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Abstract

It is common for a firm to make use of multiple suppliers of different delivery leadtimes,

reliabilities, and costs. In this paper, we are concerned the joint pricing and inventory control

problem for such a firm that has a quick-response supplier and a regular supplier that both

suffer random disruptions, and faces price-sensitive random demands. We aim at characterizing

the optimal ordering and pricing policies in each period over a planning horizon, and analyzing

the impacts of supply source diversification. We show that, when both suppliers are unreliable,

the optimal inventory policy in each period is a reorder point policy and the optimal price is

decreasing in the starting inventory level of the period. In addition, we show that having supply
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source diversification or higher supplier reliability increases the firm’s optimal profit and lowers

the optimal selling price. We also demonstrate that, with the selling price as a decision, a

supplier may receive even more orders from the firm after an additional supplier is introduced.

For the special case where the quick-response supplier is perfectly reliable, we further show that

the optimal inventory policy is of a base-stock type and the optimal pricing policy is a list-price

policy with markdowns.

Key words: inventory control, source diversification, optimal pricing, supplier disruption, list-

price with markdown policy.

Submission and Acceptance: Received December 2011; accepted January 2014 by Haresh Gur-

nani, Ray Saibal, and Yunzeng Wang after three revisions.

1 Introduction

Supply disruption, which may result from various causes ranging from accidents and disasters,

labor strikes, to quality issues and machine breakdowns, has been a challenge faced by many

firms. In practice, source diversification and demand/pricing management have been two widely

used strategies for mitigating the impacts of supply disruption. In this paper we are concerned

with jointly determining pricing and inventory replenishment strategies for a firm that has dual

unreliable supply sources and faces price-sensitive random demands. Due to possible disruption,

the suppliers may or may not be able to deliver an order in a period, and the delivery capability

of each supplier evolves in a Markovian nature over time. Motivated by the observation that many

firms use a quick-response, but more costly, supplier that can deliver the firm’s order relatively

quickly, plus a less responsive and also less costly supplier for its regular supply (see, e.g., Fisher et

al. 1994), in this paper we focus on the case where the delivery leadtimes for the two suppliers are

zero (for the quick-response supplier) and one (for the regular supplier) period of time respectively

when they are capable of delivery. This also captures a popular setting where a firm has two supply

sources: one is local or in-house production which tends to be more expensive, more reliable, and

can deliver in a shorter time; while the other is non-local/outsourcing which tends to be less reliable

and takes more time for delivery. We aim at a) characterizing the optimal joint ordering and pricing

policies that maximizes the firm’s expected total discounted profit over a planning horizon, and b)

analyzing the impacts of supply source diversification and supplier reliability on the firm’s optimal

profit, its optimal pricing and inventory policies, its customers, and its suppliers.
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This paper is related to three streams of research literature: (i) procurement from multiple

unreliable suppliers; (ii) inventory control with multiple delivery modes; and (iii) coordination of

pricing and inventory decisions. Many researchers, including Anupindi and Akella (1993), Chen et

al. (2001), Tomlin and Wang (2005), Dada and Petruzzi (2007), and Federgruen and Yang (2011),

have studied inventory systems with multiple suppliers and random yield. The studies that are

closely related to ours are those of dual sourcing inventory replenishment models, assuming that

different suppliers may suffer different random disruptions and charge different unit costs. See,

for example, Tomlin and Snyder (2007), Yang et al. (2009), Gürler and Parlar (1997), Chopra et

al. (2007), Tomlin (2009), and Gumus et al. (2011). In particular, for the case where a firm has

one perfectly reliable supplier and one unreliable supplier, Yang et al. (2009) discuss the value of

information on the uncertain supplier’s reliability; for the case when both suppliers are subject to

disruptions, Gürler and Parlar (1997) derive an expression for the average cost objective function

under a given (q, r) policy, and then develop numerical approaches to evaluate the objective function

for determining the optimal q and r. All these studies assume zero leadtime for all suppliers.

The second stream of related research is on inventory control with multiple delivery modes/supply

leadtimes. In these studies, the research question addressed is the structure of optimal inventory

policy for each supplier. Daniel (1963) is the first to consider a multi-period single-stage model

with two shipping modes, with leadtimes being 0 and 1 respectively. Fukuda (1964) extends Daniel

(1963) to the case where the leadtimes of the two supply modes are L and L + 1 respectively

for a general nonnegative integer L. Whittemore and Saunders (1977) consider the dual-supplier

problem with leadtimes of arbitrary lengths, and demonstrate that the optimal control policy is

extremely complicated and the parameters of the optimal control policy are state-dependent if the

difference in leadtimes is greater than 1. Feng et al. (2006) study the problem with multiple con-

secutive delivery modes, and show that only the fastest two modes have optimal base stock. Due

to the complexity of the optimal policies with general leadtimes, among others, Veeraraghavan and

Scheller-Wolf (2008) focus on the evaluation of two simple classes of heuristic policies, viz., “single

index” and “dual index” policies. In all these studies, suppliers are assumed to be perfectly reliable

and the selling price is assumed to be exogenously given.

The third stream of research related to our work is the coordination of pricing and inventory

decisions. Several excellent survey papers in this area have been published (e.g., Chen and Simchi-

Levi 2010); and the reader is referred to those sources for more discussions. In this line of research,
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the supplier is generally assumed to be reliable. See, for instance, Federgruen and Heching (1999),

Zhao and Wang (2002), and Chen and Simchi-Levi (2004). There are only a few studies that

consider joint pricing and inventory management for systems with supply uncertainty, including Li

and Zheng (2006), Chao et al. (2008), Feng (2010), Feng and Shi (2012), Li et al. (2011, 2012),

and Chen et al. (2013). Among them the most related work to ours is Chen et al. (2013), in which

the authors consider the joint optimal pricing and inventory control problem for a system with

price-sensitive demands and multiple random-yield suppliers. Its major result is that the optimal

inventory replenishment policy for each supplier is a near reorder point policy, i.e., there exists a

reorder point, above which no order is placed and below which a positive amount is ordered for

almost every inventory level, and the optimal price may not be monotone in the starting inventory

level.

The model in this study captures the several main features addressed in the above three streams

of research (i.e., multiple sourcing, different leadtimes/shipping modes, and coordination of pricing

and inventory decisions). The research issues addressed in this paper include, besides the structure

of the dynamic optimal pricing and inventory control policies, the impact of supply source diversi-

fication and supplier reliability on the firm’s optimal profit and operational policies, its customers,

and its suppliers. We show that, when both suppliers are unreliable, the optimal inventory policy

from each supplier is reorder point policy and the optimal selling price in each period is decreasing

in the starting inventory level of the period. In addition, we show that, diversifying supply source

and/or improving supplier reliability increase the firm’s expected profit and lowers the optimal sell-

ing price; hence they benefit both the firm and its customers. We also demonstrate that, with the

selling price as a decision, a supplier may receive even more orders from the firm after an additional

supplier is introduced, which seems counter-intuitive and is different from the result in the case

when the selling price is exogenously given. For the special case where the quick-response supplier

is perfectly reliable, we further show that the optimal inventory policy is of a base-stock type for

each supplier and the optimal pricing policy is a list-price policy with markdowns.

Although random disruption can be treated as a special case of random yield, compared to Chen

et al. (2013), our model captures more features, such as Markovian uncertainties and different lead

times of suppliers, and we obtain simpler structures of the optimal policy. Moreover, in addition to

deriving the optimal policy, we are able to identify the impacts of source diversification and suppliers

reliabilities, which have not been addressed in Chen et al. (2013) or other related literature.
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The contributions of this paper are threefold. Firstly, our study is the first to consider the

joint pricing and inventory control problem for a firm with dual unreliable suppliers of different

leadtimes and Markovian disruption risks. We characterize the firm’s optimal joint pricing and

inventory policies and carry out several important sensitivity analysis. Secondly, this paper is also

the first to analyze the impact of source diversification on the firm, on its suppliers, and on its

customers in a dynamic and stochastic setting. Our results align with economic intuitions that

a more diversified supply benefits both the firm and its customers; however and interestingly, we

also find that the incumbent supplier may receive more orders after a new supplier is introduced

if the selling pricing is an endogenous decision. Lastly, our study is also the first to investigate

the impact of supply reliability. Our results show that, in the presence of disruption risks, both

the firm and its customers benefit from higher supply reliability, but this may not be true for the

suppliers. Altogether, our study sheds light on how a firm should coordinate inventory, sourcing,

and the selling price to manage disruption risks.

The remainder of this paper is organized as follows. In §2, we describe the model and introduce

the dynamic programming formulation. In §3, we characterize the structure of the optimal inventory

and pricing policies and carry out several sensitivity analysis, which leads to some important insights

on the impacts of dual sourcing and supply reliability. In §4 we focus on the special case where

the quick-response supplier is perfectly reliable, for which we have more structural results and

additional insights. We conclude the paper in §5 with some discussions on possible extensions and

future research. Finally, technical proofs and some numerical results are provided in the Appendix

and the online supplement.

2 The Model

A firm sells a single product over a planning horizon of T periods, indexed by t = 1, . . . , T . The

firm has two suppliers, referred to as supplier k, k = 1, 2. Both suppliers face disruption risks in

each period. When a supplier is not disrupted in a period, we say it is reliable, and in this case any

order placed to this supplier will be fully delivered; if a supplier encounters a disruption in a period,

however, then it will not be able to process the order and nothing will be delivered. Supplier 1

is a local/quick-response supplier; it can deliver any order in its entirety in the same period the

order is placed (i.e., the leadtime is zero) if there is no disruption. Supplier 2, on the other hand,
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is a non-local/regular supplier; it can deliver any order in its entirety in the next period (i.e., the

leadtime is one) if there is no disruption. This leadtime structure is for analytical tractability.

Suppose that the firm pays its suppliers for the delivered product only, and the unit ordering cost

from supplier k is ck. Most of our results continue to hold when the firm pays its suppliers partially

for the ordered product and partially for the delivered product. See Section 5 for more discussions

on this.

We model the random disruption process of supplier k by a dependent Bernoulli process as

follows: let Jt,k denote supplier k’s delivery capability in period t, with Jt,k = 0 indicating that

supplier k encounters a disruption in period t and hence is unable to process any order in period t,

and Jt,k = 1 indicating that it is capable of processing an order in period t. We assume {Jt,k, 0 ≤
t ≤ T} forms a Markov chain with transition probabilities

P{Jt,k = 1 | Jt−1,k = l} = 1− P{Jt,k = 0 | Jt−1,k = l} := γk,l, l = 0, 1,

where “:=” represents “defined as”; the two processes are independent of each other, which is due

to the leadtime/geographical difference between the two suppliers.

Remark 1. (a) Note that here Jt,k represents the internal disruption status of supplier k, not the

order delivery process. The order in period t for supplier k is processed and shipped if supplier k is

not disrupted in period t, and as long as the order is processed and shipped, it will be delivered to

the firm in period t for supplier 1 and in period t+ 1 for supplier 2.

(b) The disruption process (Jt,1, Jt,2) during period t is random and is not known to the firm

when it places order at the beginning of period t. However, after (Jt,1, Jt,2) is realized during period

t, we assume that it becomes public information and the firm would know (Jt,1, Jt,2) at the beginning

of period t+1 even if it did not place any order in period t. When this assumption is violated, then

the firm would need to make effort to acquire this information. Note that this is different from the

case when a firm’s reliability is observed by the firm upon delivery. The reader is referred to Parlar

et al. (1995) for more discussions on this.

For notational convenience, it is assumed here the transition probabilities are time independent,

but all results hold when they depend on time. We further assume γk,0 ≤ γk,1 for k = 1, 2, which

implies

{Jt+s,k | Jt−1,k = 0} ≤st {Jt+s,k | Jt−1,k = 1}, for s ≥ 0. (1)
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That is, {Jt+s,k | Jt−1,k = l} is stochastically increasing in l. For more discussions on stochastic

ordering, see Shaked and Shanthikumar (1994). Condition (1) simply means that supplier k will be

more likely to be reliable in the current and future periods if it was reliable in the previous period

than if it was disrupted in the previous period.

The demand Dt in period t is a nonnegative random variable and it depends on the selling price

p in the period. We assume an additive demand model with

Dt = dt(p) + εt, t = 1, . . . , T,

where ε1, . . . , εT are independent random variables with mean zero, and are also independent of

both suppliers’ delivery capabilities. Thus, the suppliers’ delivery capabilities only impact demands

through the selling prices. The mean demand dt(p) is positive and strictly decreasing in p ∈ [p
t
, p̄t],

where p
t
and p̄t are the lowest and highest possible unit prices to be charged, respectively. This

additive demand model has been extensively discussed in the literature on joint optimization of

pricing and inventory replenishment (see, e.g., Federgruen and Heching 1999; Feng 2010; Chen and

Simchi-Levi 2010). Let pt(d) be the inverse function of dt(p) over d ∈ [dt, d̄t], where d̄t = dt(pt) ≥
dt = dt(p̄t). Thus, charging a selling price p in period t is equivalent to choosing the mean demand

d = dt(p). In Section 5, we will provide some discussions for the case when the demand model has

a more general additive-multiplicative form.

At the end of each period, any unsold product is carried to the next period with a holding cost;

and any unsatisfied demand is backlogged with a backlog cost. Similar to Federgruen and Heching

(1999), Chen and Simchi-Levi (2004), and Li and Zheng (2006), we assume that a customer pays

the firm in the period the demand occurs, even if the demand is backlogged; any delay in delivery

will be compensated with the backlog cost. Under these assumptions, the expected sales revenue

of the firm in period t is Rt(d) := pt(d)d when the mean demand d is chosen. We assume Rt(d)

is a concave function of d over [dt, d̄t], which is a standard assumption in the literature (see, e.g.,

Federgruen and Heching 1999; Li and Zheng 2006).

The sequence of events in each period t is as follows: First, delivery from supplier 2 (if any, and

that supplier 2 was not disrupted in period t− 1) arrives. Second, the starting inventory level and

two suppliers’ delivery capabilities in period t − 1 are reviewed. Third, the firm decides the order

quantity for each supplier k, denoted as qk, k = 1, 2, and sets the selling price p (or equivalently,

the mean demand d). Fourth, random delivery capabilities of the two suppliers in period t, Jt,1
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and Jt,2, are realized. Fifth, depending on the realization of Jt,1 delivery from supplier 1 arrives (if

any) and the customer demand is realized. Finally, the sales revenue and all costs for the period

are calculated. Suppose there is a one-period discount factor α ∈ (0, 1]. The firm’s objective is

to find the optimal joint pricing and inventory policies to maximize its expected total discounted

profit over the planning horizon.

Let Gt(z) denote the expected holding and backlog cost in period t when the inventory level

after satisfying the mean demand is z. We assume that Gt(z) is convex in z. Clearly, the convexity

is satisfied if the holding and backlog costs are linear in the ending inventory, i.e.,

Gt(z) = hE[max{z − εt, 0}] + bE[max{εt − z, 0}],

where h is the unit holding cost, and b is the unit backlog cost.

We define (x, i, j) as the “state” of the system at the beginning of the period, where x is the

starting inventory level after receiving delivery from supplier 2 (if any), and i and j are suppliers

1 and 2’s delivery capabilities in the previous period, respectively. Let Vt(x, i, j) denote the firm’s

maximum expected total discounted profit-to-go from period t, also known as value function or

optimal profit function, given the system state is (x, i, j) at the beginning of period t. Then, from

standard stochastic dynamic programming, we have, for t = 1, . . . , T ,

Vt(x, i, j) (2)

= max
q1≥0,q2≥0
dt≤d≤d̄t

{
Rt(d)− c1γ

1,iq1 − αc2γ
2,jq2 − γ1,iGt(x+ q1 − d)− (1− γ1,i)Gt(x− d)

+ αγ1,i
(
γ2,jE[Vt+1(x+ q1 + q2 − d− εt, 1, 1)] + (1− γ2,j)E[Vt+1(x+ q1 − d− εt, 1, 0)]

)
+ α(1− γ1,i)

(
γ2,jE[Vt+1(x+ q2 − d− εt, 0, 1)] + (1− γ2,j)E[Vt+1(x− d− εt, 0, 0)]

)}
,

and VT+1(x, i, j) ≡ 0. Note that on the right hand side of (2), the first term in the brackets is

the expected revenue; the second and third terms are the expected ordering costs; the value of the

next two terms is the expected holding and backlog costs in period t; and the remaining terms are

the maximum expected total discounted profit-to-go from period t + 1, corresponding to different

realizations of the two suppliers’ delivery capabilities in period t.

For 1 ≤ t ≤ T , let
(
q∗t,1(x, i, j), q∗t,2(x, i, j), d∗t (x, i, j)

)
denote the optimal solution of (q1, q2, d) of

the maximization problem (2). That is, given state (x, i, j) at the beginning of period t, q∗t,k(x, i, j)

is the optimal order quantity from supplier k and d∗t (x, i, j) is the optimal mean demand. Then,
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x+ q∗t,1(x, i, j) and x+ q∗t,1(x, i, j)−d∗t (x, i, j) are the optimal target inventory level and the optimal

target safety stock level, respectively, when only supplier 1 is considered; similarly, x+q∗t,2(x, i, j) and

x + q∗t,2(x, i, j) − d∗t (x, i, j) are the optimal target inventory position and the optimal target safety

stock position, respectively, when only supplier 2 is considered. Finally, we denote p∗t (x, i, j) =

pt(d
∗
t (x, i, j)) as the optimal selling price in period t.

In the next section, we will first study the properties of the value function in problem (2), and

then characterize the structure of the firm’s optimal pricing and inventory policies.

3 Optimal Policies and Implications

We begin by examining the properties of the value function in (2). The main technical approach

used in this study is lattice and modularity analysis. Some preliminaries on lattice and modularity

are provided in the Appendix; and we refer the reader to Topkis (1998) for more discussions. The

following proposition establishes important properties of the value function, which will facilitate

our analysis on the optimal policies. Below, unless otherwise specified, the proofs will be given in

the Appendix.

Proposition 1. For t = 1, . . . , T , Vt(x, i, j) is increasing in i and j, concave in x, and submodular

in (x, i) and in (x, j).

Proposition 1 shows that the optimal expected profit-to-go is larger if either one of the suppliers

was reliable in the previous period than if it was disrupted in the previous period. In addition, the

submodularity results show that, the starting inventory level in each period has a lower marginal

value if either one of the suppliers was reliable in the previous period that if it was disrupted.

Finally, the concavity of Vt(x, i, j) in x implies that the marginal value of inventory decreases if the

starting inventory level increases.

With the above properties of the value function, we can derive the structure of the firm’s

optimal ordering and pricing policies. The following theorem provides a detailed characterization

of the firm’s optimal policies in each period.

Theorem 1. For t = 1, . . . , T , suppose (x, i, j) is the state of the system at the beginning of period

t. Then, the firm’s optimal policy is determined by critical numbers ξt,k(i, j), k = 1, 2, such that

the firm orders a positive quantity from supplier k if and only if x < ξt,k(i, j); and both the optimal
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order quantity q∗t,k(x, i, j) and optimal selling price p∗t (x, i, j) are decreasing in the starting inventory

level x, k = 1, 2. In addition, the optimal policy parameters satisfy the following properties:

(a) d∗t (x, i, j), x− d∗t (x, i, j), and x+ q∗t,k(x, i, j)− d∗t (x, i, j) are increasing in x;

(b) p∗t (x, 1, j) ≤ p∗t (x, 0, j), and p∗t (x, i, 1) ≤ p∗t (x, i, 0);

(c) q∗t,1(x, 1, j) ≥ q∗t,1(x, 0, j), and q∗t,2(x, 1, j)− d∗t (x, 1, j) ≤ q∗t,2(x, 0, j)− d∗t (x, 0, j); and

(d) q∗t,2(x, i, 1) ≥ q∗t,2(x, i, 0), and q∗t,1(x, i, 1)− d∗t (x, i, 1) ≤ q∗t,1(x, i, 0)− d∗t (x, i, 0).

Theorem 1 states that the optimal ordering decision from each supplier in a period is determined

by a reorder point (dependent on both suppliers’ delivery capabilities in the previous period) – above

which the firm orders nothing while below which the firm orders a positive amount. In addition, part

(a) shows that, when only one supplier is considered, the optimal target safety stock level/position

is increasing in the starting inventory level of the period. Part (b) indicates that, the optimal selling

price in a period is higher when either one of the suppliers was disrupted in the previous period

than when it was reliable. Finally, parts (c) and (d) show that the firm would order less from a

supplier and keep a higher target safety stock level/position from the other supplier in one period

when this supplier was disrupted in the previous period than when it was not. The result in the

first part of c) is intuitive, and d) is symmetric to c), thus we only provide an explanation for the

second part of c). When one supplier was disrupted in period t − 1, to cope with this situation,

besides increasing the selling price/lowering customer demand, the firm can also choose to order

more from the other supplier. Since ordering more from the other supplier and lowering customer

demand are two competing forces to deal with disruption, under our additive demand model it is

optimal for the firm to keep a higher level of the optimal order quantity from the other supplier net

of the mean demand. Note that if the price is exogenously given in period t, then the firm should

always order more from the other supplier when one supplier was disrupted in period t − 1, since

it is the only way to deal with disruption. However, this result may not be true if the price is an

endogenous decision, since raising the selling price alone can be sufficient to cope with disruption

in this case.

We next study the impact of unit ordering costs on the firm’s optimal profit and the optimal

policies, which will reveal some important insights on the impact of dual sourcing. To highlight

the dependence on ck, we rewrite Vt(x, i, j) as Vt(x, i, j | ck). Similar notation will be used for the
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optimal policies and control parameters, whenever needed. Our main results are summarized in

the following theorem.

Theorem 2. For t = 1, . . . , T and k = 1, 2, we have,

(a) Vt(x, i, j | ck) is decreasing in ck and supermodular in (x, ck), while Vt(x, i, j | ck) − ckx is

submodular in (x, ck); and

(b) q∗t,k(x, i, j | ck), d∗t (x, i, j | ck) and ξt,k(i, j | ck) are decreasing in ck, while p
∗
t (x, i, j | ck) and

q∗t,k′(x, i, j | ck)− d∗t (x, i, j | ck) are increasing in ck, where k
′ = 3− k.

The monotonicity of the value function Vt in ck is rather obvious. The supermodularity and

submodularity results in (a) imply that the marginal value of inventory is increasing in ck but by

a magnitude less than the increment of ck. Theorem 2 (b) shows that when the unit ordering cost

from one supplier increases, the firm will order less from this supplier, and keep a higher target

safety stock level/position for the other supplier; and in the meanwhile, it will charge a higher

selling price and hence set a lower mean demand. As a special case, if the selling price is not a

decision in period t, then the firm will always order more from the other supplier if one supplier

increases its unit ordering cost. This result, however, is not always true when the selling price is

a decision. The intuitions here are very similar to the ones we given above for the case when one

supplier was disrupted. In the next section, we will provide a numerical example to demonstrate

this point.

An important issue we want to study is the impact of dual sourcing, i.e., for a firm which

originally has only one supplier, what is the impact of introducing a second supplier? Previous

research in this area has focused on the impact of dual sourcing on the firm’s profit, and here we

further explore its impacts on the firm’s operational policies, on its customers, and on its suppliers.

This can be achieved by applying Theorem 2, since as ck becomes large enough, supplier k will

never be used hence the dual-sourcing system would be reduced to a system with a single supplier

k′, where k′ = 3 − k. Therefore, Theorem 2 enables us to compare a single-sourcing system with

a dual-sourcing system, and identify the impact of introducing a second supplier. Specifically,

applying Theorem 2 we conclude that introducing a second supplier leads to a higher expected

profit and a lower selling price; hence introducing another second benefits not only the firm but

also its customers. For the incumbent supplier in the single-sourcing system, if the selling price is

exogenously given, then it will always receive less orders after the firm introduces another supplier.
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However, this result is not always true when the price is an endogenous decision. We will discuss

more on this issue in the next section.

Finally, we are interested in understanding the impact of the reliability of the suppliers. It is

straightforward to show, by mathematical induction, that as either one of the two suppliers becomes

more reliable (i.e., transition probabilities γk,l, k = 1, 2, l = 0, 1, increase), the firm’s optimal profit

function goes up; hence a more reliable supplier is always desired by the firm. However, the impact

of supply reliability on the operational policies are much more complicated. Thus, we mainly study

this issue in the next section, where a special case of our general model is considered.

4 One Reliable and One Unreliable Supplier

In this section, we focus on the special case where supplier 1 is perfectly reliable and can always

deliver the firm’s order within the period the order is placed, i.e., γ1,l = 1 for l = 1, 2; and only

supplier 2 may suffer random disruption, but it is less costly, i.e., c1 > c2 > 0. (Note that otherwise,

supplier 2 will never be utilized.) This could be the case if supplier 1 represents in-house production

or a local/domestic reliable supplier, while supplier 2 represents a non-local/outsourcing supplier.

Obviously, all conclusions obtained in the previous section remain valid. We will show below that

for this special case the optimal policy has a simpler structure, and more importantly, additional

insights can be drawn.

Since supplier 2 is the only supplier which may suffer random disruption, for simplicity we

write Jt,2 and γ2,j , respectively, as Jt and γ
j in this section. Besides, the state of the system is now

reduced to (x, j), where x is the starting inventory level after receiving delivery from supplier 2 (if

any), and j is the delivery capability of supplier 2 in the previous period. Accordingly, the value

function Vt(x, i, j) can be simplified as Vt(x, j), and the optimality equation (2) can be rewritten

as, for t = 1, . . . , T ,

Vt(x, j) = max
y2≥y1≥x
dt≤d≤d̄t

{
Rt(d)− c1(y1 − x)−Gt(y1 − d) + (1− γj)αE[Vt+1(y1 − d− εt, 0)]

+γj (−αc2(y2 − y1) + αE[Vt+1(y2 − d− εt, 1)])
}
, (3)

and VT+1(x, j) = 0. Here y1 = x + q1 is the inventory level after ordering from supplier 1, while

y2 = y1 + q2 is the target inventory position after ordering from both suppliers.

For 1 ≤ t ≤ T , let
(
y∗t,1(x, j), y∗t,2(x, j), d∗t (x, j)

)
denote the optimal solution of (y1, y2, d) of the
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maximization problem (3). That is, y∗t,1(x, j) (resp., y∗t,2(x, j)) is the optimal inventory level after

ordering from supplier 1 (resp., target inventory position after ordering from both suppliers), and

d∗t (x, j) is the optimal mean demand. Then, y∗t,1(x, j) − d∗t (x, j) and y∗t,2(x, j) − d∗t (x, j) are the

optimal safety stock level for supplier 1 and the optimal target safety stock position for supplier 2,

respectively. Note that in the previous section y∗t,1(x, j)−d∗t (x, j) is referred to as the optimal target

safety stock level for supplier 1, since in there, the order quantity q∗t,1(x, j) may not be delivered,

hence the safety stock level may or may not be reached. In addition, denote q∗t,k(x, j) and p
∗
t (x, j)

as the optimal order quantity from supplier k and the optimal selling price, respectively, k = 1, 2.

For convenience we define

ft(z, j) = −αc2z + αE[Vt+1(z − εt, j)]; (4)

gt(z, j) = −(c1 − αc2)z −Gt(z) + max
z̄≥z

{
γjft(z̄, 1) + (1− γj)ft(z, 0)

}
(5)

for t = 1, . . . , T . Then, the optimality equation (3) can be further simplified to

Vt(x, j) = max
y1≥x

dt≤d≤d̄t

{
Rt(d) + c1(x− d) + gt(y1 − d, j)

}
. (6)

As a corollary of Proposition 1, Vt(x, j) is increasing in j, concave in x, and submodular in

(x, j). Since Gt(·) is a convex function, it follows from (4) and (5) that both ft(z, j) and gt(z, j)

are increasing in j, concave in z, and submodular in (z, j). For t = 1, . . . , T and j = 0, 1, denote

z∗t,1(j) and z∗t,2 as the maximizers of gt(z, j) and ft(z, 1), respectively. That is,

z∗t,1(j) = argmax
z
gt(z, j), and z∗t,2 = argmax

z
ft(z, 1).

In case that ft(z, 1) (resp., gt(z, j)) is monotonically decreasing in z, we define z∗t,2 = −∞ (resp.,

z∗t,1(j) = −∞). Since gt(z, j) is submodular in (z, j), we have z∗t,1(1) ≤ z∗t,1(0). It will be seen later

that z∗t,1(j) is the optimal safety stock level for ordering from supplier 1 while z∗t,2 is the optimal

target safety stock position for ordering from supplier 2. We further define

d̂t = arg max
dt≤d≤d̄t

{Rt(d)− c1d} .

With the preceding notation, the following theorem provides a detailed characterization of the

firm’s optimal ordering and pricing policies in each period. In particular, the ordering policies

from both suppliers are of a base-stock type, and the optimal pricing policy is a list-price policy

with markdowns, which are much simpler than the optimal policies for the general model with two

unreliable suppliers.
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Theorem 3. For t = 1, . . . , T , suppose (x, j) is the state of the system at the beginning of period t.

(a) The optimal ordering policy from supplier 1 is a base-stock policy with base-stock level d̂t +

z∗t,1(j), i.e.,

y∗t,1(x, j) = max{d̂t + z∗t,1(j), x}. (7)

(b) The optimal ordering policy from supplier 2 is of a base-stock type with constant target safety

stock position z∗t,2, i.e.,

y∗t,2(x, j) = max{y∗t,1(x, j), d∗t (x, j) + z∗t,2}, (8)

where y∗t,1(x, j) is given by (7), and d∗t (x, j) and x− d∗t (x, j) are both increasing in x. Thus,

an order from supplier 2 is placed only when the inventory level after ordering from supplier 1

is below the base-stock level d∗t (x, j) + z∗t,2. In particular, when z∗t,1(j) ≥ z∗t,2, then y∗t,2(x, j) =

y∗t,1(x, j) and it is optimal not to order from supplier 2.

(c) The optimal pricing policy is a list-price policy with markdowns: if x ≤ d̂t + z∗t,1(j), then

d∗t (x, j) = d̂t, and a list price p∗t (x, j) = pt(d̂t) is optimal; if x > d̂t + z∗t,1(j), then p∗t (x, j) is

a decreasing function of both x and j, with

p∗t (x, j) ≤ pt(d̂t).

Therefore, the optimal policies for the system with a perfectly reliable quick supplier are much

simpler and possess most of the nice properties of single-sourcing inventory models. From Theorem

3 (b), x − d∗t (x, j) is increasing in x and it is less than or equal to y∗t,2(x, j) − d∗t (x, j). Thus,

there exists a critical number, such that it is optimal to order nothing from supplier 2 when the

starting inventory level in period t exceeds this critical number. It is interesting to note that when

supplier 1 is perfectly reliable, it always receives more orders from the firm when supplier 2 was

disrupted in the previous period than when it was not, regardless of whether the selling price is

an endogenous decision. This result directly follows from Theorem 3 (a) and the aforementioned

inequality z∗t,1(1) ≤ z∗t,1(0); however, this result is not true when supplier 1 is not perfectly reliable,

as we discussed in the previous section.

We next analyze the impact of unit ordering costs on the optimal policies. In addition to all

the results in Theorem 2, we have the following results when supplier 1 is perfectly reliable.
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Proposition 2. For t = 1, . . . , T , z∗t,1(j| c1, c2) is decreasing in c1 and increasing in c2; z
∗
t,2(c1, c2)

is increasing in c1 and decreasing in c2; and q
∗
t,1(x, j| c2) is increasing in c2.

Proposition 2 presents some comparative statics results for the safety stock level for supplier

1, z∗t,1(j), and the target safety stock position for supplier 2, z∗t,2, with respect to the unit ordering

costs. Also, it is seen that the firm will order more from supplier 1 when c2 increases. In contrast,

when c1 increases, Theorem 2 shows that q∗t,2(x, j| c1) − d∗t (x, j| c1) will increase but it does not

specify the effect on the optimal order quantity from supplier 2. When the selling price in period t

is exogenously given, we can infer from the above result that the firm will order more from supplier

2. This result, however, is not true when price is also a decision, as demonstrated in the following

numerical example.

Example 1. Suppose T = 3, α = 0.97, h = 1, b = 8, dt(p) = 100 − 10p, εt ∼ Uniform[−20, 20],

p
t
= 0, p̄t = 8, c2 = 3, γ0 = 0.3, and γ1 = 0.9. The optimal order quantity from supplier 2 in

period 1 when j = 0 as a function of c1 and x is shown in Figure 1. As we can see from this figure,

it is clear that the optimal order quantity from supplier 2 is not monotone in c1.
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Figure 1: Optimal order quantity from supplier 2 when j = 0

Proposition 2 is a powerful result and it allows us to study the operational effect of sourcing

diversification. This is because, by letting c1 or c2 go to infinity, the dual-sourcing problem is

reduced to a single-sourcing problem, and the monotonicity result in Theorem 2 and Proposition 2

would enable us to analyze the impact of introducing a second supplier on the incumbent supplier.

Applying these arguments we conclude that supplier 1 always receives less orders after the firm

introduces the second supplier, regardless of whether the selling price is a decision or not; and if
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the price is exogenously given, supplier 2 also always receives less orders after the firm introduces

supplier 1. However, if the price is a decision, then supplier 2 might receive more orders from

the firm after supplier 1 is added into the system. This can be seen from the previous numerical

example, say with x = 45, by comparing the order quantity from supplier 2 for a given c1 (say

c1 = 5) with that for a large enough value of c1, which corresponds to another system with only

supplier 2. The intuition behind this is the following: Adding supplier 1 to the system induces two

competing forces that may change the optimal order quantity from supplier 2. On the one hand, it

tends to lower the order quantity from supplier 2 due to the newly added supplier 1; on the other

hand, when allowed, it will also lower the optimal price thus attract more demand, providing the

firm with an incentive to order more from supplier 2. When the latter force exceeds the former,

the firm will order more from supplier 2.

Remark 2. Following Theorem 2, Proposition 2, and the above discussion, it is interesting to

observe that when the selling price of the firm is exogenously given (e.g., the market price), the

supplier will receive less orders after the firm introduces a second supplier; but this result is not

always true if the selling price is also a decision. Thus, the impact of the firm’s pricing decision on

its suppliers can be subtle.

We now proceed to study the impact of supplier 2’s reliability, measured by γ0 and γ1 (noting

that a larger γl, l = 0, 1, represents a more reliable supplier 2), on the firm’s optimal profit functions

and operational policies. Since the firm never orders from supplier 2 in period T because of its one-

period leadtime, neither the optimal profit functions nor the optimal policies in period T depend

on γl. For t = 1, . . . , T − 1, we expand the arguments of the optimal profit functions, the optimal

policies, and other control parameters to include γl, whenever needed, as we did previously on the

unit ordering costs. The following theorem summarizes our main results. Among other results, the

theorem states that a more reliable supplier is beneficial to both the firm and its customers.

Theorem 4. For t = 1, . . . , T − 1 and l = 0, 1, we have

(a) Vt(x, j | γl) is increasing in γl and submodular in (x, γl);

(b) z∗t,1(j | γl) and z∗t,2(γl) are decreasing in γl, and z∗T−1,2(γ
l) is independent of γl; and

(c) p∗t (x, j |γl), q∗t,1(x, j |γl), and the optimal target safety stock position y∗t,2(x, j |γl)−d∗t (x, j |γl)
are decreasing in γl, while d∗t (x, j |γl) and q∗T−1,2(x, j |γl) are increasing in γl.
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Theorem 4 (a) shows that the firm’s optimal profit function in each period t increases while

the marginal value of inventory decreases when supplier 2 becomes more reliable. However, it is

noteworthy that the submodularity of the value function on (x, γl) plays a key role in analyzing

the impact of supplier 2’s reliability on the optimal policies. Part (b) shows that the safety stock

level for supplier 1 and the target safety stock position for supplier 2 are both decreasing in γl,

implying that when supplier 2 becomes more reliable, the firm would maintain less safety stocks

from both suppliers in managing its inventory. In particular, since supplier 2 is not used in period

T , it is clear from its definition that z∗T−1,2(γ
l) does not depend on γl.

Part (c) shows that the optimal selling price, the optimal order quantity from supplier 1, and

the optimal target safety stock for ordering from supplier 2 are all decreasing in γl, which further

implies that the optimal mean demand is increasing in γl. This is because, when supplier 2 becomes

more reliable, the firm is more certain of the delivery of its order hence it will be more economical

to order when needed (rather than order more to prepare for future delivery uncertainty).

When the selling price is exogenously given, Theorem 4 (c) also implies that the optimal total

order quantity, which is

q∗t,1(x, j |γl) + q∗t,2(x, j |γl) = y∗t,2(x, j |γl)− x,

is decreasing in γl. When the selling price is a decision, however, numerical examples can be easily

constructed to show that the optimal total order quantity is not monotone in γl. Finally, Theorem

4 (c) states that the optimal order quantity from supplier 2 is increasing in γl when t = T − 1.

This result, however, again cannot be extended to an arbitrary period t, as seen in the following

example.

Example 2. Suppose T = 4, c1 = 5, c2 = 3, γ0 = 0.3, and other parameters except γ1 are the

same as those in Example 1. The optimal order quantity from supplier 2 in period 1 when j = 1

is shown in Figure 2. As can be seen from this figure, the optimal order quantity from supplier 2

can decrease when γ1 becomes larger.

The underlying intuitions for this phenomenon are as follows. For a period t with t < T − 1,

the firm needs to consider multiple future demands when ordering from supplier 2. When γl is

small, the firm probably has to order multiple times until it finally receives an order, which in turn

provides the firm with an incentive to place a large order for sale (if delivered) in future periods.

In contrast, when γl is large, the firm is quite likely to receive its order after it is placed, thus a
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Figure 2: Optimal order quantity from supplier 2 when j = 1

small order covering the demands in the next few periods may be more economical. Therefore, the

optimal order quantity from supplier 2 may decrease as γl increases.

Remark 3. The above discussions present another impact of the firm’s pricing decision on the

suppliers: when the selling price is exogenously given, the optimal total order quantity decreases

when supplier 2 becomes more reliable; however, this result is not always true when the price is an

endogenous decision. Note that the impact here is on the optimal total order quantity rather than

the optimal order quantity from supplier 2. Thus, regardless of whether the price is a decision or

not, supplier 2 may receive less orders when it becomes more reliable.

Having discussed the impact of reliability of the regular supplier (supplier 2), it is natural to

ask a similar question about the quick-response supplier (supplier 1). As we pointed out at the end

of Section 3, although it is straightforward to show that a more reliable supplier is always desired

by the firm, the impact of supply reliability on the operational policies is more complicated when

both suppliers are unreliable. However, we are able to characterize how the optimal policies change

when supplier 1 improves from being unreliable to perfectly reliable. That is, we can compare the

general model with both suppliers being unreliable, the one we discussed in the previous sections,

with the model studied in this section. The following theorem summarizes our comparison results.

We abuse the notations slightly by letting Vt(x, i, j), p
∗
t (x, i, j) and d

∗
t (x, i, j) denote our quantities

of interest for the model with two unreliable suppliers, while letting Vt(x, j), p
∗
t (x, j) and d∗t (x, j)

denote the corresponding quantities for the model with supplier 1 being perfectly reliable.

Theorem 5. For t = 1, . . . , T , we have

(a) Vt(x, i, j) ≤ Vt(x, j) and Vt(x, i, j)− Vt(x, j) is increasing in x; and
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(b) p∗t (x, i, j) ≥ p∗t (x, j) and d∗t (x, i, j) ≤ d∗t (x, j).

Theorem 5 (a) shows that the firm can obtain a higher optimal expected total discounted profit

when supplier 1 becomes perfectly reliable from being unreliable, but the incremental benefit is

monotonically decreasing in the starting inventory level. That the firm prefers a reliable supplier

is obvious; and the result of a diminishing effect of the starting inventory level also appears to be

appealing, since the incremental value of sourcing from a perfectly reliable supplier (rather than

an unreliable supplier) should become less when the firm has more on-hand inventory. Part (b)

states that as supplier 1 becomes perfectly reliable, the firm will charge a lower optimal selling price

and hence set a higher optimal mean demand; thus a reliable supplier also benefits the customers.

Hence, these results again support our general claim that, a more reliable supplier benefits both

the firm and its customers.

Theorem 5 does not compare the optimal order quantities between the two models. In fact, as

demonstrated in the following numerical example, the optimal order quantity from each supplier

in one model is not always dominated by that in the other model.

Example 3. Suppose T = 4, c1 = 5, c2 = 3, and the transition probabilities for supplier 2 are

γ0 = 0.3, and γ1 = 0.8 (or, using the notation from Section 2, γ2,0 = 0.3, and γ2,1 = 0.8). In

addition, suppose supplier 1 in model 1 is unreliable with γ1,0 = 0.5 and γ1,1 = 0.8, while it is

perfectly reliable in model 2. Other parameters are the same as those in Example 1. The comparison

between the two models of the optimal ordering policies in period 1 when (i, j) = (1, 0) is shown

in Figure 3. As we can see from this figure, when supplier 1 improves from being unreliable to

perfectly reliable, the optimal order quantity from each supplier may be higher or lower, depending

on the starting inventory level. Hence, we observe again that a supplier does not always receive

more orders from improving its reliability. Another observation from our numerical studies is that

the reorder point for ordering from supplier 1 is always higher in model 1. The intuition is that,

when supplier 1 is unreliable, placing multiple rather than a single order can provide diversification

over time and reduce the chance of stockout, which implies that it may be optimal to order from

supplier 1 in the current period to satisfy future demands in model 1 while it is not optimal to do

so in model 2. Thus, the reorder point for ordering from supplier 1 is higher in model 1.

We conclude this section with a numerical example to demonstrate how dynamic pricing and

dual sourcing impact the system performance.
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Figure 3: Comparison of optimal policies when (i, j) = (1, 0)

Example 4. Suppose supplier 1 is perfectly reliable, T = 5, γ1 = 0.9, c1 = 5, and (x, j) = (0, 0).

Other parameters are the same as those in Example 1. Figure 4 displays, for different values of c2

and γ0, the percentages of increase in the firm’s profit after supplier 2 is introduced to a system

which originally has supplier 1 only, assuming the optimal static price (for the given initial state)

is used; while Figure 5 shows the percentages of increase in the firm’s profit when we further use

the optimal dynamic pricing policy in the dual-sourcing system.
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Figure 4: Impact of dual sourcing with static pricing

From Figures 4 and 5, we can see that supply source diversification can improve the firm’s profit

very significantly when the selling price is fixed; and the performance can be further improved by

using a dynamic pricing policy, but with a less significant magnitude.

20

This is the Pre-Published Version 



0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

Pe
rc
en

ta
ge

in
cr
ea
se

in
pr
of
it

Unit ordering cost c2

=0.3 =0.6 =0.9

Figure 5: Impact of dynamic pricing with dual sourcing

5 Conclusion and Discussions

In this paper, we study a joint pricing and inventory control problem for a firm that sources from

two suppliers, both facing disruption risks. The two suppliers can deliver any order in the same

period and in the next period in which the order is placed, respectively, if there is no disruption; but

nothing is delivered if disruption occurs. The random disruption processes of the two suppliers are

modeled as independent Markov chains. We characterize the firm’s optimal pricing and inventory

policies over a planning horizon, and identify the impacts of dual sourcing and supply reliability

on the firm, on its customers, and on its suppliers. We show that the optimal inventory policy is a

reorder point policy, and the optimal price in each period is a decreasing function of the starting

inventory level of the period; and for the special case where the quick-response supplier is perfectly

reliable, the optimal inventory policy is of a base-stock type and the optimal pricing policy is a

list-price policy with markdowns. In addition, we show that both the firm and its customers benefit

from dual sourcing and higher supply reliability. For suppliers, we show that if the selling price is

exogenously given, then one supplier always receives more orders when the other one was disrupted

than when it was not and it always receives less orders after the firm introduces a second supplier;

however and interestingly, neither result is true if the price is an endogenous decision. We also find

that a supplier does not always receive more orders when it has higher supply reliability.

Our model can be extended along several directions. First, we can show that, if the demands

in different periods are independent and identically distributed (i.i.d.), and all parameters are

stationary over time, then there exist stationary optimal policies for the infinite horizon problem,

and all results in this paper remain valid. Second, all of our results except those on the impacts of
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suppliers’ reliability can be extended to the case where the disruption processes of the two suppliers

are dependent, as long as the two-dimensional Markov chain describing the supply disruptions are

stochastically increasing. Third, we assume in this paper that the firm pays for the delivered

product only. This could be easily relaxed by assuming that the firm pays partially for the ordered

product and partially for the delivered product, as in Federgruen and Yang (2011). Suppose, in

addition to ck, the cost for each unit delivered from supplier k, k = 1, 2, the firm also pays c′k for

each unit ordered from supplier k. Note that our model is the special case here with c′k ≡ 0. Then

we will need to include a linear term (−c′1q1− c′2q2) to the objective function on the right hand side

of optimality equation (2). For this case, all of the results in this paper except Theorem 4 can be

similarly obtained.

We end this paper with discussions on several other possible extensions of our model.

Suppliers with random yield: In this paper the suppliers are assumed to face disruption risks.

Given random disruption can be viewed as a special case of random yield with a Bernoulli distribu-

tion, it is interesting to consider a similar problem for the case in which the suppliers face general

random yield. As mentioned in Section 1, Chen et al. (2013) characterize the structure of the

optimal policies for this problem, and show that the optimal inventory policy for each supplier is

a near reorder point policy and the optimal price may not be monotone in the starting inventory

level. They do not study the impacts of dual sourcing and supply reliability. For the former, it is

easy to show that dual sourcing always benefits the firm; but due to the complexity of the problem

we are not able to show that it also always benefits the customers. For the latter, if the supplier’s

reliability is measured according to “convex order” of the random yield, then we can show that

the firm always benefits from higher supply reliability; but if it is measured using “stochastic or-

der”, then examples can be constructed to show that the firm may not benefit from higher supply

reliability. Therefore, we claim that most of our results in this paper are for inventory models

with multiple sourcing and disruption risks, and not for multiple sourcing with general random

yields. (Indeed, it is known that, even for the simplest inventory models, general random yield can

lead to very counter-intuitive results, see Gupta and Cooper (2005) on single-period single-supplier

inventory model with random yield.

Additive-multiplicative demand models: In this study, the demand model is assumed to have

an additive form. When the demand model takes a more general additive-multiplicative form (i.e.,

Dt = wtdt(p) + εt, where wt and εt are both random variables), following similar analysis to Chen
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et al. (2013), we can show that the optimal inventory policy is a near reorder point policy for each

supplier. In addition, we can prove that the optimal price decreases in the starting inventory level

when supplier 1 is perfectly reliable. When supplier 1 is unreliable, we are not able to prove this

result theoretically; therefore we conducted a numerical study; we found that this monotonicity

result is true under all the numerical examples we tested. We also conducted several numerical

examples to examine the impact of dual sourcing and supply reliability. In these examples, wt

takes discrete distributions with mean 1, εt is uniformly distributed on [−a, a] for some choices

of a; and d(p) is linear in p. The holding cost h is normalized to 1; and several combinations of

c1 ∈ {5, 8}, c2 ∈ {1, 3, 6}, and b ∈ {8, 12} are tested. From these numerical examples we observe

that introducing another supplier and higher supply reliability are both beneficial to the firm and

its customers. In addition, if the selling price is a decision, then the incumbent supplier may receive

more orders after the firm introduces a second supplier; and the supplier may or may not receive

more orders when it becomes more reliable but it always receives less orders when the other supplier

becomes more reliable. These results are consistent with our results for the additive demand model.

See the Appendix for an illustration of these numerical results.

General leadtimes: We assume for simplicity that the leadtimes of the two suppliers are 0 and

1, respectively. It would be more practical to consider the more general model with the leadtimes

being 0 and k, respectively. For this general model, the state space needs to be expanded to include

pipeline inventories, resulting in a stochastic dynamic program with k + 2 dimensions. Pang et al.

(2012) study a special case of this model with a single perfectly reliable supplier of k periods of

leadtimes, and show that both the optimal order quantity and the optimal price decrease in the

on-hand and pipeline inventories. For the general model with two suppliers facing disruption risks,

by using similar analysis to that in Pang et al. (2012), we can show that 1) the optimal price

decreases in the on-hand inventory, and 2) the optimal order quantity from each supplier decreases

in the on-hand and pipeline inventories when either supplier 1 is perfectly reliable or there is no

pricing decision. However, due to the complex nature of the problem, we find it very challenging to

analyze the impacts of dual sourcing and supply reliability. We expect that new techniques have to

be developed to analyze these issues under general settings, thus we leave them for future research.

23

This is the Pre-Published Version 



6 Acknowledgment

The authors are grateful to the Senior Editor and three anonymous referees for their constructive

comments and suggestions, which have helped us significantly improve the quality and exposi-

tion of this paper. The research of Xiting Gong is supported by CUHK Direct Grant under No.

4055022. The research of Xiuli Chao is supported by NSF under CMMI-0927631 and CMMI-

1131249. The research of Shaohui Zheng is supported by Hong Kong Research Grants Council

under grants #647611 and #645212, and by National Natural Science Foundation of China under

grant #71131003.

References

[1] Anupindi, R., R. Akella. 1993. Diversification under supply uncertainty. Management Science,

39(8): 944-963.

[2] Bloomberg. 2010. Honda halts auto production in china amid parts-factory strike. Bloomberg

Business Week (May 27).

[3] Chao, X., H. Chen, S. Zheng. 2008. Joint replenishment and pricing decisions in inventory

systems with stochastically dependent supply capacity. European Journal of Operational Re-

search, 191(1): 142-155.

[4] Chen, J., D. D. Yao, S. Zheng. 2001. Optimal replenishment and rework with multiple unreli-

able supply sources. Operations Research, 49(3): 430-443.

[5] Chen, W., Q. Feng, S. Seshadri. 2013. Sourcing from suppliers with random yield for price-

dependent demand. Annals of Operations Research, 208(1): 557-579.

[6] Chen, X., D. Simchi-Levi. 2004. Coordinating inventory control and pricing strategies with

random demand and fixed ordering cost: The finite horizon case. Operations Research, 52(6):

887-896.

[7] Chen, X., D. Simchi-Levi. 2010. Pricing and inventory management. To appear in Handbook

of Pricing, eds. R. Philips and O. Ozer.

[8] Chopra, S., G. Reinhardt, U. Mohan. 2007. The importance of decoupling recurrent and dis-

ruption risks in a supply chain. Naval Research Logistics. 54(5): 544-555.

[9] Dada, M., N. C. Petruzzi, L. B. Schwarz. 2007. A newsvendor’s procurement problem when

suppliers are unreliable. Manufacturing and Service Operations Management, 9(1): 9-32.

24

This is the Pre-Published Version 



[10] Daniel K. H. 1963. A delivery-lag inventory model with emergency order. Chapter 2, Multistage

Inventory Models and Techniques, Scarf, Gilford, Shelly (Eds.), Stanford University Press,

Stanford, California.

[11] Federgruen, A., A. Heching. 1999. Combined pricing and inventory control under uncertainty.

Operations Research 47(3): 454-475.

[12] Federgruen, A., N. Yang. 2011. Procurement strategies with unreliable suppliers. Operations

Research, 59(4): 1033-1039.

[13] Feng, Q. 2010. Integrating dynamic pricing and replenishment decisions under supply capacity

uncertainty. Management Science, 56(12): 2154-2172.

[14] Feng, Q., S. P. Sethi, H. Yan, H. Zhang. 2006. Are base-stock policies optimal in inventory

problems with multiple delivery modes? Operations Research, 54(4): 801-807.

[15] Feng, Q., R. Shi. 2012. Sourcing from multiple suppliers for price-dependent demands. Pro-

duction and Operations Management, 21(3): 547-563.

[16] Fisher, M., W. Obermeyer, J. Hammond, A. Raman. 1994. Accurate response: the key to

profiting from QR, Bobbin, Vol. 35, February 1994, 48-62.

[17] Fukuda, Y. 1964. Optimal policies for the inventory problem with negotiable leadtime. Man-

agement Science, 10(4): 690-708.

[18] Grosfeld-Nir, A., Y. Gerchak. 2004. Multiple lotsizing in production to order with random

yields: Review of recent advances, Annals of Operations Research 126: 43-69.

[19] Gumus, M., S. Ray, H. Gurnani. 2011. Supply side story: risks, guarantees, competition and

information asymmetry. Management Science. Forthcoming.

[20] Gupta, D. and W. L. Cooper. 2005. Stochastic comparisons in production yield management.

Operations Research, 53(3): 377-384.
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Appendix

In this appendix, we provide the proofs of Proposition 1 and Theorems 1, 3, and 4. We leave the

proofs of the other results in the online supplement. Also in the online supplement we will use

numerical examples to investigate the additive-multiplicative demand models.
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First, some preliminaries are needed. A partially ordered set X is called a lattice if it contains

the minimum and maximum of each pairs of its elements; X ′ is called a sublattice of X if it is

a subset of X and contains the minimum and maximum (with respect to X) of each pair of the

elements of X ′. Let V ⊂ 	n be a lattice and 	 the set of real numbers. A function f : V → 	 is

called supermodular if

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y)

for any x,y ∈ V , where ∧ and ∨ are the component-wise minimum and maximum operators,

respectively. A function f is submodular if −f is supermodular. For more details on these concepts

we refer the reader to Topkis (1998). The following result is from Theorem 2.7.6 and Theorem 2.8.2

in Topkis (1998), which will be frequently used in deriving our theoretical results.

Lemma 1. If X and Y are lattices, S is a sublattice of X×Y , f(x, y) is supermodular in (x, y) on

S, Sx is the section of S at x in X, and g(x) = maxy∈Sx f(x, y) is finite, then g(x) is supermodular.

In addition, define y∗(x) = argmaxy∈Sx f(x, y), then y
∗(x) is increasing in x.

In what follows, we first present two lemmas, which will play important roles in the proofs for

Theorems 4 and 5 respectively; and they may be of independent interest; their proofs are given in

the online supplement.

Lemma 2. Suppose φi(x, θ) : 	 × [0, 1] → 	 is submodular in (x, θ), i = 1, 2; φ1(x, θ) is concave

in x; and φ1(x, θ)− φ2(x, θ) is decreasing in x, then

ψ(x, θ) := max
y≥x

{θφ1(y, θ) + (1− θ)φ2(x, θ)}

is also submodular in (x, θ).

Lemma 3. Suppose φ1(x, q) : 	×	+ → 	 is concave and submodular in (x, q) and φ2(x) : 	 → 	
is concave in x. In addition, suppose max(x,q)∈�×�+ φ1(x, q) = maxx∈� φ1(x, 0) and φ1(x, 0)−φ2(x)
is increasing in x. Then,

ψ(x) := max
q≥0

φ1(x, q)−max
q≥0

φ2(x+ q)

is also increasing in x.

Proof of Proposition 1

We prove the proposition by induction on t. Since VT+1(x, i, j) = 0, the proposition is obviously

true for t = T +1. Now we assume inductively that the proposition holds for period t+1. In what

follows, we shall prove it also holds for period t and then complete the proof.
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We first prove Vt(x, i, j) is concave in x. Since Rt(·) and −Gt(·) are both concave functions and

Vt+1(x, i, j) is concave in x by the inductive assumption, it is easy to verify that the maximand in

(2) is concave in (x, q1, q2, d). Since the constraint in (2) is a convex set, it follows from Proposition

B-4 of Heyman and Sobel (1984) that Vt(x, i, j) is concave in x.

We next prove the remaining results for Vt(x, i, j). In what follows, we only prove Vt(x, i, j) is

increasing in i and submodular in (x, i); and a similar approach can prove it is increasing in j and

submodular in (x, j).

For convenience, we define

Lt(x, i, j) = −αc2x+ αEVt+1(x− εt, i, j); (9)

Wt(x, y, i, j) = −(c1 − αc2)x−Gt(x) + γ2,jLt(y, i, 1) + (1− γ2,j)Lt(x, i, 0); (10)

Ht(x, y, i, j) = max
q1≥0

{
γ1,iWt(x+ q1, y + q1, 1, j) + (1− γ1,i)Wt(x, y, 0, j)

}
. (11)

Then, the optimality equation (2) can be rewritten as

Vt(x, i, j) = max
q2≥0

dt≤d≤d̄t

{
Rt(d) + c1(x− d) +Ht(x− d, x+ q2 − d, i, j)

}
. (12)

Since Vt+1(x, 1, j) ≥ Vt+1(x, 0, j), it follows from (9) and (10) that

max
q1≥0

{Wt(x+ q1, y + q1, 1, j)} ≥Wt(x, y, 1, j) ≥Wt(x, y, 0, j).

Since γ1,1 ≥ γ1,0, it follows from (11) that Ht(x, y, 1, j) ≥ Ht(x, y, 0, j). Therefore, it follows from

(12) that Vt(x, 1, j) ≥ Vt(x, 0, j).

In what follows, we prove Vt(x, i, j) is submodular in (x, i). To this end, we need to first prove

Ht(x, y, i, j) is supermodular in (x, y) and submodular in (x, i) and in (y, i).

Since −Gt(x) and Vt+1(x, i, j) are both concave in x, it follows from (9) that Lt(x, i, j) is concave

in x and then from (10) that Wt(x− q′, y− q′, 1, j) is supermodular in (x, y, q′). Thus, by applying

Lemma 1, maxq1≥0 {Wt(x+ q1, y + q1, 1, j)} = maxq′≤0 {Wt(x− q′, y − q′, 1, j)} is supermodular in

(x, y). In addition, since 0 ≤ γ1,i ≤ 1 and Wt(x, y, 0, j) is supermodular in (x, y) from (10), it

follows from (11) that Ht(x, y, i, j) is supermodular in (x, y).

Now we prove Ht(x, y, i, j) is submodular in (x, i) and in (y, i). Since Vt+1(x, i, j) is submodular

in (x, i), it directly follows from (9) and (10) that Wt(x, y, i, j) is submodular in (x, i) and in (y, i).

Thus, Wt(x, y, 1, j) −Wt(x, y, 0, j) is decreasing in x and y. For any given q1 ≥ 0, since Lt(x, i, j)

is concave in x and by (10), Wt(x+ q1, y + q1, 1, j)−Wt(x, y, 1, j) is decreasing in x and y. Thus,

maxq1≥0 {Wt(x+ q1, y + q1, 1, j)−Wt(x, y, 0, j)} is also decreasing in x and y. From (11), we have

Ht(x, y, 1, j)−Ht(x, y, 0, j) = (γ1,1 − γ1,0)max
q1≥0

{Wt(x+ q1, y + q1, 1, j)−Wt(x, y, 0, j)} . (13)
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Since γ1,1 ≥ γ1,0, it follows from (13) that Ht(x, y, 1, j) − Ht(x, y, 0, j) is decreasing in x and y.

Thus, Ht(x, y, i, j) is submodular in (x, i) and in (y, i).

We are now ready to prove Vt(x, i, j) is submodular in (x, i). By replacing d and q2 with d̃ = x−d
and q̃2 = x+ q2 − d, (12) can be rewritten as

Vt(x,−i, j) = max
q̃2≥d̃

dt≤x−d̃≤d̄t

{
Rt(x− d̃) + c1d̃+Ht(d̃, q̃2,−i, j)

}
. (14)

Since Ht(d̃, q̃2,−i, j) is supermodular in (d̃, q̃2, i) and Rt(x− d̃) is supermodular in (x, d̃) due to the

concavity of Rt(·), the maximand in (14) is a supermodular function in (x, d̃, q̃2, i). In addition, one

can easily verify that the constraint in (14) is a lattice. Thus, by applying Lemma 1, Vt(x,−i, j) is
supermodular in (x, i) so Vt(x, i, j) is submodular in (x, i). �

Proof of Theorem 1

We first prove (a). Note that the optimality equation (2) can be written as

Vt(x, i, j) = max
q1≥0,q2≥0
dt≤d≤d̄t

{
Rt(d) + c1(x− d)+γ1,iWt(x+ q1 − d, x+ q1 + q2 − d, 1, j)

+(1− γ1,i)Wt(x− d, x+ q2 − d, 0, j)
}
. (15)

By replacing q1, q2, and d with q̃1 = −q1, q̃2 = x+q2−d, and d̃ = x−d, the optimality equation

(15) can be rewritten as

Vt(x, i, j) = max
q̃1≤0,q̃2≥d̃

dt≤x−d̃≤d̄t

{
Rt(x− d̃) + c1d̃+ γ1,iWt(d̃− q̃1, q̃2 − q̃1, 1, j) + (1− γ1,i)Wt(d̃, q̃2, 0, j)

}
.(16)

Since Rt(·) is a concave function, Rt(x − d̃) is supermodular in (x, d̃). In addition, from the

convexity of Gt(·) and the concavity of Vt+1(x, i, j) in x from Proposition 1, one can easily verify

that Wt(d̃− q̃1, q̃2− q̃1, 1, j) and Wt(d̃, q̃2, 0, j) are both supermodular functions in (d̃, q̃1, q̃2). Thus,

the maximand in (16) is a supermodular function in (x, q̃1, q̃2, d̃). Since the constraint in (16) is a

lattice, by applying Lemma 1, q̃∗1(x, i, j), q̃∗2(x, i, j) and d̃∗t (x, i, j) are all increasing in x. Note that

q̃∗1(x, i, j) = −q∗t,1(x, i, j) and q̃∗2(x, i, j) = x+ q∗t,2(x, i, j)− d∗t (x, i, j), and d̃t(x, i, j) = x− d∗t (x, i, j).
Thus, q∗t,1(x, i, j) is decreasing in x while x−d∗t (x, i, j) and x+q∗t,2(x, i, j)−d∗t (x, i, j) are increasing
in x. Similarly, it can be shown that q∗t,2(x, i, j) is decreasing in x while x+ q∗t,1(x, i, j)− d∗t (x, i, j)

is increasing in x. Now it remains to prove p∗t (x, i, j) is decreasing in x, or equivalently, d∗t (x, i, j)

is increasing in x. To see this, define

V̂t(z, i, j) = max
q1≥0,q2≥0

{
γ1,iWt(z + q1, z + q1 + q2, 1, j) + (1− γ1,i)Wt(z, z + q2, 0, j)

}
. (17)
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Then, the optimality equation (15) can be simplified and rewritten as

Vt(x, i, j) = max
dt≤d≤d̄t

{
Rt(d) + c1(x− d) + V̂t(x− d, i, j)

}
. (18)

From the concavity of Vt+1(x, i, j) in x from Proposition 1, it easily follows from (9) and (10)

that Wt(x, y, i, j) is jointly concave in (x, y). Then, it follows from (17) that V̂t(z, i, j) is concave

in z and thus V̂t(x − d, i, j) is supermodular in (x, d). Consequently, the maximand in (18) is

supermodular in (x, d). Since the constraint in (18) is a lattice, by applying Lemma 1, d∗t (x, i, j) is

increasing in x. Part (a) is proved.

For k = 1, 2, define ξt,k(i, j) = sup{x| q∗t,k(x, i, j) > 0}. Since q∗t,k(x, i, j) is decreasing in x from

part (a), q∗t,k(x, i, j) > 0 when x < ξt,k(i, j) and q
∗
t,k(x, i, j) = 0 when x ≥ ξt,k(i, j). Thus, a reorder

point policy with reorder point value ξt,k(i, j) is optimal for supplier k.

We next prove (b)-(d). We will only prove the results when j is fixed; and a similar approach can

prove the results when i is fixed. Note from the proof of Proposition 1 that, the maximand in (14)

is a supermodular function in (x, d̃, q̃2, i) and the constraint in (14) is a lattice. Then, by applying

Lemma 1, d̃∗(x,−i, j) and q̃∗2(x,−i, j) are both increasing in i. Thus, d̃∗(x, 1, j) ≤ d̃∗(x, 0, j) and

q̃∗2(x, 1, j) ≤ q̃∗2(x, 0, j). Note that d̃∗(x, i, j) = x − d∗t (x, i, j) and q̃∗2(x, 1, j) = x + q∗t,2(x, i, j) −
d∗t (x, i, j). Then, d∗t (x, 1, j) ≥ d∗t (x, 0, j) and q∗t,2(x, 1, j) − d∗t (x, 1, j) ≤ q∗t,2(x, 0, j) − d∗t (x, 0, j).

Since p∗t (x, i, j) = pt(d
∗
t (x, 1, j)) and pt(d) is decreasing in d, we obtain p∗t (x, 1, j) ≤ p∗t (x, 0, j).

Now we prove q∗t,1(x, 1, j) ≥ q∗t,1(x, 0, j). Define q̃∗1(x, y, j) = argmaxq̃1≤0Wt(x− q̃1, y− q̃1, 1, j).

Then, from the proof of Proposition 1,Wt(x− q̃1, y− q̃1, 1, j) is a supermodular function in (x, y, q̃1).

Since the constraint is a lattice, it follows from Lemma 1 that q̃∗1(x, y, j) is increasing in x and y.

According to (15), we have the following identity

q∗t,1(x, i, j) = −q̃∗1
(
x− d∗t (x, i, j), x+ q∗t,2(x, i, j)− d∗t (x, i, j), j

)
.

Since q̃∗1(x, y, j) is increasing in x and y, d∗t (x, 1, j) ≥ d∗t (x, 0, j) and q∗t,2(x, 1, j) − d∗t (x, 1, j) ≤
q∗t,2(x, 0, j)− d∗t (x, 0, j), we obtain from the above identity that q∗t,1(x, 1, j) ≥ q∗t,1(x, 0, j). �

Proof of Theorem 3

We first prove (a). Since gt(z, j) is concave in z, by the definition of z∗t,1(j), the optimality equation

(6) can be rewritten as

Vt(x, j) = max
dt≤d≤d̄t

{
Rt(d)− c1d+ gt(max{x− d, z∗t,1(j)}, j)

}
+ c1x. (19)

Since gt(max{x − d, z∗t,1(j)}, j) is increasing in d and equals gt(z
∗
t,1(j), j) when d ≥ x − z∗t,1(j), it

can be easily verified from (19) that d∗t (x, j) = d̂t and y
∗
t,1(x, j) = d̂t + z∗t,1(j) when x ≤ d̂t + z∗t,1(j);
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while when x > d̂t + z∗t,1(j), we have d̂t ≤ d∗t (x, j) ≤ x − z∗t,1(j) so y∗t,1(x, j) = x. Therefore, we

obtain y∗t,1(x, j) = max{d̂t + z∗t,1(j), x}.
We next prove (b). By the definition of ft(z, 1) and z

∗
t,2, it can be easily seen from (3) that

y∗t,2(x, j) = d∗t (x, j) + arg max
ȳ2≥y∗t,1(x,j)−d∗t (x,j)

ft (ȳ2, 1)

= max{y∗t,1(x, j), d∗t (x, j) + z∗t,2}. (20)

In addition, it can be summarized from the first part of the proof that y∗t,1(x, j) ≥ d∗t,1(x, j)+z∗t,1(j)

for all (x, j). Thus, when z∗t,1(j) ≥ z∗t,2, we have y∗t,1(x, j) ≥ d∗t (x, j)+z∗t,2 thus y∗t,2(x, j) = y∗t,1(x, j).

Finally, the monotonicity results on d∗t (x, j) directly follow from Theorem 1.

We finally prove (c). When x ≤ d̂t + z∗t,1(j), since d∗t (x, j) = d̂t from the first part of the proof,

it follows that p∗t (x, j) = pt(d̂t). When x > d̂t + z∗t,1(j), the results on p∗t (x, j) directly follow from

Theorem 1. �

Proof of Theorem 4

We first prove (a) by induction. Since VT+1(x, j|γl) = 0, (a) is trivially true for t = T + 1. Now

assume inductively that (a) holds for t + 1. To complete the proof for (a), we shall show that (a)

also holds for t. By (4) and the inductive assumption on Vt+1(x, j|γl), ft(z, j| γl) is submodular in

(z, j), increasing in γl, and submodular in (z, γl). From (5),

gt(z, j| γl) = −(c1 − αc2)z −Gt(z) + max
z̄≥z

{
γ2,jft(z̄, 1| γl) + (1− γ2,j)ft(z, 0| γl)

}
. (21)

In what follows, we first prove gt(z, j| γl) is increasing in γl and submodular in (z, γl). Depend-

ing on whether j equals l, we divide the analysis into two cases.

When j = l, it follows from the above properties of ft(z, j| γl) and Lemma 2 that gt(z, j| γl) is
submodular in (z, γl). Now suppose 0 ≤ γl < γ̃l ≤ 1. Then,

gt(z, l| γ̃l) + (c1 − αc2)z +Gt(z) = γ̃l max
z̄≥z

ft(z̄, 1| γ̃l) + (1− γ̃l)ft(z, 0| γ̃l)

≥ γl max
z̄≥z

ft(z̄, 1| γ̃l) + (1− γl)ft(z, 0| γ̃l)

≥ γl max
z̄≥z

ft(z̄, 1| γl) + (1− γl)ft(z, 0| γl)

= gt(z, l| γl) + (c1 − αc2)z +Gt(z),

where the first inequality holds since maxz̄≥z ft(z̄, 1| γ̃l) ≥ ft(z, 1| γ̃l) ≥ ft(z, 0| γ̃l); and the second

inequality holds since ft(z, 0| γl) and ft(z, 1| γl) are both increasing in γl. Thus, gt(z, l| γl) is

increasing in γl.

31

This is the Pre-Published Version 



When j 
= l, since ft(z̄, 1| γl) and ft(z, 0| γl) are both increasing in γl, gt(z, j| γl) is also

increasing in γl. In addition, (21) can be rewritten as

gt(z, j| − γl) = −(c1 − αc2)z −Gt(z) + max
z̄≥z

{
γ2,jft(z̄, 1| − γl) + (1− γ2,j)ft(z, 0| − γl)

}
.

Since ft(z̄, 1| −γl) and ft(z, 0| −γl) are both supermodular functions and the constraint {(z, z̄, γl)| z̄ ≥
z} is a lattice, by applying Lemma 1, gt(z, j| − γl) is supermodular in (z, γl) hence gt(z, j| γl) is

submodular in (z, γl).

Now we prove part (a) for period t. By replacing the decision variables y1 and d as ỹ1 = y1 − d

and d̃ = x− d, (6) can be rewritten as

Vt(x, j| − γl) = max
ỹ1≥d̃

dt≤x−d̃≤d̄t

{
Rt(x− d̃) + c1d̃+ gt(ỹ, j| − γl)

}
. (22)

Since Rt(·) is a concave function and gt(ỹ, j| − γl) is supermodular in (ỹ, γl) and decreasing in γl,

it can be easily verified from (22) that Vt(x, j|− γl) is decreasing in γl and supermodular in (x, γl).

Thus, Vt(x, j| γl) is increasing in γl and submodular in (x, γl). So (a) is proved.

We next prove (b). Note that z∗t,1(j| γl) = argmaxz gt(z, j| γl) and z∗t,2(γl) = argmaxz ft(z, 1| γl).
Since gt(z, j| γl) and ft(z, 1| γl) are both submodular in (z, γl), it directly follows from Lemma 1

that both z∗t,1(j| γl) and z∗t,2(γl) are decreasing in γl. Note that supplier 2 is never used in period T

because of its one-period leadtime; so VT (x, j) and fT−1(x, j) are both independent of γl. Hence,

by its definition, z∗T−1,2(γ
l) is independent of γl. So (b) is proved.

We finally prove (c). First, from (22), it is easily seen that d̃∗(x, j| −γl) is increasing in γl. Thus,
d̃∗(x, j| γl) is decreasing in γl. Since d̃∗(x, j| γl) = x−d∗t (x, j| γl) and p∗t (x, j| γl) = pt(d

∗
t (x, j| γl)),

it follows that d∗t (x, j| γl) is increasing in γl while p∗t (x, j| γl) is decreasing in γl. Next, from

Theorem 3, y∗t,1(x, j| γl) = max{d̂t + z∗t,1(j| γl), x}, and thus, it directly follows from part (b) that

y∗t,1(x, j| γl) is decreasing in γl. Finally, from Theorem 3, we have

y∗t,2(x, j| γl)− d∗t (x, j| γl) = max{y∗t,1(x, j| γl)− d∗t (x, j| γl), z∗t,2(γl)}.

Since y∗t,1(x, j| γl) and z∗t,2(γl) are decreasing in γl while d∗t (x, j| γl) is increasing in γl, it follows

from the above identity that y∗t,2(x, j| γl) − d∗t (x, j| γl) is decreasing in γl. When t = T − 1, from

(8), we have

q∗T−1,2(x, j|γl) = max{d∗T−1(x, j|γl)− y∗T−1,1(x, j|γl) + z∗T−1,2(γ
l), 0}.

Note that z∗T−1,2(γ
l) is independent of γl from (b). Thus, q∗T−1,2(x, j|γl) is increasing in γl. So (c)

is proved. �
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Online Supplement of

Dynamic Pricing and Inventory Management with Dual Suppliers

of Different Leadtimes and Disruption Risks

by

Xiting Gong, Xiuli Chao, and Shaohui Zheng

In this online supplement, we provide the missing proofs in the paper. We first prove Lemmas

2 and 3. For easy reference, we state the results again.

Lemma 2. Suppose φi(x, θ) : 	 × [0, 1] → 	 is submodular in (x, θ), i = 1, 2; φ1(x, θ) is concave

in x; and φ1(x, θ)− φ2(x, θ) is decreasing in x, then

ψ(x, θ) := max
y≥x

{θφ1(y, θ) + (1− θ)φ2(x, θ)}

is also submodular in (x, θ).

Proof. We prove the submodularity of ψ(x, θ) by definition, i.e., for any x1 < x2 and 0 ≤ θ1 <

θ2 ≤ 1, verify that

ψ(x1, θ1) + ψ(x2, θ2) ≤ ψ(x1, θ2) + ψ(x2, θ1). (23)

Denote x∗(θ) = argmaxx φ1(x, θ). Then, ψ(x, θ) = θφ1(max{x, x∗(θ)}, θ) + (1 − θ)φ2(x, θ).

Since φ1(x, θ) is a submodular function, x∗(θ) is decreasing in θ. Thus, x∗(θ1) ≥ x∗(θ2). In what

follows, we divide the analysis into three cases and separately verify (23) holds under all cases.

Case 1. x1 ≥ x∗(θ1). In this case, x2 ≥ x1 ≥ x∗(θ1) ≥ x∗(θ2). Then, ψ(xi, θj) = θjφ1(xi, θj) +

(1− θj)φ2(xi, θj), i, j = 1, 2. Then,

ψ(x2, θ2)− ψ(x1, θ2) = θ2(φ1(x2, θ2)− φ1(x1, θ2)) + (1− θ2)(φ2(x2, θ2)− φ2(x1, θ2))

≤ θ2(φ1(x2, θ1)− φ1(x1, θ1)) + (1− θ2)(φ2(x2, θ1)− φ2(x1, θ1))

≤ θ1(φ1(x2, θ1)− φ1(x1, θ1)) + (1− θ1)(φ2(x2, θ1)− φ2(x1, θ1))

= ψ(x2, θ1)− ψ(x1, θ1),

where the first inequality is from the submodularity of φ1(x, θ) and φ2(x, θ), and the second one

holds since θ1 < θ2 and φ1(x, θ)− φ2(x, θ) is decreasing in x. Thus, (23) holds in Case 1.
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Case 2. x2 ≤ x∗(θ1). In this case, x∗(θ1) ≥ x2 > x1. Then, ψ(xi, θ1) = θ1φ1(x
∗(θ1), θ1) + (1 −

θ1)φ2(xi, θ1), i = 1, 2. Since φ1(x, θ) is concave in x and φ1(x, θ1)− φ2(x, θ1) is decreasing in x, we

have φ1(x2, θ1) ≥ φ1(x1, θ1) and φ2(x2, θ1) ≥ φ2(x1, θ1). Then,

ψ(x2, θ2)− ψ(x1, θ2) = (1− θ2)(φ2(x2, θ2)− φ2(x1, θ2)) + θ2

(
max
y≥x2

φ1(y, θ2)−max
y≥x1

φ1(y, θ2)
)

≤ (1− θ2)(φ2(x2, θ2)− φ2(x1, θ2))

≤ (1− θ1)(φ2(x2, θ1)− φ2(x1, θ1))

= ψ(x2, θ1)− ψ(x1, θ1),

where the first inequality holds since maxy≥x φ1(y, θ2) is decreasing in x and the second inequality

holds since when φ2(x2, θ2) ≤ φ2(x1, θ2), (1−θ2)(φ2(x2, θ2)−φ2(x1, θ2)) ≤ 0 ≤ (1−θ1)(φ2(x2, θ1)−
φ2(x1, θ1)); and when φ2(x2, θ2) > φ2(x1, θ2), (1−θ2)(φ2(x2, θ2)−φ2(x1, θ2)) ≤ (1−θ2)(φ2(x2, θ1)−
φ2(x1, θ1)) ≤ (1 − θ1)(φ2(x2, θ1) − φ2(x1, θ1)) due to the submodularity of φ2(x, θ) and 0 ≤ θ1 <

θ2 ≤ 1. Thus, (23) holds in Case 2.

Case 3. x1 < x∗(θ1) < x2. In this case,

ψ(x2, θ2)− ψ(x2, θ1) ≤ ψ(x∗(θ1), θ2)− ψ(x∗(θ1), θ1) ≤ ψ(x1, θ2)− ψ(x1, θ1),

where the first inequality follows since (23) holds under Case 1 and the second inequality follows

since (23) holds under Case 2. Thus, (23) holds in Case 3.

In summary, since we have shown (23) holds under all possible cases, ψ(x, θ) is submodular in

(x, θ). The proof is complete. �

Lemma 3. Suppose φ1(x, q) : 	×	+ → 	 is concave and submodular in (x, q) and φ2(x) : 	 → 	
is concave in x. In addition, suppose max(x,q)∈�×�+ φ1(x, q) = maxx∈� φ1(x, 0) and φ1(x, 0)−φ2(x)
is increasing in x. Then,

ψ(x) := max
q≥0

φ1(x, q)−max
q≥0

φ2(x+ q)

is also increasing in x.

Proof. Define x∗1 = argmaxx∈� φ1(x, 0) and x∗2 = argmaxx∈� φ2(x). Then, it follows that

φ1(x
∗
1, 0)− φ2(x

∗
1) ≥ φ1(x

∗
2, 0)− φ2(x

∗
2).

Since φ1(x, 0)− φ2(x) is increasing in x, we have x∗1 ≥ x∗2.
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We first prove ψ(x) is increasing in x when x ≤ x∗1. By the definition of x∗1 and the assumption

that maxx∈� φ1(x, 0) = max(x,q)∈�×�+ φ1(x, q), we have

max
x∈�

{
max
q≥0

φ1(x, q)
}
= max

x∈�
φ1(x, 0) = φ1(x

∗
1, 0) ≤ max

q≥0
φ1(x

∗
1, q). (24)

Thus, maxq≥0 φ1(x, q) achieves its maximization when x = x∗1. Since φ1(x, q) is concave in (x, q),

maxq≥0 φ1(x, q) is also concave in x, and thus, it is increasing in x when x ≤ x∗1. Since maxq≥0 φ2(x+

q) = maxy≥x φ2(y) is decreasing in x, it follows that ψ(x) is increasing in x when x ≤ x∗1.

We next prove ψ(x) is also increasing in x when x ≥ x∗1. Define q∗1(x) = argmaxq≥0 φ1(x, q).

Since φ1(x, q) is submodular in (x, q), then q∗1(x) is decreasing in x. Note from (24) that φ1(x
∗
1, 0) =

maxq≥0 φ1(x
∗
1, q). Then, q∗1(x∗1) = 0, and thus, q∗1(x) = 0 for x ≥ x∗1. Since φ2(x) is concave in x

and by the definition of x∗2, maxq≥0 φ2(x+ q) = φ2(max{x, x∗2}). Thus, when x ≥ x∗1,

ψ(x) = φ1(x, q
∗
1(x))− φ2(max{x∗2, x}) = φ1(x, 0)− φ2(x).

As φ1(x, 0)− φ2(x) is increasing in x, it follows that ψ(x) is increasing in x when x ≥ x∗1. �

Proof of Theorem 2

We prove (a) by induction on t; and (b) will be proved simultaneously. Since VT+1(x, i, j) = 0, (a)

is obviously true for t = T + 1. Now assume inductively that (a) holds for t+ 1 and we shall prove

the theorem holds for t. In what follows, we will only prove the theorem holds for t when k = 1,

and a similar approach can prove the results when k = 2.

We first prove Vt(x, i, j| c1) is decreasing in c1. Since Vt+1(x, i, j| c1) is decreasing in c1 by the

inductive assumption, it follows from (9) and (10) that Lt(x, i, j| c1) and Wt(x, y, i, j| c1) + c1x are

both decreasing in c1. Thus, for any q1 ≥ 0, one can easily verify that the maximand in (15) is

decreasing in c1, and consequently, Vt(x, i, j| c1) is decreasing in c1.

We next prove Vt(x, i, j| c1) is supermodular in (x, c1) and part (b) when k = 1. By replacing

q1, q2, and d with q̃1 = −q1, q̃2 = x + q2 − d and d̃ = x − d, the optimality equation (15) can be

rewritten as

Vt(x, i, j| c1) = max
q̃1≤0,q̃2≥d̃

dt≤x−d̃≤d̄t

{
Rt(x− d̃) + γ1,i[c1d̃+Wt(d̃− q̃1, q̃2 − q̃1, 1, j| c1)]

+(1− γ1,i)[c1d̃+Wt(d̃, q̃2, 0, j| c1)]
}
. (25)
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By the convexity of Gt(·) and the inductively assumption on Vt+1(x, i, j| c1), it can be easily ver-

ified from (9) and Proposition 1 that Lt(x, i, j| c1) is concave in x and supermodular in (x, c1) while

Lt(x, i, j| c1)− c1x is submodular in (x, c1). Thus, it follows from (10) that c1d̃+Wt(d̃, q̃2, 0, j| c1)
is supermodular in (d̃, q̃2, c1). In addition, from (10), we have

c1d̃+Wt(d̃− q̃1, q̃2 − q̃1, 1, j| c1)

=αc2(d̃− q̃1) + γ2,j [c1q̃1 + Lt(q̃2 − q̃1, i, 1| c1)] + (1− γ2,j)[c1q̃1 + Lt(d̃− q̃1, i, 0| c1)].

Then, it can be easily verified from the above expression that c1d̃ + Wt(d̃ − q̃1, q̃2 − q̃1, 1, j| c1)
is supermodular in (d̃, q̃2, q̃2, c1). Since Rt(x − d̃) is supermodular in (x, d̃) from the concavity

of Rt(·), the maximand in (25) is a supermodular function in (x, q̃1, q̃2, d̃, c1). Notice that the

constraint in (25) is a lattice. Thus, by applying Lemma 1, Vt(x, i, j| c1) is supermodular in (x, c1),

and q̃∗1(x, i, j| c1), q̃∗2(x, i, j| c1) and d̃∗(x, i, j| c1) are all increasing in c1.

Note that q̃∗1(x, i, j| c1) = −q∗t,1(x, i, j| c1), q̃∗2(x, i, j| c1) = x+ q∗t,2(x, i, j| c1)− d∗t (x, i, j| c1) and
d̃∗(x, i, j| c1) = x − d∗t (x, i, j| c1). It follows that q∗t,1(x, i, j| c1) and d∗t (x, i, j| c1) are decreasing

in c1 while q∗t,2(x, i, j| c1) − d∗t (x, i, j| c1) is increasing in c1. Since pt(·) is a decreasing function,

p∗t (x, i, j| c1) = pt(d
∗
t (x, i, j| c1)) is increasing in c1. In addition, since q∗t,1(x, i, j| c1) is decreasing

in x from Theorem 1, ξ1t(i, j| c1) = sup{x| q∗t,1(x, i, j| c1) > 0} is also decreasing in c1. Thus, (b)

holds for t when k = 1.

We finally prove that Vt(x, i, j| c1)− c1x is submodular in (x, c1). By replacing q1 and q2 with

q̂1 = x+ q1 and q̂2 = d− q2, (15) can be rewritten as

Vt(x, i, j| − c1) + c1x = max
q̂1≥x,q̂2≤d
dt≤d≤d̄t

{
Rt(d)+γ

1,i [c1d+Wt(q̂1 − d, q̂1 − q̂2, 1, j| − c1)]

+ (1− γ1,i) [c1d+Wt(x− d, x− q̂2, 0, j| − c1)]
}
. (26)

From (10), we have

c1d+Wt(q̂1 − d, q̂1 − q̂2, 1, j| − c1)

=αc2(q̂1 − d) + γ2,j [c1q̂1 + Lt(q̂1 − q̂2, 1, 1| − c1)] + (1− γ2,j) [c1q̂1 + Lt(q̂1 − d, 1, 0| − c1)] .

Since Lt(x, i, j| − c1) is concave in x and Lt(−x, i, j| − c1) and Lt(x, i, j| − c1) + c1x are both

supermodular in (x, c1), one can easily verify from the above expression that c1d+Wt(q̂1 − d, q̂1 −
q̂2, 1, j| − c1) is supermodular in (q̂1, q̂2, d, c1). Similarly, c1d+Wt(x− d, x− q̂2, 0, j| − c1) is super-

modular in (x, q̂2, d, c1). Thus, the maximand in (26) is a supermodular function in (x, q̂1, q̂2, d, c1).
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Since the constraint in (26) is a lattice, by applying Lemma 1, Vt(x, i, j| −c1)+c1x is supermodular

in (x, c1) and thus Vt(x, i, j| c1) − c1x is submodular in (x, c1). In summary, (a) holds for t when

k = 1. The proof is complete. �

Proof of Proposition 2

Since Theorem 2 holds for the case when supplier 1 is perfectly reliable, it follows that Vt+1(x, j| ck)
is supermodular in (x, ck) while Vt+1(x, j| ck)− ckx is submodular in (x, ck), k = 1, 2. Then, from

(4), ft(z, j| c1, c2) is supermodular in (x, c1) but submodular in (x, c2). Therefore, by the definition

of z∗t,2 and by applying Lemma 1, we have z∗t,2(c1, c2) is increasing in c1 while decreasing in c2.

We next prove the monotonicity results on z∗t,1(j| c1, c2). Based on Lemma 1, it suffices to prove

that gt(z, j| c1, c2) is submodular in (x, c1) while supermodular in (x, c2). We first prove gt(z, j|c1)
is submodular in (z, c1). Notice that (5) can be rewritten as

gt(z, j|c1) = αc2z −Gt(z) + γj max
q̃≤0

{ft(z − q̃, 1|c1)− c1z}+ (1− γj) (f(z, 0|c1)− c1z) . (27)

Since Vt+1(x, j|c1) is supermodular in (x, c1) and Vt+1(x, j|c1) − c1x is submodular in (x, c1),

it follows from (4) that ft(z, j|c1) is supermodular in (z, c1) and ft(z, j|c1)− c1z is submodular in

(z, c1). Thus, ft(z−q̃, 1|−c1)+c1z is supermodular in (z, q̃, c1). Since the constraint {(z, q̃, c1)|q̃ ≤ 0}
is a lattice, by applying Lemma 1, maxq̃≤0{ft(z − q̃, 1| − c1) + c1z} is supermodular in (z, c1) and

thus maxq̃≤0{ft(z − q̃, 1|c1)− c1z} is submodular in (z, c1). Since 0 ≤ γ2,j ≤ 1 and f(z, 0|c1)− c1z

is submodular in (z, c1), it follows from (27) that gt(z, j|c1) is submodular in (z, c1).

We next prove gt(z, j|c2) is supermodular in (z, c2). Note that ft(z, 0| c2) +αc2z = αEVt+1(z−
εt, j| c2) is supermodular in (z, c2). Thus, from (5), it remains to prove

max
z̄≥z

ft(z̄, 1| c2) + αc2z = max
q̃≤0

{ft(z − q̃, 1| c2) + αc2z}

is also supermodular in (z, c2). From the concavity of ft and Theorem 2, it is easy to verify that

ft(z− q̃, 1| c2)+αc2z is supermodular in (z, q̃, c2). Since the constraint set is a lattice, by applying

Lemma 1 we obtain the desired result.

We finally prove q∗t,1(x, j| c2) is increasing in c2. To this end, we rewrite (7) as

q∗t,1(x, j| c2) = max{d̂t + z∗t,1(j| c2)− x, 0}.

Since z∗t,1(j| c2) is increasing in c2, it follows from the above equation that q∗t,1(x, j| c2) is also

increasing in c2. �
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Proof of Theorem 5

We prove (a) by induction; and (b) will be proved simultaneously. Since VT+1(x, i, j) = VT+1(x, j) =

0, (a) is trivially true for t = T + 1. Now assume inductively that (a) holds for t+ 1. To complete

the proof, we shall show that the theorem holds for t.

For convenience, we define

φt(x, q1, i, j) = max
q2≥0

{
γ1,iWt(x+ q1, x+ q1 + q2, 1, j) + (1− γ1,i)Wt(x, x+ q2, 0, j)

}
.

Then, the optimality equations (6) and (15) can be rewritten as

Vt(x, j) = max
dt≤d≤d̄t

{
Rt(d) + c1(x− d) + max

q1≥0
gt(x+ q1 − d, j)

}
; (28)

Vt(x, i, j) = max
dt≤d≤d̄t

{
Rt(d) + c1(x− d) + max

q1≥0
φt(x− d, q1, i, j)

}
. (29)

We first prove Vt(x, i, j) ≤ Vt(x, j). From (28) and (29), it suffices to prove maxq1≥0 φt(x, q1, i, j) ≤
maxq1≥0 gt(x+ q1, j), or equivalently,

max
q2≥0

{
γ1,imax

q1≥0
Wt(x+ q1, x+ q1 + q2, 1, j) + (1− γ1,i)Wt(x, x+ q2, 0, j)

}

≤max
q2≥0

{
max
q1≥0

{−(c1 − αc2)(x+ q1)−Gt(x+ q1) + γ2,jft(x+ q1 + q2, 1) + (1− γ2,j)ft(x+ q1, 0)}
}
.

Note that maxq1≥0Wt(x+q1, x+q1+q2, 1, j) ≥Wt(x, x+q2, 1, j) ≥Wt(x, x+q2, 0, j) by Proposition

1. Then, to prove the above inequality, it suffices to show that, for any x, q1, and q2,

Wt(x+ q1, x+ q1 + q2, 1, j)

=− (c1 − αc2)(x+ q1)−Gt(x+ q1) + γ2,jLt(x+ q1 + q2, 1, 1) + (1− γ2,j)Lt(x+ q1, 1, 0)

≤− (c1 − αc2)(x+ q1)−Gt(x+ q1) + γ2,jft(x+ q1 + q2, 1) + (1− γ2,j)ft(x+ q1, 0).

Since Vt+1(x, i, j) ≤ Vt+1(x, j) by the inductive assumption, by (4) and (9), Lt(x, 1, j) ≤ ft(x, j),

this shows that the above inequality holds. Hence, Vt(x, i, j) ≤ Vt(x, j).

We next prove Vt(x, i, j)−Vt(x, j) is increasing in x. In what follows, we will first apply Lemma

3 to show that maxq1≥0 φt(x, q1, i, j)−maxq1≥0 gt(x+ q1, j) is increasing in x. To this end, we need

to verify that φt(x, q1, i, j) and gt(x, j) satisfy the following properties:

(a) φt(x, q1, i, j) is concave and submodular in (x, q1), and gt(x, j) is concave in x;

(b) max(x,q1)∈�×�+ φt(x, q1, i, j) = maxx∈� φt(x, 0, i, j); and
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(c) φt(x, 0, i, j)− gt(x, j) is increasing in x.

Firstly, since Wt(x, y, i, j) is concave and separable in (x, y) by (9), (10), and Proposition 1, it

is easily seen that φ1(x, q1, i, j) is concave and submodular in (x, q1). In addition, gt(x, j) is clearly

concave in x.

We next verify max(x,q1)∈�×�+ φt(x, q1, i, j) = maxx∈� φt(x, 0, i, j). Denote

(x∗, q∗1, q
∗
2) = arg max

(x,q1,q2)∈�×�+×�+

{
γ1,iWt(x+ q1, x+ q1 + q2, 1, j) + (1− γ1,i)Wt(x, x+ q2, 0, j)

}
.

Then, by the definition of φt(x, q1, i, j), we have

max
(x,q1)∈�×�+

φt(x, q1, i, j) = γ1,iWt(x
∗ + q∗1, x

∗ + q∗1 + q∗2, 1, j) + (1− γ1,i)Wt(x
∗, x∗ + q∗2, 0, j). (30)

Since Wt(x, x+ q∗2, i, j) is submodular in (x, i) following from Proposition 1 and by the optimality

of q∗1, we have

Wt(x
∗ + q∗1, x+ q∗1 + q∗2, 0, j)−Wt(x

∗, x+ q∗2, 0, j)

≥Wt(x
∗ + q∗1, x+ q∗1 + q∗2, 1, j)−Wt(x

∗, x+ q∗2, 1, j) ≥ 0.

Then, Wt(x
∗ + q∗1, x+ q∗1 + q∗2, 0, j) ≥Wt(x

∗, x+ q∗2, 0, j). According to (30), we have

max
(x,q1)∈�×�+

φt(x, q1, i, j)

≤γ1,iWt(x
∗ + q∗1, x

∗ + q∗1 + q∗2, 1, j) + (1− γ1,i)Wt(x
∗ + q∗1, x

∗ + q∗1 + q∗2, 0, j)

≤φ1(x∗ + q∗1, 0, i, j) ≤ max
x∈�

φt(x, 0, i, j) ≤ max
(x,q1)∈�×�+

φt(x, q1, i, j).

Hence, max(x,q1)∈�×�+ φt(x, q1, i, j) = maxx∈� φt(x, 0, i, j).

We lastly verify that φt(x, 0, i, j)− gt(x, j) is increasing in x. By the definition of φ1(x, q1, i, j)

and Wt(x, y, i, j), we have

φ1(x, 0, i, j) = max
q2≥0

{
γ1,iWt(x, x+ q2, 1, j) + (1− γ1,i)Wt(x, x+ q2, 0, j)

}

= −(c1 − αc2)x−Gt(x) + (1− γ2,j)(γ1,iLt(x, 1, 0) + (1− γ1,i)Lt(x, 0, 0))

+ γ2,j max
q2≥0

{
γ1,iLt(x+ q2, 1, 1) + (1− γ1,i)Lt(x+ q2, 0, 1)

}
. (31)

Then, from (5) and (31), we have

φt(x, 0, i, j)− gt(x, j) = (1− γ2,j)(γ1,iLt(x, 1, 0) + (1− γ1,i)Lt(x, 0, 0)− ft(x, 0))

+ γ2,j
(
max
q2≥0

{
γ1,iLt(x+ q2, 1, 1) + (1− γ1,i)Lt(x+ q2, 0, 1)

}−max
q2≥0

ft(x+ q2, 1)

)
.
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By the inductive assumption, Vt+1(x, i, j)−Vt+1(x, j) is increasing in x. Then, it follows from (4)

and (9) that Lt(x, i, j)−ft(x, j) is increasing in x. Then, γ1,iLt(x, 1, j)+(1−γ1,i)Lt(x, 0, j)−ft(x, j)
is also increasing in x. Notice that γ1,iLt(x, 1, 1)+(1−γ1,i)Lt(x, 0, 1) and ft(x, 1) are both concave

in x. Thus, one can easily verify that

max
q2≥0

{
γ1,iLt(x+ q2, 1, 1) + (1− γ1,i)Lt(x+ q2, 0, 1)

}−max
q2≥0

ft(x+ q2, 1)

is increasing in x. Hence, φt(x, 0, i, j)− gt(x, j) is increasing in x.

In summary, since φt(x, q1, i, j) and gt(x, j) satisfy the properties (a)-(c), by applying Lemma

3, we conclude that maxq1≥0 φt(x, q1, i, j)−maxq1≥0 gt(x+ q1, j) is increasing in x.

Now we prove Vt(x, i, j)− Vt(x, j) is increasing in x and d∗t (x, i, j) ≤ d∗t (x, j). Define

Vt(x, i, j, n) := max
dt≤d≤d̄t

{
Rt(d) + c1(x− d) + V̂t(x− d, i, j, n)

}
, (32)

where V̂t(x, i, j, 1) := maxq1≥0 φt(x, q1, i, j) and V̂t(x, i, j, 0) := maxq1≥0 gt(x+q1, j). Then, V̂t(x, i, j, n)

is supermodular in (x, n). By replacing d as d̂ = x− d, (32) can be rewritten as

Vt(x, i, j, n) = max
dt≤x−d̂≤d̄t

{
Rt(x− d̂) + c1d̂+ V̂t(d̂, i, j, n)

}
.

Since Rt(·) is a concave function, the maximand in the above optimization problem is supermodular

in (x, d̂, n). Since the constraint is a lattice, by applying Lemma 1, Vt(x, i, j, n) is supermodular

in (x, n) and d̂∗(x, i, j, n) is increasing in n. By the definition of Vt(x, i, j, n) and V̂t(x, i, j, n), then

Vt(x, i, j) − Vt(x, j) is increasing in x and d∗t (x, i, j) ≤ d∗t (x, j). Furthermore, p∗t (x, i, j) ≥ p∗t (x, j).

The proof of Theorem 5 thus completed. �

Numerical studies on additive-multiplicative demand

We report some of the results of the numerical studies conducted on models with additive-multiplicative

demand. Suppose T = 4, c1 = 5, c2 = 3, α = 0.97, h = 1, b = 8, and

Dt(p) = wt(100− 10p) + εt,

where wt, εt, 1 ≤ t ≤ T are independent random variables with Pr(wt = 0.5) = Pr(wt = 1.5) = 0.5,

εt ∼ Uniform[−10, 10], p
t
= 4, p̄t = 8, γ1,0 = γ1,1 = 1, γ2,0 = 0.3, and γ2,1 = 0.9. The current

period t = 1.

In the following, Figure 6 shows the impact of adding a second supplier on the firm’s expected

total discounted revenue and optimal pricing when the firm originally only sources from supplier 1.
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From this figure, it can be seen that both the firm and its customers benefit from dual sourcing, and

the benefits decrease when supplier 2 becomes less reliable or when it charges higher unit ordering

cost. Figure 7 illustrates the impact of unit ordering cost c1 on the optimal order quantity from

supplier 2, and it demonstrates that supplier 2 may receive less orders when supplier 1 becomes

more expensive, implying that supplier 2 may receive more orders when supplier 1 is added into

the firm’s sourcing system. Finally, Figure 8 shows that supplier 2 may receive less orders when it

becomes more reliable.
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Figure 6: Impact of dual sourcing on firm’s revenue and price when (x, i, j) = (70, 0, 0)
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Figure 7: Optimal order quantity from supplier 2 when (i, j) = (0, 1)
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Figure 8: Optimal order quantity from supplier 2 when γ1,0 = 0.6, γ1,1 = 0.9, and (i, j) = (0, 1)
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