no power can be saved, but  performance 
penalty can be reduced by 85% as compared to the case 
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where probability is one. On the other hand, about 50% 
of the power can be saved when system goes to sleep upon 
entery to idle state. 
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F i g u r e  10: S m a r t B a d g e  D P M  resu l t s  

4.2 Hard Disk 
We implemented the power manager as part of the filter 
driver template discussed in [21]. A filter driver is attached 
to the vendor-specific device driver. Both drivers reside in 
the operating system, on the kernel level, above the ACPI 
driver implementations. Application programs such as word 
processors or spreadsheets send requests to the OS. When 
any event occurs that  concerns the hard disk, power man- 
ager is notified. When the PM issues a command, the filter 
driver creates a power transition call and sends it to the 
device which implements the power transition using ACPI 
standard. 
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Figure  11: M e a s u r e d  and s imula ted  hard disk power  
c o n s u m p t i o n  

We measured and simulated three different policies based on 
stochastic models and compared them with the always-on 
policy. All stochastic policies minimized power consump- 
tion under a 10% performance constraint. The results are 
shown in Figures 11 and 12. These figures best illustrate the 
problem we observed when user request arrivals are modeled 
only with exponential distribution as in CTMDP model [10]. 
The simulation results for the exponential model (CTMDP) 
show large power savings, but  measurement results show 
no power savings and a very high performance penalty. As 
the exponential model is memoryless, the resulting policy 
makes a decision as soon as the device becomes idle. If the 
idle time is very short, the exponential model gets a large 
performance penalty due to the wakeup time of the device 
and a considerable cost in shut-down and wakeup energies. 
In addition, if the decision upon entry to idle state is to stay 

awake, large idle times, such as lunch breaks, will be missed. 
When we filter out short arrival times (filtered exponential), 
the results improve but  not significantly. The best results 
are obtained with our policy based on TISMDP model. In 
fact, our policy uses 2.4 times less power than the always-on 
policy. These results show that it is critically important  to 
not only simulate, but also measure the results of each pol- 
icy and thus verify the assumptions made in modeling. In 
fact, we found that modeling based on simple Markov chains 
is not accurate, and that we do require more complex time- 
indexed semi-Markov decision process model presented in 
this paper. 
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Figure 12: Measured  and s imula ted  hard disk per- 
formance  

The effect of filtering arrivals into the idle state is best shown 
in Figure 13 for the policy with the performance penalty of 
the laptop hard disk limited to 10%. This plot shows that  
the best filtering intervals are on the order of seconds. Simi- 
lax plots have been obtained for the SmartBadge and WLAN 
card. The best filtering time depends on device design. For 
example, hard disk spin-up time is on the order of seconds, 
thus filtering time of the same order makes most sense. 
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Figure 13: Hard disk power  c o n s u m p t i o n  vs .  filter- 
ing t i m e  

Finally, we measured on a real laptop four different policies 
including ours. Comparison is shown in Table 2. The Kar- 
lin's algorithm analysis [22] with timeout set to the break 
even time of the hard disk (5.43 seconds) is guaranteed to 
yield a policy that consumes at worst twice the minimum 
amount of power consumed by the policy computed with 
perfect knowledge of the user behavior. The reason for this 
result is that the worst ase happens for workloads with re- 
peated idle periods of length equal to the break even time, 
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separated by pointwise activity. The Karlin's policy con- 
sumes 10% more power and has worse performance than the 
policy based on our time-indexed semi-Markov decision pro- 
cess model. In addition, our TISMDP policy consumes 1.7 
times less power than the default Windows timeout policy 
of 120s and 1.4 times less power than the 30s timeout policy. 
The policy based on continuous-time model (CTMDP) per- 
tbrms worse then always-on policy, primarily due to the ex- 
ponential interarrival request assumption. This policy both 
misses some long idle periods, and tends to shut-down too 
aggressively, as can be seen from its very short average sleep 
time. 

Performance of the algorithms can be compared using three 
different measures. The number of times the policy issued 
sleep command (N~d) should be larger than the number 
of times sleep command was issued and the hard disk was 
zLsleep for shorter than the time it takes to recover the cost 
of spinning down and spinning up the disk (N~,d). Finally, 
the average length of time spent in the sleep state (T~) 
should be as large as possible while still keeping the power 
consumption down. From our experience with the user inter- 
action with the hard disk, the TISMDP algorithm performs 
well, thus giving us low-power consumption with still good 
performance. 

T a b l e  2: H a r d  D i sk  M e a s u r e m e n t  C o m p a r i s o n  

oracle 
TISMDP 
Karlin's 
30s timeout 
120s timeou¢ 
always on 
CTMDP 

Pwr (w) I gs~ I N ~  I T~(~) I 
0.33 250 118 
0.40 326 76 81 
0.44 323 64 79 
0.51 147 18 142 
0 .67  55 3 238 
0 . 9 5  0 0 0 
0 . 9 7  391 359 4 

experimental environment, so that  different algorithms can 
be reliably compared. 

We implemented three different versions of our policy for 
each application, each with a different combination of power 
and performance penalty values (TISMDP a,b,c for web 
browserand TISMDP 1,2,3 for telnet). Since web and tel- 
net arrivals behave differently (see Figure 4), we observe 
through OS what application is currently actively sending 
and use the appropriate power management policy. 

Pable 3: D P M  for W L A N  W e b  B r o w s e r  
Policy 

Oracle 
TISMDP(a) 
TISMDP(b) 
Karlin's 
TISMDP(c) 

CTMDP 
Default 

395 0 0 0.467 
363 96 6.90 0.474 
267 14 1.43 0.477 
623 296 23.8 0.479 
219 9 0.80 0.485 
3424 2866 253.7 0.539 
0 0 0 1.410 

In addition to measuring the energy consumption (and then 
calculating average power), we also quantified performance 
penalty using three different measures. Delay penalty, Tp, 
is the time system had to wait to service a request since the 
card was in the sleep state when it should not have been. In 
addition, we measure the number of shutdowns, Ns~ and the 
number of wrong shutdowns, Nwd. A shutdown is viewed as 
wrong when the sleep time is not long enough to make up 
for the energy lost during transition between the idle and off 
state. The number of shutdowns is a measure of how eager 
the policy is, while a number of wrong shutdowns tells us 
how accurate the policy is in predicting a good time to shut 
down the card. 

The event-driven nature of our algorithm, as compared to 
algorithms based on discrete time intervals, saves consid- 
erable amount of power while in sleep state as it does not 
require policy evaluation until  an event occurs. For exam- 
ple, if we assume that  the processor consumes 10 W in the 
active state and that  the discrete time based policy is set to 
:is re-evaluation timeout and takes lOOms to execute, dur- 
ing a normal 30 minute break, the policy would use 1800 
J of energy out of the battery. With event-driven policy, 
the processor could be placed in low-power mode during the 
break time thus saving a large portion of battery capacity. 

4 .3  W L A N  c a r d  
For WLAN measurements we used Lucent's WLAN 2Mb/s 
card [24] running on the laptop. As mobile environment is 
continually changing, it is not possible to reliably repeat the 
,~ame experiment. As a result, we needed to use trace-based 
methodology discussed in [26]. The methodology consists 
of three phases: collection, distillation and modulation. We 
used tcpdump [25] utility to get the user's trace for two dif- 
ferent applications: web browsing and telnet. During distil- 
lation we prepared the trace for the modeling step. We had 
a LAN-attached host read the distilled trace and delay or 
drop packets according to the parameters we obtained from 
the measurements. In this way we were able to recreate the 

Ta b l e  4: D P M  for W L A N  T e l n e t  A p p l i c a t i o n  
-- Policy 

Oracle 766 0 0 0.220 
TISMDP(1) 798 21 2.75 0.269 
TISMDP(2) 782 33 2.91 0.296 
Karlin's 780 40 3.81 0.302 
TISMDP(3) 778 38 3.80 0.310 

CTMDP 943 233 20.53 0.361 
Default 0 0 0 1.410 

The measurement results for a 2.5hr web browsing trace are 
shown in Table 3. Our policies (TISMDP a,b,c) show on 
average a factor of three in power savings with low perfor- 
mance penalty. The Karlin's algorithm [22] guarantees to be 
within a factor of two of oracle policy. Although its power 
consumption is low, it has a performance penalty that  is an 
order of magnitude larger than for our policy. A policy that  
assumes exponential arrivals only, CTMDP [10], has a very 
large performance penalty because it makes the decision as 
soon as the system enters idle state. 

Table 4 shows the measurement results for a 2hr telnet trace. 
Again our policy performs best, with a factor of five in power 
savings and a small performance penalty. Telnet application 
allows larger power savings because on average it t ransmits 
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and receives much less data then the web browser, thus giv- 
ing us more chances to shut down the card. 

5. CONCLUSIONS 
We presented a new optimal approach based on the time- 
indexed semi-Maxkov decision processes (TISMDP) for opti- 
mizing power management policies of portable systems. We 
simulated and measured large power savings using our ap- 
proach on three different portable devices: the SmartBadge, 
the Sony Vaio laptop hard disk and Lucent's WLAN card. 
The measurements for the hard disk show that our policy 
gives 1.7 times lower power consumption as compared to the 
default Windows timeout policy. In addition, our policy ob- 
tains on average 3 times lower power consumption for the 
wireless card relative to the default policy. As our approach 
is event-driven, we obtain further system power savings in 
low-power modes as compared to the discrete time based 
approaches. 
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