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1. Introduction
This paper studies the operational and demand con-
trol decisions faced by a profit-maximizing make-to-
order production firm that offers multiple products
to a market of price and delay sensitive customers,
emphasizing three features of particular interest: first,
the joint use of dynamic pricing and lead-time quo-
tation controls to manage demand; second, the access
to a dual sourcing mode that can be used to expedite
orders at a cost; and third, the interaction between
the demand controls with the operational ones of
sequencing and expediting employed by the firm.
Starting with the airline industry, the adoption of

revenue management strategies has transformed the
transportation and hospitality sectors over the past
couple of decades, and is now becoming important
in retail, telecommunications, entertainment, finan-
cial services, health care, and manufacturing. Broadly
speaking, these involve the use of sophisticated infor-
mation technology systems and intense data process-
ing to construct detailed forecasts and quantitative
demand models, coupled with the use of differen-
tiated product offerings that are managed through
dynamic capacity allocation and/or pricing strate-
gies to maximize the firm’s expected profitability.
This paper is motivated from manufacturing appli-
cations, a notable example of which comes from the

automotive industry’s effort to produce cars in a
make-to-order fashion.1 In such a setting, the joint
consideration of economic and operational decisions
makes the manufacturer more responsive to market
changes and to fluctuations in its operating environ-
ment due to the variability of the demand and pro-
duction processes. Moreover, the dynamic pricing and
lead-time decisions can exploit the customers’ hetero-
geneity in their price and delay sensitivities and drive
higher profitability.
In more detail, the production system is modeled

as a multiclass Mq/GI/1 queue. The system man-
ager can dynamically select its prices and quoted
lead times. Operationally, the manager has discretion
with respect to the sequencing of orders at the server,
and can choose to instantaneously expedite existing
orders at a cost. Instantaneous expediting is an ideal-
ized model for systems with significant surge capac-
ity, which also enables the firm to satisfy the quoted
lead times on all accepted orders. Customers choose
what to buy, if any, by trading off price and lead time

1 For example, BMW claims that 80% of the cars sold in Europe and
30% of those sold in the United States are built to order. When a
dealer inputs a potential order to BMW’s web ordering service, a
target lead time is generated within five seconds. This is typically
11–12 days in Europe and about double that amount in the United
States (Edmondson 2003).
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against their product valuations and delay prefer-
ences. The firm’s problem is to select state-dependent
pricing and lead-time quotation strategies, and expe-
diting and sequencing policies to maximize its long-
run average expected revenue minus expediting cost.
This paper strives to contribute in terms of the

modeling and analysis of these problems, as well as
the derivation of structural insights that may be of
practical value. In terms of modeling, this paper is
one of the first to address the joint dynamic pricing
and lead-time control problem in a stochastic produc-
tion environment, and it combines two novel features:
first, the incorporation of expediting capability that
enriches the model while simplifying the analysis of
lead-time guarantees; and second, its treatment of the
dynamic lead-time control capability. This is done by
committing to offer each “good” at multiple predeter-
mined lead times, and then focusing on pricing these
options. Using dynamic pricing the firm can effec-
tively dynamically divert demand across this discrete
set of lead-time options. Restricting the possible lead-
time options (e.g., one, two, or four weeks) is practi-
cal, and simplifies the customer choice model, which
reduces to just a function of price. Finally, the cus-
tomer choice model outlined in §5 builds on extensive
marketing research and seems novel.
The resulting problem could be approached using

the theory for Markov decision processes, but such
a formulation is analytically and numerically intract-
able. This paper follows the methodology proposed
by Harrison (1988) that suggests studying such a
model in a regime where its processing resource is
almost fully utilized. This leads to a Brownian con-
trol problem that is often simpler than the original
problem at hand. Apart from this analytical simpli-
fication, this operating regime can—at least in some
cases—be justified economically (e.g., see Maglaras
and Zeevi 2003). Within this framework, the key ana-
lytical results of this paper are the following. In §3.1,
we propose a diffusion model approximation for the
underlying system that is accurate (and asymptoti-
cally correct) in settings with high levels of poten-
tial demand and processing capacity, respectively, and
where the latter is almost fully utilized. We formulate
a control problem that is motivated from settings with
low capacity costs or production economies of scale,
such as in information service networks and some
examples of make-to-order manufacturing, respec-
tively. The approximating problem is solved using
results by Plambeck et al. (2001) and Ata et al. (2005).
Specifically, we use results from Plambeck et al. (2001)
to characterize the sequencing and expediting con-
trols that are optimal for the approximating problem
(Proposition 1). We then reduce the resulting multidi-
mensional drift control problem to a one-dimensional
one in terms of the workload process (Proposition 2),

which we solve by adopting results from Ata et al.
(2005) (Theorem 1).
The solution of the approximating diffusion con-

trol problem leads to intuitive and practically imple-
mentable policies for the original problem (see §4), as
well as to several structural insights:
(i) Pricing decisions depend on the aggregate sys-

tem workload and not the product-level queue
lengths, and thus tend to vary on a slower time-scale.
(ii) Expediting is done according to a greedy pri-

ority rule (from cheapest to most expensive) in order
to keep the total workload below a certain level that
depends on the predetermined lead-time bounds.
(iii) Sequencing is done according to a dynamic

rule that roughly speaking serves the order that is
“closest” to violating its lead time.
(iv) In high-volume systems, end-to-end delays are

relatively small, and as a result the price differentials
that the firm can charge between two variants that
only differ in terms of their lead-time guarantees will
be small. Our analysis quantified this effect. Extensive
numerical results illustrate the value of joint pricing
and lead-time control, as well as the performance of
the proposed set of policies.
This section concludes with a literature survey. The

remainder of this paper is structured as follows. Sec-
tion 2 describes the problem formulation, §3 pro-
poses and solves its approximating diffusion control
problem, the solution of which is interpreted in §4.
Section 5 describes a suitable customer choice model.
Section 6 summarizes a set of numerical experiments.

1.1. Literature Survey
This paper is related to the literature on dynamic
due-date and sequencing control. We refer the reader
to Keskinocak and Tayur (2003) for a review of this
literature focusing on algorithms for computational
solutions to such problems, and to Baker (1984) and
Wein (1991) for a review emphasizing the stochas-
tic nature of the production dynamics and its effects
on the firm’s controls. Duenyas and Hopp (1995) and
Duenyas (1995) were the first to incorporate the cus-
tomer response to the firm’s lead-time policy, whereas
Keskinocak et al. (2001) and Charnsirisakskul et al.
(2006) provide deterministic optimization models for
delay and price sensitive demand, respectively.
The second body of research related to our paper

focuses on static pricing and sequencing in queues.
One stream of this work initiated with Naor (1969)
and includes Mendelson (1985) and Mendelson and
Whang (1990) studies problems of social welfare opti-
mization for price and delay sensitive customers.
Maglaras and Zeevi (2003) established conditions
under which revenue maximization in a single-
product system induces the heavy-traffic regime. An
important partial analog to Mendelson and Whang
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(1990) in the context of revenue maximization is the
recent paper by Afèche (2004). One insight that fol-
lows from the analysis of Afèche (see Maglaras and
Zeevi 2004) is that in some cases the firm should cre-
ate significant lead-time separation between substi-
tutable products in order to increase its revenues. As
shown in Maglaras and Zeevi (2004), this effect does
not arise in the context of the conventional heavy-
traffic conditions that underlie our present work, and,
therefore, it is not captured in a natural way in this
paper.
Methodologically, our work builds on the work by

MandelbaumandPats (1995) that derivedfluid anddif-
fusionapproximations forqueueswithstate-dependent
parameters. State-space collapse in Brownian control
problems is explained in Harrison and Van Mieghem
(1996), and Ata et al. (2005) address a class of dif-
fusion control problems that includes as a special
case the one we analyze in §3.3. The formulation of
lead-time constraints as upper bounds on the respec-
tive queue lengths is from Plambeck et al. (2001) and
Maglaras and Van Mieghem (2005), and builds on
Reiman’s (1984) “snapshot principle.” Other related
papers are Plambeck (2004), which studied a prob-
lem of static pricing and lead-time differentiation for
two partially substitutable products, Maglaras (2006),
which looked at dynamic pricing and sequencing
for a multiproduct queue with price sensitive cus-
tomers and holding costs incurred by the firm, and
Ata (2006), which focused on admission control for a
multiclass system with lead-time guarantees and thin
arrival streams. Although Ata (2006) does not involve
any pricing decisions, its solution builds on Plambeck
et al. (2001) and Ata et al. (2005), which is similar
to our work. Papers that include expediting or dual-
source modes include Plambeck and Ward (2008) and
Bradley (2004, 2005). The demand model we propose
in §5 borrows from the marketing literature, see, e.g.,
Bucklin and Gupta (1992); for an overview of demand
models for revenue management, see Talluri and van
Ryzin (2004).

2. Model Formulation
We consider a make-to-order firm that offers multiple
products, indexed by i= 1� � � � � I , to a market of price
and delay sensitive customers.

2.1. Lead-Time Guarantees
The firm will offer each “good” at multiple predeter-
mined lead times, whereby a “product” corresponds
to a (type of good, lead-time) combination. By dynam-
ically adjusting the product prices, the firm can divert
demand from one lead time to another, thus effec-
tively exercising dynamic lead-time control over this
predetermined set of options. Specifically, product i
orders are quoted a lead-time “guarantee” of di time

units, which serves as a reliable upper bound for the
time it takes from when the order is placed until
its production is completed. In a stochastic produc-
tion setting, such guarantees are typically stated as
��delay for a class i order > di� ≤ �i, where �i ∈ �0�1�
is a desired service level, but the capability for instan-
taneous expediting allows us to instead impose “hard”
lead-time guarantees, i.e., �i = 0 for all i (explained
later).

2.2. Economic Structure and Demand Model
The firm operates in a market with imperfect competi-
tion, and has power to influence its vector of demand
rates by varying its prices p; pi�t� denotes the per-
unit price for product i at time t. Potential customers
arriving at the system at time t observe the current
menu of products, which is summarized by the pair
�p�t�� d� and make their decision of which product
to buy, if any. The resulting demand is assumed to
be an I-dimensional nonhomogeneous Poisson pro-
cess with instantaneous rate vector ��p�t��d� deter-
mined through a demand function that maps a price
vector p ∈ � into a vector of demand rates � ∈ ��d�,
where � ⊆ �I is the set of feasible price vectors, and
��d� = 	x ≥ 0
 x = ��p�d�� p ∈ �� ⊆ �I

+ is the set of
achievable demand rate vectors for the lead-time vec-
tor d ∈�I

+. Note that ��·�d� only depends on the time
t through the price posted at that instance. We assume
that ��d� is a convex set for all d ∈ �I

+, and that the
demand function ��p�d� is bounded and continuously
differentiable in both p and d. If i, j correspond to
the same good and di > dj , then pi < pj . In addition,
(a) for each product i, �i�p�d� is strictly decreasing in
pi; (b) for each feasible p−i = �p1� � � � � pi−1� pi+1� � � � � pI �
and lead-time vector d, there exists a null price
p�
i �p−i� ∈ � such that limpi→p�

i �p−i � �i�pi� p−i� d� = 0;
and (c) the revenue rate p · ��p�d� = ∑

i pi�i�p�d� is
bounded for all p ∈� and has a finite maximizer. (For
any two n vectors, x · y denotes their inner product.)
We will assume that there exists an inverse demand

function p���d�, p
 ��d�→ �, that maps an achiev-
able vector of demand rates � into a corresponding
vector of prices p���d�. Although, in general, this
inverse mapping need not be unique, it turns out
that it is for common examples of demand relations;
see Talluri and van Ryzin (2004, §7.3.2). Following
a standard practice from revenue management, we
shall view the demand rate vector as the firm’s
control, from which prices can be inferred using
the inverse demand function. The expected revenue
rate is r���d� 
= � · p���d�, which is assumed to be
bounded, strictly concave, and twice continuously
differentiable. Later, we will require the somewhat
stronger condition of differentiability along appropri-
ately defined sequences �pn�dn� with dn → 0 (cf. the
example in §5). Let �̂�d� 
= argmax	r���d�
 � ∈��d��,
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and �=∑
i �̂i�d� act as proxy of the total market size

for our problem. We will assume that �̂i�d� > 0, i.e., in
the absence of any capacity and congestion considera-
tions, the firm would choose to produce all products.

2.3. The System Model
The production facility is modeled as a multiproduct
(or multiclass) single-server queue. Orders for each
product arrive according to nonhomogeneous Poisson
processes, and upon arrival, join dedicated, infinite
capacity buffers associated with each product. For
each product i the number of orders placed in 0� t�
is given by Ni�

∫ t
0 �i�s� ds�, where Ni�t� is a unit rate

Poisson process. Service time requirements for prod-
uct i orders are independent identically distributed
(i.i.d.), drawn from some general distribution with
mean mi (rate �i = 1/mi) and finite squared coefficient
of variation �i. Let Si�t� denote the number of class i
service completions if the server dedicates t time units
in processing class i orders. The processes Ni, Si are
independent of each other and across products. The
load or traffic intensity of the system when the demand
vector is � is defined as � 
=m ·�.

The firm also controls the order sequencing at the
server, and order expediting. Within each product,
orders are processed in first-in-first-out (FIFO), the
server can only work on one job at any given time,
and preemptive-resume type of service is allowed.
Under these assumptions, a sequencing policy takes
the form of the I-dimensional cumulative allocation
process �T �t�
 t ≥ 0� with T �0�= 0, where Ti�t� denotes
the cumulative time that the server has allocated to
class i jobs up to time t. In addition, T �t� is continuous
and nondecreasing (Ti�t� increases only when there is
at least one job in the queue i or in the server), and
satisfies the capacity constraint∑

i

Ti�t�−
∑
i

Ti�s�≤ t− s for 0≤ s ≤ t <�� (1)

The cumulative idleness process �I�t�
 t ≥ 0� is defined
by I�t�= t−∑

i Ti�t�, and is nonnegative, continuous,
and nondecreasing. The expediting policy captures
actions such as the use of overtime, subcontractors,
etc., that increase the firm’s short term production
capacity, whenever necessary to meet its lead-time
guarantees. It is modeled as an I-dimensional process
�B�t�
 t ≥ 0� with B�0�= 0, where Bi�t� is the cumula-
tive number of product i orders that were expedited
in 0� t�. We will make the simplifying assumption
that expedited orders are produced (and get removed
from the corresponding queue) instantaneously. The
cost of expediting a class i order is ci, and without
loss of generality we will assume that products are so
labeled that c1�1 ≥ c2�2 ≥ · · · ≥ cI�I �

Let Qi�t� denote the number of product i jobs in
the system (i.e., in queue or in service) at time t, that

evolves according to (we are assuming for concrete-
ness that Q�0�= 0):

Qi�t�=Ni

(∫ t

0
�i�s� ds

)
− Si�Ti�t��−Bi�t�

for i= 1� � � � � I � (2)

A control ���T �B� will be admissible if in addition
to all of the above it is nonanticipating, i.e., decisions
at time t only use information that has been made
available up to that time.

2.4. Control Problem Formulation
The profit-maximization problem for the stochastic
queueing model is the following: choose admis-
sible demand, sequencing and expediting policies
���T �B�, respectively, to maximize the long-run aver-
age expected profit given by2

lim
t→�

1
t
Ɛ

[∫ t

0
r���s��d�ds− c ·B�t�

]
� (3)

2.5. Discussion of Modeling Assumptions
The Poisson nature of the demand processes is needed
to be able to justify the diffusion models used in §3.
The assumption regarding the general service time
distributions is innocuous because the diffusion anal-
ysis only uses its first and second moments. As in
most papers on pricing in queues and revenue man-
agement, our model assumes that self-interested cus-
tomers decide whether to place an order based solely
on the price (and lead-time) vector at the time of
their arrival; i.e., they are strategic in making pur-
chase selections by explicitly or implicitly optimiz-
ing some form of a personal utility function, but not
strategic in selecting the timing of their arrival in
response to the firm’s pricing strategy. This reduces
the firm’s pricing problem to one of optimal inten-
sity control not involving a game-theoretic analysis;
see Lariviere and Van Mieghem (2004) for a discus-
sion of this point and a justification of the Poisson
arrival process assumption as the equilibrium of such
a game for a related model. Expediting control capa-
bility is a common business practice that fits naturally
in our problem formulation, and it allows the firm
to be able to satisfy all outstanding lead-time guaran-
tees. In the context of the asymptotic analysis of this
paper, this could also be achieved by ejecting orders
from a queue, exercising “hard” admission control
(i.e., turn off a demand stream), or simply through a
more “aggressive” pricing policy.

2 The formulation in (3) is derived using a standard result for inten-
sity control (see Brémaud 1980, §II.2) from the primitive problem:
choose p, T , B to maximize limt↑��1/t�Ɛ

∫ t
0 p�s� · dA�s� − c · B�t��,

where Ai�t�=Ni�
∫ t
0 �i�s� ds�.
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3. An Approximating Diffusion
Control Problem and Its Solution

This section studies a diffusion model approximation
for the problem described in §2. In more detail, §3.1
develops the approximating diffusion control prob-
lem, §3.2 reduces this multidimensional formulation
to a one-dimensional problem in terms of the aggre-
gate system workload, which is solved in closed-form
in §3.3. The solution is interpreted into an imple-
mentable policy in §4.

3.1. Heuristic Derivation of an Approximating
Diffusion Control Problem

The approximating diffusion control problem derived
below is summarized through conditions (6)–(10)
for the system dynamics and the control objec-
tive (13). A rigorous justification of this model
through an asymptotic analysis would follow the line
of argument found in Plambeck et al. (2001) with
two modifications to account for the dynamic pric-
ing capability of our model that makes the demand
rate state dependent, and the fact that orders are not
blocked but are expedited.

3.1.1. Background on the Large-Scale Behavior
of the Single-Server Queue. Consider a single-class
M/M/1 queue with arrival rate �, service rate �>�,
and traffic intensity � = �/� < 1. Denote by ƐQ and
ƐW the expected queue length and waiting time that
jobs spend in the system, respectively. Elementary
results from queueing theory give that ƐQ= �/�1−��
and ƐW = �/���1 − ���. The primary motivation for
the work in this paper is high-volume stochastic pro-
duction systems, which in the context of the styl-
izedM/M/1 queue described above would entail that
both �, � are large. The production economies of
scale that are inherent in the above expressions imply
that unless the load � is close to one, the steady state
behavior of the system is one where the queue lengths
are modest and the expected waiting time experi-
enced by consumers is negligible. With that in mind,
it is natural to study these systems in heavily loaded
regimes, where, more precisely, �= 1−�/√� for some
constant � > 0. This is the so-called heavy-traffic oper-
ating regime, with � acting as a proxy for the “size”
of the system. It can be shown to be economically
optimal for an M/M/1 production queue that offers
one product to a market of price and delay sensi-
tive consumers.3 For this regime the above expres-
sions imply that the queue length and the resulting
waiting time are of order

√
� and 1/

√
�, respectively;

3 Maglaras and Zeevi (2003) established this result for an M/M/N
system model, and a simplified version of their argument could
handle the M/M/1 queue discussed here. The key underlying
assumptions are that delay costs are linear and additive, and that
the demand function is elastic.

specifically, ƐQ= √
�/�−1 and ƐW = 1/��

√
��−1/�.

Each arriving order waits for roughly
√
� jobs to be

processed before itself commences service, but the
overall level of congestion is moderate due to the
production economies of scale of large scale systems
embodied in the shorter service times (of order 1/�).
These results suggest that typical lead times in such
systems will also be of order 1/

√
�; shorter lead times

will be impossible to cope with in steady-state, and
longer ones will be trivially satisfied.

3.1.2. Approximating Diffusion Model. The
above insights hold for more general models that
include multiple products and networks of servers;
see Reiman (1984, 1988), Plambeck et al. (2001),
Harrison (2003). The diffusion model proposed below
is for a multiproduct, single-server system, whose
drift parameters �i are state dependent. It could be
justified as an asymptotic limit in settings where the
market sizes for each product (one measure of which
are the quantities given by �̂�d�) and the processing
rate vector � grow proportionally large, and where
the lead-time bounds grow large relative to the
processing time requirement of each order, but remain
modest in absolute terms. Recall the definitions of
�̂�d�, � and define

�̄�d� 
= argmax
{
r���d�


∑
i

�i/�i = 1� � ∈��d�

}
(4)

to be the demand rate vector that maximizes the
instantaneous revenue rate subject to the constraint
that the server is fully utilized.4 As we scale the mar-
ket potential and processing rate for each product in
a way that �̂i�d� grows large, �̄i�d� defined via (4) will
also grow large. We will assume that �̄i�d� > 0 for all i,
i.e., that it is optimal to produce all products in this
deterministic planning problem, and let �̄i = �̄i�d�/�i.
This assumption will ensure that all product variants
will be offered in the approximating model that we
will propose in the sequel, which, in broad terms, will
be used to characterize the demand rate fluctuations
around the nominal demand vector �̄�d�.
The candidate controls: Any candidate dynamic drift

control ��t� can be expressed as ��t� = �̄�d�− ��t��+

for some choice of ��t�. Motivated by the preceding
discussion on the M/M/1 queue, we will rewrite ��t�
as

√
���t� and consider drift controls of the form

��t�= �̄�d�− √
���t��+� (5)

The traffic intensity at time t is given by ��t� = 1 −∑
i�
√
�/�i��i�t��

+. If �, � are proportionally large,

4 We assume that this problem is feasible for the choice of lead-time
vector d under consideration, i.e., that there exists a vector of non-
negative prices (including p = 0) for which the resulting demand
will utilize all the capacity.
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then �
√
�/�i� is of order 1/

√
�, and the system will

operate in the desired heavy-traffic regime. Since �̄�d�
is also of order �, if � is of moderate magnitude, then
��t� > 0 for all t.
The sequencing decisions are expressed by the

cumulative server allocation process T �t�. For each
product i, define Vi�t�= �̄it−Ti�t� to measure the devi-
ation between the cumulative time allocated into pro-
cessing class i orders up to time t and the “nominal”
service requirement for that product predicted by the
utilization vector �̄. The intuition here is that if ���
are large and the server is almost fully utilized, then
the cumulative time that the server has allocated in
processing class i orders must be close to �̄it. Note that
the cumulative idleness up to time t is I�t�=∑

i Vi�t�.
System dynamics: In large scale systems the cumula-

tive arrivals and service completions up to any time t
can be approximated using the Strong Approximation
Theorem for the associated stochastic processes. We
use Ethier and Kurtz (1986, Corollary 7.5.5), which
allows us to approximate a process Y �t� with a given
mean and variance by Y �t� = X�t� + o�

√
t� almost

surely (a.s.), where X�t� is a Brownian motion with
the same mean and variance with Y �t�, and the nota-
tion f �x� = o�g�x�� denotes that f �x�/g�x� → 0 as
x ↑ �, Applying this result to the service completion
process Si�Ti�t�� and using the fact that Ti�t� = �̄it −
Vi�t� we get that for all i, Si�Ti�t��= �i�̄it −�iVi�t�+
X ′
s� i��i�̄it−�iVi�t��+o�

√
�it�, a.s., where X ′

s� i are inde-
pendent, standard Brownian motions. Recall that � is
of same order as �. Motivated by the preceding dis-
cussion for theM/M/1 queue in heavy traffic we pro-
ceed by assuming optimistically that �iVi�t� is itself
of order

√
�it, which gives that

Si�Ti�t�� = �i�̄it−�iVi�t�
+ √

��s� iXs� i�t+ �̄�t��+ o�
√
�� a.s.�

where �̄�t� is of order 1/
√
� and Xs� i are indepen-

dent, standard Brownian motions, �2
s� i = �̃i�i, where

�̃ 
= �̄�d�/�. Similarly, Ni�
∫ t
0 �i�s� ds� = ∫ t

0 �i�s� ds +
X ′
a� i�

∫ t
0 �i�s� ds� + o�

√
�� a.s., where X ′

a� i are inde-
pendent, standard Brownian motions. Expanding the
expression for �i�t� and assuming that �i�t� > 0 for
all t (this is expected to hold for large enough �), we
get that

Ni

(∫ t

0
�i�s� ds

)
= �̄i�d�t−

√
�
∫ t

0
�i�s� ds

+ √
��a� iXa� i�t+ ���t��+ o�√���

where ���t� is of order 1/
√
�, Xa� i are independent

standard Brownian motions, and �2
a� i = �̃i. Plugging

into (2), dividing by
√
� and defining

Z�t�=Q�t�/
√
�� Y �t�= √

�V �t�� and

D�t�= B�t�/
√
��

as motivated by the scaling relations briefly high-
lighted for the M/M/1 queue, we get that

Z�t�=Z�0�−
∫ t

0
��s� ds+MY�t�+�X�t�−D�t�+ o�1��

where X is an I-dimensional standard Brownian
motion with X�0� = 0 a.s. on some filtered probabil-
ity space ���� ����t� t ≥ 0�, with ��t� t ≥ 0� being
the filtration generated by X, M = diag��̃1� � � � � �̃I �,
�2 = diag��2

1 � � � � ��
2
I �, and where �̃i =�i/� and �2

i =
�2
a� i�1 + �i� respectively, and the notation diag�x�

denotes a diagonal matrix with entries x1�x2� � � � � xI .
This heuristic argument suggests the following ap-
proximating diffusion model:

dZ�t�= −��t�dt+�dX�t�+MdY �t�− dD�t��
Z�0�= 0� (6)

L�t�=∑
i

Yi�t�� L�·� is continuous,
nondecreasing with L�0�= 0�

(7)

D�·� is continuous, nondecreasing with D�0�=0� (8)

Z�t�≥ 0� ∀ t ≥ 0 and
Y �D are nonanticipating with respect to X�

(9)

In the above model, Z represents the queue length
process, D is the expediting policy, Y is the allocation
control (measuring deviations from the nominal allo-
cation), and L represents the scaled cumulative idle-
ness. The control processes Y , D are right continuous
with left-hand limits (RCLL). As in Plambeck et al.
(2001), the lead-time constraints take the form

Z�t�≤ b for t ≥ 0� where bi = �̃id̃i ∀ i� (10)

where d̃ = d
√
�. The latter can be interpreted as fol-

lows. Since (10) indicates that Qi�t� � �̄i�d�di and
�̄i�d�di is roughly the number of class i arrivals in the
last di time units, this constraint implies that the wait-
ing times for orders in queue i at time t is less than
or equal to di, as required.

3.1.3. Performance Criterion and the Resulting
Diffusion Control Problem. The expediting costs in
0� t� are given by c · B�t� = c̃ · D�t� for c̃ = c

√
�. To

express the revenue term of the objective function
when �, � are large, we first define

� 
= �̂�d�− �̄�d�√
�

� (11)

Using (11) one can rewrite ��t� as ��t�= �̂�d�− √
� ·

�� + ��t���+. Recall that d̃ = d
√
� and let r̃ �x� d̃� =

r��x� d̃/
√
��/� be the revenue function normalized
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again by �, which acts as proxy for the system size.5

Let �x = argmax r̃ �x� d̃� = �̂�d�/� be the correspond-
ing maximizer. The large-scale behavior of the single-
server queue suggests that the system can operate at
almost full resource utilization while jobs experience
only modest delays, which, in turn, implies that the
firm needs to apply only moderate demand adjust-
ments through ��t�, such that

√
���t� � �̄�d�. This

allows us to approximate the revenue function using
a Taylor expansion as follows:

r���t��d� = �r̃
(
�x− ��+ ��t��/√��+� d̃)

= �r̃��x�d�− �+ ��t�� ·A�+ ��t��+ o�1��
where

A= −�1/2�� 2r̃ ��x� d̃�� (12)

The second expression for r���t��d� uses the observa-
tion that for large �, �, the demand vector is strictly
positive, and then applies a Taylor expansion of r̃ �·� d̃�
around �x; the first order term is missing because
�r̃��x� d̃�= 0 by the optimality of �x.
In the sequel, to minimize technical complexity and

comply with the restrictions imposed in Ata et al.
(2005) in solving diffusion control problems similar to
ours, we will assume that � is bounded by a large con-
stant K. Using the definitions of ��A� c̃ given above,
and restricting attention to Markovian, stationary,
bounded drift controls, the preceding analysis sug-
gests the following diffusion control problem: choose
a nonanticipating measurable drift function ��t� ∈
−K�K�I for all t ≥ 0, and nonanticipating, RCLL, allo-
cation and expediting policies Y and D to minimize

limsup
t→�

1
t
Ɛ

[∫ t

0
	2� ·A��s�+ ��s� ·A��s�� ds+ c̃ ·D�t�

]
(13)

subject to (6)–(10).

3.1.4. Remark on (11). The vector � measures
the difference between the demand rate vectors
that maximize the instantaneous revenue rates with
and without the capacity constraint, �̄�d� and �̂�d�,
respectively. Given a set of system parameters, it is,
of course, always possible to define � as in (11), even
if the difference �̂�d� − �̄�d� is significant, but the

5 To understand the proposed scaling it is easiest to think of the
demand function in the form N ×F �p�d�, where N is the number of
potential customers per-unit time and Fi�p�d� is the fraction of these
customers that would choose product option i given the price and
delay menu �p�d�. The function F �·� ·� encodes the heterogenous
customer valuations and delay preferences. The approximate model
we study in this paper would correspond to a setting where N
grows large but the mapping F , and as a result the customer pref-
erences, stay unchanged. That is, customers would choose which
product to purchase if any based on the price vector p and the
delay vector d̃/

√
�.

implicit assumption imposed through the definition
of � is that it is meaningful to express this difference
as a second-order term that is proportional to

√
�,

even though both �̄�d� and �̂�d� are themselves of
order �. This says that the capacity rate vector is close
to the nominal processing requirement implied by the
vector of (capacity unconstrained) revenue maximiz-
ing demand rates. Our numerical results will illustrate
that the performance of the heuristics derived from
our diffusion approximation is best, and the overall
value of dynamic pricing is highest, when � is mod-
erate. This is reminiscent of other papers in revenue
management, such as Gallego and van Ryzin (1994),
which showed (a) the central role played by the
demand rates given by �̂ and �̄ that either maximize
revenues or optimally deplete capacity by a specified
time, and (b) that the effect of tactical dynamic pricing
adjustments is more significant for load factors close
to one. Finally, we note that the normalization of the
expediting cost coefficient from c to c̃ makes the expe-
diting costs of the same order of magnitude as the
revenue corrections due to dynamic pricing, leading
into a control problem formulation that captures the
trade-off between these two elements.

3.2. Reduction to the Equivalent
Workload Formulation

The first step in analyzing (6)–(10) and (13) estab-
lishes that the optimal pair of allocation and expedit-
ing policies �Y �D� derived in Plambeck et al. (2001)
is also optimal for our problem that incorporates
dynamic drift rate control capability. (The model ana-
lyzed in Plambeck et al. (2001) involved admission
rather than expediting decisions, but the two are ana-
lytically equivalent.) The optimal �Y �D� yield a one-
dimensional equivalent workload formulation for our
problem (see Harrison and Van Mieghem 1996 for
background), which will be used to derive the opti-
mal dynamic drift control ��·�.
We start with some background material. The sys-

tem workload process is defined by W�t� 
= �m ·Z�t�,
where �mi = 1/�̃i. The workload dynamics are
given by

dW�t� = − �m · ��t�dt+�wdXw�t�+ dL�t�− dU�t�� (14)

U�t� = �m ·D�t�� U�·� is continuous and
nondecreasing, U�0�= 0� (15)

where L satisfies (7), D satisfies (8), and Xw�t� is a
standard Brownian motion with infinitesimal variance
�2
w =∑

i�1+ �i��m2
i �̃i. Note that Z�t�≤ b implies that

W�t� ∈ 0� �w� t ≥ 0 for �w 
= �m · b� (16)

The next result specializes some of the results of
Plambeck et al. (2001) to our model. Specifically, we
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show that it is optimal to (i) only expedite orders of
the cheapest class I when the workload W�t� reaches
its upper bound �w, and (ii) schedule orders accord-
ing to the “least slack policy” that maintains the rel-
ative backlogs defined as �i�t� 
= �Zi�t�/bi� equal for
all i, by giving priority to the class that is closest
to violating its lead-time bound. (All proofs are rel-
egated to the online appendix, which is provided in
the e-companion.)6

Proposition 1. Fix any admissible drift ���t�� t ≥ 0�
and consider the problem of minimizing

lim sup
t→�

1
t
Ɛc̃ ·D�t��� (17)

by choosing �Y �D� subject to the constraints (6)–(10),
with Z�0� = 0, and under the labeling assumption that
c̃1�̃1 ≥ c̃2�̃2 ≥ · · · ≥ c̃I �̃I . Let L, U be the pair of con-
tinuous, nondecreasing processes, with L�0� = U�0� = 0
such that∫ t

0
1	W�s�>0� dL�s�= 0 and

∫ t

0
1	W�s�< �w� dU�s�= 0

t ≥ 0� (18)

whereW�t� satisfies condition (14) and the constraint (16).
Then, the policy

Di�t�= 0 ∀ i �= I� DI �t�= �̃IU �t�� (19)

and Y given in (EC.1 of the online appendix)7 is opti-
mal. In addition, under this policy Z�t�= �b/ �w�W�t� for
all t ≥ 0.

Under the control �Y �D� identified in (EC.1) and
(19),

Z�t�= b

�wW�t�� (20)

and the problem specified by (6)–(10) and (13) reduces
to one of selecting the drift control � to minimize

limsup
t→�

1
t
Ɛ

[∫ t

0
	2� ·A��s�+ ��s� ·A��s�� ds+ c̃I �̃IU �t�

]
(21)

subject to (14), (16), and conditions (18) that uniquely
identify the processes L, U (see Harrison 1985, §2.4).
Expressions (EC.1), (19), and (20) can then be used to
specify Y , D, Z, respectively.
This problem can be further simplified by noting

that the system dynamics in (14) are only affected
by the drift control � through its aggregate value

6 An electronic companion to this paper is available as part of
the online version that can be found at http://mansci.journal.
informs.org/.
7 For completeness, (EC.1) states that Yi�t� = − �miZ�0� + ��t� +
�X�t�−D�t��+ � �mibi/ �w�W�t�, for i= 1� � � � � I and ∀ t ≥ 0.

� 
= �m · �. This will allow us to reformulate the above
problem in terms of the one-dimensional control � ∈
−K ′�K ′�. To that end, let

�∗ = f̃ ��� 
= argmin	2� ·A�+ � ·A�
 �m · �= ��

= A−1 �m
�m ·A−1 �m��+ �m ·��−�� (22)

and note that the revenue loss at �∗ is

2� ·A�∗ + �∗ ·A�∗ = ��+ �m ·��2
�m ·A−1 �m +� ·A�� (23)

Using these definitions and removing the constant
term � ·A� of (23) from the objective function, we can
formulate the following diffusion control problem:

Proposition 2. The diffusion control problem (6)–(10)
and (13) is equivalent to the following formulation: choose
a nonanticipating measurable function ��t� ∈ −K ′�K ′� for
t ≥ 0 to minimize

lim sup
t→�

1
t
Ɛ

[∫ t

0

{
��s�+ �m ·��2

�m ·A−1 �m
}
ds+ c̃I �̃IU �t�

]
� (24)

subject to

dW�t�= −��t�dt+�wdXw�t�+ dL�t�− dU�t�� (25)

(16) and (18). Specifically, for every feasible control �
there exists a feasible control �Y �D��� for (6)–(10) with
the same performance; and, for every feasible control
�Y ′�D′� �� for (6)–(10), there exists a feasible control �
with at least as good performance.

3.3. Solution of the Equivalent
Workload Formulation

The equivalent workload formulation is a one-dimen-
sional drift control problem for a diffusion that is con-
strained to lie in the interval 0� �w�. We will solve the
problem described immediately above using results
derived in Ata et al. (2005), for which we need
to restrict attention to Markovian, stationary, and
bounded controls. To avoid introducing new nota-
tion we “overload” the use of the symbol � to now
be a function of the workload position, i.e., ��W�t��,
instead of being a function of time ��t� as in the pre-
vious subsection. Let �w = � �m ·A−1 �m�−1 > 0 and �w =
�m ·�, which together with the Markovian structure of
the drift controls allows us to rewrite the objective as

limsup
t→�

1
t
Ɛ

[∫ t

0
	�w��W�s��+�w�2�ds+ c̃I �̃IU �t�

]
� (26)

Let

h�c̃I �̃I ��w��w� �w��w�


= c̃I �̃I −
[
2�w�w −

( �w
2�w�2

w

+ 1
2�w�w

)−1]
�
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Theorem 1. Consider the problem of selecting a nonan-
ticipating measurable function �
 0� �w� → −K ′�K ′� to
minimize (26) subject to (16), (18), and (25). Then, if
h�c̃I �̃I ��w��w� �w��w�= 0, the optimal workload drift rate
�∗�w� is

�∗�w�= −
(
w

�2
w

+ 1
�w

)−1

� (27)

if h�c̃I �̃I ��w��w� �w��w� > 0,

�∗�w�=
√
�1
�w

tan

[
w

�2
w

√
�1
�w

−arctan
(
�w

√
�w
�1

)]
� (28)

where �1 is the unique positive solution of (EC.7 of
the online appendix), and otherwise if h�c̃I �̃I ��w��w�
�w��w� < 0,

�∗�w�=
√
�2
�w

− 2

√
�2
�w

[
1− exp

{
−2w
�2

√
�2
�w

+C
}]−1

�

(29)
where C = ln��

√
�2/�w − �w�/�

√
�2/�w + �w�� and �2 is

the unique solution of (EC.10 of the online appendix)
that lies in �0��w�2w�. The optimal product-level drift rate
is given by

�∗�w�= f̃ ��∗�w��= �wA
−1 �m��∗�w�+ �m ·��−�� (30)

Remark. Note that �∗ is monotonically increas-
ing in w in all three cases above, which, in turn,
implies that �∗�w� is increasing in w, as expected
in light of (5). Expression (28) corresponds to the
case where the expediting cost c̃I �̃I is high, whereas
expression (29) is for the case where expediting is
cheap. Since the workload is bounded by �w, one
can always select the constant K ′ in the theorem so
that the boundedness constraint is never binding, and
therefore not restrictive.

3.4. Optimal Static Pricing Solution
The numerical experiments in §6 will contrast the pro-
posed solution against one that uses static pricing.
This amounts to selecting the constant vector � ∈ �I

to minimize

limsup
t→�

1
t

[
Ɛ
∫ t

0
	2� ·A�+ � ·A��ds+ c̃ ·D�t�

]
(31)

subject to (6)–(10). Using Propositions 1 and 2, this is
reduced to the problem

min
�∈�

{
�w�+�w�2 + c̃I �̃I lim sup

t→�
Ɛ

[
1
t
U �t�

]}
(32)

subject to (16), (18), and (25). That is, the optimal
allocation and expediting policies Y , D are the
same with those for the dynamic drift control prob-
lem. The workload process evolves like a Brownian

motion with infinitesimal drift � and infinitesimal
variance �2

w in the interval 0� �w�, with exponen-
tial steady-state distribution with mean �2

w/�2��. This
leads to the optimization problem

min
�∈�

{
�w�+�w�2 + c̃I �̃I�

e2� �w/�2
w − 1

}
� (33)

where the expression for the second term above is
given in Harrison (1985, pp. 88–90).

Theorem 2. Consider the problem of selecting a con-
stant vector � ∈ �I to minimize (33) subject to (6)–(10).
Let �∗ be the minimizer of (33). The optimal drift vector is
�∗ = �wA

−1 �m��∗ + �m ·��−��

4. The Proposed Solution
This section interprets the optimal diffusion controls
derived above into an implementable set of pricing,
expediting and sequencing policies for the original
problem posed in §2. For completeness, we also reca-
pitulate the definitions of the various parameters
used in computing the drift function � that plays an
important role in the pricing policy. Recall the defi-
nitions of �̄�d�, �̂�d�, and � and let �̃ = �̄�d�/�, �̃ =
�/�� �m= 1/�̃�, c̃= c

√
�, d̃= d

√
�, and �w=∑

i �mi�̃id̃i.
Finally, given � and A as defined in (11) and (12), let
�w = �m ·� and �w = � �m ·A−1 �m�−1.
Pricing: Our analysis shows that the optimal de-

mand control in the approximating diffusion model
is a function of the aggregate workload in the sys-
tem W�t�=m ·Q�t�. Specifically, given the workload
position w, the manager computes the target resource
utilization �∗�w� as

�∗�w� 
= 1− �1/√�� ·�∗�w
√
���+� (34)

where �∗�·� is the monotonically increasing function
specified in Theorem 1, and then selects the demand
rate vector

�∗�w�d�=argmax	r���d�
 �·m=�∗�w���∈��d��� (35)

The corresponding pricing strategy can be inferred via
the inverse demand relation p���d�.
Sequencing: Priority is given to class

i∗ = argmax
i

Qi�t�

b′
i

� where b′
i = �̄i�d�di − �i�

and �i ∈� is a “tunable” parameter discussed below.
This is the “least relative slack” policy of Plambeck
et al. (2001).
Expediting: Orders are expedited when the total

workload reaches W ′ =m · b′ according to a rule that
gives priority to class I then class I − 1 (if no class I
orders are in queue) and so on. This is the simplest
interpretation of the diffusion policy derived in §3.2 in



Çelik and Maglaras: Dynamic Pricing and Lead-Time Quotation for a Multiclass Make-to-Order Queue
Management Science 54(6), pp. 1132–1146, © 2008 INFORMS 1141

the context of the original problem at hand, keeping
in mind that products are labeled in a way that c1�1 ≥
c2�2 ≥ · · · ≥ cI�I . Perhaps a more intuitive policy
would take into account the relative age of different
classes by expediting class I orders whenever Qi�t�≥
b′
i for some class i. This policy “corrects” for the pos-
sibility that some class may be violating its lead-time
bound while the workload is below its threshold W ′.

Another interpretation of the diffusion control ex-
pediting policy is in terms of the age of the jobs in
the system. That is, the system expedites when the
workload reaches the upper bound �w, which under
the proposed sequencing rule corresponds to the
instances (in the diffusion model) where the queue
lengths and the corresponding waiting times are
about to violate their upper bounds. Hence, one could
interpret the expediting policy as one that keeps track
of the age of jobs in the system and expedite accord-
ingly; this is harder to implement in terms of infor-
mation requirements, but may still be executable in
some production environments.
We conclude this section with a few comments on

the structure of the proposed policies.
(i) Lead-time constraint formulation, sequencing and

the choice of the tunable parameter �: The parameter b′
i

serves as a proxy for the number of class i arrivals in
di time units, and thus maintaining the queue lengths
below their respective thresholds would tend to imply
that the corresponding lead-time guarantees are met
with high probability; cf., Maglaras and Van Mieghem
(2005), Plambeck et al. (2001).
The threshold b′

i is derived from (10), appropri-
ately adjusted through some “tunable” parameters �i
to correct for the modeling idealizations of the dif-
fusion model, and the state-dependent nature of the
demand rate. Specifically, while if in the diffusion
model the queue length is less than or equal to its
respective threshold, then the lead times of all orders
in queue are met with probability one; in the origi-
nal system this may only be true with high probabil-
ity. By decreasing the original threshold bi by �i > 0,
the manager adds some safety margin in her calcula-
tion to guard against this issue. The second effect that
factors in this calculation is that because �∗

i �w�d� is
decreasing in the workload w, bi = �̄i�d�di is in fact
an overestimate of the expected number of arrivals in
di time units. Hence, it is likely that when a queue i
reaches bi the age of the oldest orders in queue will
have already violated their lead-time bound. Again,
a lowering of the threshold bi will adjust for that
effect as well. Table 1 in §6 offers some insight on
its effect on the probabilities of expediting and lead-
time violation. The magnitude of these two effects is
small, and so is the size of the parameter �, which
can be selected via simulation. Note that both of these
effects vanish asymptotically, and thus the diffusion

model cannot be used to compute these �s.8 To fur-
ther simplify this calculation, we note that, instead
of computing all the �is, one could find one tun-
able parameter  that adjusts the workload thresh-
old to W ′ = �

∑
i mi�̄i�d�di�− , and then set �is equal

to  �i/�
∑

i mi�. This simpler procedure exploits the
behavior of the optimally controlled system, and was
suggested in a recent paper by Rubino and Ata (2008).
(ii) Workload dependence and time-scale of price

changes: The proposed sequencing policy tries to dis-
tribute the workload in fixed proportions across the
various queues, therefore making W�t� an accurate
proxy for the system state; this equivalence is exact
in the diffusion model. It therefore suffices to restrict
attention to pricing and expediting policies that are
functions of the workload. This simplifies analysis
and has an important implication on the relative time
scale for these decisions. Specifically, known results
for queues operating in heavy traffic predict that
order interarrival and service times are much shorter
than the typical queueing times encountered in the
system, which in turn are much shorter than the time
required for the workload (and the respective queue
lengths) to experience significant fluctuations. Pricing
changes and expediting decisions occur on the slow-
est time scale on which the system workload evolves,
which is practically appealing. As an example, orders
may be arriving every 30 minutes, queueing delays
and lead times may be of order of a week, and the
workload (and the prices) may fluctuate on a monthly
basis.
(iii) Lead-time control: The dynamic lead-time con-

trol decisions are effectively captured in the demand
control �∗�W�t��d� that specifies how to optimally
divert demand from one lead-time class to another.
This will become clearer in §5, where we study in
more detail a particular demand model that is suit-
able for the problem under consideration.

5. A Choice Model for Joint Pricing
and Lead-Time Control

The customer choice model we propose below satis-
fies the assumptions imposed in §2 and seems suit-
able for the choice problem considered in this paper. It
builds on a framework that has been used extensively
in the marketing literature (see Bucklin and Gupta
1992), which postulates that customers make their
purchase selection in two stages: first, they decide
which product category to buy from, if at all; and
second, they choose a specific product from their

8 Similar small safety parameters that are selected by trial-and-error
are common in policies extracted via a fluid or diffusion model
analysis. Computing these parameters is fairly simple after one has
specified the pricing, sequencing and expediting policies, which
was the hard part of the analysis.
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selected category—these are referred to as “purchase
incidence” and “product or brand choice,” respec-
tively (see Bucklin and Gupta (1992) for a discussion
of such models and their practical use). From our
viewpoint, this model captures the substitution effects
among otherwise identical products offered at differ-
ent price and lead-time combinations, while maintain-
ing analytical and numerical tractability and being
suitable for calibration using real data as indicated by
the associated voluminous marketing literature.
As explained in §2, a product corresponds to a

(type of good, lead-time) combination. To simplify the
exposition we first describe the choice model for the
case of one good offered at multiple lead times, and
then extend it to consider many goods offered at mul-
tiple lead times each.

5.1. One Good Offered at Multiple (Price,
Lead-Time) Combinations

Following Bucklin and Gupta (1992), we model the
probability that a customer will buy one of the prod-
ucts (the “purchase incidence”) using a binary logit
function

��inc�= eV �p�d�

1+ eV �p�d� �

where V �p�d�= !0 +!1 log
(∑

i

e−b1pi−b2di
)
� (36)

V �p�d� corresponds to the deterministic component
of the purchase utility from all offered products speci-
fied through p, d. The constants !0, !1, b1, b2 are meant
to be calibrated from observed data (see Bucklin
and Gupta 1992). This purchase incidence probabil-
ity is equivalent to saying that each arriving customer
assigns a utility V �p�d� + � to the offered group of
products, where � is an i.i.d. random component that
differentiates potential customers, and follows a logis-
tic distribution with shape parameter equal to one;
the effect of different shape parameters can be rolled
into !0, !1, b1, b2.
Each arriving customer also has a random delay

sensitivity parameter " for the offered good, which
is assumed to be drawn from a continuous distri-
bution with finite support, is independent of � and
i.i.d. across customers. Given that an arriving cus-
tomer decides to purchase a product, she makes her
selection to minimize her cost given by pi +"di, i.e.,

��i � inc�= ��pi +"di ≤ pj +"dj� ∀ j �= i�� (37)

the form of (37) captures the price-delay trade-off
faced by each customer, and differs from the multi-
nomial logit model used in Bucklin and Gupta (1992).
Assuming that potential customers arrive according
to a Poisson process with rate �o, products are labeled
in such a way that d1 < d2 < · · ·< dI , and that prices

are ordered in reverse, i.e., p1 ≥ p2 ≥ · · · ≥ pI , we
get that

�i�p�d� = �o ·��inc� ·��i � inc�

= �o · eV �p�d�

1+ eV �p�d�

·�
(
max
j>i

pi − pj
dj − di

≤ " ≤min
k<i

pk − pi
di − dk

)
�

5.2. Many Goods Offered at Multiple (Price,
Lead-Time) Combinations

The above model can be extended to allow for many
goods offered at potentially multiple (price, lead-time)
combinations by incorporating the decision of which
good to purchase in the incidence probability, leav-
ing unchanged the second decision stage where a cus-
tomer selects which product option of a particular
good to purchase. Specifically, suppose that there are
K goods, with K < I , and let ��k� be the set of prod-
ucts that correspond to good k. Let

V k�p�d�= !k0 +!k1 log
( ∑
i∈��k�

e−bk1pi−bk2di
)
�

denote the purchase utility from good k products, and
the constants !k0 , !

k
i , b

k
1 , b

k
2 are meant to have been

calibrated from observed data. Assume that a cus-
tomer’s net purchase utility for good k products is
V k�p�d� + �k, where the �ks are i.i.d. across goods,
Gumbell distributed random variables with shape
parameter one. The incidence probability, which now
reduces to the decision of which good to purchase, if
any, is computed using the multinomial logit model
(Talluri and van Ryzin 2004, §7.2):

��select good k�= eV
k�p�d�

1+∑
j e
V j �p�d�

�

The product choice is done according to (37), special-
ized only to products in the set ��k�.

5.3. A Structural Property of This Demand Model
and Its Impact on Lead-Time Control

An important step in implementing the policy
described in §4 is the computation of the optimal
demand vector given a target aggregate traffic inten-
sity �∗ = 1−�∗/

√
�; see §4 and Theorem 1. Simple but

long algebraic manipulations show that in the param-
eter regime of interest in this paper, i.e., where � and
� are large and d= d̃/

√
� for some d̃ > 0, the solution

to the problem for the single good case

max
p

{∑
i

pi�i�p�d�

∑
i

�i�p�d�=��1−�/√��
}
�

is of the form

pi = p̄+ #i√
�

+ z���√
�

+ o�1/√��� (38)
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where p̄ is common across all products and is inde-
pendent of �, and #i, z��� ∈ �; the state-dependent
price correction z��� is also common across all prod-
ucts. The observation that all prices can be expressed
as small perturbations around a common price p̄ fol-
lows from the fact that the various products corre-
spond to the same good offered at slightly different
lead-time guarantees (recall that demand for each d=
d̃/

√
�), and therefore they have to be priced simi-

larly. A brief sketch of the justification of (38) for the
case of two products is given in the online appendix.
A similar result can be proved for multiple goods
offered at different price, lead-time combinations, in
which case the terms zk��� will depend on the good
k. Note that using a pricing policy of the form given
in (38) together with the lead-time bounds d̃/

√
�

remains well defined even as we let � grow large and
d decrease to zero.
This property is a consequence of the demand

model considered in this section and the assump-
tion that � is large, and does not depend on any
aspect of the diffusion model itself, including the
implicit assumption embodied in (11). The resulting
form of the pricing policy in (38) has an important
implication on the firm’s “lead-time control policy.”
Specifically, policies of the form given in (38) imply
that �pi − pj�= �#i −#j�/

√
� for all �, which plug-

ging into (37) gives that ��i � inc� is independent
of �! That is, the firm adjusts its nominal price level
through z���/

√
� to modulate the aggregate order

volume placed with the system, while keeping the
fractions of the total order flow that choose each
lead-time option constant. That is, it does not choose
to divert demand from one lead time to another as
the system gets congested, but rather scales down
the demand for all products by a common factor by
adjusting its price to affect the incidence probability.

5.4. Comments on Modeling Price and Delay
Sensitive Demand

An alternative to the two-stage decision process of
our model would consider customers arrive with a
random valuation v and delay sensitivity parame-
ter " , and make their purchase decisions in one stage
according to

�i�p�d�=�o��v−pi−"idi≥0� pi+"di≤pj+"dj ∀ j �= i��
Although this may appear to be a more direct and
natural model of demand, it is harder to analyze
because evaluating the above expression involves
the joint distribution of �v�"�. Moreover, its com-
plexity increases significantly when one considers
multiple goods offered in different (price, lead-time)
options, where customers arrive with different valu-
ations for each of these goods. The hierarchical deci-
sion approach of our model assumes that problem

away by restricting attention to a structure where the
probability that a customer selects a particular service
is given by the product of two probabilities, where
one depends on the valuation and the other on the
delay sensitivity. Apart from its inherent tractability,
extensive studies reported in the marketing literature
indicate its versatility in capturing customer demand
in diverse and complicated settings.

6. Numerical Results and
Concluding Remarks

This section reports on a set of numerical experiments
that illustrate the effectiveness of dynamic over static
pricing, as well as the impact of lead-time control.
The latter is achieved by offering the same good at
two lead-time options whose prices are dynamically
adjusted. We compare the effectiveness of the pro-
posed heuristics against the solution of an approx-
imate Markov decision process (MDP) formulation.
We use the following notations. Ɛ#�: expected profit;
Ɛ��: expected load; ��LT �: probability of violating the
lead-time constraint; ��exp�: probability of expediting;
TR: average tardiness. Average tardiness is computed
conditional on job being late.
The MDP formulation that we used in our experi-

ments is only an approximation of the original prob-
lem at hand, where the lead-time constraint has been
replaced by upper bounds on the respective queue
lengths, and where expediting occurs whenever these
bounds are reached. In contrast, an exact MDP for-
mulation would have to expand the state descrip-
tor to keep track the (continuous) age of each job
in every queue, increasing significantly the analyti-
cal and numerical complexity of the resulting prob-
lem. This MDP approximation is, in part, motivated
by the analysis of §3, as well as the use of a related
MDP formulation in Ata (2006), where he compared
the performance of an admission control heuristic in
a system with lead-time guarantees with the solution
of such an approximate MDP formulation. In more
detail, the MDP formulation adopted in the sequel
imposes upper bounds on the queue lengths given by
Ki 
= �̄i�d�di−�i, where the �s are tunable parameters
adjusted to make sure that the probability of lead-
time violation is no greater than 3%; cf. discussion fol-
lowing Table 1. In the single lead-time case (Tables 2
and 3) the resulting optimization problem amounts
to selecting the demand rates as a function of the
queue length position q, for all q ≤K to maximize the
long-run average rate of profits for an M/M/1/K sys-
tem that expedites orders at a cost of $c when q =K.
The problems with two lead-time options of Table 4
involve the analysis of a two-dimensional Markov
chain, where in addition to the two state-dependent
demand rates the system manager also selects the
sequencing vector at each state.
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Table 1 The Effect of the Expediting “Tune”-Parameter �

Dynamic Static

� Ɛ��� Ɛ��� � �exp� � �LT � TR Ɛ��� Ɛ��� � �exp� � �LT � TR

0 20	66 0	98 0	021 0	097 0	57 19	24 0	93 0	060 0	0041 0	29
1 20	40 0	97 0	030 0	070 0	48 18	99 0	92 0	068 0	0018 0	27
2 20	10 0	97 0	039 0	046 0	43 18	78 0	92 0	074 0	0005 0	22
3 19	83 0	97 0	046 0	027 0	38 18	53 0	91 0	080 0	0002 0	21
4 19	43 0	97 0	058 0	014 0	34 18	20 0	91 0	090 0	0000 0	10

Note. Typical standard deviations for the various estimated performance
measures were of the order of 0.1% of the estimated parameter value.

It is worth noting that none of the policies reviewed
here is feasible for the control problem stated in §2,
which required 100% compliance with the lead-time
guarantees. Although this is possible to achieve with
expediting, it would require that the firm keeps track
of the age of each job in the system, making the solu-
tion of the approximating MDP problem intractable.

6.1. Single Lead-Time
In order to isolate the effect of dynamic over static
pricing, this subsection focuses on problems of pric-
ing and expediting for a single product offered with a
lead-time guarantee. We consider the following setup
for these experiments. The demand model is that of
§5, and unless otherwise stated, its parameters will be
as follows: the market potential is �o = 10 and b1 = 1,
b2 = 0�15, !0 = 2, and !1 = 0�4 (cf. §5). Service times
are i.i.d. exponentially distributed with rate �. The
expediting cost is c = $5 per order, and expediting is
used whenever the queue length reaches the thresh-
old � · d − �, where � ≥ 0 is a “tune”-parameter, the
effect of which will be studied in Table 1. In Tables 1
and 2, the offered lead time is d= 4, which optimizes
the profit rate under static pricing. For these parame-
ters, the capacity unconstrained revenue maximizing
demand rate is �̂�d�= 5.

6.1.1. The Effect of the Expediting “Tunable”-
Parameter �. The first set of results focuses on the
efficiency of the proposed expediting policy. In these
experiments, the service rate is � = 4, which gives
that �̂�d�= �̂�d�/�= 1�25 (elaborated more in the next
part), or equivalently that �= 0�45 (cf. Equation (11)).
We note that the gap between static and dynamic pric-
ing was around 6.5%, providing an illustration of the
conservative nature of static pricing policies, which,
in turn, lead to higher probabilities of expediting
(because price increases cannot be used to turn away
orders), but lower probabilities of lead-time violation.
The average tardiness is also shorter under static pric-
ing (recall that the target lead time is d= 4). The effect
of the tune parameter � on the probability of violating
the lead-time guarantee was as expected, and here-
after this parameter will be selected so that the prob-
ability of an order violating its lead-time guarantee

Table 2 The Effect of Capacity Imbalance �
� or Load Factor ��̂�

MDP Dynamic Static

� �̂�d� 
 Ɛ��� Ɛ��� � �exp� Gap (%) � �exp� Gap (%) � �exp�

4 1.25 0	45 20.83 0.94 0.003 4.80 0	046 7.62 0.060
4.5 1.11 0	22 21.51 0.92 0.002 0.94 0	014 5.42 0.039
5 1.00 0	00 21.88 0.88 0.001 0.92 0	009 3.72 0.025
5.5 0.91 −0	22 22.04 0.84 0.000 0.83 0	005 2.17 0.013
6 0.83 −0	45 22.08 0.78 0.000 0.69 0	002 1.21 0.006
6.5 0.77 −0	67 22.09 0.72 0.000 0.57 0	001 0.76 0.002
7 0.71 −0	89 22.09 0.67 0.000 0.46 0	0005 0.58 0.001

is no greater than 3%; the choice of 3% is arbitrary,
and serves to make our comparison more appropri-
ate by requiring each policy to adhere to a similar
lead-time violation standard. (In almost all tests the
static pricing policy had a smaller parameter � than
the dynamic pricing one.)

6.1.2. The Effect of Capacity Imbalance or Load
Factor ��̂�. The accuracy of the approximations used
in §3 is higher in systems where the capacity uncon-
strained revenue maximizing demand rate �̂�d� is
close to the available capacity �. This is best described
by the load factor �̂�d�= �̂�d�/�; although in the con-
text of our analysis this is captured via the parameter
“�” which measures the distance �̂�d�−� in multiples
of

√
�̂�d�, the natural scale on which to study and con-

trol the behavior of the system. Table 2 explores the
dependence of our results with respect to this parame-
ter. We note that the dynamic pricing heuristic is most
effective relative to the best static pricing policy in
moderate values of � or load factors between 0.8 and
1.2, and, in particular, their relative gap shrinks when
� or �̂�d� gets large. If �̂�d� � 1, then the system is
overcapacitated and a static pricing policy is almost
optimal. If �̂�d� � 1, the system is undercapacitated
and although the dynamic pricing heuristic of §4 out-
performs the best static pricing policy, it still performs
poorly in comparison to the MDP solution. The latter
is explained by the fact that the performance crite-
rion of the diffusion control problem formulation was
motivated by problem settings where the capacity is
close to being balanced (cf. Equation (11)).

6.1.3. The Effect of the Lead Time �d�. Table 3
studies the system behavior under the dynamic and
static pricing heuristics derived in §3 as a function of
the quoted lead time. The main observation is that the
impact of dynamic pricing is more pronounced when
lead times are shorter, because in such cases static
prices have to be selected conservatively to avoid
excessive use of expediting. As the target lead time
gets large the expediting costs are reduced but so are
the prices that the firm can charge to its prospec-
tive customers, reducing the overall expected prof-
its. Moreover, the dynamic pricing capability of the
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Table 3 The Effect of Different Lead-Time Guarantees

MDP Dynamic Static

d Ɛ��� � �exp� � �LT � Ɛ��� � �exp� � �LT � Ɛ��� � �exp� � �LT �

2 20	33 0	022 0	024 18	63 0	115 0	030 17	20 0	152 0	002
3 20	93 0	007 0	019 19	65 0	068 0	028 18	83 0	087 0	004
4 20	83 0	003 0	017 19	83 0	046 0	027 19	24 0	060 0	004
5 20	50 0	002 0	014 19	62 0	037 0	026 19	21 0	046 0	004
6 20	05 0	001 0	012 19	30 0	029 0	024 18	97 0	037 0	005

first two policies led to an increase of the expected
throughput times (to about 50% of the target lead
time from 35% with static pricing), and a reduction
to their variability; i.e., the overall distribution of
observed throughput times was more closely clus-
tered around—highly skewed left toward—the target
lead-time d.
We also experimented with varying other param-

eters such as the market potential �o and the expe-
diting cost c. The former has a similar effect to
decreasing the capacity � (cf. Table 2), whereas the
latter had the expected effect that as c increases, prices
increase so as to lower the probability of expediting,
and in such cases the benefits from dynamic pricing
are more important.

6.2. Effect of Lead-Time Flexibility: Single Good
Offered at Two Lead Times

We adopt the same model parameters as for the exper-
iments reported above, setting the service rate at
�= 4, together with the specification that the delay
sensitivity parameter " used in selecting a product
in (37) is uniformly distributed in an interval 0�"m�,
and "m = 2. Since both products correspond to the
same good, we will assume that ci = 5 for i= 1�2.
Our first set of results looks at the impact of lead-

time flexibility on a baseline example that was already
analyzed in the previous subsection, for which �= 4
and a single lead-time option was offered at d = 4
(that corresponds to the first row in Table 2). The
results in this table study the performance of dynamic
and static pricing policies for various pairs of lead-
times �d1�d2�. First, we note that lead-time flexibility
leads to a 5% to 8% performance improvement for the
MDP and dynamic pricing policies when compared
to the performance under the same policies with the
single lead-time option. The performance gain due to
lead-time flexibility was larger (8% to 10%) under the
static pricing policy. Adding lead-time flexibility leads
to a reduction of the performance gaps between the
dynamic and static pricing heuristics and the MDP
solution; the results of Table 4 correspond to the first
row in Table 2, where the two gaps were 4.80% and
7.62%, respectively.
We complement this table by reporting average

results from a larger set of test problems where we

Table 4 Performance Measures for Different Lead-Time Combinations

MDP Dynamic Static

���MDP� Gap ���S� Gap ���S�

d1, d2 Ɛ��� (%) (%) (%) (%) (%)

3, 4 22	04 5.49 3.37 9	65 5.15 7	95
3.5, 4 22	51 7.47 4.66 10	34 6.18 8	88
3.5, 4.5 22	42 7.09 2.46 12	00 5.92 8	77
3.5, 5 22	24 6.35 3.22 10	61 4.91 9	02
4, 4.5 22	40 7.00 1.58 12	71 4.72 9	84
4, 5 22	64 8.00 3.71 11	74 5.35 10	21

Note. ���MDP� is the percentage of gain over the single lead-time MDP solu-
tion; Gap percent is the performance gap relative to the MDP solution with
two lead times; and ���S� is the percentage of gain relative to the single
lead-time static pricing policy.

varied some of the demand model parameters as
follows: �o ∈ 	8�10�12�, b1 ∈ 	0�8�1�1�2�, and b2 ∈
	0�1�0�15�0�2�. For all possible parameter combina-
tions, we first considered the problem of offering one
product option and searched for the optimal lead-time
d∗ under the static pricing policy. We then tested the
performance of the dynamic and static pricing poli-
cies for the case where the firm offered two lead-time
options defined as d1 = �0�8�d∗ and d2 = �1�2�d∗. Once
again, we report the percentage of profit gains over
the single lead-time system under static pricing. We
observed the following results:
(i) Dynamic pricing: average profit gain was

13.97% with a standard deviation of 2.34%.
(ii) Static pricing: average profit gain was 10.69%

with a standard deviation of 2.99%.
(iii) Dynamic versus static pricing: average gap

3.28% with a standard deviation of 2.03%. Actual dif-
ferences ranged in 1�06%�10�30%�.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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