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Abstract

Transient faults due to particle strikes are a key challenge in microprocessor design. Driven by exponen-
tially increasing transistor counts, per-chip faults are a growing burden. To protect against soft errors,
redundancy techniques such as redundant multithreading (RMT) are often used. However, these tech-
niques assume that the probability that a structural fault will result in a soft error (i.e., the Architectural
Vulnerability Factor (AVF)) is 100 percent, unnecessarily draining processor resources. Due to the high
cost of redundancy, there have been efforts to throttle RMT at runtime. To date, these methods have
not incorporated an AVF model and therefore tend to be ad hoc. Unfortunately, computing the AVF of
complex microprocessor structures (e.g., the ISQ) can be quite involved.

To provide probabilistic guarantees about fault tolerance, we have created a rigorous characteriza-
tion of AVF behavior that can be easily implemented in hardware. We experimentally demonstrate
AVF variability within and across the SPEC2000 benchmarks and identify strong correlations between
structural AVF values and a small set of processor metrics. Using these simple indicators as predictors,
we create a proof-of-concept RMT implementation that demonstrates that AVF prediction can be used
to maintain a low fault tolerance level without significant performance impact.
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1 Introduction

Transient faults have emerged as a key challenge in microprocessor design. Lowered supply voltages

and increasing clock frequencies make processors especially vulnerable to transient faults from external

charged particles, such as high-energy neutrons from terrestrial cosmic rays or alpha particles from chip

packaging [35]. These faults can lead to spurious bit flips, which may propagate to the architected state

and lead to incorrect program execution. Although traditionally considered a problem only for large

memory structures (e.g., caches and main memory), transient faults are becoming a serious problem

even for the latches and combinational logic within the processor core [28].

Techniques for protecting against faults in memory structures include the use of parity and error-

correcting codes [4]. These techniques fit well within the overall design of a memory system but are

poorly suited for use within the processor core due to their area, performance, and power overheads.

Instead, processor core protection is generally provided via some form of redundancy. A number of

redundancy techniques have been proposed to detect [15, 22, 25, 30] and recover from [8, 33] transient

faults. These schemes, which are collectively known as Redundant Multithreading (RMT) techniques,

leverage the hardware thread contexts provided by a simultaneous multithreading (SMT) or multi-core

processor. In RMT, two identical program threads are generated in the microarchitecture and then are

allowed to execute independently for some time frame. The outputs of the threads are compared to

verify correctness. Although these schemes are effective in providing protection against transient faults,

they impose significant performance overheads. Mukherjee et al. showed that, on average, performance

is degraded by 30% on single-threaded workloads and 32% on multithreaded workloads [15].

RMT provides fault detection throughout the entire lifetime of a process, so no transient errors will go

undetected. However, this level of protection is not needed at all points in a process’s lifecycle. Although

the error rate of any one processor structure is a function of several unchanging quantities such as the

underlying process technology, circuit design style, and the number of bits comprising the structure, it

is also dependent on an application-dependent factor known as the Architectural Vulnerability Factor

(AVF) [16]. The AVF is a time-varying quantity that measures the current probability that an internal

fault in the structure would result in an externally visible error. This means that if the AVF of a

structure is low, redundancy may not be required to meet an application’s fault-tolerance requirements.

Using RMT in such a scenario is therefore unnecessary and wastes valuable processor resources.

Counteracting this performance degradation has been the topic of much recent research [9, 13, 18, 19,

21, 31]. However, none of these techniques takes AVF into consideration or gives any other probabilistic

guarantees about fault tolerance, even though error protection is required only at those times when a

structure is vulnerable. When designing a microprocessor, it would be prudent to attempt to determine

dynamically which bits affect the final system output and which do not. For example, a bit flip in
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a branch predictor table may lead to a misprediction, but the execution would still be semantically

correct. This suggests that the processor should track the AVF of its key structures and incorporate

those measurements into a dynamic model of RMT necessity. Unfortunately, tracking the instantaneous

AVF is extremely costly, so AVF calculations are performed only in postmortem analysis, not on the fly.

In this paper, we create a rigorous statistical characterization of AVF values that can be used to

estimate vulnerability at any point in program execution. We also show that there is considerable

variation in AVF across different applications for various processor structures, justifying the need for

such an analysis. Our vulnerability estimator can be represented as a low-dimensional function over

commonly tracked performance metrics and could therefore be computed easily in current hardware

with little modification.

In summary, the principal contributions of this paper are:

• A demonstration that the AVF of multiple key structures within a processor shows significant

runtime variations for the benchmarks of the SPEC2000 suite, both between separate benchmarks

and also over time within a single benchmark. Because of this variability, the need for a dynamic

characterization that can be evaluated efficiently at any point in program execution is established.

• A rigorous characterization of AVF behavior based on a thorough statistical analysis. Our analysis

identifies the key measurable indicators of the AVF at any instant and determines the correlations

between these performance metrics and AVF values. To further confirm the usefulness of this pre-

dictive model, we describe a proof-of-concept RMT implementation that enables redundancy only

when the vulnerability of multiple key processor structures rises above a threshold. This approach

helps mitigate the redundancy overhead when vulnerability is low. For the twolf benchmark in

the SPEC2000 suite, we achieve IPC improvements from 14% to 55% depending on the level of

redundancy being guaranteed.

• An a posteriori analysis of our AVF predictor using benchmarks not included in our training set

serves to quantitatively validate our statistical approach. We perform an RMS error analysis of

three proposed prediction approaches, and also show that all predictors can capture even subtle

time-varying AVF behavior. Our AVF predictors achieve correlation coefficients in excess of 0.93,

meaning that over 93% of the variation in the AVF measurements can be explained by the predictor.

Our methodology can be easily adapted to any new processor with different characteristics or

additional processor structures.

The remainder of this paper is organized as follows. In Section 2, we will discuss background and re-

lated work regarding architectural vulnerability factors and redundant multithreading. We then analyze

trends in dynamic AVF behavior in Section 3. We use this data in Section 4 to develop a formalization
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describing instantaneous AVF behavior and go on to quantitatively demonstrate the success of our ap-

proach. In Section 5, we demonstrate that our predictors can be used to adaptively enable and disable

redundant multithreading based on the current processor vulnerability, thereby achieving significant

speedups. Finally, in Section 6, we conclude and suggest directions for future research in this area.

2 Background and Related Work

Microprocessors, especially those used for mission critical applications with stringent fault tolerance

requirements, can be rendered useless without adequate protection from soft errors. Care must be

taken at all stages of processor design to evaluate the appropriate amount of protection necessary for

the processor’s target application. In this section, we review relevant work in transient fault tolerance

techniques and the Architectural Vulnerability Factor (AVF), a quantitative measure of the likelihood

that a soft error will cause incorrect execution.

2.1 The Architectural Vulnerability Factor

The transient or Soft Error Rate (SER) of a chip is recursively defined as the summation of the SER of

each microarchitectural structure (SERi), given by the equation [16]:

SERi = (#B)
(

FIT
Bit

)
(AVF)(TVF).

In this equation, #B is the number of bits in the structure. The intrinsic Failures in Time (FIT)

Rate, FIT
Bit , is determined by two main factors: (i) the neutron or alpha particle flux and (ii) properties

of the circuit, primarily the critical charge. The Timing Vulnerability Factor (TVF) encapsulates the

fraction of each cycle that a bit is vulnerable. As in prior work [16], we assume that the TVF is factored

into the raw device FIT rate.

The final term in the equation is the AVF, the probability that a fault in a structure will result in an

architecturally visible incorrect execution [2, 16]. The AVF of a bit is the fraction of time that it is in a

state of Architecturally Correct Execution (ACE) [16]. In an ACE state, a change to the bit’s value would

affect the program’s final outcome, whereas a change to a non-ACE bit would not propagate through

program execution. For example, a flipped bit within a dynamically dead instruction, a branch predictor

table, or a wrong-path instruction would not lead to architecturally incorrect execution. Hence, the bit

is in a non-ACE state. As non-ACE bits will lower the AVF of the processor, any intervals that cannot

be proven to be non-ACE are assumed to be ACE for the purpose of providing a conservative upper

bound on the AVF.

Little’s Law gives an estimate of the AVF of a structure as:

AVF =
(BACE) (LACE)

#B
, (1)
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where BACE is the average bandwidth of the ACE bits into the structure and LACE is the average residence

time of ACE bits in the structure [16]. This formalization provides a good estimate, but because not

all transient faults lead to architecturally incorrect execution, it also requires classifying all bits at all

points of execution as ACE or non-ACE and then tracking all ACE bit bandwidth and residency values.

Clearly, calculating this estimate is not an easy task even in simulation, and it is clearly impractical to

track in actual hardware.

2.2 Redundancy Techniques

Because AVF estimation is so difficult, existing techniques to provide protection against transient faults

in microprocessors generally assume that the AVF is always 100%. Space and time redundancy are then

used to guard against faults.

In hardware replication, multiple identical components are operated in lockstep to ensure that, both

components always produce identical outputs when given the same inputs [34]. These ideas have enjoyed

commercial success; high-end servers such as the HP NonStop Architecture [1] and the IBM G5 [29] have

used space redundancy techniques. However, because system resources must be statically partitioned to

allow for redundancy, full replication of all components significantly increases cost [22].

A less expensive technique used in fault-tolerant systems that combines space and time redundancy

is Redundant Multithreading (RMT). RMT leverages the multiple execution contexts provided by SMT

and multi-core processors to implement redundant execution. First, multiple threads of a program are

created at the input replication point and are allowed to execute independently. The duplicate, or

trailing, thread runs with a temporal lag (as with a time-redundant approach) and it may use different

functional units, occupy different issue queue slots, etc., than the original thread, thereby employing a

certain amount of space redundancy as well. At the output comparison point, a voting operation detects

any error before any process state is modified. Thus, fault tolerant execution is provided between the

input replication and output comparison points. This protected region is referred to as the Sphere of

Replication (SoR) [22]. The structures outside the SoR are assumed to be protected via other means.

While performing the same function as replicated hardware components, RMT processors are pre-

ferred because (i) they may require less hardware when space redundancy is not critical, and (ii) they

potentially provide better performance by dynamically partitioning resources [22]. Thus, redundant

multithreading has become a popular transient fault tolerance technique [15, 22, 25, 30]. Most proposals

advocate the creation of redundant threads in the microarchitecture, but there has also been some work

on software [23] and combined hardware/software approaches [24] to implement RMT.

One significant drawback to RMT is that creating multiple threads for a single program leads to

greater contention for shared processor resources, thereby degrading single-thread performance and in-

creasing power consumption. A number of solutions have been proposed to mitigate these problems. To
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reduce performance degradation, efforts have been made to exploit value locality to non-speculatively

remove instructions from redundant threads [9, 18], to speculatively remove instructions [19, 21], and to

share processor resources more efficiently between the threads [13, 31]. There has also been work that

investigates reducing the power overhead of RMT [14, 20]. While these techniques have been effective in

reducing power consumption and increasing performance, each still builds on the fundamental underlying

assumption that the microprocessor is vulnerable 100% of the time.

2.3 Bridging the Gap

Because AVF estimation is so difficult at runtime, even the aforementioned “partial” RMT techniques

waste valuable resources by providing redundancy when vulnerability is low or does not exist. One of the

primary goals of this research is to find a way to remedy this waste by allowing RMT implementations

to model and predict AVF at runtime. Little’s Law (Equation 1) suggests that a practical runtime AVF

measurement might be possible because there exists some relationship between structure utilization and

AVF. In this paper, we compare measured runtime AVF behavior to combinations of other micropro-

cessor performance metrics in order to determine a rigorous, empirical characterization of dynamic AVF

behavior.

Very recently, Fu et al. investigated the nature of dynamic AVF behavior [7]. In this paper, they

demonstrate convincingly that microarchitecture structures exhibit significant variability over time in

their reliability characteristics. Using this knowledge, they attempt to find a correlation between AVF

and a host of individual time-varying performance metrics, with the objective of classifying program

reliability phase behavior. Their approach is an important first step towards efficient fault tolerance

in modern processors. The processor metrics that they chose to focus on were limited in number and

exhibited inconsistent correlation to AVF across benchmarks. Because of their limited set of metrics,

they concluded that a single-variable correlation does not exist and abandoned a predictive approach.

Our work reexamines this choice by exploring multivariate statistical relationships between AVF and a

wide variety of easily measurable time-varying performance metrics. Our use of multiple simultaneous

metrics allows us to infer AVF values independent of phase behavior. We are able to predict structural

AVF with very high accuracy by using an empirical, data-driven, nonlinear model of multiple variables.

3 Characterization of Dynamic AVF Behavior

In this section, we show the results of experiments that demonstrate the time-varying AVF behavior

that we seek to model and exploit in our research. We establish that the AVF changes significantly

over time, justifying our search for an AVF predictor. Also, we visualize just a few of the many trends

between microarchitectural measurements and AVF values. This simple examination provides evidence
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Fetch/Decode/Issue/Commit Width 8

Fetch-Queue Size 16

Branch-Predictor Type Bimodal
Table-size of 2K entries

RAS Size 64

BTB Size 2K-entry 4-way

Branch-Misprediction Latency 7 cycles

RUU Size 128

LSQ Size 64

Integer ALUs 6 (1-cycle latency)

Integer Multipliers/Dividers 2 (3,20)

FP ALUs 4 (2)

FP Mult./Div./Sqrt. 2

L1 Cache Ports 4

L1 D-Cache 64KB, 4-way with 32B line-size (2)

L1 I-Cache 64KB, 4-way with 32B line-size (2)

L2 Unified Cache 512 KB, 4-way with 64B line-size (12)

I-TLB 128 entries 4-way set-associative

D-TLB 256 entries 4-way set-associative

TLB Miss-Latency 30 cycles

Main Memory Latency 200 cycles

Table 1: Processor configuration setup for our experiments. Numbers in parentheses are latencies.

that correlations exist and motivates a much more rigorous analysis of the trends.

3.1 Experimental Setup

All of our experiments were conducted using the SimpleScalar 3.0 simulator [3], appropriately modified

to compute the AVF and implement redundant multithreading. In particular, we compute the AVFs

of the Issue Queue (ISQ), the combined Reorder Buffer and Physical Register File (RUU), and the

Load/Store Queue (LSQ).

The design space for RMT implementations is quite large. For example, implementations will differ

depending on which pipeline stages perform input/output replication, whether both fault detection

and recovery are required, or whether all redundant threads need to be identical. The baseline RMT

scheme that we use in this paper is based on the Simultaneous and Redundantly Threaded (SRT)

design [22], proposed for transient fault detection in SMT processors. The input replication and output

comparison points for SRT are the L1 I-cache and D-cache interfaces respectively. SRT uses additional

microarchitectural structures within the processor core to create a temporal lag between redundant

thread pairs (for performance and time redundancy purposes) and also to ensure precise interrupts,

correct handling of cached loads and uncached I/O.

For the evaluations, we use all 26 benchmarks from the SPEC2000 suite [32]. Each benchmark is run

for multiple 100-million instruction SimPoints [27] based on the data given on the SimPoint website [17].

These simulation points, which are independent from the underlying architecture, are representative of

the full program’s execution when varying the architecture parameters. Within each SimPoint interval,
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we checkpoint the entire microarchitectural state every 4 million instructions and calculate the AVF

values for the RUU, LSQ, and ISQ on that state. After computing the AVFs, the simulation resumes

from the checkpoint. Therefore, for each simulated SimPoint, we obtain a total of 25 “snapshots” of

the AVFs and other performance related information such as IPC, cache information, branch prediction

statistics, and various aggregate queue occupancies. The precise processor configuration used in this

study is given in Table 1.

3.2 Time-varying Microarchitectural Behavior in SPEC2000

Figure 1 shows runtime behavior over the first two SimPoints of three benchmarks from the SPEC2000

suite. These data represent only a fraction of all data gathered for this research; other benchmarks

and SimPoints behave similarly and are omitted here for brevity and clarity. The first row of graphs

shows the IPC trends, the second shows the RUU occupancy statistics, and the next three rows give

the variation in the ISQ, RUU, and LSQ AVFs respectively. In the following, unless specifically stated

otherwise, we will restrict our discussion to the first SimPoint.

3.2.1 IPC and AVF Variation

As an example performance metric, we will consider IPC trends. IPC is often used as a predictor of

other time-varying metrics [5], so one might assume that IPC and AVF are closely linked. Intuitively,

high IPC would reduce an ACE bit’s residence time in a given microarchitecture structure, thus reducing

the structure’s AVF.

Within the first Simpoint interval, we are able to observe significant variation in program behavior,

as desired. The variation is large for bzip2, whose IPC value varies in the range [1.5, 2.0], and is

slightly less pronounced for perlbmk. The IPC for art is relatively constant and is very low for both

SimPoints. These IPC trends are indicative of the variations in the throughput of instructions through

the pipeline. As a result of the throughput variations, the bits associated with these instructions should

also show variations in their bandwidth and residence time characteristics for all microarchitectural

structures that they occupy, thereby having an impact on those structures’ AVF. The net impact of

these microarchitectural variations can be seen in the AVF graphs in Figure 1.

As expected, the AVF graphs also exhibit large temporal variation. For example, for bzip2, the

AVF of the RUU and LSQ vary from nearly 31–67% and 20–60% respectively. Even within a single

benchmark, the extent to which the AVF varies can differ significantly from one structure to another.

For example, when we look at the profiles for the ISQ and RUU AVF for bzip2 (Figures 1(h) and (k)),

we can see that the AVF of the RUU changes by a much larger magnitude than that of the ISQ. Similarly,

the range of LSQ AVF values in art (Figure 1(o)) is much higher (48-59%) compared to the other two

AVFs, which show less than 3% variation.
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Figure 1: Time-Varying Metrics and AVF Behavior. All the graphs present data for the first two Sim-
Points of 100 million instructions of three different SPEC2000 benchmarks (the graphs are discontinuous
between SimPoints). The x axes all denote time; values are gathered at each of 50 checkpoints. The key
observation is that while AVF can clearly vary significantly over time, its relationship to IPC and RUU
occupancy can actually invert from benchmark to benchmark, implying the need for a more sophisticated
prediction mechanism.
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3.2.2 Prediction with Little’s Law

AVF calculation by means of Little’s Law as presented in Equation 1 takes into account the residency,

LACE, and bandwith, BACE, of ACE bits. In our example benchmarks, we find that the average residence

time of instructions in the LSQ for the second SimPoint are 18, 33, and 44 cycles for perlbmk, bzip2,

and art respectively. Correspondingly, we find that the AVF of the LSQ for the perlbmk benchmark

varies over a lower numerical range (14-37%, as shown in Figure 1(m)), compared to art (48-60%).

However, if we look at the LSQ AVF graphs for bzip2 and art, we can see that values for the former

benchmark are higher, although the residence time of instructions in the LSQ are lower. One reason for

this inversion is that the IPC of bzip2 is significantly higher than that of art, so the correspondingly

larger BACE term can overwhelm the LACE value, leading to a higher AVF.

While the benchmark data fits the AVF characterization described by Little’s Law, calculating and

properly weighing the the residency and bandwidth of every bit is extremely difficult. At a high level,

there are many complex microarchitectural interactions that combine to produce the AVF value. There-

fore, one of the main goals of this paper is to use empirically gathered data to abstract away this

complexity and to develop a data-driven approach to accurately infer the AVF at runtime.

3.2.3 Detecting Correlations

One way by which we can abstract microarchitectural complexity is through correlation detection. By

visual inspection alone, we can see that relationships may exist between AVF behavior and microarchi-

tecture metrics. For example, in art, the AVF curves bear a strong resemblance to the IPC profile.

However, this relationship is not consistent across all benchmarks. Although the IPC curves for all three

benchmarks appear similar, the AVF curves for perlbmk and bzip2 show an inverted characteristic,

while the ones for art do not. On the other hand, the shape of the curves representing RUU occupancy

also match those of the AVF values, presenting RUU occupancy as a strong candidate for correlation.

These trends suggest that an easily measurable metric, such as IPC or RUU occupancy could be

used to calculate the AVF values. However, discerning the precise nature of this relationship requires

analyzing a much larger space of processor events that could potentially affect the AVF.

3.2.4 Our Approach

It is clear that there are temporal variations in the AVF behavior of a benchmark, even within a single

SimPoint phase. Therefore, it would be beneficial to design redundant multithreading schemes that can

adapt to this variation. Furthermore, a qualitative inspection of the data suggests that a relationship

exists between AVF and measurable events in the processor, but a thorough analysis must be performed

in order to create a model that will hold across all workloads. In our simulation infrastructure, there are
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160 events/variables that could possibly correlate to the AVF. Navigating this large space of variables to

identify the subset of events that must be tracked to accurately measure AVF over time is a challenging

problem. Moreover, it is important that any online AVF monitoring mechanism be as lightweight as

possible, both to avoid itself becoming a bottleneck and also to ensure that its predictions can keep

pace with the flow of instructions through the pipeline. In other words, any hardware AVF monitoring

mechanism must be able to provide an accurate estimate of the AVF while tracking only a small number

of events, so that both the performance overhead and implementation complexity are low. In Section 4,

we use regression analysis to identify the relevant subset of processor events, and construct and evaluate

a practical predictor for the runtime AVF.

4 AVF Behavior Analysis

The AVF and performance graphs (Figure 1) suggest that a correlation may exist between AVF values

and other common performance metrics. Such a correlation would allow for the creation of a prediction

function for estimating instantaneous AVF values. Ideally, such a predictor should be a low-dimensional

function that could cheaply be evaluated in the hardware. To determine the strength of correlations

between the variables and the corresponding prediction functions, we performed an extensive statistical

analysis on data obtained from executing twenty-two of the twenty-six SPEC2000 benchmarks. The

four removed benchmarks, two floating point (apsi and galgel) and two integer (mcf and twolf), were

used for experimental analysis and verification, to avoid training our predictor to the test data. At each

checkpoint during execution, 160 architectural variables were tracked along with AVF values for the

RUU, LSQ, and ISQ, as described in Section 3. In this section, we provide the details of our statistical

methodologies and show the resulting predictors.

4.1 Principal Component Analysis

Principal Component Analysis (PCA) has been used successfully in the computer architecture community

to reduce the dimensionality of datasets and to tease out the important latent structure of correlated

measurements (e.g., [6, 10, 11]). We first experimented with the use of PCA to reduce the number of

microarchitectural components needed to create an accurate AVF-prediction function while retaining

as much of the variation in the dataset as possible. PCA gives the optimal linear transformation for

projecting data into a new coordinate system; by retaining lower-order principal components and ignoring

higher-order ones, the dimensionality of the dataset can be reduced without removing the characteristics

of the dataset that contribute the most to its variance [12].

Formally, we let X be a data matrix where each row corresponds to a performance metric and

each column contains a checkpoint’s measurements. Then, the principal components are determined by
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Figure 2: Singular values for the matrix of all performance measurements (columns) over each benchmark
of SPEC2000 (rows). This log-plot is a direct visualization of the diagonal of the matrix Σ, where the
ith entry indicates the degree to which the ith eigenvector accounts for the variance in the dataset. As
is typical of datasets that are fundamentally lower-dimensional but embedded in a higher dimensional
space, the magnitude of the singular values decreases extremely rapidly, suggesting that the data can be
projected onto a low-dimensional subspace with little loss of fidelity.

finding the Singular Value Decomposition of X:

X = WΣV T .

The important quantities in this expression are V , a matrix whose columns form an orthogonal set of

basis vectors spanning the checkpoint measurements, and Σ, a diagonal matrix whose entries indicate

the strength of correlation between the original dataset and the corresponding basis vector.

After performing PCA, we identified 69 principal components (this number is not equal to the full

160 variables due to the numerical rank of our measurement matrix). The first four components had

substantially higher singular values, as shown in Figure 2. Performing a linear regression using just these

four linear components created a fit with an R2 value of 0.61 for the RUU, 0.47 for the ISQ, and 0.55

for the LSQ. An R2 value of 0.61 for the RUU simply means that sixty-one percent of the variation in

the RUU measurements can be explained by the target components.

Unfortunately, despite the reasonable data fit, PCA is a poor choice for this particular application.
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Figure 3: RUU AVF coefficients of variation for each of our 160 microarchitectural metrics when con-
sidered in isolation. Notice that while the majority of the data are only weakly correlated to RUU
AVF, three datapoints (labeled above) clearly stand out with coefficients > 0.8, indicating a very strong
correlation.

Even though applying PCA can substantially reduce the dimensionality of the dataset, the spanning

eigenvectors are themselves linear combinations of the original 160 performance variables, and therefore

would require tracking all variables at runtime. Our goal is more ambitious; we want to track only a

few variables, and estimate AVF from those alone. Thus, PCA does not provide the a low-dimensional

function that we desire.

Instead, we investigated the possibility of a regression-based approach by separately considering the

linear correlation between the AVF of each structure and each of our 160 microarchitectural metrics.

The results of this experiment for the RUU are shown in Figure 3. That plot clearly shows that there

are a very small number of variables which have high correlation with the RUU AVF value (results for

ISQ and LSQ show qualitatively similar results and are omitted here). We were therefore encouraged to

explore a multivariate regression to find a practical predictor.

4.2 Practical AVF Prediction

A comprehensive regression analysis reveals that we can track only a few variables to estimate the AVF

values of the RUU, ISQ, and LSQ with great accuracy. Linear functions of a small number of performance

variables could easily be calculated in hardware, and our analysis reveals that substantial precision can

be achieved with only two to five variables. A nonlinear fit can also be used in order to obtain even

higher statistical confidence in the predicted AVF values, but of course the resulting equations would be

more costly to compute (for our experiments we looked only at quadratic fits).
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Regression techniques enable us to calculate a function that will predict the value of a dependent

variable from a collection of predictor variables. Formally, let f1, f2, . . . fk be the predictor variables and

y be a response variable. For example, the predictor variables might be IPC, cache miss rate, and branch

misprediction rate, and the response variable may be the RUU AVF value. We then find the optimal

representation of y as a weighted combination of basis functions bi, where each bi depends only on the

values of a subset of the predictor variables.

The classical linear regression model for y uses the simplest basis set possible: the first order mono-

mials. Specifically, it yields a set of weights βi, one for each predictor variable fi, and an error term

εi:

yi = β1f1i + β2f2i + . . . + βkfki + εi.

Here we explicitly use the fact that our variables are discretely sampled, so yi is the ith response (e.g.,

AVF value), fij is the jth basis function (e.g., IPC) evaluated at the ith observation, and εi is the ith

statistical error.

Regression analysis finds the optimal values of the coefficients β1, . . . , βk so as to minimize the sum

of squared errors
∑

i e
2
i . It also yields a “coefficient of variation” (written R2), which measures how well

the generated function fits the observed data (larger R2 values indicate a better fit, with R2 = 1 taken

to mean that the observations are collinear).

4.2.1 Linear Procedure

Here we describe the design of our linear predictor for the RUU AVF. Predictors for ISQ and LSQ were

created in an analogous manner. Our goal is to select a small subset of the 160 tracked microarchitectural

metrics that will give the highest possible correlation for any subset of that size. We begin by including

the single variable with the highest correlation (for RUU AVF, this is the RUU occupancy with an R2

of 0.93). We then consider all remaining 159 variables in turn, and for each we compute the linear

regression of the two-variable expression involving the RUU occupancy and that variable. Once we have

found the best two-variable approximation, this process repeats, adding one variable at a time until all

variables have been exhausted. This approach of adding variables is mathematically justified due to the

linear nature of the eventual fit.

This procedure imposes an ordering on our set of microarchitectural metrics. It is important to note

that this ordering is not the same as the ordering that would result by simply sorting the metrics based

on their individual correlation with the AVF, because that ordering cannot take into account any depen-

dencies between variables (this phenomenon is explored in more detail in Section 4.3). Figure 4 shows the

results of this incremental subset construction for the RUU, ISQ, and LSQ. For the ISQ and LSQ, there

is a clear knee in the curve at subsets including four and five variables, respectively. We therefore select
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Figure 4: Coefficients of variation as more metrics are included in our predictor equations. For ISQ and
LSQ, there is a clear knee in the curve at 4 and 5 variables, respectively, so we take that number of
terms. The RUU fit has very high correlation even with a small number of terms, so its slope is very
slight. We therefore include only two terms for that predictor.

those subsets for our predictor, because adding more variables would provide little additional correlation

for the added expense of more predictor terms. In the case of RUU AVF prediction, the RUU occupancy

metric is already so highly correlated with the AVF that a simple two-term approximation provides an

excellent result of R2 = 0.935. Because the total range of correlation coefficients is so small, no clear

knee is present and we use a simple two-term approximation.

4.2.2 Quadratic Procedure

We have also experimented with a nonlinear regression resulting in a quadratic fit. Unlike the above

procedure, we are no longer justified in adding terms one at a time, due to the nonlinear nature of the

eventual model. Furthermore, because quadratic functions are more expensive to evaluate in hardware,

and because our linear models already behave excellently with only a very small number of variables, we

opted to limit the number of terms in our quadratic fits to two. We therefore consider all
(160

2

)
= 12720

possible pairs of metrics, and for each pair (x, y) we perform a nonlinear least-squares fit using the basis

{1, x, y, xy, x2, y2}.

4.3 Predictor Usage and Results

Here we show the precise prediction coefficients and metric subsets selected by the procedures described

above. Specifically, we describe predictor P1, the multi-variable linear predictor described in Section 4.2.1

and predictor P2, the quadratic predictor from Section 4.2.2. In addition, we show a linear predictor P3

whose terms are those variables with the highest individual correlation to the AVF. As described above,

P3 ignores dependencies between variables, and is presented here for comparison purposes only. Table 2

gives the notation for the individual microarchitectural metrics selected for these predictors, and Table 3
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Variable Description
Rc RUU count
Rl RUU latency
Ro RUU occupancy
SBW Total instructions executed (speculative and committed)
Lc LSQ count
Ll LSQ latency
Lo LSQ occupancy
SC Total number of “slip” cycles (from issue to retirement)
ASC Average number of slip cycles
Io IFQ occupancy

Table 2: Description of notation used in Table 3

Predictor Component Equation R2

P1

RUU −2.27 + (0.71Ro) + (0.017 ∗ IPB) 0.93
ISQ (0.20Rl) + (0.55Ro)− (27.38 ∗ IPC) + (2.73SBW ) 0.74

LSQ
−1.07− (5.03e−9Lc) + (1.35Lo)− 0.94

(5.65e−9Rc) + (0.01 ∗ IPB) + (5.77e−9SC)

P2

RUU
1.14 + (0.001Rl)− (1.47e−6R2

l ) + (0.10 ∗ IPC)+
0.96

(0.73Rl ∗ IPC)− (0.09 ∗ IPC2)

ISQ
−25.48− (0.02ASC) + (1.41e−6ASC2) + (16.42 ∗ IPC)+

0.81
(0.51ASC ∗ IPC)− (3.47 ∗ IPC2)

LSQ
−1.49 + (0.03Ll)− (0.00003L2

l ) + (2.92 ∗ IPC)+
0.94

(1.41Ll ∗ IPC)− (0.80 ∗ IPC2)

P3

RUU −3.06 + (0.73Ro) 0.92
ISQ −0.90− (4.83Io) + (0.74Lo) + (0.81Ro) 0.69
LSQ −1.23 + (1.41Lo) 0.90

Table 3: Predictors obtained by our regression analysis for RUU, LSQ, and ISQ. P1 is our multi-variable
linear predictor model, P2 is our quadratic model, and P3 is our single-variable linear predictor model.

shows the actual equations and the obtained R2 correlation coefficients.

Figure 5 shows the root-mean squared error when using each of the three predictors for each compo-

nent, over four benchmarks. Specifically, we use the four SPEC2000 benchmarks that we omitted when

performing our regression analysis (apsi, galgel, mcf, and twolf) to ensure that our results were not

unfairly biased. These results show that P1 is almost always better than P3, as expected. However,

the fact that P1 is not always better underscores the importance of performing regression analysis on a

representative workload for the processor’s target application.

We can also see that the quadratic predictor P2 frequently achieves lower error than the linear P1.

However, this is not always the case, and P2 will likely be more expensive to evaluate in actual hardware.

Our conclusion again is that in a production system it would be necessary to perform careful experiments

on typical workloads to determine the ideal predictor to use.
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Figure 5: Root-mean squared error for all configurations of our test benchmarks. Three predictors are
used for RUU, LSQ, and ISQ AVF estimation over four benchmarks. These benchmarks were not used
in predictor training. Although no one predictor consistently performs best, the multivariable linear
predictor (P1) seems to provide an excellent compromise between cost of implementation and accuracy.

Figure 6 is a different way of comparing the success of the three proposed prediction schemes. We

compare the predicted versus measured RUU AVF of the galgel benchmark over time. These experi-

ments on other components or benchmarks yield qualitatively similar results and are therefore omitted.

The multivariable linear predictor P1 performs best on this test. Furthermore, the behavior of the mea-

sured AVF for this configuration is very noisy, but all three predictors capture this quality faithfully.

This is a testament to the accuracy of our AVF characterization.

5 Case Study: An AVF-Aware RMT Implementation

In this section, we describe one possible use for an accurate online AVF predictor. In order to demonstrate

the utility of our prediction scheme, we augmented our simulation infrastructure to use the predicted

vulnerability values to enable RMT only when the total vulnerability of the LSQ, ISQ, and RUU was

above a user-supplied threshold. Once enabled, RMT is then left enabled for a fixed number of cycles. We

stress here that the details of this particular strategy for enabling/disabling RMT, as well as the particular

settings of our user-defined parameters (critical AVF threshold and duration of RMT enabling) are not

meant to be prescriptive. In practice, the proper settings of these parameters (and indeed the RMT
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Figure 6: Measured versus predicted RUU AVF results for the galgel benchmark. The P1 predictor
achieves substantially less RMS error than the other two. In addition, note that all three predictors are
able to faithfully capture the noisy time-varying behavior of AVF, confirming that our prediction model
is extremely accurate.

enabling scheme itself) would likely either be customized to the particular architecture and application

or provided as a knob to the operating system. Our goal here is merely to demonstrate that an AVF

predictor can be used to enhance performance while still providing safety when needed, rather than to

suggest precisely how such a feature should be implemented. Therefore, we do not present a thorough

analysis of, for example, the design space of AVF thresholds, but rather demonstrate that the values we

have chosen work well for our particular application.

5.1 RMT Toggling Approach

Our simulation begins with redundancy disabled. Every two million cycles, we evaluate our AVF pre-

dictor for the LSQ, ISQ, and RUU components, and calculate the total AVF of the processor as the sum

of these three quantities. Whenever the total AVF rises above a vulnerability threshold, we effectively

generate a processor interrupt, flushing the entire pipeline. The trailing thread and all of its associated

data structures are then enabled, and execution resumes. Again we emphasize that our choices for fre-

quency of vulnerability checking and threshold are not meant to be prescriptive; we merely found them

to work well for our applications, and processor designers should carefully consider this design space for

their own needs.

Once RMT is enabled, we need a criterion for disabling it again. Ideally, we would track what we

call the processor’s virtual AVF : the current vulnerability of the processor if the trailing thread were

disabled. Unfortunately, this quantity is almost impossible to measure, let alone predict, because AVF

depends on time-varying quantities that are unknown while the processor is in RMT mode. Furthermore,

it would not make sense to measure or predict the AVF of the processor while RMT is enabled; recall

that AVF is the likelihood that a soft error would result in incorrect execution, but RMT makes this

probability effectively zero. Therefore, we disable RMT after a fixed number of cycles (ten million in
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Figure 7: IPC over time for twolf. Five configurations are shown: no redundancy, full redundancy,
and three AVF-aware partial redundancy runs. Each AVF-aware run has a different threshold for en-
abling redundancy. Partial redundancy provides a significant performance boost over full redundancy,
as expected.

our setup). The processor then begins predicting AVF again, as before.

Note that this scheme could potentially disable RMT at a time when the virtual AVF was high, since

we do not estimate or measure virtual AVF. In such a case, RMT will be re-enabled quickly, but the

processor would be left vulnerable during this time. This tradeoff between occasional vulnerability and

resource utilization would need to be evaluated with respect to the fault-tolerance needs of a processor’s

target applications. As power consumption and parallel performance become more and more important

even for mission critical applications, we believe that this tradeoff can be made reasonably while still

providing standard probabilistic fault-tolerance guarantees.

5.2 Performance results for twolf

We implemented the above RMT toggling approach in our processor simulator and ran the entire

SPEC2000 benchmark suite in this mode. Because this case study is meant primarily as illustrative

of the power of AVF prediction, here we select the twolf benchmark as representative of the type of

results we achieved across the entire benchmark suite.

We first ran twolf twice, once with SRT always enabled, and once with it always disabled. In these

configurations, the benchmark achieved an average IPC of 1.56 and 2.74, respectively. These values

should provide a lower and upper bound on the performance of our RMT toggling approach. We tested

several different AVF thresholds; the results of these experiments are shown in Figure 7. With the
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highest threshold (36), twolf achieves an average IPC of 2.41, a performance boost of 55% compared to

full redundancy. Of course, a high threshold provides the least redundancy. At the other extreme, a low

threshold of 20 results in an average IPC of 1.78, a 14% performance increase with excellent vulnerability

protection. Inspecting the graph reveals that RMT toggling lies between the two boundary curves, as

expected. Note that the subtle oscillatory behavior of the middle IPC curve reveals the locations of our

RMT toggle decisions.

6 Conclusion and Future Work

We have shown that the temporal variation in vulnerability can be modeled with high accuracy using an

inexpensive quadratic or linear model in only a few easily-tracked processor performance variables.

Such a predictor is an important step forward for fault-tolerant processor design because it allows

resources to be reallocated at runtime to where they would be most useful. The key insight is that

the expensive calculations needed to determine AVF can be performed in a one-time offline analysis of

detailed simulation traces, and the results of these calculations can be expressed as an inexpensive online

predictor, yielding a practical new approach for AVF-aware RMT-enabled processor design.

Currently, we are performing a more rigorous exploration of the design space of partial RMT im-

plementations. While the results in Section 5.2 demonstrate a significant performance improvement,

those experiments were intended mainly to verify our hypothesis that an AVF-aware RMT approach

could provide performance gains without sacrificing fault-tolerance. We believe that additional perfor-

mance improvements could be achieved with a more sophisticated toggling scheme, such as adaptive

AVF thresholds and non-constant RMT window sizes.

With the ability to dynamically predict the AVF, and therefore adapt the RMT at runtime, comes

the opportunity to trade off performance, power, and fault-tolerance under operating system control.

We intend to explore the space of possibilities offered by this technique. For example, entertainment and

multimedia applications tend to be more tolerant of transient faults [26]. The operating system should

therefore be able to adapt its level of fault tolerance to the currently running application in order to

save power and increase performance.

Finally, armed with our knowledge of which processor structures are most highly correlated with

vulnerability, we would like to explore a symbiotic hardware/software approach where a model of AVF

is incorporated into a machine code generation model to lower the runtime AVF induced by a given

program. We will investigate static compilation techniques to achieve this goal, as well as the more

exotic approach of using hardware feedback to guide the operation of a dynamic binary translation

system. We believe that the power of this kind of dynamic hardware/software symbiosis has not yet

been fully appreciated, and it could have a major impact on how robust processors and operating systems
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are co-designed in the future.
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