
DYNAMIC PRESSURES ON ACCELERATED FLUID CONTAINERS 

By G. W. I-IovsI~'ER 

ABSTRACT 

An analysis is presented of the hydrodynamic pressures developed when a fluid container is sub- 
jected to horizontal accelerations. Simplified formulas are given for containers having twofold 
symmetry, for dams with sloping faces, and for flexible retaining walls. The analysis includes both 
impulsive and convective fluid pressures. 

INTRODUCTION 

T~E DYNAMIC fluid pressures developed during an earthquake are of importance in 
the design of structures such as dams and tanks. The first solution of such a problem 
was that by Westergaard (1933), who determined the pressures on a rectangular, 
vertical dam subjected to horizontal acceleration. Jacobsen (1949) solved the cor- 
responding problem for a cylindrical tank containing fluid and for a cylindrical pier 
surrounded by fluid. Werner and Sundquist (1949) extended Jacobsen's work to 
include a rectangular container, a semicircular trough, a triangular trough, and a 
hemisphere. Graham and Rodriguez (1952) gave a very thorough analysis of the 
impulsive and convective pressures in a rectangular container. Hoskins and Jacob- 
sen (1934) determined impulsive fluid pressures experimentally, and Jacobsen and 
Ayre (1951) gave the results of similar measurements. Zangar (1953) presented 
the pressures on dam faces as measured on an electric analog. 

The foregoing analyses were all carried out in the same fashion, which requires 
finding a solution of La Place's equation that satisfies the boundary conditions. With 
these known solutions as checks on accuracy, it is possible to derive satisfactory 
solutions by an approximate method which avoids partial-differential equations and 
infinite series and presents solutions in simple forms. The approximate method ap- 
peals to physical intuition and makes it easy to visualize the fluid motion, and it 
thus seems particularly suitable for engineering applications. To introduce the 
method, the problem of the rectangular tank is treated in some detail; applications 
to other types of containers are treated more concisely. 

The more exact analyses show that the pressures can be separated into impulsive 
and convective parts. The impulsive pressures are those associated with the forces 
of inertia produced by impulsive movements of the walls of the container, and the 
pressures developed are directly proportional to the acceleration of the container 
walls. The convective pressures are those produced by the oscillation of the fluid 
and are thus the consequences of the impulsive pressures. In the following analysis 
the impulsive and convective pressures are examined separately, the fluid is assumed 
to be incompressible~ and fluid displacements are assumed to be small. 

IMPULSIVE PRESSURES 

Consider a container with vertical side walls and horizontal bottom that is sym- 
metrical with respect to the vertical x-y and z-y planes. Let the walls of the con- 
tainer be given an impulsive acceleration ~0 in the x direction. This will generate 
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fluid acceleration g, b in the x, y directions and may also generate an acceleration 
component @ in the z direction. For a rectangular tank ~ is obviously zero, and 
Jacobsen (1949) showed that  for a cylindrical tank ~ is also zero. In what  follows 
it will be assumed that  the ratio of ~b to ~ is either exactly zero or at least so small 
tha t  @ may be neglected. Physically, this is equivalent to haviag the fluid restrained 
by thin, vertical membranes, spaced dz apart,  which force the fluid motion to take 

-1 

7" 

Fig. 1. 

~u u-x ~ £  

Fig. 2. Fig. 3. 

place in the x, y plane only. I t  is then sufficient to consider the impulsive pressures 
generated in a lamina of fluid. 

Consider a lamina of fluid of unit thickness, figure 1, and let the walls be given a 
horizontal acceleration it0. The initial effect of this acceleration is to impart  a hori- 
zontal acceleration to the fluid and also a vertical component of acceleration. This 
action of the fluid is similar to tha t  which would result if the horizontal component, 
u, of fluid velocity were independent of the y eoSrdinate; tha t  is, imagine the fluid 
to be constrained by thin, massless, vertical membranes free to move in the x direc- 
tion, and let the membranes be originally spaced a distance dx apart.  When the 
walls of the container are given an acceleration, the membranes will be accelerated 
with the fluid, and fluid will also be squeezed vertically with respect to the mem- 
branes. As shown in figure 2, the fluid constrained between two adjacent mem- 
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branes is given a vertical velocity 
du 

v = ( h  - y )  (1) 

Since the fluid is incompressible, the accelerations satisfy the same equation, so 

d4 (la) 
= (h - y) d~ 

The pressure in the fluid is then given by 

Op = _ piJ (2) 
Oy 

where p is the density of the fluid. The total horizontal force on one membrane is 

These equations may be written 

d~ 
b = (h - y) d z  

p = 

P =  

fo 
h 

P = p dy (3) 

fo y d~ d~ - - p  (h - y) dx  dy = - p h 2 ( y / h  - ½(y/h) 2) dx  

fo h dit d4 
- -  oh 2 ( y / h  -- ½(y/h) 2) dx dy = - Ph3/3 dx-- 

(4) 

The acceleration ~ is determined from the horizontal motion of the fluid con- 
tained between two membranes. The slice of fluid shown in figure 2 will be acceler- 
ated in the x direction if the pressures on the two faces differ. The equation of 
motion is 

d R  d x  = - ph d x  
dx 

Using the value of P from equation (4) gives 

d2~ 3 . 
u = 0 (5) 

d x  2 h 2 

and the solution of this equation is 

X 6 = c1 oosh v/~ ~ + C2 smh V/g ~ (6) 

Equations (4) and (6) determine the fluid pressures, and they are strictly applicable 
only when the surface of the fluid is horizonthl, bu t  if consideration is restricted to 
small displacements of fluid the equations may be used even when the surface of the 
fluid has been excited into motion, that is, equations (4) give the impulsive fluid 
pressures, p(t) ,  corresponding to arbitrary acceleration ~0(t). 

If the container is slender, having h > 1.5i, somewhat better results are obtained 
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by applying equations (4) to the upper portion, h t = 1.5/, of the fluid only and con- 
sidering the fluid below this point to move as a completely constrained fluid exert- 
ing a wall pressure p~ = olito (see fig. 3). At a depth of 1.5l the moment exerted on 
the horizontal plane by the fluid above is approximately equal to the moment 
(3 pill 3) exerted on the same plane by the constrained fluid below which implies 
that  the generation of fluid velocity is restricted essentially to the fluid in the upper 
part of a slender container. 

CONNECTIVE PRESSURES 
When the walls of a fluid container are subjected to accelerations, the fluid itself 
is excited into oscillations and this motion produces pressures on the walls and floor 
of the container. To examine the first mode of vibration of the fluid consider con- 
straints to be provided by horizontal, rigid membranes, free to rotate, as shown in 
figure 4. Let u, v, w be the x, y, z components of fluid velocity, and describe the 
constraints on the flow by the following equations: 

O(ub) = _ b O Y  
Ox Oy 

v = x O  (7) 

oo (ou 
Oz - - ~ +  
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where b and 0 are as shown in figure 4. These equations state, respectively, that the 
fluid at a given x, y moves with a uniform u, that all the fluid at a given x, y moves 
with the same v, and that continuity of flow is preserved. In a manner similar to 
that of the preceding section the appropriate equations of motion could be written 
for the particular shape of container under consideration. A general solution, 
applicable to any shape (twofold symmetry) can be deduced as follows. From the 
preceding equations 

f; 1 O0 xb dx 
u = b Oy -R 

'(8) 

b' aO f f f  xb dx ~ = ~  
where b ~ = db/dx. The total kinetic energy-is thus: 

fo f?I+ {  (o0) 
f:{ R O y / )  

where 

Iz = fA  x2 dA 

K = 2 - .  -b -R 

2 ( f _ R  xb d x ) 2 ( 1  -Jr- Z2(~- )2 ) }  dxdy  dz 

+ (o) 

The potential energy of the fluid is 

V = ½pgOh 2 J x  2dxdz  

By Hamilton's Principle 

= ½pgOh~I~ 

f t~ a (T - V) dt = 0 tl 

dt = 0 

o r  

) , P OY2/ , P ~Y h "1-" glzOh ~Oh dt = 0  

This gives the two equations 

028 Ix 0 = 0 
Oy 2 K 

o~ oo +g~oh 
Ot 2 h 

= 0  

(lO) 
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From which there is obtained by integration 

sinh ~ / ~  y 
0 ----0h 

sinh ~ / ~  h 

sin ~ot 

(lOa) 

These are the equations for the free oscillation and the natural frequency of the 
fundamental mode of vibration. For a container of specified shape, such as rect- 
angular, circular, elliptical, etc., it is necessary to evaluate only the integrals I, 
and K. 

The pressure in the fluid is given by 

Op _ piv Op _ p~ 
Oz Ox 

p = - p ~  - & + ~ Q  (11) 

f Q = xb dx  
R 

Knowing p, the forces and moments on the walls and floor of the container can be 
determined readily. 

RECTANGULAR CONTAINER 

For a rectangular container of unit width as shown in figure 1, the boundary condi- 
tions for the impulsive pressures are ~ = ~0 at x = 4-1, for which equation (6) gives 

Equations (4) then g ive  

X 
eosh ~/3  

- ~0 (12) 
1 cosh v/~ 

p = - o ~ o h  ~Y3 (y /h  - ½(y/h)=) 

p = 

X 
sinh V~3 h2 

- -  p G  3 l 
cosh ~/~ 

X 
sinh %/3 

cosh %//3 / 
(13) 

The wall acceleration, ~0, thus produces an increase of pressure on one wall and a 
decrease of pressure on the opposite wall of 
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1 
= pi toh(y/h - ½(y/h)  2) v / 3  tanh V/3 pw 

21 

(14) 

and produces a pressure on the bot tom of the tank 

pb = - p~0h ~ /~  s i n h  % / 5  x 

l 2 cosh x /3  

The total force acting on one wall is 

(15) 

h 2 1 
P = p ~ 0 - - t a n h  %/3 (16) 

and its resultant acts at a distance above the bot tom 

h0 = g h ~ 1.5 (17) 

I t  is seen that  the over-all effect of the fluid on the walls of the container is the 
same as if a fraction, 2 P  + 21hpN, of the total  mass of the fluid were fastened rigidly 
to the walls of the container at a height 3/8 h above the bottom. The magnitude of 
this equivalent mass, Mo, is 

1 
tanh  ~¢/3 

M0 = M (18) 
1 

where M is the total  mass of the fluid. 
The total moment  exerted on the bot tom of the tank is 

xpb dx  = - p~toh2l 1 1 (19) 

Including this, the correct total  moment on the tank is given when the equivalent 
mass M0 is at an elevation above the bottom of 

( (  )) 3 4 ~//3 
. . . .  t 1 (20) h0= h l+5\t nhv/5  

The accuracy of the preceding analysis can be judged by comparison with the 
values computed by  Graham and Rodriguez (1952). Equation (18) gives an M0 
slightly larger than that  computed by these authors with maximum error less than 
2.5 per cent, and equation (20) gives an h0 slightly smaller than theirs with a maxi- 
mum error less than 2 per cent. I t  may  thus be concluded that  for the rectangular 
t a n k  the errors introduced by the approximation of equation (1) are negligible so 
far as engineering purposes are concerned. 
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In the case of free oscillations of the fluid in the fundamental mode for a rect- 
angular tank of unit width, equations (9) are 

f + z 2 
L = x ~ d x  = -~ l 2 

--Zz 

thus 

f[,2(f+ x )2 4 15 K 2 ~ dx dx = ~o 
l - l  

= 1 and equations (lOa) are 
1 

sinh i ~  Y l 
0 = O~ sin ~t 

sinh ~ h 1 

~2 = ~ t a n h  ~ 2  l 

(21) 

The velocity at any point in the fluid is given by 

l 2 - -  x 2 d ~  
U - -  

2 dy 

v =t~x 

The pressure in the fluid is given by  

Op = _ p~t 
Ox 

P = - P 5  - 5  d-~ 

(22) 

The pressure exerted on the wall of the container, (x = l), is 

1 ~20h sin cot (23) pw = p ~  
h 

sinh i i 7  

The force exerted on one wall is 

f0  h I a P = pw dy = p ~ ~20h sin ~t (24) 

The total force, 2P,  exerted on the tank by the fluid is the same as would be pro- 
duced by  an equivalent mass M1 that  is spring mounted as shown in figure 5. If M1 
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oscillates with displacement Xl the force against the tank and the kinetic energy of 
the mass are as follows: 

xl = A1 sin ~t 
F 1  = - M ~ A  lw  ~ sin ~t (25) 
T =1 2 2 ~ M ~ A 1  ~ sin s ~t 

Comparing these with the corresponding equations for the oscillating fluid it is 
seen that  

h 
A1 = 0h 

tanh 1 

M l = M ( l ~ - ~ / t a n h d h ) h  

(26) 

Fig. 5. 

The elevation of M1 above the bot tom of the tank is determined so that  it pro- 
duces the same moment  as the fluid. Considering only the moment of the fluid 
pressures on the walls (neglecting the pressures on the bottom), there is obtained 

(27) 

When the pressures exerted on the bot tom are also taken into account the height is 

hi = h 1 . . . . . . . .  (28) 
/~ h . /g 

~ ~-smh ~ 
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Comparing with the exact solution of Graham and Rodriguez, it is found that 
equation (21) gives a value for ¢02 that is slightly too large with a maximum error 
less than 1 per cent; equation (26) gives a value of M~ slightly too large with a 
maximum error less than 2 per cent. 

As shown in figure 5, the over-all effect of the fluid upon the container is the same 
as a system consisting of the container, a fixed mass M0, and spring-mounted masses 
M~, M~; etc. It will be noted that the formulas for the higher unsymmetrical 
(n = 1, 3, 5 • • -) modes are the same as for the first mode if l is replaced by l /n.  

The response of the system shown in Figure 5 when the container is subjected to 
arbitrary horizontal acceleration can be computed readily. From the motion of M~, 
the oscillation of the fluid in the fundamental mode can be determined from 
equation (26), which gives the relation between A1 and 0h. The actual displacement 
of the water surface is determined from equation (22), which at y = h gives 

1 )  
ph = p ~ x / 1 - -  ~ (x/1) 3 ~20h sin ~t ( 2 9 )  

This pressure is produced by the weight and inertia force of the fluid above the 
plane y = h. The depth d of water above this plane is thus 

d -  ph p(e - (30) 

CYLINDRICAL CONTAINER 

Consider a cylindrical tank as shown in figure 6, subjected to a horizontal accelera- 
tion ~0 and let the fluid be constrained between fixed membranes parallel to the 
x axis. Jacobsen (1949) has shown that an impulse ~0 does not generate a velocity 
component ~ in the fluid so that in this ease the membranes do not actually intro- 
duce a constraint. Each slice of fluid may thus be treated as if it were a narrow 
rectangular tank and the equations of the preceding section will apply. The pressure 
exerted against the wall of the tank is, from equation (14), 

pw = -p( toh(y /h  - ½(y/h) 2) ~¢/3 tanh (%/3  hR-cos ¢)  (31) 

The pressure on the bottom of the tank is 

pb = -p 0h s inh  x 

2 
- -  ( 3 2 )  

cosh  x / 3  

The preceding expressions are not convenient for calculating the total force exerted 
by the fluid. The following modification gives very accurate values for R / h  small 
and somewhat overestimates the pressure when R / h  is not small. 

pw = --p(toh(y/h -- ½(y/h) 2) ~¢/5 cos ~ tanh ~¢/5 R (31) 
I b  
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From this expression the resultant force exerted on the wall is 

h 2~ tanh x / 3 R  

P ~ ( ( po cos ~ R d~ d~ = -p~0 ~ R2h (33) 

from which it is seen that  the force exerted is the same as if an equivalent mass M0 
were moving with the tank, where 

- R  
tanh %/3 ~- 

M0 = M (34) 

Fig. 6. 

Comparing with Jacobsen (1949), it is found that  equation (34) overestimates M0 
with a maximum error less than 4 per cent. 

To exert a moment equal to tha t  exerted by the fluid pressure on the wall, the 
mass M0 should be at a height above the bot tom 

h0 = ~ h ~ 1.5 (35) 
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I f  the moment  exerted by  the pressures on the t ank  bo t tom are included, the equiva- 
lent mass, M0, must  be at  a height 

( 3 4 %/3 ~- 1.5~ 
~0= ~ ~ + ~ ,~nh ~/-~R - 1  (~ ~ (36) / 

to produce the proper total  moment  on the tank.  Comparing with Jacobsen (1949) 
it is found tha t  equation (36) underest imates  h0 with a max imum error less than  
6 per cent. 

The  free oscillations of the fluid (first mode) are determined from equations (21), 
etc. For the cylindrical t ank  

I~ 7rR~ K = = - 
4 27 -~ R 

R 

y 
sinh - R 

-- 8h 

sinh - -  R 

(37) 

Compar ing with the exact solution, Lamb (1932), it is found tha t  equation (37) 
slightly overest imates ~2 with a max imum error less than  1 per cent. 

From equations (11) the pressure in the fluid is given by  

I x  
P = - - P 3  - - g  4 R Oy 

Oy R 

cosh- - ) 
-- -- 0h~ 2 sin ~t 

sinh 

c°s~¢3 si-~ 2-¢) cos4 

(38) 

(39) 

The pressure on the wall is 

R 3 0~( P ~ = - P X ~  1 

The resultant  horizontal force exerted on the wall is 

11 
P = -~r ~ ,o~2R40h sin ~t 

_ 12 M l g G  sin ~t 
11 

(40) 
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This force is the same as that produced by an equivalent mass M1 oscillating in a 
horizontal plane with motion 

x~ = Alsin ~t 

h 
M1 = M ~ \12 /  

A1 = Oh 
11 

~ tanh R 

(41) 

In order that M1 exert the same moment as the fluid pressure on the wall it should 
be at an elevation above the bottom of 

The pressure exerted on the bottom of the tank is 

sinh - R 

i x 
4 R 0~ sin ~t (42) 

This exerts a moment about the z axis equal to 

32-55 ~ ~rRSp~ 2 

sinh R 

Including this, the correct total moment on the tank is produced when 

cosh ~ h 135 

- -  ~ slnh 

(43) 

ELLIPTICAL TANK 

Proceeding in the same way as for the cylindrical tank, the impulsive pressure on 
the wall is given by equation (14) 

1 
pw = p(toh(y/h --  ½(y/h)  2) % / 3  tanh ~ / 5 ~  (44) 

with a similar expression for acceleration in the direction of the y axis. 
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For oscillations of the fluid, equations (21) apply and for the first mode about the 
minor axis 

e2 = _g 54 2 tanh 54 h (45) 
a 15 ~- (b)  5 +  (b)  2 a  

where 2a is the major axis of the ellipse and 2b is the minor axis. For h/a small this 
reduces to 

0 3  - -  

Comparing this with the exact solution, Jeffreys (1924), it is found that ~ is slightly 
overestimated with a maximum error less than 1 per cent. 

2 

i 

\ 

~o 

Fig. 7. Fig. 8. 

' COMPOSITE T A N K S  

Symmetrical tanks formed of composite shapes such as that shown in figure 7 will 
have impulsive pressures given by equation (14) and oscillations described by 
equations (21). The tank shown in figure 7 has 

K~ = RlS{O.233 (R)5 + O.627 (R)4 -~ l.3771R)3 + O.197 (R) ~ 
(46) 

R 
~- 0.131 6~ -t- 0.016 

} 

I~ECTANGULAR D A M  

For a dam with sloping rectangular face and constraints on the flow as shown in 
figure 8, the impulsive pressures are given by the following equations: 
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du 
v = ( h -  y)~xx + u c ° s ¢  

= 40 exp (-- ~¢/3 x / h )  

Op ~ _ pi; 
Oy (47) 

p~ = p40h - ½ ~ / 3  - ~ cos 

cos°} 
v'~ 2 

?/ 
Fig. 9. 

The resultant horizontal force on the dam is 

s i n 0  ~ / 5  
(48) 

For 90 > ¢ > 55 °, equation (48) overestimates Fh by 6.5 per cent; for ¢ < 55 ° the 
accuracy of the preceding equation decreases and a different approximation must 
be used, as given below, 

When ¢ < 55 ° the fluid may be divided into two regions as shown in figure 9, 
where a rigid membrane lies along the x axis and has a horizontal acceleration cito 

such that  the pressure force on each side of the membrane is the same. In the region 
to the left of the x axis the following equations describe the flow: 

OU 
v = (h - -  y )  "~x q-  CUo cos ¢ 

Op = _ pb 
Oy 

(49) 
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Applying Hamilton's Principle to the total kinetic energy in this region leads to 
the equation 

x2 d~it dy  -t- 3x dx - 3 tan 2 ~ z~ = 3c u0 cos ~ tan ~ (50) 

The appropriate solution is 

( (  tan c°s ~b~ ( ) ~ ¢ /  tan cos ~b~ ~b) = do 1 -- c / + c 

a = %/1 + 3 tan  ~ -  1 

The pressure in the fluid is 

-ll 1 - c ~-nnn~,] Ik-l] -4- cy cos (51) 

In the region to the right of the x axis, figure 9, 

du 
v = (1 - x) ~ + u cos 

dd 
p = - - p ( I x - -  ½ z  ~)~y  + x ( ~ c o s ¢  (52) 

) P = p ~ + ~ u  c o s ~  

Equating the pressure forces on the two sides of the membrane lying along the x 
axis determines the value of the constant 

I 

COS qb oL 
2~ tan s ~ -/- cos ¢ 

~ = ( 1  cos¢)  

The pressure on the inclined wall of the dam is thus 

pw = - pdoH - ½ t---anne i -- c 

tang a + 2 

o/ 

~ - t - 2  

sin ¢ /  + c y cos ~ (53) 
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where h0 is the horizontal acceleration of the inclined face. The resultant horizontal 
force exerted against the inclined face is 

F,, = - p a o t l  "( tan7 1 - c ~ - ~ j  @ 7 c°s (54) 

Equation (54) overestimates Fh with a maximum error of 6 per cent at q~ = 25 °. 

FLEXIBLE RETAINING WALL 

An approximate analysis may be made of the effect of wall flexibility on water 
pressures. Suppose the fluid is retained by a vertical cantilever wall which is stiff 
to the degree that wave propagation in the wall may be neglected. As shown in 
figure 10, let the fluid be restrained by membranes whose shapes are proportional 
to the deflected shape of the wall. For a sinusoidal vibration the horizontal velocity 
of a fluid particle is u f ( y )  sin cot, and the vertical velocity is 

o u ~  h 
v = Ox f(y)  dy sin cot (55) 

Applying Hamilton's Principle, there is obtained 

d2(~ A 
+=--~  = 0 

dx ~ J5 

g A = (f(y))2 dy 

(56) 

B = f(y) dy dy 

The pressure on the wall is 

 f0T pw = p(~oco ~ f (y)  dy dy sin cot 

and the resultant force on the wall is 

(57) 

fTT P = p~o~ 2 f (y)  dy dy dy sin cot (58) 
~ O ~ O ~ y  

For a wall of uniform cross section, if we approximate the actual pressure by 
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p0 sin (~r/2) ( y / h )  and compute the deflected shape of the wall, there is obtained 

( f ( y )  = ~0 1 - ~ + ~ s i n ~  

P h ~ 
- -  . ~0 (~ )~  

~ X  

F i g .  1 0 .  

(59) 

where P is the total  force exerted on the wall. With this f ( y )  the pressure and force 
are computed to be 

Y 2 
= ph~0~ %/~ ~ t i ~  p ~ \ ~ /  

p _ ph~0z~ ~ -  1.68~ + ~ 1 8 ~  (1 - o22~) (6o) 
%/3 + 2.4~ + 1.63fl 2 

The latter equation may be written 

~/~- ~ + ~ . 1 ~  ¢ ~ -  o ~ )  
%/3 N = + 2.44f~ + 1.63B ~ fl 

N -~ pw2h 5 

For a given ~, tha t  is, a given N, this equation gives the appropriate value of ~. 
Figure 11 gives a graph of N vs fl and also shows how the total force on the wall is 
reduced by wall flexibility. For a rigid wall, E I  = co, the preceding equation over- 
estimates P by 6 per cent. 
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Fig. 11. 
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I~UMERICAL EXAMPLE 

Consider a cylindrical tank of 40 ft. radius and 25 ft. depth of water. Suppose the 
tank to be given a horizontal acceleration in the x direction of ~0 = 0.1g and let this 
acceleration persist for 1/4 second and during the following 1/4 second let ~0 -- 
-0.1g, so that the tank comes to rest with a total displacement of 0.2 ft. During 
this time the impulsive pressure on the wall of the tank is given by equation (31), 
which for the present problem takes the form 

2 40 cos ¢~ ) 

From equation (34) the total impulsive force exerted on the tank is 

tanh ~/3 40 
P = 0 . 1 W  

40 - 0.36 W = 280,000 lbs. 
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The oscillations set up in the fluid are determined from equations (37), etc. 

- -  - 

2~r - 3.9 seconds period of vibration 
co 

The force exerted by the fluid during the oscillations is the same as that exerted by 
a simple oscillator (figure 5), which has 

MI = M 7  - -  tanh - 0.50 M 

Since the natural period (3.9 see.) is long as compared with the 1/~ see. duration of 
the ground acceleration, the net effect of the 0.1g acceleration is to generate an 
initial displacement of 0.2 ft. of M~ relative to the tank wall and the consequent 
motion of M1 is 

Xl = 0.2 sin cot 

The maximum xl is 0.2 ft., and hence from equation (41) the maximum 0h is 

1 1 ~  0 ~ 2 5  0.008 radians 0h = 0 .065g~  - -  tanh - 4 0 -  

The pressure on the wall at this Oh is given by equations (37) and (39). The total 
force exerted on the wall is given by equation (40). 

12 
P = l i  (0.5 Mg)(0.008) sin cot = 33,000 sin cot 

The amplitude of the water surface oscillations can be determined from equations 
(30) and (39). The fluid pressure against the wall at y --- h and ¢ -- 0 is found from 
equation (39) to be 17 lbs. per sq. ft., and from equation (30) the amplitude of the 
water surface is 

17 
cl = p ( g  _ X ~ h )  - -  0.28 ft. 

In summary, during the first 1/~ second the fluid exerts a force of 280,000 Ibs. 
against the tank wall, in the negative x direction; during the next ~ second the 
280,000 lbs. force is in the nUx direction; following this the only force against the 
wall is the oscillating force the amplitude of which is 30,000 lbs. and the period 3.9 
sec. During this oscillation the maximum amplitude of the water surface is 0.28 ft. 
above the horizontal position. 
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