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Abstract: The green innovations in the energy sector are smart solutions to meet the excessive
power requirements through renewable energy resources (RERs). These resources have forwarded
the revolutionary relief in control of carbon dioxide gaseous emissions from traditional energy
resources. The use of RERs in a heuristic manner is necessary to meet the demand side management
in microgrids (MGs). The pricing scheme limitations hinder the profit maximization of MG and
their customers. In addition, recent pricing schemes lack mechanistic underpinning. Therefore, a
dynamic electricity pricing scheme through linear regression is designed for RERs to maximize the
profit of load customers (changeable and unchangeable) in MG. The demand response optimization
problem is solved through the particle swarm optimization (PSO) technique. The proposed dynamic
electricity pricing scheme is evaluated under two different scenarios. The simulation results verified
that the proposed dynamic electricity pricing scheme sustained the profit margins and comforts for
changeable and unchangeable load customers as compared to fixed electricity pricing schemes in
both scenarios. Hence, the proposed dynamic electricity pricing scheme can readily be used for real
microgrids (MGs) to grasp the goal for cleaner energy production.

Keywords: renewable energy resources; linear regression; dynamic electricity pricing scheme;
demand response; particle swarm optimization

1. Introduction

The high energy demand has not only resulted in shortage of input reserves but
also has increased the air pollution through gaseous emission. Hence, the production of
pollution-free energy is a global concern which needs to be solved on an urgent basis. In this
scenario, a smartgrid (SG) is introduced that can generate energy in reliable and efficient
way at a low cost [1]. Moreover, the efficiency of the SG is further enhanced through the
development of a microgrid (MG) in it [2,3].

The demand management for customers is the only linkage available to solve energy
production problems and also aid in conservation of input resources. For this purpose, the
demand side management (DSM) technique is presented. In addition to energy conservation,
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this technique has increased the lifespan and reliability of power grids along with satisfaction
of load demand, and also gaseous emission is decreased [4]. The DSM is sub-classified into
the following programs: conservation and energy efficiency, and demand response (DR) [5].

Basically, DR is a vital component of SG which interrelates utilities and system opera-
tors by providing real-time updates to the electricity infrastructure for the replacement of
traditional resources with intermittent ones (such as solar and wind energy) which eventu-
ally results in cost reduction, and also ensures the customers can reduce their electricity
bills [6,7]. Various aspects comprising (a) offered motivations/incentives, (b) decision
variables/parameters, and (c) control mechanisms/techniques have been used to classify
DR programs [8,9]. The offered motivations/incentives are sub-categorized into incentive-
based and price/time-based schemes. Both schemes offer some incentives to customers
based on their load reduction. Three factors, i.e., real-time pricing (RTP), time of use (TOU)
pricing, and critical peak (CPP) pricing, regulate the price of electricity in price-based
DR [10]. In the case of incentive-based DR, electricity prices may or may not be flexible,
depending upon direct load control programs, demand bidding programs, emergency DR
programs, interruptible/curtailable rates (I/C) and capacity market programs [11]. The cat-
egory (b) of DR schemes is classified into task scheduling and energy management [12].
The usage of energy according to peak demand hours is defined as energy management
DR. The control techniques (c) are further sub-classified as centralized and decentralized
modes [13]. Both modes differ based on users’ interface interaction, i.e., direct and indirect
with utility for load consumption.

In the literature, a number of researchers [14–21] have used DR on industrial and
residential scales. At industrial level, Xu et al. [14] stated that industries are categorized
into different groups via utility depending upon DR potential. Moreover, each individual
group have specific pricing schemes based on optimum load features. In contrast, energy
management is used as a tool for implication of DR at the residential scale. Ref. [17] used DR
price in real time that was optimized through stochastic and robust scheme for residential
appliances. The smart meter integrated with this scheme (also considered uncertainties)
could automatically convey the message to users so that they can optimize their electricity
accordingly within 5 min of the timespan. The lack of pricing signal design was observed in
this study. In another write-up, Yi et al. [21] scheduled the appliances in real time at small
residential DR by using an optimal stopping scheme. In this scheme, the various equipment
are grouped and used according to predefined time (principled on two-stage scheduling
algorithm), and it eventually results in bill-saving. The aim of [22–24] was to reduce the
electricity bills by keeping the consumer’s comfort at a higher priority. For this purpose,
they used multidisciplinary optimization approaches. The bilevel programming in DR was
utilized by [25] to attain marginal prices through unit commitment (upper level) and to
reduce the overall operational cost (lower level).

Ref. [26] introduced the bilevel programming, in which numerous microgrids (MGs)
are integrated to investigate the interaction between a large central production unit and an
energy service provider (ESP). This stepwise process is carried out in the following manner:
(a) the central production unit is used for formation and optimization of energy price,
(b) the price signals are sent to EPS after price optimization, and (c) the energy received
from central production is further optimized by EPS which schedules the energy generation
consumption. The lack of interaction between utility grid and renewable energy resources
(RERs) was analyzed in this work. Ref. [27] introduced time- or price-based self-scheduling
models in the day-ahead energy markets to increase the profit of DR aggregators. This
model was based on mixed-integer linear programming (MILP). The DR was subjected to
various procurement methods such as load shifting and load curtailment, and consumption
of in situ (onsite) generation and energy storage systems (ESSs) for small to medium sized
users. The DR aggregator has some problems related to wholesale market operations
due to its direct interface with the wholesale market. Therefore, significant updates are
required in the DR aggregator with respect to the wholesale market to integration of DR
bids. Later on, a risk-aware stochastic optimization model was proposed by [28] to ensure
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profit increment of MG aggregator and, also, the interaction with electricity customers.
In this model, the problem existed in the DR price that was fixed instead of dynamic
and dependent upon the real operational conditions. The practical integration of DR in
distribution networks based on optimal and pricing model was proposed by [29]. In bilevel
programming, a leader (load serving entity (LSE)) and a follower (DR aggregator) are pre-
sented to develop an interaction between users and their LSE. The strong duality theorem
and Karush–Kuhn–Tucker (KKT) conditions were used to transformed a nonlinear bilevel
mixed-integer program into a single MILP. The changeable load customers experienced
problems related to the wholesale price which was changed on an hourly basis. For leader
and follower, a win–win solution was proposed for this scheme. This presented scheme
was fruitful for both follower (payoff) and leader (profit). The uncertainties related to
renewable resources were not focused on. In another work, the profit of utility was en-
hanced by manipulation of prices based on mean power consumption in a multi-agent
environment [17,30]. The uncertainties of RERs were mentioned but not considered in their
work. Figure 1 shows the idea of the paper.

Figure 1. Idea of the paper.

The above discussion has shown that DR technique has been studied without proper
description in literature [17,31–34], or only fixed electricity pricing schemes have been
used [28,35]. As an example, throughout energy usage, the unchangeable load users have
higher but constant proportion of profit as compared to changeable load users in fixed
electricty pricing schemes. In the case of the RTP scheme, the pricing signal design has
some constraints in term of design—either it was not mentioned or design was ambiguous—
and also had negative influence on changeable load customers operating at small scales [17].
Keeping these facts in view, the present study aims to solve the above mentioned problems,
and novel features are mentioned below:
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• The MG including photovoltaics (PVs) and wind turbines (WTs) is modeled in MAT-
LAB/Simulink for two types of load customers (changeable and unchangeable).

• The dynamic electricity pricing scheme is designed based on linear regression.
• The optimization of the DR problem is solved through the particle swarm optimization

(PSO) technique.
• The profit is enhanced for changeable and unchangeable load customers.
• The proposed scheme is favorable for small-scale changeable loads.
• The proposed scheme has plug and play feature for a real world market.

The paper is summarized in the following manner: a novel dynamic electricty pricing
scheme is modeled in Section 2. The technical constraints and objective functions are
explained in Section 3. Section 4 introduces the system setup of grid-connected MG, while
Sections 5 and 6 contain numerical results and conclusions.

2. Dynamic Pricing Model

To overcome the greenhouse effects due to carbon dioxide gaseous emissions into
the atmosphere, RERs play a leading role in production of economical clean energy to
meet increased energy requirements. The RERs energy production is nonlinear in nature.
The energy resources comprise PVs, WTs, and tidal power as recognized among other
natural resources. The generation of these resources is integrated with main grid generation
to encounter the demand of power in a power system. This is also the concept of MG,
in which the power equation of a power system is maintained automatically. Figure 2
shows a grid-connected MG.

Figure 2. Grid-connected MG.

In an MG, the relationship between demand and supply is dynamic. Many researchers
have investigated this relationship to improve the energy efficiency of MG through DSM.
From literature survey, it can be concluded that optimized DR is considered to be beneficial
for DSM, which will eventually enhance the efficiency of MG. The DR can reduce peaking
plant and auxiliary services in an MG. However, there is a risk of overestimated modeling
of the DR problem due to unrealistic assumptions about customers load utilization and
RERs [36]. The DR modeling can be carried out by using two types of pricing schemes. One
is time-based rate, the second is incentive-based rate [5]. In the time-based rate program, a
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dynamic electricity pricing scheme is preferred due to its high profits for changeable load
customers [37]. In order to describe the employed dynamic electricity pricing scheme for
the optimization of DR in MG, one should have knowledge of demand–price elasticity
(DPE). The DPE signifies the relation between an increase in demand with a decrease in
price, though the change in demand is dynamic. Therefore, linear regression is used to
quantify the preceding change in demand. Through regression, the nonlinear demand
curve can be linearized. Regression is a documented technique for load estimation [38].
Therefore, the designed dynamic electricity pricing scheme is favorable in terms of comfort
for unchangeable load customers, whereas changeable load customers gain both decent profit
and comfort. The dynamic electricity pricing scheme is given below:

y(t) =

 1
∑06i≤m

0<j<n
((RN)j)i

+
∂D(t)
∂PT(t)

× (do − po) (1)

where y(t) is the computed dynamic electricty price and RN represents active distributor
generators (WT and PV) in the MG. The i represents the respective distributed generator
(DG) being considered from active distributed generators (DGs) and can range up to m, j can
range up to n, it represents specific renewable energy resource (RER) inside each DG. In this
way, estimation parameters can be computed for the pricing signal, and the generation
constraint can be rectified. The real-time power generation for load customers from RERs
is represented by D(t). The total available power at time t is given by PT(t). The parameter
estimation for the random variable of demand is represented by the difference of initial
values of demand do and price po, respectively.

3. Demand Response Model
3.1. Objective Function

The present study aimed at profit maximization of load customers by utilizing novel
dynamic electricity pricing model which is as follows:

max pro f it o f customers = Ux(t)− y(t)× (lin f + l f (t)) (2)

where Ux(t) and l f (t) are the utility function and changeable load during time t, while
lin f is the unchangeable load. Basically, utility function is the total satisfaction of the
user’s comfort in the sense of power utilization at a reasonable price. With respect to this
definition, it is assumed that the user’s utility will have the following key points [39]:

1. Non-decreasing utility function should be used because it can fulfill the maximum
desires of consumers.

2. The usage of first unit of electricity (accounted as satisfaction level/utility of con-
sumers) should exceed the utility until the nth unit. At this moment, the user’s utility
increased smoothly.

3. The zero-power utilization should result in zero utility.

Finally, it is found that objective function (utility) should have quadratic association
with linear decreasing marginal profit [39,40]. The objective/utility function is as follows:

Ux(t) = qx − rx2 0 ≤ x ≤ xmax (3)

where x represents the utilization of power by individual customers during time t, while
the behavior of individual users in DR is subjected to their definition of utilization and is
represented by parameters q and r, respectively.
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3.2. Technical Constraints

The objective function is solved through three constraints, i.e., equality (power balance)
and inequality (generation and load limit), which are given below:

PT(t) + D(t) = lin f + l f (t) (4)

Pmin
T (t) ≤ PT(t) ≤ Pmax

T (t) (5)

lmin
f (t) ≤ l f (t) ≤ lmax

f (t) (6)

4. System Setups

MATLAB/Simulink is used to design the grid-connected MG. The ((RN)j)i corre-
sponds to DGs. The changeable loads fall in load1 to load5 and unchangeable in load6 to
load12. The DGs related to PVs are DG2, DG3, DG5, DG7, DG10, and DG11, while DG1,
DG4, DG6, DG8, DG9, and DG12 are WTs. The maximum power point tracking (MPPT)
control mode is used to run PVs and WTs. The initial demand and supply define the
numeric value for parameter estimation for random variable of demand. Table 1 (case I)
and Table 2 (case II) represent the parameters of DGs and loads.

Table 1. DGs and load profiles.

Sources Load Type of Load Control Capacities Max. Demand

DG1 Load1 Unchangeable MPPT 45 kW, 0 kVar 40 kW, 5 kVar
DG2 Load2 Unchangeable MPPT 45 kW, 0 kVar 35 kW, 5 kVar
DG3 Load3 Unchangeable MPPT 55 kW, 0 kVar 40 kW, 5 kVar
DG4 Load4 Unchangeable MPPT 60 kW, 0 kVar 30 kW, 5 kVar
DG5 Load5 Unchangeable MPPT 55 kW, 0 kVar 25 kW, 5 kVar
DG6 Load6 Unchangeable MPPT 45 kW, 0 kVar 13 kW, 5 kVar
DG7 Load7 Unchangeable MPPT 55 kW, 0 kVar 18 kW, 5 kVar
DG8 Load8 Unchangeable MPPT 40 kW, 0 kVar 14 kW, 5 kVar
DG9 Load9 Unchangeable MPPT 35 kW, 0 kVar 10 kW, 5 kVar
DG10 Load10 Unchangeable MPPT 60 kW, 0 kVar 14 kW, 5 kVar
DG11 Load11 Unchangeable MPPT 55 kW, 0 kVar 15 kW, 5 kVar
DG12 Load12 Unchangeable MPPT 45 kW, 0 kVar 15 kW, 5 kVar

Table 2. DGs and load profiles.

Sources Load Type of Load Control Capacities Max. Demand

DG1 Load1 Changeable MPPT 45 kW, 0 kVar 0–62 kW, 7 kVar
DG2 Load2 Changeable MPPT 45 kW, 0 kVar 0–64 kW, 7 kVar
DG3 Load3 Changeable MPPT 55 kW, 0 kVar 0–72 kW, 7 kVar
DG4 Load4 Changeable MPPT 60 kW, 0 kVar 0–58 kW, 7 kVar
DG5 Load5 Changeable MPPT 55 kW, 0 kVar 0–64 kW, 7 kVar
DG6 Load6 Unchangeable MPPT 45 kW, 0 kVar 13 kW, 5 kVar
DG7 Load7 Unchangeable MPPT 55 kW, 0 kVar 18 kW, 5 kVar
DG8 Load8 Unchangeable MPPT 40 kW, 0 kVar 14 kW, 5 kVar
DG9 Load9 Unchangeable MPPT 35 kW, 0 kVar 10 kW, 5 kVar
DG10 Load10 Unchangeable MPPT 60 kW, 0 kVar 14 kW, 5 kVar
DG11 Load11 Unchangeable MPPT 55 kW, 0 kVar 15 kW, 5 kVar
DG12 Load12 Unchangeable MPPT 45 kW, 0 kVar 15 kW, 5 kVar

5. Results and Discussions

Two aspects are covered in this study to evaluate the efficiency of the proposed model
by comparing with fixed electricity pricing scheme. The first aspect (case I) covers the
implementation of dynamic electricity pricing scheme in MG for unchangeable power load.
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Regarding the second aspect (case II), both power load customers, i.e., changeable and
unhangeable, are studied with respect to fixed and dynamic electricity pricing schemes.

5.1. Case I: Comparison of Dynamic and Fixed Electricity Pricing Schemes for Unchangeable Loads
5.1.1. Dynamic Electricity Pricing Scheme

Figures 3 and 4 show the active and reactive power outputs of WTs and PVs. The reac-
tive power outputs are zero in both WTs and PVs. The randomness of natural resources
(sunlight and wind speed) have influence on active power outputs of PVs (DG2, DG3, DG5,
DG7, DG10, and DG11) and WTs (DG1, DG4, DG6, DG8, DG9, and DG12). With the passage
of time, the gradual increment in active power outputs of DG4 and DG9 could be analyzed
and its peak value is recorded at t = 4.5 s. In addition, similar trends regarding active power
outputs are observed in the case of DG1 and DG12 with maximum value at time interval of
four and half seconds (t = 4.5 s), while the active power outputs decreased with the passage
of time in DG6 and DG8, and minimum value is observed at t = 4.5 s. The maximum
active power output at t = 2.5 s is observed in DG5 and DG7 in the case of PVs, and the
remaining DGs (DG2, DG3, DG10, and DG11) have maximum active power output at same
time interval (t = 2.5 s). The power output, either active or reactive, of the main grid is
shown in Figure 5. The deficit caused by RERs is overcome by the main grid. In addition,
excessive energy or active power output resulting from RERs is fed to the main grid.

The frequency and line voltages in MG can fluctuate due to natural environmental
conditions and loads. In spite of severe variations in environmental conditions, the constant
voltage of 380 V and frequency of 50 Hz is observed throughout the line during different
loads (Figure 6). The total demand of unchangeable loads (1–12) is demonstrated in Figure 7.
These figures show that load demand of users is in accordance with their satisfaction level.
In a dynamic electricity pricing scheme, the variations in profit of unchangeable load clients
are analyzed due to price variation in different time durations. This dynamic electricity
pricing scheme is more profitable as compared to the fixed electricity pricing scheme used
by [29] for unchangeable load users. Moreover, small- to medium-scale customers are
considered in their work. The use of a dynamic electricity pricing scheme in previous
study [41] was limited to small-scale unchangeable load customers, while the current
study is suitable and profitable for a wide range (small–large scales) of customers in the
distribution network. The dynamic electricity price is presented in Figure 8, and profit
of unchangeable load is shown in Figure 9. Furthermore, profit of the unchangeable load
customers starts from 5450 cents, and the maximum (5662 cents) is observed at time t = 2.7 s
due to low dynamic electricity price. Conclusively, it is found that the present dynamic
electricity pricing model is more profitable for unchangeable load customers as compared
to the previous model [37].

Figure 3. Power outputs of WTs.
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Figure 4. Power outputs of PVs.

Figure 5. Power outputs of the main grid.

Figure 6. Line voltages and frequency in the MG.
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Figure 7. Total demand of unchangeable loads.

Figure 8. Dynamic electrcity pricing scheme.

Figure 9. Profit of the unchangeable loads.
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5.1.2. Fixed Electricity Pricing Scheme

Figure 10 shows the profit of unchangeable load customers at 10 cents of the fixed
electricity pricing scheme. The 943-cent profit is observed throughout the duration in the
fixed electricity pricing scheme. However, the profit of the dynamic electricity pricing
model is much higher than the fixed electricity pricing model, as verified by the results.
Conclusively, it is found that the comfort and profit of unchangeable load customers are
well maintained with the passage of time through the dynamic electricity pricing model
as compared to the fixed electricity pricing model. Figure 11 describes the behavior of
active and reactive power outputs of the main grid. At t = 0~2.2 s, the main grid supplies
the active power outputs to the MG to entertain their loads due to lower outputs of RERs.
Furthermore, the main grid absorbs the excessive output power by RERs after t = 2.2~4.5 s.
The 60 kW reactive power load is supplied by the main grid.

Figure 10. Profit of the unchangeable loads.

Figure 11. Power output of the main grid.
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5.2. Case II: Comparison of Dynamic and Fixed Electricity Pricing Schemes-Based DR for
Changeable and Unchangeable Loads

Both pricing schemes (dynamic and fixed electricity pricing schemes) are implemented
in case II for unchangeable and changeable loads. The profit of changeable and comfort of
unchangeable loads are compared with the fixed electricity pricing scheme.

5.2.1. Dynamic Electricity Pricing Scheme

The reactive power of uncontrollable DGs comprising PVs and WTs are zero and can
be seen in Figures 12 and 13. The DG1, DG4, DG6, DG8, DG9, and DG12 are WTs. The active
power outputs of DG4 and DG9 are increasing, and DG6 and DG8 are decreasing, which
can be seen from the figures. The WTs active power outputs depend upon the speed of
wind. Moreover, at t = 4.5 s, the peak (DG4 and DG9) and off-peak (DG6 and DG8) active
power outputs are noticed. However, DG4 and DG9 follow the same pattern as DG1 and
DG12, but at t = 4.5 s, the peak of active power outputs is observed. In the case of PVs,
two patterns of active power outputs are observed: DG5 and DG7 are analogous, and DG2,
DG3, DG10, and DG11 are alike. The maximum active power outputs of DG5 and DG7 are
analyzed at t = 2.5 s. In addition, DG2, DG3, DG10, and DG11 have maximum active power
outputs, which can be seen from Figure 13 at t = 2.5 s.

The output of main grid (active and reactive power output) can be seen from Figure 14.
The load demand of customers varies with pricing model, which has a direct relation
with RERs. In the case of lower outputs of RERs, the main grid facilitates MG and their
customers and vice versa. At t = 0~4.5 s, the main grid supplied its active and reactive
(70 kW) power outputs to load customers due to lower dynamic electricity price, which
can be seen from Figure 14.

Figure 15 is representing the total demand of changeable loads. The changeable
loads obtain the maximum profit (2029 cents at t = 3.2 s) due to lower dynamic electricity
price (Figure 16), as verified by Figure 17. The comfort of changeable load customers
might be disturbed under a fixed electricity pricing scheme [28]. In contrast, small-scale
changeable load customers were charged through a dynamic electricity pricing scheme but
the outcomes may not be favorable to large-scale changeable load customers as verified
by [17,41,42]. Ref. [37] used the dynamic electricity pricing model based on RERs, and
the maximum profit (1325 cents) of changeable load customers is observed at t = 2.2 s.
However, the present dynamic electricity pricing model based on regression analysis
is more beneficial for changeable and unchangeable load customers at small and large
scales. In addition, the comfort for unchangeable load customers is maintained throughout
the case.

Figure 12. Power outputs of WTs.
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Figure 13. Power outputs of PVs.

Figure 14. Power outputs of the main grid.

Figure 15. Total demand of changeable loads.
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Figure 16. Dynamic electricity pricing scheme.

Figure 17. Profit of the changeable loads.

5.2.2. Fixed Electricity Pricing Scheme

The profit of changeable load customers (213 cents) at the fixed (10 cents) electricity
pricing scheme can be seen from Figure 18. As per the fixed electricity pricing scheme, load
demand is price-oriented by a higher price lowering the load demand. Simply, change-
able load customers reduce their load demand due to high regular price and vice versa
(dynamic electricity pricing scheme). The reduction in load demand by changeable load
customers resulted in lower profit. Hence, the fixed electricity pricing scheme is proven
to be uncomfortable for changeable load customers. According to Figure 19, it can be
seen that main grid active power output is fed into MG for their customers from t = 0~2 s.
From t = 2~4.2 s, the main grid absorbs the excessive output power of RERs due to the
fixed electricity pricing scheme.
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Figure 18. Profit of the changeable loads.

Figure 19. Power outputs of the main grid.

6. Conclusions

The maximization of profit for changeable and unchangeable load customers is ob-
jectively aimed for optimization of DR in MG through the dynamic electricity pricing
scheme. The dynamic electricity pricing scheme is designed by using regression analysis to
utilize the power generated at the supply side efficiently. The PSO algorithm is selected as
the metaheuristic technique to optimize the DR. The reason for practicing with the PSO
algorithm is its tendency to give impactable efficient and accurate results. The proposed dy-
namic electricity pricing scheme is tested on the MG model comprising RERs. Among RERs,
PVs and WTs are used preferably in the model due to its cost-effectiveness and quick onsite
installation. Two cases are considered to show the validation of the optimized results
depending on the type of customer and pricing schemes. In case I, a comparison of pricing
schemes is made for unchangeable load customers. The results showed that with a dynamic
electricity pricing scheme, even the unchangeable load customers enjoyed the comfort of
good profit with respect to a fixed electricity pricing scheme. In case II, a dynamic electricity
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pricing scheme and fixed electricity pricing scheme is used and compared for both type of
customers, i.e., changeable and unchangeable. It is noticed that changeable load customers,
even when utilizing a fixed electricity pricing scheme, have higher profit than unchangeable
load customers. Moreover, the unchangeable load customers have better profit when using
a dynamic electricity pricing scheme than a fixed electricity pricing scheme. To conclude,
the dynamic electricity pricing scheme is a better choice if the goal is profit maximization
through DR. The following directions can be considered in the future work.

• To overcome the uncertainty of RERs in MG, a battery storage system (BSS) can
be added into the system model. By adding BSS, the DR will be a multiobjective
optimization problem and a predictive dynamic electricity pricing model can be
simulated by using stochastic techniques.

• The regression analysis has transformed the problem of DR, a mathematical optimiza-
tion problem, into a convex optimization problem. This will open up ways of modeling
through hybrid optimization techniques to significantly improve the efficiency of an
MG through DR.

Author Contributions: Conceptualization, M.A.S.H.; data curation, U.A. and U.F.; formal analysis,
A.K. and S.S.H.B.; investigation, M.Z.K. and Z.u.A.J.; methodology, M.A.S.H., U.A. and U.F.; project
administration, M.A.S.H. and U.A.; resources, A.K. and S.S.H.B.; software, M.A.S.H., U.A. and
U.F.; supervision, M.A.S.H.; validation, Z.u.A.J.; writing—original draft, M.A.S.H., U.A. and U.F.;
writing—review and editing, M.Z.K., J.O. and J.P. All authors have read and agreed to the published
version of the manuscript.

Funding: Project no. 132805 has been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed under the K_19 funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MG Microgrid
MGs Microgrids
SG Smartgrid
RERs Renewable energy resources
RER Renewable energy resource
DR Demand response
DSM Demand side management
PSO Particle swarm optimization
RTP Real-time pricing
CPP Critical peak pricing
TOU Time of use
ESP Energy service provider
MILP Mixed-integer linear programming
ESS Energy storage system
LSE Load serving entity
WTs Wind turbines
PVs Photo voltaic
DPE Demand–price elasticity



Energies 2022, 15, 1385 16 of 17

References
1. Wang, Y.; Huang, Y.; Wang, Y.; Zeng, M.; Li, F.; Wang, Y.; Zhang, Y. Energy management of smart micro-grid with response loads

and distributed generation considering demand response. J. Clean. Prod. 2018, 197, 1069–1083. [CrossRef]
2. Ourahou, M.; Ayrir, W.; Hassouni, B.E.; Haddi, A. Review on smart grid control and reliability in presence of renewable energies:

Challenges and prospects. Math. Comput. Simul. 2020, 167, 19–31. [CrossRef]
3. Hassan, M.A.S.; Chen, M.; Li, Q.; Mehmood, M.A.; Cheng, T.; Li, B. Microgrid control and protection state of the art: A

comprehensive overview. J. Electr. Syst. 2018, 14, 148–164.
4. Tabar, V.S.; Jirdehi, M.A.; Hemmati, R. Sustainable planning of hybrid microgrid towards minimizing environmental pollution,

operational cost and frequency fluctuations. J. Clean. Prod. 2018, 203, 1187–1200. [CrossRef]
5. Jordehi, A.R. Optimisation of demand response in electric power systems, a review. Renew. Sustain. Energy Rev. 2019, 103, 308–319.

[CrossRef]
6. Huang, W.; Zhang, N.; Kang, C.; Li, M.; Huo, M. From demand response to integrated demand response: Review and prospect of

research and application. Prot. Control Mod. Power Syst. 2019, 4, 12. [CrossRef]
7. Lu, R.; Hong, S.H.; Zhang, X. A dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach.

Appl. Energy 2018, 220, 220–230. [CrossRef]
8. Annala, S.; Lukkarinen, J.; Primmer, E.; Honkapuro, S.; Ollikka, K.; Sunila, K.; Ahonen, T. Regulation as an enabler of demand

response in electricity markets and power systems. J. Clean. Prod. 2018, 195, 1139–1148. [CrossRef]
9. Vardakas, J.S.; Zorba, N.; Verikoukis, C.V. A survey on demand response programs in smart grids: Pricing methods and

optimization algorithms. IEEE Commun. Surv. Tutor. 2014, 17, 152–178. [CrossRef]
10. Qdr, Q. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them; Technical Report; US Department

Energy: Washington, DC, USA, 2006.
11. Iwayemi, A.; Yi, P.; Dong, X.; Zhou, C. Knowing when to act: An optimal stopping method for smart grid demand response. IEEE

Netw. 2011, 25, 44–49. [CrossRef]
12. Dong, Q.; Yu, L.; Song, W.Z.; Tong, L.; Tang, S. Distributed demand and response algorithm for optimizing social-welfare in

smart grid. In Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium, Shanghai, China,
21–25 May 2012; pp. 1228–1239.

13. Alagoz, B.; Kaygusuz, A.; Karabiber, A. A user-mode distributed energy management architecture for smart grid applications.
Energy 2012, 44, 167–177. [CrossRef]

14. Xu, F.Y.; Lai, L.L. Novel active time-based demand response for industrial consumers in smart grid. IEEE Trans. Ind. Inform. 2015,
11, 1564–1573. [CrossRef]

15. Cui, H.; Zhou, K. Industrial power load scheduling considering demand response. J. Clean. Prod. 2018, 204, 447–460. [CrossRef]
16. Brem, A.; Adrita, M.M.; O’Sullivan, D.T.; Bruton, K. Industrial smart and micro grid systems—A systematic mapping study. J.

Clean. Prod. 2020, 244, 118828. [CrossRef]
17. Chen, Z.; Wu, L.; Fu, Y. Real-time price-based demand response management for residential appliances via stochastic optimization

and robust optimization. IEEE Trans. Smart Grid 2012, 3, 1822–1831. [CrossRef]
18. Mitra, K.; Dutta, G. A two-part dynamic pricing policy for household electricity consumption scheduling with minimized

expenditure. Int. J. Electr. Power Energy Syst. 2018, 100, 29–41. [CrossRef]
19. Wang, Y.; Lin, H.; Liu, Y.; Sun, Q.; Wennersten, R. Management of household electricity consumption under price-based demand

response scheme. J. Clean. Prod. 2018, 204, 926–938. [CrossRef]
20. Barhagh, S.S.; Abapour, M.; Mohammadi-Ivatloo, B. Optimal scheduling of electric vehicles and photovoltaic systems in

residential complexes under real-time pricing mechanism. J. Clean. Prod. 2020, 246, 119041. [CrossRef]
21. Yi, P.; Dong, X.; Iwayemi, A.; Zhou, C.; Li, S. Real-time opportunistic scheduling for residential demand response. IEEE Trans.

Smart Grid 2013, 4, 227–234. [CrossRef]
22. Altayeva, A.; Omarov, B.; Im Cho, Y. Multi-objective optimization for smart building energy and comfort management as a case

study of smart city platform. In Proceedings of the 2017 IEEE 19th International Conference on High Performance Computing
and Communications, IEEE 15th International Conference on Smart City, IEEE 3rd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Bangkok, Thailand, 18–20 December 2017; pp. 627–628.

23. Jafari, A.; Khalili, T.; Ganjehlou, H.G.; Bidram, A. Optimal integration of renewable energy sources, diesel generators, and
demand response program from pollution, financial, and reliability viewpoints: A multi-objective approach. J. Clean. Prod. 2020,
247, 119100. [CrossRef]

24. Chamandoust, H.; Derakhshan, G.; Hakimi, S.M.; Bahramara, S. Tri-objective optimal scheduling of smart energy hub system
with schedulable loads. J. Clean. Prod. 2019, 236, 117584. [CrossRef]

25. Mahboubi-Moghaddam, E.; Nayeripour, M.; Aghaei, J.; Khodaei, A.; Waffenschmidt, E. Interactive robust model for energy
service providers integrating demand response programs in wholesale markets. IEEE Trans. Smart Grid 2016, 9, 2681–2690.
[CrossRef]

26. Asimakopoulou, G.E.; Dimeas, A.L.; Hatziargyriou, N.D. Leader-follower strategies for energy management of multi-microgrids.
IEEE Trans. Smart Grid 2013, 4, 1909–1916. [CrossRef]

27. Parvania, M.; Fotuhi-Firuzabad, M.; Shahidehpour, M. Optimal demand response aggregation in wholesale electricity markets.
IEEE Trans. Smart Grid 2013, 4, 1957–1965. [CrossRef]

http://doi.org/10.1016/j.jclepro.2018.06.271
http://dx.doi.org/10.1016/j.matcom.2018.11.009
http://dx.doi.org/10.1016/j.jclepro.2018.05.059
http://dx.doi.org/10.1016/j.rser.2018.12.054
http://dx.doi.org/10.1186/s41601-019-0126-4
http://dx.doi.org/10.1016/j.apenergy.2018.03.072
http://dx.doi.org/10.1016/j.jclepro.2018.05.276
http://dx.doi.org/10.1109/COMST.2014.2341586
http://dx.doi.org/10.1109/MNET.2011.6033035
http://dx.doi.org/10.1016/j.energy.2012.06.051
http://dx.doi.org/10.1109/TII.2015.2446759
http://dx.doi.org/10.1016/j.jclepro.2018.08.270
http://dx.doi.org/10.1016/j.jclepro.2019.118828
http://dx.doi.org/10.1109/TSG.2012.2212729
http://dx.doi.org/10.1016/j.ijepes.2018.01.028
http://dx.doi.org/10.1016/j.jclepro.2018.09.019
http://dx.doi.org/10.1016/j.jclepro.2019.119041
http://dx.doi.org/10.1109/TSG.2012.2225155
http://dx.doi.org/10.1016/j.jclepro.2019.119100
http://dx.doi.org/10.1016/j.jclepro.2019.07.059
http://dx.doi.org/10.1109/TSG.2016.2615639
http://dx.doi.org/10.1109/TSG.2013.2256941
http://dx.doi.org/10.1109/TSG.2013.2257894


Energies 2022, 15, 1385 17 of 17

28. Nguyen, D.T.; Le, L.B. Risk-constrained profit maximization for microgrid aggregators with demand response. IEEE Trans. Smart
Grid 2014, 6, 135–146. [CrossRef]

29. Nguyen, D.T.; Nguyen, H.T.; Le, L.B. Dynamic pricing design for demand response integration in power distribution networks.
IEEE Trans. Power Syst. 2016, 31, 3457–3472. [CrossRef]

30. Kabir, A.; Gilani, S.M.; Rehmanc, G.; Sabath H, S.; Popp, J.; Hassan, M.A.S.; Oláh, J. Energy-aware caching and collaboration for
green communication systems. Acta Montan. Slovaca 2021, 26, 47–59.

31. Nguyen, D.T.; Le, L.B. Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics.
IEEE Trans. Smart Grid 2014, 5, 1608–1620. [CrossRef]

32. Conejo, A.J.; Morales, J.M.; Baringo, L. Real-time demand response model. IEEE Trans. Smart Grid 2010, 1, 236–242. [CrossRef]
33. Anvari-Moghaddam, A.; Monsef, H.; Rahimi-Kian, A. Optimal smart home energy management considering energy saving and a

comfortable lifestyle. IEEE Trans. Smart Grid 2014, 6, 324–332. [CrossRef]
34. Brahman, F.; Honarmand, M.; Jadid, S. Optimal electrical and thermal energy management of a residential energy hub, integrating

demand response and energy storage system. Energy Build. 2015, 90, 65–75. [CrossRef]
35. Mariyakhan, K.; Mohamued, E.A.; Asif Khan, M.; Popp, J.; Oláh, J. Does the level of absorptive capacity matter for carbon

intensity? Evidence from the USA and China. Energies 2020, 13, 407. [CrossRef]
36. Parrish, B.; Gross, R.; Heptonstall, P. On demand: Can demand response live up to expectations in managing electricity systems?

Energy Res. Soc. Sci. 2019, 51, 107–118. [CrossRef]
37. Hassan, M.A.S.; Chen, M.; Lin, H.; Ahmed, M.H.; Khan, M.Z.; Chughtai, G.R. Optimization modeling for dynamic price based

demand response in microgrids. J. Clean. Prod. 2019, 222, 231–241. [CrossRef]
38. Johannesen, N.J.; Kolhe, M.; Goodwin, M. Relative evaluation of regression tools for urban area electrical energy demand

forecasting. J. Clean. Prod. 2019, 218, 555–564. [CrossRef]
39. Samadi, P.; Mohsenian-Rad, H.; Schober, R.; Wong, V.W. Advanced demand side management for the future smart grid using

mechanism design. IEEE Trans. Smart Grid 2012, 3, 1170–1180. [CrossRef]
40. Asr, N.R.; Zhang, Z.; Chow, M.Y. Consensus-based distributed energy management with real-time pricing. In Proceedings of the

2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5.
41. Jiang, T.; Cao, Y.; Yu, L.; Wang, Z. Load shaping strategy based on energy storage and dynamic pricing in smart grid. IEEE Trans.

Smart Grid 2014, 5, 2868–2876. [CrossRef]
42. Asgher, U.; Babar Rasheed, M.; Al-Sumaiti, A.S.; Ur-Rahman, A.; Ali, I.; Alzaidi, A.; Alamri, A. Smart energy optimization using

heuristic algorithm in smart grid with integration of solar energy sources. Energies 2018, 11, 3494. [CrossRef]

http://dx.doi.org/10.1109/TSG.2014.2346024
http://dx.doi.org/10.1109/TPWRS.2015.2510612
http://dx.doi.org/10.1109/TSG.2014.2313612
http://dx.doi.org/10.1109/TSG.2010.2078843
http://dx.doi.org/10.1109/TSG.2014.2349352
http://dx.doi.org/10.1016/j.enbuild.2014.12.039
http://dx.doi.org/10.3390/en13020407
http://dx.doi.org/10.1016/j.erss.2018.11.018
http://dx.doi.org/10.1016/j.jclepro.2019.03.082
http://dx.doi.org/10.1016/j.jclepro.2019.01.108
http://dx.doi.org/10.1109/TSG.2012.2203341
http://dx.doi.org/10.1109/TSG.2014.2320261
http://dx.doi.org/10.3390/en11123494

	Introduction
	Dynamic Pricing Model
	Demand Response Model
	Objective Function
	Technical Constraints

	System Setups
	Results and Discussions
	Case I: Comparison of Dynamic and Fixed Electricity Pricing Schemes for Unchangeable Loads
	Dynamic Electricity Pricing Scheme
	Fixed Electricity Pricing Scheme

	Case II: Comparison of Dynamic and Fixed Electricity Pricing Schemes-Based DR for Changeable and Unchangeable Loads
	Dynamic Electricity Pricing Scheme
	Fixed Electricity Pricing Scheme


	Conclusions
	References

