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Chapter 1

Introduction and contributions

1.1 Introduction

1.1.1 Background

The emergence of the Internet as a sales channel has made it easy for companies to experiment
with selling prices. Web shops can adapt their prices with a proverbial flick of the switch, without
any additional costs or efforts; the same applies for retail stores that make use of digital price tags
(Kalyanam et al., 2006). In contrast, in the past costs and effort were needed to change prices, for
example by issuing a new catalog or replacing price tags. This current flexibility in pricing is
one of the main drivers for research on dynamic pricing: the study of determining optimal selling
prices under changing circumstances.

These changing circumstances can, for example, be (perceived or expected) changes in the mar-
ket, price changes or marketing campaigns by competing firms, technological innovations in the
products, shifts in consumer tastes, or market saturation effects related to the life-cycle of a prod-
uct. Even the weather forecast may influence selling prices, for example in electricity markets,
the tourism sector, or in apparel retail stores.

One particularly important example of external factors that drive dynamic pricing is changing
inventory levels. This is important in situations where a firm sells a finite number of products
during a finite time period, as is the case for airline tickets, hotel room reservations, concert
tickets, and perishable products in general. The optimal selling price usually depends on the
inventory level and on the remaining length of the selling season, and if one of these changes, a
price adjustment is beneficial.

Ideas and techniques from dynamic pricing are nowadays widely applied in various business
contexts: airline companies, hotels, restaurants, concert halls and theaters, amusement parks,
car rental, vendors of train tickets, e-books, and many retail companies. Several textbooks are
already available that discuss various aspects of dynamic pricing that are important in practical
applications, cf. Talluri and van Ryzin (2004), Phillips (2005), Özer and Phillips (2012).

Only little is understood, however, about how the large amount of sales data that typically is
available should efficiently be used in pricing problems. This data can be used to derive esti-
mates on vital information, such as market trends or price-sensitivity of consumers. Traditional
approaches to dynamic pricing have mostly neglected this aspect. In this thesis, we study data-
driven pricing policies that incorporate real-time incoming sales data to determine optimal pric-
ing decisions.
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2 Chapter 1 Introduction and contributions

1.1.2 Dynamic pricing and learning

An intrinsic property of many price optimization problems is lack of information: the seller does
not know how consumers respond to different selling prices, and thus does not know the op-
timal price. Dynamic pricing problems are therefore not merely about optimization, but also
about learning the relation between price and market response. Typically, this relation is mod-
eled by a demand model or demand function that depends on a number of unknown parameters.
The value of these parameters can be learned by applying appropriate statistical estimation tech-
niques on historical sales data.

The presence of digitally available and frequently updated sales data makes this problem es-
sentially an on-line learning problem: after each sales occurrence, the firm can use the newly
obtained sales data to update its knowledge on consumer behavior. If, in addition, selling prices
can easily be adapted without much costs or effort - as is the case with web-based sales chan-
nels or in brick-and-mortar stores with digital price tags - the firm may immediately exploit this
improved knowledge of consumer behavior by appropriately adapting the selling prices.

The decision maker thus faces the task of both estimating the price-demand relation and opti-
mizing selling prices. An important insight from studies on dynamic pricing and learning is
that these two tasks should not be separated, but rather conducted simultaneously. The reason
is that chosen selling prices generally influence the quality of the parameter estimates, which in
turn affect the quality of future pricing decisions. A selling price may for example optimize the
expected profit with respect to current parameter estimates, but hardly increase the quality of
future parameter estimates. In such cases, it may be beneficial to deviate from this price, and
sacrifice some of the short-term earnings in order to improve future profits.

Estimation and pricing are thus two closely related problems, which in general should be con-
sidered simultaneously instead of separately. Neglecting the influence of chosen prices on the
estimation process can lead to significant revenue losses, as illustrated in Chapter 3. In some
other business contexts, however, such a pricing policy may perform very well, as for example
shown in Chapter 5. The main goal of this thesis is to investigate which pricing policies optimally
balance the two objectives of learning and optimization, for several practically relevant settings.

Dynamic pricing and learning problems fall in the class of sequential decision problems under
uncertainty. In these problems, a decision maker has to repeatedly choose an action in order to
optimize some objective, without exactly knowing which action is optimal. As time progresses
and more actions have been taken, the decision maker may learn the quality of different actions,
based on previously observed outcomes. A key question for these type of problems is: should the
decision maker always take the action that, according to current knowledge, is best? Or should
he sometimes deliberately deviate from the (perceived) optimal action, in order to increase his
knowledge about the system and consequently improve his future actions? In this thesis, we
address these questions in the context of dynamic pricing problems.

1.1.3 Relation to revenue management

Dynamic pricing is closely related to revenue management, and the terms are sometimes used
interchangeably to denote the same business practice. Revenue management mostly refers how-
ever to settings where not prices, but capacities are dynamically adjusted, and the term is often
connected to models used in the airline industry; cf. page 6 of Talluri and van Ryzin (2004),
where the authors write: “Where did R[evenue] M[anagement] come from? In short, the airline
industry. There are few business practices whose origins are so intimately connected to a single
industry”.
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Common practice in airline industry is to sell different “fare classes” for flight tickets. A fare
class corresponds to a selling price (a “fare”) for a seat on a particular flight, together with a
number of conditions, such as the costs for cancellation, or the amount of luggage that one is
allowed to carry. A fare class is distinct from the usual division of seats between business and
economy class: generally, multiple fare classes correspond to the same economy or business class
seat. The fares and fare classes themselves are not changed during the selling period. Instead,
the firm dynamically adjusts which fare classes are offered for sale, in order to maximize profit
or revenue.

A disadvantage of such decision models with capacity-based controls is the restriction to a finite
number of fare classes and corresponding selling prices. The customer reservation systems of
many airline companies can not handle more than twenty-six fare classes, mainly because the
software uses a coding of fare classes that is based on the letters in the alphabet. In contrast,
dynamic pricing models are much more flexible and generally do not restrict the number of
prices that can be deployed by the firm.

A further difficulty of capacity-based revenue management is that modeling and estimating the
mutual dependence of demand between different fare classes is not an easy task. If the expected
demand for each fare class is estimated independently, accumulating sales data for a particular
fare class does not provide any information about the expected demand for other fare classes.
As a result, much data is needed before accurate decisions can be made. In dynamic pricing
models one usually considers a parametric demand model that describes the relation between
price and expected demand, and that depends on unknown parameters. Then accumulating
sales data improves estimates for the demand at any price, because it improves the estimates
for the unknown parameters, and, compared to capacity-based models, considerably less data is
needed before accurate pricing decisions can be made.

For these reasons, dynamic pricing is a more flexible approach than capacity-based revenue man-
agement methods. These latter methods are tailored to the characteristics of the airline industry,
whereas dynamic pricing is suitable for application in various fields and branches.

1.2 Contributions of this thesis

We here provide a summary of the contents of the remainder of this thesis. Chapters 3 to 6
contain our contributions to dynamic pricing problems. Chapter 7 studies the convergence speed
of certain statistical estimators; the results from this chapter are applied in Chapters 3, 4, and
5 to characterize the performance of pricing strategies. The thesis closes with a discussion on
interesting directions for future research, and with a Dutch summary of our findings.

Chapter 3: pricing a single product with infinite inventory

In Chapter 3, we consider the dynamic pricing problem of a monopolist firm selling a single
product with infinite inventory (in practice, this means that stock-outs occur only with a very
small probability, or that orders can be backlogged). We assume a parametric form of the relation
between selling price and expected demand, but we do not require that the seller has complete
knowledge on the demand distribution; only knowledge on the relation between the first two
moments of demand and the selling price is assumed. This results in a generic model that in-
cludes practically all demand functions used in practice. In addition, the model is more robust
to misspecification than models in which a complete demand distribution is assumed. To esti-
mate the unknown parameters of the model, we deploy maximum quasi-likelihood estimation;
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this is a natural extension of maximum-likelihood estimation to settings where only the first two
moments of the distribution are known.

An intuitive pricing policy is certainty equivalent pricing (CEP), which at each decision moment
chooses the price that is optimal with respect to the available parameter estimates. We show
that if the seller uses this policy, then with positive probability the true values of the unknown
parameters are never learned, and the selling price does not converge to the optimal price. The
intuitive reason behind this inconsistency is that CEP puts too much emphasis on instant revenue
maximization, and too little emphasis on information collection through price experimentation.

We propose a new dynamic pricing policy, called Controlled Variance Pricing (CVP). The key
idea is to always choose the price closest to the certainty equivalent price, but such that a certain
amount of price dispersion is guaranteed. The price dispersion, measured by the sample variance
of the selling prices, influences the quality of the parameter estimates, and by carefully tuning
the growth rate of the price dispersion, we achieve an optimal balance between learning and
instant optimization. We characterize the performance of CVP, and show that its performance is
arbitrarily close to the best achievable performance of any pricing policy. Two other advantages
of CVP compared to alternative pricing policies in the literature are (1) guaranteed convergence
of the selling price to the optimal price, and (2) the optimal use of all available sales data to form
estimates.

Chapter 3 is based on den Boer and Zwart (2010).

Chapter 4: pricing multiple products with infinite inventory

In Chapter 4, we consider the problem of dynamic pricing and learning with infinite inventory,
in a setting with multiple products. This allows the modeling of substitute and complementary
products. We deploy a similar type of demand model as in Chapter 3: the seller knows the
relation between the selling prices and the first two moments of the demand distribution (up to
some unknown parameters), but does not need to know the complete distribution. Unknown
parameters are estimated with maximum quasi-likelihood estimation.

Just as in the single product setting, a CEP policy is not suitable. Some amount of price experi-
mentation is necessary to ensure that eventually the unknown parameters are learned. In Chapter
3, the sample variance of chosen selling prices is regarded as a measure of price dispersion, and
learning of the parameters is ensured by requiring a minimum growth rate on this sample vari-
ance. In a multiple product setting, we measure the price dispersion by the smallest eigenvalue
of the so-called design matrix. Our proposed pricing policy is to always choose the price that
is optimal with respect to the current parameter estimates, but with the requirement that this
smallest eigenvalue satisfies a certain lower bound. By carefully tuning this lower bound, we
obtain the optimal balance between learning and instant optimization. Our policy is one of the
first dynamic pricing and learning policies that can handle a multiple-products setting.

Chapter 4 is based on den Boer (2011).

Chapter 5: pricing a single product with finite inventory

Chapter 5 considers a firm selling a finite number of products during a finite time period. This
is a classical model in the literature on dynamic pricing and revenue management, and it has
been studied extensively. Existing studies that consider dynamic pricing and learning for this



1.2 Contributions of this thesis 5

model are somewhat limited in their scope, either because they assume a rather simplistic de-
mand model, or because they only analyze the performance of pricing policies when initial in-
ventory and the length of the selling period grow very large.

We study dynamic pricing and learning in this setting, for any initial inventory level or length
of the selling period. Our main result is that CEP has a good performance, and additional price
experimentation is not necessary. This differs from the infinite inventory setting considered in
Chapter 3 and 4, where CEP has a very poor performance. The reason for this difference is that
in the finite inventory setting a certain “endogenous learning” property is satisfied, that leads
to abundant price dispersion even when no active price experimentation is applied. As a result,
parameter estimates converge quickly to their true value, and the chosen prices converge quickly
to the optimal prices.

Chapter 5 is based on den Boer and Zwart (2011b).

Chapter 6: pricing in a changing market environment

The literature on dynamic pricing and learning generally assumes that the relation between price
and expected demand is stable, and does not change over time. In practice, this strong condition
is often violated: the behavior of markets may change regularly for different reasons, and pricing
policies should be able to respond to these fluctuations. In Chapter 6, we study dynamic pricing
and learning of a single product with infinite inventory, in a setting where the market process
is subject to variations. Using weighted least-squares type estimators, we derive bounds on the
performance of a variant of CEP, and provide guidelines how to optimally choose the estimator.
This enables the firm to hedge against the risk of fluctuations in the market. Numerical examples
illustrate the methodology in several practical situations, such as pricing in view of market satu-
ration effects, or pricing in a competitive environment. This study is the first on dynamic pricing
and learning in a changing market that provides a pricing policy with an explicit characterization
of its performance.

Chapter 6 is based on den Boer (2012a).

Chapter 7: convergence rates for maximum quasi-likelihood estimation

The unknown parameters of the demand models in Chapter 3, 4, and 5 are estimated using
maximum quasi-likelihood estimation. This is an extension of maximum-likelihood estimation
to models where only knowledge on the first two moments of the distribution is available. In
Chapter 7, we derive bounds on the convergence rates of the expected squared estimation error
for this type of estimator. These convergence rates are used to characterize the performance of
pricing policies in Chapter 3, 4, and 5. In addition, they are applicable in many other sequential
decision problems under uncertainty.

Chapter 7 is based on den Boer and Zwart (2011a).
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Chapter 2

Literature

This chapter surveys the rich literature on dynamic pricing with learning. Section 2.1 briefly
reviews some of the pioneering historical work done on pricing and demand estimation, and
discusses how this work initially was difficult to apply in practice. In Section 2.2 we sketch im-
portant references and developments for dynamic pricing in general, and in Section 2.3 we focus
on the literature that deals with dynamic pricing and learning. Connections between dynamic
pricing and related research areas are addressed in Section 2.4.

2.1 Historical origins of pricing and demand estimation

Dynamic pricing with learning can be seen as the combined application of two research fields:
(1) statistical learning, specifically applied to the problem of estimating demand functions, and
(2) price optimization. Both these fields are already quite old, dating back more than a century.
In this section we briefly describe the historical fundaments out of which dynamic pricing and
learning has emerged, by pointing to some key references on static pricing and estimating de-
mand functions that have been important in the progress of the field.

2.1.1 Demand functions in pricing problems

Cournot (1838) is generally acknowledged as the first to use a mathematical function to describe
the price-demand relation of products, and subsequently solve the mathematical problem of de-
termining the optimal selling price. As vividly described by Fisher (1898), such an application of
mathematical methods to study an economical problem was quite new and controversial at the
time, and the work was neglected for several decades. Cournot showed that if F (p) denotes the
demand as function of price p, where F (p) is continuous, decreasing in p, and pF (p) converges to
zero as p grows large, then the price that maximizes the revenue pF (p) can be found by equating
the derivative of pF (p) to zero. If F (p) is concave, there is a unique solution, which is the optimal
price (this is contained in Chapter IV of Cournot (1838)). In this way, Cournot was the first to
solve a “static pricing” problem by mathematical methods.

2.1.2 Demand estimation

To make theoretical knowledge on optimal pricing theory applicable in practical problems, one
needs to have an estimate of the demand function. The first known empirical work on demand

7



8 Chapter 2 Literature

curves is the so-called King-Davenant Law (Davenant, 1699) which relates the supply and price
of corn (see Creedy, 1986, for an exposition on the origins of this work). More advanced research
on estimating demand curves, by means of statistical techniques such as correlation and linear
regression, took off in the beginning of the 20st century. Benini (1907), Gini (1910) and Lehfeldt
(1914) estimate demand curves for various goods as coffee, tea, salt, and wheat, using various
curve-fitting methods. Further progress on methodology was made, among others, by Moore
(1914, 1917), Wright (1928) and Tinbergen (1930); the monumental work of Schultz (1938) gives
a thorough overview of the state-of-the-art of demand estimation in his time, accompanied by
many examples. Further references and more information on the historical progress of demand
estimation can be found in Stigler (1954, section II), Stigler (1962, particularly section iii), Brown
and Deaton (1972), Christ (1985), and Farebrother (2006).

2.1.3 Practical applicability

Estimating demand curves of various products was in first instance not aimed at profit optimiza-
tion of commercial firms, but rather used to support macro-economic theories on price, supply,
and demand. Application of the developed methods in practical problems was initially far away.
An illustrative quote is from Hicks (1935), who doubted the possibilities of applying the theory
of monopoly pricing on practical problems, exactly because of the difficulty of estimating the
demand curve:

It is evidently the opinion of some of the writers under discussion that the modern
theory of monopoly is not only capable of throwing considerable light on the general
principles underlying an individualistic economic structure, but that it is also capable
of extensive use in the analysis of particular practical economic problems, that is to
say, in applied economics. Personally, I cannot but feel sceptical about this. [...] There
does not seem to be any reason why a monopolist should not make a mistake in
estimating the slope of the demand curve confronting him, and should maintain a
certain output, thinking it was the position which maximized his profit, although he
could actually have increased his profit by expanding or contracting. (Hicks, 1935,
page 18,19).

Hawkins (1957) reviews some of the attempts made by commercial firms to estimate the demand
for their products. Most of these attempts were not successful, and suffered from difficulties of
obtaining sufficiently many data for reliable estimates, and of changes in the quality of the prod-
uct and the prices of competitors. Even a very detailed study of General Motors on automobile
demand ends, somewhat ironically, with:

The most important conclusion from these analyses of the elasticity of demand for
automobiles with respect to price is that no exact answer to the question has been
obtained. (Horner et al., 1939, p. 137).

In view of these quotations, it is rather remarkable that dynamic pricing and learning has nowa-
days found its way in practice; many applications have been reported in various branches such
as airline companies, the hospitality sector, car rental, retail stores, internet advertisement, and
many more. A main cause for this is the fact that historical sales data nowadays is often digi-
tally available; this significantly reduces the efforts needed to estimate the demand function. In
addition, whenever products are sold via the Internet or using digital price tags, the costs associ-
ated with adjusting the prices in response to updated information or changed circumstances are
practically zero. In contrast, a price-change in the pre-digital era would often induce costs, for
example because a new catalog had to be printed or price tags had to be replaced.
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2.2 Dynamic pricing

In this section we discuss the literature on dynamic pricing. There is a huge amount literature on
this subject, and we do not intend to give a complete overview of the field. Instead, we briefly
describe some of the major research streams and key references, in order to provide a context in
which one can position the literature on dynamic pricing with learning discussed in Section 2.3.

The literature on dynamic pricing by a monopolist firm can roughly be classified as follows:

• Models where the demand function is dynamically changing over time.

• Models where the demand function is static, but where pricing dynamics are caused by the
inventory level.

In the first class of models, reviewed in Section 2.2.1, the demand function changes according to
changing circumstances: for example, the demand function may depend on the time-derivative
of price, on the current inventory level, on the amount of cumulative sales, on the firm’s pricing
history, et cetera. In the second class of models, reviewed in Section 2.2.2, it is not the demand
function itself that causes the pricing dynamics: a product offered in two different time periods
against the same selling price, is expected to generate the same amount of average demand.
Instead, the price dynamics are caused by inventory effects; for example, if the product on sale is
almost sold out and no re-ordering is possible on the short term, it may be beneficial to increase
the price. Naturally, it is also possible to study models that fall both in classes, if both the demand
function is dynamically changing and the price dynamics are influenced by inventory effects;
some of these literature is also reviewed in Section 2.2.2.

2.2.1 Dynamic pricing with dynamic demand

Demand depends on price-derivatives

Evans (1924) is one of the first to depart from the static pricing setting introduced by Cournot
(1838). In a study on optimal monopoly pricing, he assumes that the (deterministic) demand is
not only a function of price, but also of the time-derivative of price. This models the fact that
buyers do not only consider the current selling price in their decision to buy a product, but also
the future price path. The purpose of the firm is to calculate a price function, on a continuous
time interval, that maximizes the profit. Using techniques from calculus of variations, the op-
timal price function is calculated. Various extensions to this model are made by Evans (1925),
Roos (1925, 1927a,b, 1934), Tintner (1937), and Smithies (1939). Thompson et al. (1971) study an
extended version of the model of Evans (1924), where optimal production level, investment level,
and output price have to be determined. Closely connected to this work is Simaan and Takayama
(1976), who consider a model where supply is the control variable; the time-derivative of price at
each moment is a known function of the current supply and current price. Methods from control
theory are used to derive properties of the optimal supply path.

Demand depends on price history

A related set of literature considers the effect of reference prices on the demand function. Refer-
ence prices are perceptions of customers about the price that the firm has been charging in the
past; see Mazumdar et al. (2005) for a review on the subject. A difference between the reference
price and the actual selling price influences the demand, and as a result, each posted selling price
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does not only affect the current demand but also the future demand. Dynamic pricing models
and properties of optimal pricing strategies in such a setting are studied by Greenleaf (1995),
Kopalle et al. (1996), Fibich et al. (2003), Heidhues and Köszegi (2005), Ahn et al. (2007), Popescu
and Wu (2007).

Demand depends on amount of sales

Another stream of literature on dynamic pricing emerged from diffusion and adoption models
for new products. A key reference is Bass (1969), and reviews of diffusion models are given by
Mahajan et al. (1990), Baptista (1999), and Meade and Islam (2006). In these models, the demand
for products does not only depend on the selling price, but also on the amount of cumulative
sales. This allows modeling several phenomena related to market saturation, advertisement,
word-of-mouth effects, and product diffusion. Robinson and Lakhani (1975) study dynamic pric-
ing in such a model, and numerically compare the performance of several pricing policies. Their
work stimulated much further research on optimal dynamic pricing policies, see e.g. Clarke et al.
(1982), Kalish (1983), Clarke and Dolan (1984), and the references therein. The models studied
in these papers are deterministic, and somewhat related to the literature following Evans (1924):
both types of pricing problems are solved by principles from optimal control theory, and the
optimal pricing strategy is often characterized by a differential equation.

Chen and Jain (1992), Raman and Chatterjee (1995), and Kamrad et al. (2005) extend these models
by incorporating randomness in the demand. In Chen and Jain (1992), the demand is determined
by a finite-state Markov chain for which each state corresponds to a deterministic demand func-
tion that depends on price and cumulative sales. The optimal price path is characterized in terms
of a stochastic differential equation, and compared to the optimal policy in a fully determinis-
tic setting. Raman and Chatterjee (1995) model uncertainty by adding a Wiener process to the
(known) deterministic component of the demand function. They characterize the pricing policy
that maximizes discounted cumulative profit, and compare it with the optimal price path in the
fully deterministic case. Under some specific assumptions, closed form solutions are derived.
Similar models that incorporate demand uncertainty are analyzed by Kamrad et al. (2005). For
various settings they provide closed-form solutions of the optimal pricing policies.

2.2.2 Dynamic pricing with inventory effects

There are two important research streams on dynamic pricing models where the dynamics of
the optimal pricing policy are caused by the inventory level: (i) “revenue management” type of
problems, where a finite amount of perishable inventory is sold during a finite time period, and
(ii) joint pricing and inventory procurement problems.

Selling a fixed, finite inventory during a finite time period

In this stream of literature, a firm is assumed to have a certain number of products at its disposal,
which are sold during a finite time period. There is no replenishment; inventory that is unsold
at the end of the selling horizon is lost, and can not be transferred to another selling season. In
these problems, the dynamic nature of optimal prices is not caused by changes in the demand, but
rather by fact that the marginal value of remaining inventory is changing over time. As a result,
the optimal selling price in these settings is not a fixed quantity, but depends on the remaining
amount of inventory and the remaining duration of the selling season.
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Kincaid and Darling (1963) may be the first to characterize and analyze the optimal pricing policy
in such a setting. A more recent key reference is Gallego and van Ryzin (1994). They consider
a continuous-time setting where demand is modeled as a Poisson process, with arrival rate that
depends on the posted selling price. The pricing problem is formulated as a stochastic optimal
control problem, and the optimal solution is characterized using the Hamilton-Jacobi-Bellman
equation. A closed-form solution may in general not exist, but for a specific demand function a
closed-form optimal solution is derived. The authors furthermore propose two heuristic pricing
policies, provide bounds on their performance, and discuss various extensions to the model.

Numerous extensions and variations of the model by Gallego and van Ryzin (1994) have been
studied: settings with restrictions on the number of allowable prices or price changes (Feng
and Gallego, 1995, Bitran and Mondschein, 1997, Feng and Xiao, 2000a,b), extensions to mul-
tiple products that share the same finite set of resources (Gallego and van Ryzin, 1997, Kleywegt,
2001) or multiple stores (Bitran et al., 1998). For a thorough overview of this literature, we refer to
the books Talluri and van Ryzin (2004), Phillips (2005), Özer and Phillips (2012), and the reviews
by Bitran and Caldentey (2003), Elmaghraby and Keskinocak (2003).

Feng and Gallego (2000) and Zhao and Zheng (2000) characterize the optimal pricing policy in
case of time dependent demand intensities; in these models, the price dynamics are caused both
by inventory effects and by dynamic demand behavior.

The same holds for models that study strategically behaving customers: customers who, when
arriving at the (online) store, do not immediately decide whether to buy the product, but instead
wait for a while to anticipate possible decreases in the selling price. In contrast, so-called myopic
customers instantly decide whether to buy the product at the moment they arrive at the store. In
such settings, the demand at a certain moment depends on the past, present, and future selling
prices. Dynamic pricing in view of strategic customers has received a considerable amount of
research attention in recent years; a representative sample is Aviv and Pazgal (2008), Elmaghraby
et al. (2008), Liu and van Ryzin (2008), Levin et al. (2009), Cachon and Swinney (2009) and Su
(2010). These studies sometimes have a game-theoretic flavor, since both the firm and the strate-
gic customers have a decision problem to solve, with contradicting interests.

Jointly determining selling prices and inventory procurement

A main assumption of the literature discussed above is that the initial capacity level is fixed. In
many situations in practice this is a natural condition: the number of seats in an aircraft, rooms
in a hotel, tables in a restaurant, or seats in a concert hall are all fixed for a considerable time
period, and modifications in the capacity occur at a completely different time scale than dynamic
price changes. In many other settings, however, the initial capacity is a decision variable to the
firm; in particular, when the firm can decide how many items of inventory should be produced
or procured. Pricing and inventory management can then be considered as a simultaneous opti-
mization problem.

This research field bridges the gap between the pricing and inventory management literature.
Many different settings and models are subject to study, with different types of production, hold-
ing and ordering costs, different replenishment policies (periodic or continuous), finite or infinite
production capacity, different models for the demand function. Extensive reviews of the litera-
ture on simultaneous optimization of price and inventory decisions can be found in Eliashberg
and Steinberg (1993), Elmaghraby and Keskinocak (2003, Section 4.1), Yano and Gilbert (2005),
Chan et al. (2004), and Chen and Simchi-Levi (2012).
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2.3 Dynamic pricing and learning

In the static monopoly pricing problem considered by Cournot (1838), the demand function is
deterministic and completely known to the firm. These assumptions are somewhat unrealistic in
practice, and eventually it was realized by researchers that demand uncertainty should be incor-
porated into the problem. One of the first to pursue this direction is Mills (1959), who assumes
that the demand is the sum of a random term with zero mean and a deterministic function of
price. He studies how a monopolist firm that sells finitely many products in a single time pe-
riod should optimally set its production level and selling price. Further extensions of this model
and properties of pricing problems with random demand are studied by Karlin and Carr (1962),
Nevins (1966), Zabel (1970), Baron (1970, 1971), Sandmo (1971) and Leland (1972). An impor-
tant research question in these studies is how the firm‘s optimal decisions are influenced by the
demand uncertainty, and by the firms’ attitude towards risk (risk-neutral, risk-averse, or risk-
preferred).

In the models mentioned above, the expected demand as a function of the selling price is still
assumed to be completely known by the firm, which makes these models somewhat unrealistic
and not usable in practice. The common goal of the literature on dynamic pricing and learning is
to develop pricing policies that take the intrinsic uncertainty on the price-demand relation into
account.

In the next two sections we discuss the literature on dynamic pricing and learning. Section 2.3.1
considers the literature on the problem of a price-setting firm with infinite inventory and un-
known demand function. This basically is the monopoly pricing problem described in Section
2.1.1, with uncertainty on the demand function. The full-information case of this problem is
static; the price dynamics are completely caused by the fact that the firm learns about the price-
demand relation through accumulating sales data. Section 2.3.2 discusses literature on pricing
policies for firms selling a fixed, finite amount of inventory, with unknown demand function.
For this problem, the full-information case is already dynamic by itself, as discussed in Section
2.2.2, and the learning aspect of the problem provides an additional source of the price dynamics.

2.3.1 No inventory restrictions

Early work

The first analytical work on dynamic monopoly pricing with unknown demand curve seems to
have been done by members of the Uppsala Econometric Seminar, in 1953-54. Billström et al.
(1954) contains a mimeographed report of work presented at the 16th Meeting of the Economet-
ric Society in Uppsala, August 1954. The original report has not been published, but an English
reprint has appeared in Billström and Thore (1964) and Thore (1964). These two works consider
the problem of a monopolist facing a linear demand curve that depends on two unknown pa-
rameters. Thore (1964) proposes to use a dynamic pricing rules that satisfies sign(pt − pt−1) =

sign((pt−1 − pt−2)(rt−1 − rt−2)), where pt, rt denote the price and revenue in period t. Put in
words, the idea is as follows: if a previous price increase led to an increase in revenue, the price
will again be increased; otherwise it will be decreased. Similarly, if a previous price decrease led
to an increase in revenue, the price will again be decreased; otherwise, it will be increased. In
addition, Thore (1964) proposes to let the magnitude of the price adjustment, pt − pt−1, depend
on the magnitude of rt−1 − rt−2. He specifies two pricing rules in detail,

pt − pt−1 = constant ·
√

|rt−1 − rt−2| · sign((pt−1 − pt−2)(rt−1 − rt−2)), (2.1)
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and

pt − pt−1 = constant · rt−1 − rt−2

pt−1 − pt−2
, (2.2)

and analyzes convergence properties of the resulting dynamical systems. Billström and Thore
(1964) perform simulation experiments for pricing rule (2.1), both in a deterministic demand
setting and in a setting where a normally distributed disturbance term is added to the demand.
They also extend the model to incorporate inventory replenishment, and provide a rule of thumb
for the optimal choice of the constant in (2.1).

These studies emerging from the Uppsala Econometrics Seminar have not received much re-
search attention in subsequent years. Clower (1959) studies a monopolist firm facing a linear,
deterministic demand function whose parameters may change over time. He discusses several
price-adjustment mechanisms that may be applied by the firm to adapt its prices to changing
situations. Baumol and Quandt (1964) propose rules of thumb for the monopolist pricing prob-
lem, and asses their performance by a set of numerical experiments. In their Appendix A they
propose exactly pricing rule (2.2), although they are apparently unaware of the work of Thore
(1964). They investigate some convergence and stability properties of the resulting dynamical
system, both in a discrete-time and continuous-time framework. Baetge et al. (1977) extend the
simulation results of Billström and Thore (1964) to non-linear demand curves, and further study
the optimal choice of the constant in (2.1). A final study in this line of research is from Witt (1986).
He studies a model where a monopolist has to decide on price, output level in the current period
and capacity (maximum output) in the next period. Expected demand is linear with unknown
coefficients, and may change over time. Three decision rules are compared to each other via a
computer simulation. In addition, their performance is compared with a laboratory experiment,
where test subjects had to determine their optimal pricing strategy.

Bayesian approaches

Several authors study the dynamic pricing and learning problem within a Bayesian framework.
On of the first is Aoki (1973), who applies methods from stochastic adaptive control theory. He
considers a setting where the demand function depends on unknown parameters, which are
learned by the decision maker in a Bayesian fashion. The purpose is to minimize (a function of)
the excess demand. He shows how the optimal Bayesian policy can, in theory, be computed via
dynamic programming, but that in many situations no closed-form analytical expression of the
solution exists. He proposes two approximation policies. In the first, certainty equivalent pricing
(CEP), at each decision moment the price is chosen that would be optimal if the current parameter
estimates were correct. In the second, called an approximation under static price expectation, the
firm acts at each decision moments as if the chosen price will be maintained throughout the
remainder of the selling period. Aoki (1974) he shows that the prices generated by these policies
converge a.s. to the optimal price.

Similar work is by Chong and Cheng (1975), under more restrictive assumptions of a linear de-
mand function with two unknown parameters and normally distributed disturbance terms. They
show how to calculate the optimal pricing policy using a dynamic programming approach. If the
intercept is known, the optimal price is of the certainty equivalent type, but this is not the case
if both the intercept and slope are unknown. Three algorithms are proposed to approximate the
optimal price, and the performance of two of these - CEP, and a policy based on adaptive dual
control theory - are compared to each other by means of simulations.

Closely related Bayesian studies are Nguyen (1984, 1997) and Lobo and Boyd (2003). Nguyen
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(1984) considers a quantity-setting monopolist firm facing random demand in multiple periods,
where the demand function depends on an unknown parameter which is learned by the firm in
a Bayesian fashion. Structural properties of the optimal policy are derived, and its performance
is compared to a myopic one-period policy. Nguyen (1997, Section 5) discusses these questions
in the context of a price-setting monopolist. Lobo and Boyd (2003) consider the same setting as
Chong and Cheng (1975), and compare by means of a computer simulation the performance of
four pricing policies with each other.

Cope (2007) assumes that the firm only picks prices from a finite set of predetermined selling
prices. This allows for a discretization of the reservation-price distribution of customers, and
the construction of a general Dirichlet prior. Cope mentions that in theory an optimal price
strategy can be calculated by dynamic programming, but that in practice this is computationally
intractable. He develops approximations for the value function in the dynamic program, and
numerically compares the performance of the resulting pricing heuristics with CEP. In addition,
he shows that his pricing heuristics converge to the optimal price if an average-reward criterion
is used, and that their performance do not suffer much from a misspecified prior distribution.

Manning (1979) and Venezia (1984) are two related studies that focus on optimal design of mar-
ket research. Manning (1979) considers a monopolist firm facing a finite number of customers.
By doing market research, the firm can ask n potential customers about their demand at some
price p. Such market research is not for free, and the main question of the paper is to determine
the optimal amount of market research. This setting is closely related to pricing rules that split
the selling season in two parts (e.g. the first pricing rule proposed by Witt (1986)): in the first
phase, price experimentation takes place in order to learn the unknown parameters, and in the
second phase of the selling season, the myopic price is used. Venezia (1984) considers a linear
demand model with unknown parameters, one of which behaves like a random walk. The firm
learns about these parameters using Bayes’ rule. In addition, the firm can learn the true current
value of this random walk by performing market research (which costs money). Using dynamic
programming, the optimal market-research policy is calculated.

A common theme in the references mentioned above is that it is often intractable to compute
the optimal Bayesian policy, and that therefore approximations are necessary. Rothschild (1974)
points to a more fundamental problem of the Bayesian framework. He assumes that there are
only two prices the firm can choose, with demand for each price Bernoulli distributed with un-
known mean. The dynamic pricing problem is thus viewed as a two-armed bandit problem.
The optimal Bayesian policy can be computed via the corresponding dynamic programming for-
mulation. The key result of Rothschild (1974) is that, under the optimal Bayesian strategy, with
positive probability a suboptimal price is chosen infinitely often and the optimal price is chosen
only finitely many times. McLennan (1984) derives a similar conclusion in a related setting: the
set of admissible prices is continuous, and the relation between price and expected demand is
one of two known linear demand curves. It turns out that, under an optimal Bayesian policy, the
sequence of prices may converge with positive probability to a price different from the optimal
price. This work is extended by Harrison et al. (2011a), who show that in several instances a
myopic Bayesian policy may lead to incomplete learning. They propose two modifications of the
myopic Bayesian policy that avoid incomplete learning, and prove bounds on their performance.

The economics and econometrics literature also contains several studies on joint pricing and
Bayesian learning. Prescott (1972), Grossman et al. (1977), Mirman et al. (1993) consider simple
two-period models, and study the necessity and effects of price experimentation. Trefler (1993)
focuses on the direction of experimentation, and applies his results on several pricing problems.
Rustichini and Wolinsky (1995) and Keller and Rady (1999) consider a setting where the market
environment changes in a Markovian fashion between two known demand functions, and study
properties of optimal experimentation. Balvers and Cosimano (1990) consider a dynamic pric-
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ing model where the coefficients of a linear demand model change over time. Easley and Kiefer
(1988), Kiefer and Nyarko (1989), Aghion et al. (1991) are concerned with Bayesian learning in
general stochastic control problems with uncertainty. They study the possible limits of Bayesian
belief vectors, and show that in some cases these limits may differ from the true value. This
implies that active experimentation is necessary to obtain strongly consistent control policies.

Non-Bayesian approaches

Despite the disadvantages of the Bayesian framework outlined above (computational intractabil-
ity of the optimal solution, the negative results by Rothschild (1974) and McLennan (1984)), it has
taken several decades before pricing policies in a non-Bayesian setting where studied. An early
exception is Aoki (1974), who proposes a pricing scheme based on stochastic approximation in a
non-Bayesian framework. He proves that the prices converge almost surely to the optimal price,
and compares the policy with Bayesian pricing schemes introduced in Aoki (1973).

More recent work in a non-Bayesian context is Carvalho and Puterman (2005a,b). They propose
a so-called one-step ahead pricing policy: based on a Taylor expansion of the expected revenue
for the next period, the price is chosen that approximately maximizes the sum of the revenues in
the next two periods. This is in contrast to certainty equivalent pricing, where only the expected
revenue of one period is maximized. In Carvalho and Puterman (2005a), this idea is applied
to a binomial demand distribution with expectation a logit function of the price. By means of a
simulation, the performance of the policy is compared with CEP, and with a variant of CEP where
each period with a certain time-dependent probability a random price is chosen. In Carvalho and
Puterman (2005b), a log-normal demand distribution is assumed, and three more pricing policies
are considered in the simulation.

A disadvantage of the many pricing heuristics that have been proposed in the literature, both
in a Bayesian and a non-Bayesian setting, is that a qualitative statement of their performance is
often missing. In many studies the performance of pricing policies is only evaluated numerically,
without any analytical results. This changes with the work of Kleinberg and Leighton (2003), who
suggest to quantify the performance of a pricing policy by Regret(T ): the expected loss in T time
periods incurred by not choosing optimal prices. They consider a setting where buyers arrive
sequentially to the firm, and buy only if their willingness-to-pay (WtP) exceeds the posted price.
Under some additional assumptions, they show that if the WtP of the individual buyers is an
i.i.d. sample of a common distribution, then there is no pricing policy that achieves Regret(T ) =

o(
√
T ); in addition, there is a pricing policy that achieves Regret(T ) = O(

√

T log(T ))1. In an
adversarial or worst-case setting, where the WtP of individual buyers is not assumed to be i.i.d.,
they show that no pricing policy can achieve Regret(T ) = o(T 2/3), and that there is a pricing
policy with Regret(T ) = O(T 2/3 log(T )1/3).

The proof that no policy can achieve regret o(
√
T ) is quite involved and requires many assump-

tions on the demand function. Broder and Rusmevichientong (2012) show a
√
T lower bound on

the regret in a different setting, with Bernoulli distributed demand depending on two unknown
parameters. The proof makes use of information-theoretic inequalities and techniques found
in Besbes and Zeevi (2011). They also provide a pricing policy that exactly achieves regret

√
T

growth rate. If there is only a single unknown parameter, and in addition the demand curve sat-
isfy a certain “well-separated assumption”, they show that this can be improved to log(T ). The
key idea of this well-separated condition is that it excludes uninformative prices: prices at which
the expected demand given a certain parameter estimate is equal to the true expected demand.

1Here f(T ) = O(g(T )) means supT inN f(T )/g(T ) < ∞, and f(T ) = o(g(t)) means lim supT→∞
f(T )/g(T ) = 0,

when f and g are functions on N.
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The existence of such prices appear to play an important role in the best achievable growth rate of
the regret; see also the discussion on the subject (in a Bayesian setting) in Harrison et al. (2011a).

Assuming a linear demand function with normally distributed disturbance terms, Harrison et al.
(2011b) show a similar

√
T lower bound on the regret, using alternative proof techniques. In

addition, extending Broder and Rusmevichientong (2012) and Chapter 3 of this thesis, they for-
mulate sufficient conditions for any pricing policy to achieve regret O(

√
T ). They also study

dynamic pricing and learning for multiple products, in a setting comparable to Chapter 4.

Tehrani et al. (2012) assume that the demand model lies in a finite set of known demand func-
tions. This enables them to formulate the dynamic pricing problem as a multi-armed bandit with
dependent arms. They propose a pricing policy based on the likelihood-ratio test, and show that
its regret is bounded assuming that there are no uninformative prices.

Eren and Maglaras (2010) study dynamic pricing in a robust optimization setting. They show
that if an infinite number of goods can be sold during a finite time interval, it is optimal to use a
price-skimming strategy. They also study settings where learning of the demand function occurs,
but under the rather strong assumption that observed demand realizations are without noise.

2.3.2 Finite inventory

We here discuss the literature on dynamic pricing and learning in presence of a finite inventory
that cannot be replenished. Most of the studies assume a finite selling season, corresponding
to one of the most studied models in the dynamic pricing and revenue management literature.
Some studies however assume an infinite time horizon, and consider the objective of maximizing
total discounted reward.

Early work

Lazear (1986) considers a simplified model where a firm sells one item during at most two peri-
ods. In the first period a number of customers visit the store; if none of them buys the item, the
firm adapts its prior belief on the value of the product, updates the selling price, and tries to sell
the item in the second period. The author shows that the expected profit increases by having two
selling periods instead of one. He extends his model in several directions, notably by allowing
strategic behavior of customers who may postpone their purchase moment if they anticipate a
price decrease.

Bayesian approaches

Aviv and Pazgal (2005b) start a research stream on Bayesian learning in dynamic pricing with
finite inventory. They consider a continuous-time setting where customers arrive according to
a Poisson process with unknown rate. Once arrived, the probability of purchasing an item is
determined by a reservation price distribution. For reasons of tractability, they assume that the
purchase probability is exponentially decreasing in the selling price, and that this function is
known to the seller. The seller has a prior belief on the arrival rate, given by a gamma distri-
bution, which is updated via Bayes’ rule; the posterior is then also gamma distributed. After
explicitly stating the optimal pricing policy in the full information case, the authors characterize
the optimal pricing scheme in the incomplete-information case by means of a differential equa-
tion. This equation does in general not admit an explicit analytical solution, and therefore three



2.3 Dynamic pricing and learning 17

pricing heuristics are proposed: a certainty equivalent heuristic, a fixed price policy, and a naive
pricing policy that ignores uncertainty on the market. Numerical experiments suggest that CEP
performs quite well. An almost identical setting is studied by Lin (2006), who proposes a pricing
policy and evaluates its performance via simulations.

Sen and Zhang (2009) extend the model of Aviv and Pazgal (2005b) by assuming that the pur-
chase probabilities of arriving customers are not known to the firm. They assume that the de-
mand distribution is an element of a finite known set, and consider a discrete-time setting with
Bayesian learning and a gamma prior on the arrival rate. The optimal pricing policy can be ex-
plicitly calculated, and in an extensive computational study, its performance is compared to both
a perfect-information setting and a setting where no learning occurs.

Araman and Caldentey (2009) and Farias and van Roy (2010) study a closely related problem:
they consider a firm who sells a finite amount of non-perishable inventory during an infinite
time horizon. The purpose is to maximize cumulative expected discounted revenues. Similar to
Aviv and Pazgal (2005a), they both assume that customers arrive according to a Poisson process
with unknown rate, and that arriving customers buy a product according to their reservation
price, the distribution of which is known to the firm. The unknown arrival rate is learned via
Bayesian updates of the prior distribution. Araman and Caldentey (2009) consider a two-point
prior distribution, whereas Farias and van Roy (2010) assume that the prior is a finite mixture
of gamma distributions; in both settings, the posterior distributions are in the same parametric
family as the prior, which makes the problem tractable. Araman and Caldentey (2009) propose
a pricing heuristic based on an asymptotic approximation of the value function of the corre-
sponding intensity control problem. They compare its performance numerically with CEP, static
pricing, and a two-price policy. Farias and van Roy (2010) propose another heuristic, called de-
cay balancing, and show several numerical experiments that suggest that it often performs better
than both the heuristic proposed by Araman and Caldentey (2009) and CEP. In addition they
prove a performance bound on decay balancing, showing that the resulting expected discounted
revenue is always at least one third of the optimal value. Furthermore, they consider an extension
to a setting with multiple stores that may use different selling prices.

A slightly different but related setting is studied by Aviv and Pazgal (2005a). They consider a
seller of finite inventory during a finite selling season, where the demand function changes ac-
cording to an underlying Markov chain. The finite state space of this Markov chain, and the
demand functions associated with each state, are known to the firm. The current state of the sys-
tem is unknown to the seller, but it is learned via Bayesian learning based on observed demand
realizations. By including this Bayesian belief vector into the state space of the dynamic pric-
ing problem, the authors obtain a Markov decision problem with full information, which can in
theory be solved. Computationally it is intractable, however, and therefore several approximate
solutions are discussed.

Non-Bayesian approaches

Bertsimas and Perakis (2006) consider a non-Bayesian setting. They assume a linear demand
model with normally distributed noise terms and unknown slope, intercept and variance. These
parameters are estimated using least-squares linear regression. They formulate a dynamic pro-
gram that, in theory, can provide the optimal pricing policy. Due to the large size of the state
space, however, it is computationally intractable. Therefore several approximations are studied,
and their performance is compared to each other in a computational study. The authors also con-
sider a dynamic pricing and learning problem in a oligopolistic environment, where in addition
the price elasticity of demand is slowly varying over time. They discuss methods for estimat-
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ing the demand of the firm and of its competitors, mention several methods of determining the
selling prices, and provide a small computational study.

Besbes and Zeevi (2009) propose a pricing algorithm for both a parametric and non-parametric
setting, and consider the objective of optimizing the minimax regret. They consider an asymp-
totic regime, where both initial inventory and demand go to infinity at equal speed. In both
a parametric and non-parametric setting they provide an upper bound on the minimax regret
attained by their proposed pricing policy, and a lower bound on the minimax regret that is at-
tained by any policy. Wang et al. (2011) improve some of these bounds, and Besbes and Zeevi
(2012) extend Besbes and Zeevi (2009) to a setting where multiple products share the same finite
resources.

Besbes and Maglaras (2012) consider dynamic pricing in a setting where certain financial mile-
stone constraints in terms of sales and revenues targets are imposed. They formulate a pricing
policy and study its performance in an asymptotic regime, where inventory, sales horizon, and
revenue and sales target grow to infinity at equal speed.

Robust approaches

A number of studies take a robust approach, where the demand function is not learned over time,
but assumed to lie in some known uncertainty set. Thiele (2006), Lim and Shanthikumar (2007),
Bergemann and Schlag (2008a,b) study this in a single-product setting, and Lim et al. (2008),
Thiele (2009) in a multi-product setting. A disadvantage of these robust approaches is that no
learning takes place, despite the accumulation of sales data. Lobel and Perakis (2011) attempt to
bridge the gap between robust and data-driven approaches to dynamic pricing, by considering a
setting where the uncertainty set is deduced from data samples.

Machine-learning approaches

A considerable stream of literature on dynamic pricing and learning has emerged from the com-
puter science community. In general, the focus of these papers is not to provide a mathematical
analysis of the performance of pricing policies, but rather to design a realistic model for electronic
markets and subsequently apply machine learning techniques. An advantage of this approach
is that one can model many phenomena that influence the demand, such as competition, fluctu-
ating demand, and strategic buyer behavior. A disadvantage is that these models are often too
complex to analyze analytically, and insights on the behavior of various pricing strategies can
only be obtained by performing numerical experiments.

Machine-learning techniques that have been applied to dynamic pricing problems are evolution-
ary algorithms (Ramezani et al., 2011), particle swarm optimization (Mullen et al., 2006), rein-
forcement learning and Q-learning (Kutschinski et al., 2003, Chinthalapati et al., 2006), simulated
annealing (Xia and Dube, 2007), Markov chain Monte Carlo methods (Chung et al., 2012), the
aggregating algorithm (Levina et al., 2009) by Vovk (1990), and goal-directed and derivative-
following strategies in simulation (DiMicco et al., 2003).

2.3.3 Joint pricing and inventory problems

A few studies consider the problem of simultaneously determining an optimal pricing and in-
ventory replenishment policy under demand uncertainty.
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Most of them consider learning in a Bayesian framework. Subrahmanyan and Shoemaker (1996)
assume that the unknown demand function lies in a finite known set of demand functions, which
is learned over time in a Bayesian fashion. The optimal policy is determined by a dynamic pro-
gram. Several numerical experiments are provided to offer insight in the properties of the pric-
ing policy. Bitran and Wadhwa (1996) and Bisi and Dada (2007) study a similar type of problem,
where an unknown parameter is learned in a Bayesian manner, and the optimal decisions are
determined by a dynamic program. Bitran and Wadhwa (1996) perform extensive computational
experiments, and Bisi and Dada (2007) derive several properties of the optimal policy. Lariviere
and Porteus (1995) consider the situation of a manufacturer that sells to a retailer. The manufac-
turer decides on a wholesale price offered to the retailer, and the retailer has to choose an optimal
inventory replenishment policy. Both learn about a parametrized demand function in a Bayesian
fashion. Properties of the optimal policy, both for the manufacturer and the retailer, are stud-
ied. Gaul and Azizi (2010) assume that a product is sold in different stores. The problem is to
determine optimal prices in a finite number of periods, as well as to decide if and how inven-
tory should be reallocated between stores. Parameters of the demand function are learned by
Bayesian updating, and numerical experiments are provided to illustrate the method.

Burnetas and Smith (2000) consider a joint pricing and inventory problem in a non-parametric
setting. They propose an adaptive stochastic-approximation policy, and show that the expected
profit per period converges to the optimal profit under complete information. A robust approach
to the dynamic pricing and inventory control problem with multiple products is studied by
Adida and Perakis (2006). The focus of that paper is the formulation of the robust optimiza-
tion problem, and to study its complexity properties. Related is the work of Petruzzi and Dada
(2002). These authors assume that there is no demand noise, which means that the unknown pa-
rameters that determine the demand function are completely known once a demand realization
is observed that does not lead to stock-out.

2.4 Methodologically related areas

Dynamic pricing under uncertainty is closely related to multi-armed bandit problems. This is
a class of problems that capture many essential features of optimization problems under uncer-
tainty, including the well-known exploration-exploitation trade-off: the decision maker should
properly balance the two objectives of maximizing instant reward (exploitation of current knowl-
edge) and learning the unknown properties of the system (exploration). This trade-off between
learning and instant optimization is also frequently observed in dynamic pricing problems. The
literature on multi-armed bandit problems is large; some key references are Thompson (1933),
Robbins (1952), Lai and Robbins (1985), Gittins (1989), Auer et al. (2002); see further Vermorel and
Mohri (2005), Cesa-Bianchi and Lugosi (2006), Powell (2010). If in a dynamic pricing problem,
the number of admissible selling prices is finite, the problem can be modeled as a multi-armed
bandit problem. This approach is e.g. taken by Rothschild (1974), Xia and Dube (2007), and Cope
(2007).

Another important area related to dynamic pricing and learning is the study of convergence rates
of statistical estimates. Lai and Wei (1982) study how the speed of convergence of least-squares
linear regression estimates depend on the amount of dispersion in the explanatory variables.
Their results are applied in several dynamic pricing problems with linear demand functions,
such as Le Guen (2008) and Cooper et al. (2012). Similarly, results on the convergence rate of
maximum-likelihood estimators, as in Borovkov (1998), are crucial in the analysis of pricing poli-
cies by Broder and Rusmevichientong (2012) and Besbes and Zeevi (2011).
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Chapter 3

Dynamic pricing and learning for a single product

with infinite inventory

3.1 Introduction

In this chapter, we study dynamic pricing and learning for a monopolist firm that sells a single
type of product with infinite inventory, in a stable market environment. In some sense, this is the
most elementary dynamic-pricing-and-learning problem possible. The optimal price in the full-
information case of this setting, where the firm knows the relation between demand and price, is
namely just a single number. This means that with full information, static pricing is optimal, and
the need for dynamic pricing is only caused by the uncertainty about the demand distribution.

The term “infinite inventory” here should be interpreted as that the firm always has sufficient in-
ventory to meet all demand; or that, if stock-outs occur, demand can be back-logged and satisfied
in later periods.

The relation between selling price and demand is assumed to belong to a known, parametrized
family of demand functions. We do not require that the firm has complete knowledge on these
demand distributions; only knowledge on the relation between the first two moments of demand
and the selling price is assumed. This results in a generic model that includes practically all de-
mand functions used in practice. In addition, the model is more robust to mis-specification than
models where a complete demand distribution is assumed. To estimate the unknown parame-
ters of the model, we deploy maximum quasi-likelihood estimation; this is a natural extension of
maximum-likelihood estimation to settings where only the first two moments of the distribution
are known. Based on these estimates, the firm has to determine selling prices for a (discrete but
possibly infinite) sequence of decision moments, with the objective of maximizing the expected
revenue.

An intuitively appealing pricing policy is to set the price at each decision moment equal to the
price that would be optimal if the current parameter estimates were correct. Such a policy is usu-
ally called passive learning, myopic pricing, or certainty equivalent pricing, for obvious reasons:
each decision is made as if the current parameter estimates are equal to their true values. We
show that this policy, although intuitively appealing, is not suitable: the seller may never learn
the value of the optimal price, and the parameter estimates may converge to a value different
from the true parameter values. The intuition behind this negative result is that certainty equiv-
alent pricing only focuses on instant revenue maximization, and not on optimizing the quality of
the parameter estimates.

21
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To solve this issue, we propose a new dynamic pricing policy, called Controlled Variance Pricing
(CVP). They key idea is to always choose the price closest to the certainty equivalent price, but
such that a certain amount of price dispersion or price variation is guaranteed. The price disper-
sion, measured by the sample variance the selling prices, influences the quality of the parameter
estimates, and by carefully tuning the growth rate of the price dispersion, we achieve an optimal
balance between learning these parameter values and optimizing revenue.

We show analytically that CVP will eventually provide the correct value of the unknown pa-
rameters, and thus the value of the optimal price. We also provide bounds on the speed of con-
vergence. Furthermore, we obtain an asymptotic upper bound on the regret, which measures the
expected amount of money lost due to not using the optimal price. In particular, we show that the
regret after T time periods is O(T 1/2+δ), where δ > 0 can be chosen arbitrarily small. This bound
is close to O(

√
T ), which in several settings has been shown to be the best achievable asymptotic

upper bound of the regret (see e.g. Kleinberg and Leighton, 2003, Besbes and Zeevi, 2011, Broder
and Rusmevichientong, 2012). Apart from this theoretical result, we also numerically compare
the performance of CVP with another existing pricing policy from the literature. These numerical
experiments suggest that CVP performs well for different demand functions and time scales.

Our pricing algorithm provides several advantages over other policies from the literature. First,
our analysis of Controlled Variance Pricing is valid for a large class of demand models. This is
in contrast to Lobo and Boyd (2003), Carvalho and Puterman (2005a,b), Bertsimas and Perakis
(2006) and Harrison et al. (2011b), where the analysis is restricted to specific models (e.g. linear)
or distributions (e.g. log-normal). In addition, CVP is the first parametric approach to dynamic
pricing with unknown demand where only knowledge on the first two moments of the demand
distribution is required. Furthermore, the expected demand can depend on two unknown pa-
rameters, this is more natural than a single unknown parameter as assumed in the Bayesian
approaches Lin (2006), Araman and Caldentey (2009), Farias and van Roy (2010), Harrison et al.
(2011a).

Another feature of CVP is that it balances learning and optimization at each decision moment,
enabling convergence of the prices to the optimal price. This differs from policies that strictly sep-
arate the time horizon in exploration and exploitation phases, as in Broder and Rusmevichien-
tong (2012) or Besbes and Zeevi (2009); here only the average price converges to the optimal
price. Moreover, in this latter type of policies the number of exploration prices that need to be
chosen beforehand increases when the number of unknown parameters increases. CVP only re-
quires one variable to choose, independent of the number of unknown parameters This makes
the method suitable for extensions to models with multiple products, as is elaborated in Chapter
4 of this thesis. Another difference between CVP and these policies is that CVP uses all available
historical data to form parameter estimates, whereas the analysis of the algorithms by Broder
and Rusmevichientong (2012) and Besbes and Zeevi (2009) only uses data from the exploration
phases. In light of the results of den Boer (2012b), it is unclear what happens if all available data
would be used to form estimates.

The rest of this chapter is organized as follows. The demand model is described in Section 3.2.1,
followed by a short discussion on the model assumptions (Section 3.2.2) and the method to esti-
mate the unknown parameters (Section 3.2.3). We show in Section 3.3 that certainty equivalent
pricing is not consistent, which motivates the introduction of Controlled Variance Pricing (CVP).
We show that under this policy the parameter estimates converge to the true vale, and show that
the regret admits the upper bound O(T 1/2+δ), where T is the number of time periods and δ > 0

is arbitrarily small. Section 3.4 discusses the quality of the regret bound, the relation between
regret and price dispersion, differences with a related control problem, and applicability of the
key ideas of CVP to other sequential decision problems. In Section 3.5, CVP is numerically com-
pared to another pricing policy from the literature, on different time scales and different demand
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functions. All mathematical proofs are contained in Section 3.6.

Notation. With log(t) we denote the natural logarithm. If x1, x2, . . . , xt is a sequence, then x̄t =
1
t

∑t
i=1 xi denotes the sample mean and Var(x)t = 1

t

∑t
i=1(xi − x̄t)

2 the sample variance. For
a vector x ∈ Rn, xT denotes the transpose and ||x|| denotes the Euclidean norm of x. For non-
random sequences (xn)n∈N and (yn)n∈N, xn = O(yn) means that there exists a K > 0 such that
|xn| ≤ K|yn| for all n ∈ N.

3.2 Model, assumptions, and estimation method

3.2.1 Model

We consider a monopolist firm that sells a single product. Time is discretized, and time periods
are denoted by t ∈ N. At the beginning of each time period the firm determines a selling price
pt ∈ [pl, ph]. The prices 0 < pl < ph are the minimum and maximum price that are acceptable to
the firm. After setting the price, the firm observes a realization dt of the demand Dt(pt), which is
a random variable, and collects revenue pt · dt. We assume that the inventory is sufficient to meet
all demand, i.e. stock-outs do not occur.

The random variable Dt(pt) denotes the demand in period t, against selling price pt. Given the
selling prices, the demand in different time periods is independent, and for each t ∈ N and
pt = p ∈ [pl, ph], Dt(pt) is distributed as D(p), for which we assume the following parametric
model:

E[D(p)] = h(a
(0)
0 + a

(0)
1 p), (3.1)

Var[D(p)] = σ2v(E[D(p)]).

Here h : R+ → R+ and v : R+ → R++ are both thrice continuously differentiable known func-
tions, with ḣ(x) = ∂h(x)

∂x > 0 for all x ≥ 0. Furthermore, σ and a(0) = (a
(0)
0 , a

(0)
1 ) are unknown

parameters with σ > 0, a
(0)
0 > 0, a

(0)
1 < 0, and a(0)

0 + a
(0)
1 ph ≥ 0.

Write et = D(pt)−E[D(pt) | p1, . . . , pt−1, d1, . . . , dt−1]. We make the technical assumption on the
demand that for some r > 3,

sup
t∈N

E[|et|r | p1, . . . , pt−1, d1, . . . , dt−1] <∞ a.s. (3.2)

The expected revenue collected in a single time period where price p is used, is denoted by r(p) =

p · h(a(0)
0 + a

(0)
1 p); to emphasize the dependence on the parameter values, we write r(p, a0, a1) =

p · h(a0 + a1p) as a function of p and (a0, a1).

We assume that there is an open neighborhood U ⊂ R2 of (a
(0)
0 , a

(0)
1 ) such that for all (a0, a1) ∈ U ,

r(p, a0, a1) has a unique maximizer

p(a0, a1) = arg max
pl<p<ph

p · h(a0 + a1p),

and such that r′′(p(a0, a1), a0, a1) < 0. This ensures that the optimal price popt = p(a
(0)
0 , a

(0)
1 ) is

unique and well-defined, and lies strictly between pl and ph.

The marginal costs of the sold product equal zero, therefore maximizing profit is equivalent to
maximizing revenue. Note that a situation with positive marginal costs c > 0 can easily be
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captured by replacing p by p− c.

A pricing policy ψ is a method that for each t generates a price pt ∈ [pl, ph], based on the pre-
viously chosen prices p1, . . . , pt−1 and demand realizations d1, d2, . . . , dt−1. This pt may be a
random variable.

The performance of a pricing policy is measured in terms of regret, which is the expected revenue
loss caused by not using the optimal price popt. For a pricing policy ψ that generates prices
p1, p2, . . . , pT , the regret after T time periods is defined as

Regret(T, ψ) = E

[

T
∑

t=1

r(popt, a
(0)) − r(pt, a

(0))

]

.

The objective of the seller is to find a pricing policy ψ that maximizes the total expected revenue
over a finite number of T time periods. This is equivalent to minimizing Regret(T, ψ). Note
however that the regret can not directly be used by the seller to find an optimal policy, since its
value depends on the unknown parameters a(0).

3.2.2 Discussion of model assumptions

We do not assume complete knowledge about the demand distribution, only about the first two
moments. This makes the demand model a little more robust to misspecifications.

In equation (3.1) we assume that the variance of demand is a function of the expectation. This
holds for many common demand models, like Bernoulli (with v(x) = x(1 − x), σ = 1), Poisson
(v(x) = x, σ = 1) and normal distributions (v(x) = 1 and arbitrary σ > 0). All these examples
also satisfy the moment condition (3.2).

The assumptions on the functions h, v and parameters σ, a(0)
0 , a(0)

1 imply that the expected de-
mand is strictly decreasing in the price, and that the variance is strictly positive; i.e. demand is
non-deterministic. These are both natural assumptions on the demand distribution.

The assumption on the existence and uniqueness of arg max
pl<p<ph

p · h(a0 + a1p) for all a0, a1 in an

open neighborhood U of a(0), is satisfied by many functions h that are used in practice to model
the relation between price and expected demand; examples are h(x) = x, h(x) = exp(x), h(x) =

(1 + exp(−x))−1. A sufficient condition to satisfy this assumption is that the revenue function
r(p, a(0)) is strictly concave in p, and attains it maximum strictly between pl and ph.

3.2.3 Estimation of unknown parameters

The unknown parameters a(0) can be estimated with maximum quasi-likelihood estimation. This
is a natural extension of maximum-likelihood estimation to settings where only the first two
moments of the distribution are known; see Wedderburn (1974), McCullagh (1983), Godambe
and Heyde (1987) and the books by McCullagh and Nelder (1983), Heyde (1997) and Gill (2001).

Given prices p1, . . . , pt and demand realizations d1, . . . , dt, the maximum quasi-likelihood esti-
mator (MQLE) of (a

(0)
0 , a

(0)
1 ), denoted by ât = (â0t, â1t), is the solution to the two-dimensional
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equation

lt(ât) =

t
∑

i=1

ḣ(â0t + â1tpi)

σ2v(h(â0t + â1tpi))

(

1

pi

)

(di − h(â0t + â1tpi)) = 0. (3.3)

If the probability density function (or probability mass function in case of discrete demand dis-
tribution) of D(p) can be written in the form exp(σ−1(dθ − g(θ))), where θ is some function of
h(a0 + a1p), then (3.3) corresponds to the maximum-likelihood equations (Wedderburn, 1974).
Many demand distributions that are used in practice, such as Poisson, Bernoulli, and normal
distributions, fall in this class (see McCullagh and Nelder, 1983, Gill, 2001). In case of normally
distributed demand with h the identity function, (3.3) is also equivalent to the normal equations
of ordinary least squares, viz.

lt(ât) =
t
∑

i=1

(

1

pi

)

(di − â0t − â1tpi) = 0. (3.4)

The solution to the quasi-likelihood equations may in general not always be unique. A standard
way to select the “right” solution is to pick the solution with lowest mean-square error, cf. Heyde
(1997, Section 13.3). In our numerical results, Section 3.5, we did not encounter problems with
multiple solutions of (3.3).

3.3 Performance of pricing policies

3.3.1 Inconsistency of certainty equivalent pricing

An intuitively natural pricing policy is to estimate after each time period the unknown param-
eters, and to set the next price equal to the price that is optimal with respect to these estimates.
More precisely, choose two different initial prices p1, p2 ∈ [pl, ph]; after t ≥ 2 time periods, calcu-
late the MQLE estimators ât with (3.3), and set the next price pt+1 equal to

pt+1 = arg max
p∈[pl,ph]

r(p, â0t, â1t). (3.5)

This pricing policy is known under the name certainty equivalent pricing, myopic pricing, or
passive learning.

Under different settings, certainty equivalent policies are known to produce suboptimal out-
comes: see e.g. the simulation results of such policies in Lobo and Boyd (2003) and Carvalho and
Puterman (2005a,b). Anderson and Taylor (1976) studied a linear system yt = a

(0)
0 + a

(0)
1 xt + ǫt

with unknown parameters a(0)
0 , a

(0)
1 and input variables xt; the objective is to steer yt to a desired

value y∗. The certainty equivalent policy is to set

xt+1 = min
{

xmax,max
{

xmin, (y∗ − â0t)/â1t

}}

,

where â0t, â1t are the least square estimates of a(0)
0 , a(0)

1 , based on (x1, y1), . . . , (xt, yt), and xmin,
xmax are the minimum and maximum admissible values for xt. Lai and Robbins (1982) showed
that there are parameter values such that using this certainty equivalent policy, the controls
xt converge with positive probability to a value different from the optimal control x = (y∗ −
a
(0)
0 )/a

(0)
1 ; this implies that the certainty equivalent policy is not strongly consistent. (Interest-

ingly, in a Bayesian setting the certainty equivalence policy is strongly consistent, as shown by
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Chen and Hu, 1998). The proof idea of Lai and Robbins (1982) can easily be extended to our case,
when h is the identity and v is constant. In that case the expected demand is a linear function
of the price, and the MQLE equations (3.3) are equivalent to the normal equations for ordinary
linear regression. A difference with Lai and Robbins (1982) is that they posed specific conditions
on p1, p2, pl, ph; in our result these assumptions are left out.

Proposition 3.1. Suppose that demand is normally distributed with constant variance and expected de-
mand a linear function of the price (i.e. h(x) = x, v(x) = 1), and suppose that certainty equivalent pricing
is used. Then with positive probability, pt does not converge to popt.

The idea of the proof, contained in Section 3.6, is to show by induction that with positive prob-
ability, pt = ph > popt for all t ≥ 3. On this event, the price sequence (pt)t∈N is exactly known,
which facilitates analysis of the behavior of the sample path of (ât)t∈N.

Proposition 3.1 shows that certainty equivalent pricing is not strongly consistent for a linear de-
mand function with constant variance. Its scope however is somewhat limited in the sense that
it does only partially describe the asymptotic behavior of the policy. It is proven that with a posi-
tive, but possibly very small probability, the prices converge to ph 6= popt. If this would happen in
practice, the price manager would simply increase ph. Moreover, simulations suggest that pt may
also converge to a value strictly between pl and ph, and that the limit price is with probability one
different from popt. To provide a mathematical proof of this is, however, still an open problem.

3.3.2 Controlled Variance Pricing

An intuition for what goes wrong with the certainty equivalent policy is that the prices pt con-
verge “too quickly” to a certain value. As a result, not enough new information is obtained to
further improve the parameter estimates, and thus they will not converge to the correct values.
The key idea is to control the speed at which the prices converge. This is done by constructing
a lower bound on the sample variance of the chosen prices. In particular we require that at each
time period t, Var(p)t ≥ ctα−1, for some c > 0 and α ∈ (0, 1).

The pricing policy we propose, called Controlled Variance Pricing, chooses at each time period
the certainty equivalent price (3.5), unless this means that the lower bound on the sample vari-
ance of the prices Var(p)t+1 ≥ c(t + 1)α−1 is not satisfied. In that case, the next price should be
chosen not too close to the average price chosen so far; in particular, pt+1 is then not allowed to
lie in the interval

TI(t) =

(

p̄t −
√

c [(t+ 1)α − tα]
t+ 1

t
, p̄t +

√

c [(t+ 1)α − tα]
t+ 1

t

)

, (3.6)

which is referred to as the taboo interval at time t. Choosing pt+1 outside the taboo interval creates
extra price dispersion, by guaranteeing Var(p)t+1 ≥ c(t+ 1)α−1 (see Proposition 3.2).

Controlled Variance Pricing

Initialization: Choose initial prices p1, p2 ∈ [pl, ph], p1 6= p2.
Choose α ∈ (0, 1) and c ∈

(

0, 2−α(p1 − p2)
2 min{1, (3α)−1}

)

.
For all t ≥ 2:
Estimation: Calculate the MQLE estimates ât according to (3.3).
Pricing: If
(a) there is no solution ât, or
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(b) â0t ≤ 0 or â1t ≥ 0, or
(c) â0t + â1tp < 0 for some p ∈ [pl, ph],
set pt+1 ∈ {p1, p2} such that |pt+1 − p̄t| = max(|p1 − p̄t|, |p2 − p̄t|).
Now assume ât exists and â0t > 0, â1t < 0, â0t + â1tp ≥ 0 for all p ∈ [pl, ph].
Set

pt+1 = arg max
p∈[pl,ph]

r(p, ât), (3.7)

if this results in Var(p)t+1 ≥ c(t+ 1)α−1.
Else, set

pt+1 = arg max
p∈[pl,ph]\TI(t)

r(p, ât), (3.8)

where TI(t) is the taboo interval (3.6) at time t.

In cases (a) - (c), we choose one of the initial prices p1, p2, that is most far away from p̄t. This
ensures that the bound on the variance Var(p)t ≥ ctα−1 remains valid. The upper bound on
the constant c ensures that [pl, ph]\TI(t) is nonempty for all t ≥ 2, and that Var(p)t ≥ ctα−1 is
satisfied for t = 2.

A desirable property of a pricing policy is that the price pt converges to the optimal price popt, and
thus the sample variance Var(p)t converges to zero. The speed at which the sample variance goes
to zero turns out to be strongly related to the quality of the parameter estimates: in particular, the
parameter estimates ât converge quickly to the correct values a(0) if the sample variance Var(p)t
converges slowly to zero; then the price however converges slowly, which may be costly. We here
observe a trade-off between exploration (quick convergence of parameter estimates to the correct
values) and exploitation (quick convergence of prices to the optimal price). The balance between
exploration and exploitation is captured in the parameter α of CVP. The following proposition
establishes a relation between α and the sample variance of the prices:

Proposition 3.2. With CVP, Var(p)t ≥ ctα−1 for all t ≥ 2.

The results on consistency and convergence rates of parameter estimates that we use to estab-
lish performance bounds for CVP, are stated in terms of the eigenvalues of the design matrix.
The following lemma relates these eigenvalues to the sample variance of the prices. Its proof is
straightforward and contained in Section 3.6.

Lemma 3.1. Let λmax(t), λmin(t) be the largest and smallest eigenvalue of the design matrix

Pt =

(

t
∑t
i=1 pi

∑t
i=1 pi

∑t
i=1 p

2
i

)

, (t ≥ 2),

where p1, . . . , pt ∈ [pl, ph] and p1 6= p2. Then λmax(t) ≤ (1 + p2
h)t and tVar(p)t ≤ (1 + p2

h)λmin(t).

In the following Proposition 3.3 and Theorem 3.1, we assume that CVP with α ∈ (1/2, 1) is used.
We show that a solution ât to the estimation equations (3.3) eventually exists, and the parameter
estimates ât converge to the correct value a(0). In addition we provide an upper bound on the
mean square convergence rate, in terms of the parameter α.

Proposition 3.3. Let α > 1/2. A solution ât to (3.3) eventually exists, and ât → a(0) a.s. In addition, if
we define

Tρ = sup{t ∈ N | there is no solution ât of (3.3) such that
∣

∣

∣

∣

∣

∣ât − a(0)
∣

∣

∣

∣

∣

∣ ≤ ρ}, (3.9)
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then there exists a ρ0 > 0 such that for all 0 < ρ < ρ0, E[T
1/2
ρ ] <∞ and

E

[

∣

∣

∣

∣

∣

∣ât − a(0)
∣

∣

∣

∣

∣

∣

2

1t>Tρ

]

= O

(

log(t)

tα

)

, (3.10)

where 1t>Tρ denotes the indicator function of the event t > Tρ.

The proposition follows from Chapter 7, where strong consistency and convergence rates for
quasi-likelihood estimates are discussed. Theorem 7.1 implies the assertion E[T

1/2
ρ ] < ∞. (Note

that there, the required condition 1/2 < rα−1 is valid for all 1/2 < α ≤ 1, because of our moment
condition (3.2), with r > 3). The convergence rates (3.10) follow from Theorem 7.2 and Remark
7.2 in Chapter 7, together with Lemma 3.1.

Proposition 3.3 enables us to calculate the following upper bound on the regret:

Theorem 3.1.

Regret(T,CV P ) = O
(

Tα + T 1−α log(T )
)

,

provided α > 1/2.

We use a Taylor series expansion of the revenue function r(p) to show |r(p) − r(popt)| = O((p −
popt)

2). The implicit function theorem is invoked to obtain |p(a) − popt| = O
(

||a− a(0)||
)

. The
theorem can then be derived from Proposition 3.3 and the rate at which the size of the taboo
interval converges to zero. The details of the proof are given in Section 3.6.

3.4 Discussion

3.4.1 Quality of regret bound

The term T 1−α log(T ) in Theorem 3.1 comes from bounds (3.10) on the quality of the parameter
estimates, the term Tα comes from the length of the taboo interval (3.6). The parameter α captures
the trade-off between learning and optimization. If α is large then much emphasis is put on
learning: the parameters converge quickly to their correct values, but due to the large size of
the taboo interval, the prices converge slowly. If α is small then the emphasis is on optimizing
instant revenue: the taboo interval is then very small, thus the next-period price is close to the
certainty equivalent optimal price; however, for small α, only a relatively slow convergence of
the parameter estimates is guaranteed by Proposition 3.3. The optimal choice of α in Theorem
3.1 clearly is 1/2, but since α should be larger than 1/2, we get the following

Corollary 3.1.

Regret(T,CV P ) = O
(

T 1/2+δ
)

,

with α = 1/2 + δ, for arbitrarily small δ > 0.

This result would be a little more elegant if the term T δ , δ > 0, could be removed. The relevant
theorems of Chapter 7 however require α > 1/2 and it appears that in general this requirement
cannot easily be removed.

The bound from Corollary 3.1 is close to O(
√
T ). In several settings it has been shown that this

is the best achievable asymptotic upper bound on the regret (see e.g. Kleinberg and Leighton,
2003, Besbes and Zeevi, 2011, Broder and Rusmevichientong, 2012). It is not completely clear if
the “gap” T δ between Corollary 3.1 and the best achievable bound

√
T can be removed. By using

much technical machinery, one can make this gap slightly smaller: the multi-product pricing
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policy from Chapter 4, applied to the single-product setting, achieves Regret(T ) = O(
√

T log(T )).
However, here there is still a “gap” of

√

log(T ). A further discussion on this issue is provided in
section 4.4.4.

3.4.2 Generality of result

Concerning the generality of the result, we note that Proposition 3.3 holds for any pricing policy
that guarantees Var(p)t ≥ ctα−1. The relation between regret and Var(p)t through the parameter
α, as in Theorem 3.1, depends however on the specifics of the used pricing policy.

A lower bound on Regret(t) in terms of Var(p)t can easily be constructed. For example, if the
revenue function r(p) is strictly concave in p, then one can show that Regret(t, ψ) ≥ k

∑t
i=1(pi −

popt)
2, for some positive constant k and any policy ψ. Since

arg min
p∈P

t
∑

i=1

(pi − p)2 = p̄t,

this implies tVar(p)t ≤ k−1Regret(t, ψ) a.s. To derive an upper bound on the regret in terms
of the growth rate of Var(p)t, for arbitrary policies ψ, seems much less straightforward. It is an
interesting direction for future research to completely characterize the relation between regret
and empirical variance.

3.4.3 Differences with the multiperiod control problem

For the multiperiod control problem mentioned in Section 3.3.1, Lai and Robbins (1982) showed
that there is a policy with Regret(T ) = O(log(T )). This problem is very much akin to the dynamic
pricing problem with linear demand function: in the first problem the optimal control x(â0t, â1t)

as function of the parameter estimates equals (y∗−â0t)/â1t, in the latter problem the optimal price
p(â0t, â1t) equals −â0t/(2â1t) (for the moment neglecting bounds on x, p and assuming â0t, â1t

have the correct sign). When y∗ = 0, these optimal controls only differ by a factor 2. An intu-
itive explanation why we do not achieve Regret(T ) = O(log(T )) in the dynamic pricing problem,
despite the similarities with the multiperiod control problem, is the presence of what Harrison
et al. (2011a) call “indeterminate equilibria”. An indeterminate equilibrium occurs if there are
estimates (â0, â1) such that the average observed output at x(â0, â1) “confirms” the correctness
of these estimates, i.e. if (â0, â1) satisfies a(0)

0 + a
(0)
1 x(â0, â1) = â0 + â1x(â0, â1). It is not difficult

to show that there are infinitely many indeterminate equilibria, both in the multiperiod control
problem and the dynamic pricing problem. In the multiperiod control problem, each indeter-
minate equilibrium (â0, â1) 6= (a

(0)
0 , a

(0)
1 ) still gives an optimal control x(â0, â1) = x(a

(0)
0 , a

(0)
1 ),

while in the dynamic pricing problem, each indeterminate equilibrium (â0, â1) 6= (a
(0)
0 , a

(0)
1 )

yields a suboptimal price p(â0, â1) 6= p(a
(0)
0 , a

(0)
1 ). This means that in the multiperiod control

problem, convergence of the parameter estimates to any arbitrary indeterminate equilibrium im-
plies convergence of the controls to the optimal control; while in the dynamic pricing problem,
only convergence of the parameter estimates to the “true” indeterminate equilibrium a(0) implies
convergence of the controls to the optimal control. This makes the dynamic pricing problem
structurally more complex than the multiperiod control problem.
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3.4.4 Applicability to other sequential decision problems

In Sections 3.3.1 and 3.3.2 we discuss inconsistency of certainty equivalent pricing, and study
the performance of Controlled Variance pricing, in the specific context of dynamic pricing un-
der uncertainty. We believe however that the ideas developed in this paper can be applied to
many other types of sequential decision problems with uncertainty. We provide a brief sketch of
problems for which the controlled variance pricing idea may be a fruitful approach. At each time
instance t ∈ N the decision maker chooses a control xt ∈ Rd, (d ∈ N), and observes a realization yt
of a random variable Y (xt, θ), whose probability distribution depends on xt and on an unknown
parameter θ in a parameter space Θ ⊂ Rd; subsequently a cost c(xt, yt, θ) is encountered. The
decision maker estimates θ using historical data (xi, yi)i≤t, with an appropriate statistical esti-
mation technique (e.g. maximum-likelihood estimation). A certainty equivalent control rule then
sets the next control to

xt+1 = arg min
x

E[c(x, Y (x, θ̂t), θ̂t)], (3.11)

where θ̂t denotes the estimate of θ at time t. If the quality of the parameter estimates ||θ̂t − θ||
depends on some measure of dispersion of the controls, then a controlled variance rule sets the
next control to (3.11), subject to a lower bound on the measure of dispersion. The optimal lower
bound depends on the problem characteristics, and captures in some sense the trade-off between
estimation and instant optimization, i.e. exploration and exploitation.

3.5 Numerical evaluation

We numerically compare the performance of Controlled Variance Pricing to the policy MLE-cycle,
which was introduced by Broder and Rusmevichientong (2012). We test normally, Poisson, and
Bernoulli distributed demand, since these are commonly used demand models in practice. For
each distribution we test two functions h that models the relation between price and expected
demand. The function v need not be specified, since it is already determined by the demand
distribution: v(x) = 1 for normal demand, v(x) = x for Poisson demand, and v(x) = x(1− x) for
Bernoulli demand. All six sets of demand distribution and the function h are listed in Table 3.1.
For each set, we randomly generate 10,000 different instances of parameters a0, a1. For normally
distributed demand we also generate a value for σ; for Poisson and Bernoulli demand, σ = 1. The
parameters are drawn from a uniform distribution. The support of these uniform distributions
is chosen such that the optimal price lies between 3 and 8. For normal demand an additional
requirement is that h(a0 + a1popt)− 3σ > 0 and σ

h(a0+a1popt)
> 1

20 . This implies that at the optimal
price, the probability that demand is negative is small (less than 0.135 %), and the coefficient
of variation at the optimal price is not extremely small (at least 1

20 ). For Bernoulli demand an
additional requirement is h(a0 + a1p) ∈ (0, 1) for all pl ≤ p ≤ ph. Table 3.2 list summary statistics
for the chosen parameter values.

For both policies that we compare, the lowest and highest admissible price are set to pl = 1,
ph = 10. The policy CVP uses α = 0.5001, and initial prices p1 = 4, p2 = 7. For the constant c in
the taboo interval, we try three different values: 1, 3, and 5. The exploration prices of MLE-cycle
are set to p1 = 4, p2 = 7. We vary the number of exploration phases per cycle. In particular we try
1, 2, and 3 consecutive exploration phases (n consecutive exploration phases means that during
the 2n exploration periods in each cycle, the price alternates between p1 and p2).

For each set of instances we calculate the average relative regret over 10,000 instances. Thus, for
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Table 3.1: Problem sets, with parameter range
Distr. h(x) a0 a1 σ

1. Normal x [0.1, 20] [−a0
11

, −a0
16

] [ 1

20
, 1

3
] · (a0 + a1popt)

2. Normal x3/4 [0.1, 20] [−a0
11

, −a0
14

] [ 1

20
, 1

3
] · (a0 + a1popt)3/4

3. Poisson exp(x) [ 11
3

, 20] [−1

3
, −1

8
] 1

4. Poisson x [ 11
3

, 20] [−a0
11

, −a0
16

] 1
5. Bernoulli (1 + exp(−x))−1 [log(−3a1 − 1) − 3a1, [−1, −4

9
] 1

log(−8a1 − 1) − 8a1]

6. Bernoulli x3/4 [0.8, 1.1] [−a0
11

, −a0
14

] 1

each instance, corresponding to a choice of parameter values, we measure the relative regret

∑T
t=1 ropt − r(pt)

Tropt
× 100%,

and then we average over all instances:

1

10, 000

10,000
∑

i=1

∑T
t=1 ropt − r(pt)

Tropt
× 100%.

This quantity is measured for T ∈ {10, 50, 100, 500, 1000}. The results are listed in Table 3.3. In
these tables, the header CVP(c) denotes the policy CVP with constant c, the header MLE-c(n)
denotes the policy MLE-cycle with n consecutive exploration phases.

Table 3.2: Sample statistics of parameters

Problem set 1
a0 a1 σ popt

max 19.9973 -0.0066 3.2775 7.9993
mean 10.0518 -0.7712 0.9652 6.5984
min 0.1050 -1.8004 0.0042 5.5002
std 5.7519 0.4517 0.7246 0.7187

Problem set 2
a0 a1 σ popt

max 19.9989 -0.0075 2.8178 7.9998
mean 10.0050 -0.8125 0.8181 7.0703
min 0.1009 -1.8044 0.0037 6.2860
std 5.7400 0.4704 0.6135 0.4964

Problem set 3
a0 a1 σ popt

max 19.9995 -0.1250 1.0000 7.9991
mean 11.8249 -0.2286 1.0000 4.7182
min 3.6669 -0.3333 1.0000 3.0004
std 4.7345 0.0600 0 1.3508

Problem set 4
a0 a1 σ popt

max 19.9983 -0.2353 1.0000 7.9991
mean 11.8751 -0.9094 1.0000 6.6062
min 3.6687 -1.8095 1.0000 5.5006
std 4.7217 0.3762 0 0.7230

Problem set 5
a0 a1 σ popt

max 9.8596 -0.4445 1.0000 7.9998
mean 4.8056 -0.7255 1.0000 5.3353
min 0.3068 -1.0000 1.0000 3.0006
std 1.9504 0.1606 0 1.4570

Problem set 6
a0 a1 σ popt

max 1.1000 -0.0574 1.0000 8.0000
mean 0.9497 -0.0770 1.0000 7.0780
min 0.8000 -0.0997 1.0000 6.2858
std 0.0866 0.0088 0 0.4952

The results from Table 3.3 suggest that CVP performs comparable to MLE-cycle, or even better.
This hold for all tested time scales T = 10, 50, 100, 500 and 1000, and all six sets of problem
instances. If we consider the results for T = 1000, we see that CVP outperforms MLE-cycle on
all problem sets except 1. On a shorter time scale, T = 100, this holds for all problem sets. One
of the reasons for this difference may be that MLE-cycle only uses the data from the exploration
phases to form parameter estimates, whereas CVP uses all the available historical data. (Note,
however, that den Boer (2012b) shows that adding data does not necessarily improve the quality
of parameter estimates).
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Table 3.3: Average relative regret

Problem set 1: Normal demand, h(x) = x
t CVP(1) CVP(3) CVP(5) MLE-c (1) MLE-c (3) MLE-c (5)
10 5.0 % 5.0 % 5.0 % 7.6 % 8.9 % 8.6 %
50 3.2 % 3.1 % 3.2 % 5.0 % 6.7 % 7.2 %
100 2.9 % 2.9 % 2.9 % 3.9 % 5.3 % 6.5 %
500 2.7 % 2.7 % 2.7 % 2.0 % 3.0 % 4.1 %
1000 2.7 % 2.6 % 2.7 % 1.5 % 2.2 % 3.2 %

Problem set 2: Normal demand, h(x) = x3/4

t CVP(1) CVP(3) CVP(5) MLE-c (1) MLE-c (3) MLE-c (5)
10 6.8 % 7.2 % 7.5 % 9.4 % 11.0 % 10.4 %
50 4.0 % 3.7 % 3.8 % 7.0 % 8.6 % 8.9 %
100 3.2 % 2.8 % 2.8 % 5.9 % 7.0 % 8.1 %
500 1.9 % 1.4 % 1.4 % 3.4 % 4.0 % 5.2 %
1000 1.4 % 1.0 % 1.0 % 2.6 % 3.0 % 4.1 %

Problem set 3: Poisson demand, h(x) = exp(x)
t CVP(1) CVP(3) CVP(5) MLE-c (1) MLE-c (3) MLE-c (5)
10 2.3 % 2.7 % 3.3 % 5.8 % 7.7 % 9.1 %
50 0.9 % 1.3 % 1.9 % 3.1 % 6.3 % 7.3 %
100 0.6 % 1.0 % 1.4 % 2.3 % 5.0 % 6.6 %
500 0.3 % 0.4 % 0.7 % 1.2 % 2.9 % 4.2 %
1000 0.2 % 0.3 % 0.5 % 0.8 % 2.2 % 3.3 %

Problem set 4: Poisson demand, h(x) = x
t CVP(1) CVP(3) CVP(5) MLE-c (1) MLE-c (3) MLE-c (5)
10 8.1 % 8.6 % 9.1 % 9.4 % 9.5 % 8.7 %
50 5.5 % 5.5 % 5.6 % 8.5 % 8.1 % 8.0 %
100 4.8 % 4.5 % 4.3 % 7.6 % 6.9 % 7.3 %
500 3.4 % 2.7 % 2.4 % 4.9 % 4.2 % 4.8 %
1000 2.8 % 2.1 % 1.9 % 3.9 % 3.2 % 3.8 %

Problem set 5: Bernoulli demand, h(x) = (1 + exp(−x))−1

t CVP(1) CVP(3) CVP(5) MLE-c (1) MLE-c (3) MLE-c (5)
10 18.4 % 18.5 % 18.3 % 21.0 % 19.2 % 20.7 %
50 9.5 % 10.0 % 10.5 % 15.8 % 17.1 % 18.0 %
100 6.8 % 7.2 % 7.6 % 13.5 % 14.4 % 16.5 %
500 3.6 % 3.5 % 3.5 % 8.6 % 8.9 % 11.0 %
1000 2.8 % 2.5 % 2.5 % 6.8 % 6.9 % 8.7 %

Problem set 6: Bernoulli demand, h(x) = x3/4

t CVP(1) CVP(3) CVP(5) MLE-c (1) MLE-c (3) MLE-c (5)
10 11.3 % 11.5 % 11.6 % 11.4 % 12.3 % 10.4 %
50 9.2 % 9.8 % 10.1 % 11.1 % 10.8 % 10.4 %
100 8.0 % 8.3 % 8.4 % 11.0 % 10.3 % 10.0 %
500 5.8 % 5.4 % 5.0 % 9.9 % 8.1 % 7.9 %
1000 5.0 % 4.4 % 3.9 % 9.0 % 6.8 % 6.5 %
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For some instances, in particular problem set 3, the relative regret decreases very fast: CVP(1)
has regret below 1% already from T = 50. The sets 5 and 6, with Bernoulli distributed demand,
show a more slowly decreasing relative regret. We also see that the optimal value of the constant
c in CVP depends on T . For example in problem set 6, c = 1 performs best for T = 10, 50, 100,
whereas c = 5 is the best choice for T = 500, 1000.

We wish to emphasize that these results are not meant as an exhaustive comparison between the
numerical performance of CVP and MLE-cycle. In that case we should also have fine-tuned the
value of the exploration prices p1, p2. The simulation results nevertheless are an indication that
CVP may perform well in practical applications.

3.6 Proofs

Proof of Proposition 3.1

The proof is similar to Section 2 of Lai and Robbins (1982), with the difference that we do not
make assumptions on the values of p1, p2, pl, ph.

Without loss of generality assume p1 < p2, define a = ((ph− p1)
2 +(ph− p2)

2)p−1
h , and recall that

et = D(pt) − E[D(pt) | p1, . . . , pt−1, d1, . . . , dt−1]. Write σ2 = E[e2t ], for all t ∈ N. Let δ > 0, and
consider the event

A =











(p2 − 2ph)e1 + (2ph − p1)e2 ≥ −a(0)
1 (p2 − p1)2ph

(p1 − ph)e1 + (p2 − ph)e2 ≥ (−2pha
(0)
1 − a

(0)
0 + δ)a+ (2ph − p1 − p2)δ

|ēt| ≤ δ for all t ≥ 3











.

We first show that for sufficiently large δ, the event A occurs with strictly positive probability.
The first two inequalities of A are satisfied when

(

p2 − 2ph 2ph − p1

p1 − ph p2 − ph

)(

e1
e2

)

≥
(

−a(0)
1 (p2 − p1)2ph

a(−2pha
(0)
1 − a

(0)
0 + δ) + (2ph − p1 − p2)δ

)

. (3.12)

The determinant of the coefficient matrix equals (p2−2ph)(p2−ph)+(p1−ph)(p1−2ph), which is
strictly positive. A solution to this linear system therefore exists, and (3.12) happens with positive
probability. Let B ⊂ R2 be a bounded subset of the solutions (e1, e2) of (3.12), s.t. P ((e1, e2) ∈
B) > 0. Choose δ >

√
8σ+sup(e1,e2)∈B

1
3 |e1 + e2|. It follows from the Kolmogorov inequality (see

e.g. Chow and Teicher, 2003, Theorem 6, page 133) that for any ǫ >
√

8σ,

P

(

sup
3≤t

∣

∣

∣

∣

∣

1

t− 2

t
∑

i=3

ei

∣

∣

∣

∣

∣

> ǫ

)

≤
∞
∑

j=1

P

(

sup
2j<t≤2j+1

∣

∣

∣

∣

∣

1

t− 2

t
∑

i=3

ei

∣

∣

∣

∣

∣

> ǫ

)

≤
∞
∑

j=1

P

(

sup
2j<t≤2j+1

|
t
∑

i=3

ei| > (2j − 1)ǫ

)

≤
∞
∑

j=1

P

(

sup
1≤t≤2j+1

|
t
∑

i=3

ei| > (2j − 1)ǫ

)

≤
∞
∑

j=1

1

(2j − 1)2ǫ2
σ22j+1 ≤

∞
∑

j=1

8σ2ǫ−22−j

=8σ2ǫ−2 < 1,
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since 2j+1/(2j − 1)2 ≤ 8 · 2−j , j ≥ 1. This implies

P (|ēt| ≤ δ for all t ≥ 3) = P (sup
t≥3

|ēt| ≤ δ) = P

(

sup
t≥3

∣

∣

∣

∣

∣

e1 + e2
t

+
1

t

t
∑

i=3

ei

∣

∣

∣

∣

∣

≤ δ

)

≥ P

(

(e1, e2) ∈ B and sup
t≥3

∣

∣

∣

∣

∣

1

t

t
∑

i=3

ei

∣

∣

∣

∣

∣

≤ δ − sup
(e1,e2)∈B

1

3
|e1 + e2|

)

= P ((e1, e2) ∈ B) · P
(

sup
t≥3

∣

∣

∣

∣

∣

1

t

t
∑

i=3

ei

∣

∣

∣

∣

∣

≤
(

δ − sup
(e1,e2)∈B

1

3
|e1 + e2|

))

≥ P ((e1, e2) ∈ B) · P
(

sup
t≥3

∣

∣

∣

∣

∣

1

t− 2

t
∑

i=3

ei

∣

∣

∣

∣

∣

≤
(

δ − sup
(e1,e2)∈B

1

3
|e1 + e2|

))

> 0.

This proves that for δ sufficiently large, the event A occurs with probability P (A) > 0.

If for some t, â1t ≥ 0 or â0t ≤ 0 then clearly the parameter estimates have the wrong sign; it
would be foolish for a price manager to use the certainty equivalent price

pt+1 = arg max
pl≤p≤ph

p · (â0t + â1tp)

in that case. We therefore assume that pt+1 = ph whenever â1t ≥ 0. (Alternatively one might
impose some extra conditions in the set A, and still use the certainty equivalent price when the
estimates have the wrong sign).

We show by induction that on the event A, pt+1 = ph, for all t ≥ 2.

t=2. The line through the points (pi, a
(0)
0 +a

(0)
1 pi+ei), i = 1, 2 has slope â12 = a

(0)
1 +(e2−e1)(p2−

p1)
−1 and intercept â02 = (e1p2 − e2p1)(p2 − p1)

−1. When â12 ≥ 0 then p3 = ph. If â12 < 0 then
p3 = â02

−2â12
≥ ph is implied by

(e1p2 − e2p1)(p2 − p1)
−1 ≥ −2(a

(0)
1 + (e2 − e1)(p2 − p1)

−1)ph,

which, by multiplying (p2 − p1) and rearranging terms, is equivalent to the condition

(p2 − 2ph)e1 + (2ph − p1)e2 ≥ −a(0)
1 (p2 − p1)2ph.

t ≥ 3. Suppose that for all i = 3, . . . , t, pi = ph. Then p̄i = ph − 2ph−p1−p2
i (3 ≤ i ≤ t). Defining

Ct =
∑t
i=1(pi − p̄t)ei, and Vt =

∑t
i=1(pi − p̄t)

2, the least-squares estimates are

(

â0t

â1t

)

=

(

a
(0)
0

a
(0)
1

)

+

(

ēt − p̄tCt/Vt
Ct/Vt

)

.

For all t ≥ 2, Vt and Ct can be rewritten as

Vt =

t
∑

i=2

i− 1

i
(pi − p̄i−1)

2, Ct =

t
∑

i=2

i− 1

i
(pi − p̄i−1)(ei − ēi−1).

and by some algebra and an induction argument, it follows that

Vt = V2 + (2ph − p1 − p2)
2(

1

2
− t−1), Ct = C2 + (2ph − p1 − p2)(ēt − ē2).
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where V2 = 1
2 (p2 − p1)

2 and C2 = 1
2 (p2 − p1)(e2 − e1).

If â1t ≥ 0 then pt+1 = ph.

Now suppose â1t < 0. Then

pt+1 = ph

⇔ â0t

−2â1t
≥ ph

⇔â0t ≥ −2â1tph

⇔a
(0)
0 + ēt − p̄tCt/Vt ≥ −2pha

(0)
1 − 2phCt/Vt

⇔ēt + (2ph − p̄t)Ct/Vt ≥ −2pha
(0)
1 − a

(0)
0

⇔(ph +
2ph − p1 − p2

t
)Ct/Vt ≥ −2pha

(0)
1 − a

(0)
0 − ēt.

Observe that on the event A, −ēt < δ, ph + 2ph−p1−p2
t ≥ ph, Vt ≤ V2 + (2ph − p1 − p2)

2 · 1
2 ,

Ct = C2 + (2ph − p1 − p2)(ēt − ē2) ≥ C2 + (2ph − p1 − p2)(−δ − ē2) and thus it suffices to show

C2 + (2ph − p1 − p2)(−δ − ē2) ≥ (−2pha
(0)
1 − a

(0)
0 + δ)(V2 + (2ph − p1 − p2)

2 · 1

2
)p−1
h ,

i.e.

1

2
(p2 − p1)(e2 − e1) − (2ph − p1 − p2)ē2

≥(−2pha
(0)
1 − a

(0)
0 + δ)(

1

2
(p2 − p1)

2 + (2ph − p1 − p2)
2 · 1

2
)p−1
h + (2ph − p1 − p2)δ.

Rewriting the lefthandside we get the condition

e1(p1 − ph) + e2(p2 − ph)

≥(−2pha
(0)
1 − a

(0)
0 + δ)(

1

2
(p2 − p1)

2 + (2ph − p1 − p2)
2 · 1

2
)p−1
h + (2ph − p1 − p2)δ

=(−2pha
(0)
1 − a

(0)
0 + δ)a+ (2ph − p1 − p2)δ.

Proof of Proposition 3.2

We proof the assertion by induction. For t = 2, observe that the upper bound c ≤ 2−α(p1 − p2)
2

on the constant c implies Var(p)2 = (p1−p2)2
2 ≥ c2α−1. Now let t ≥ 2 and suppose that Var(p)t ≥

ctα−1. If (3.3) has no solution, â0t ≤ 0, â1t ≥ 0, or â0t + â1tp < 0 for some p ∈ [pl, ph], then
|pt+1 − p̄t| = max(|p1 − p̄t|, |p2 − p̄t|) ≥ |p1−p2|

2 . Observe that for all t ≥ 2 and α ∈ (0, 1),
(t+ 1)α − tα ≤ αtα−1 Together with the bound c ≤ 2−α(3α)−1(p1 − p2)

2 this implies

(t+ 1)Var(p)t+1 = tVar(p)t +
t

t+ 1
(pt+1 − p̄t)

2 ≥ ctα + c [(t+ 1)α − tα] = c(t+ 1)α.

If (3.7) is chosen, then automatically Var(p)t+1 ≥ c(t+ 1)α−1.

If (3.8) is chosen, then by construction of the taboo interval (3.6) we have

(t+ 1)Var(p)t+1 = tVar(p)t +
t

t+ 1
(pt+1 − p̄t)

2 ≥ ctα + c [(t+ 1)α − tα] = c(t+ 1)α.
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Proof of Lemma 3.1

From λmax(t) + λmin(t) = tr(Pt) = t(1 + p2
t) > 0 and λmax(t)λmin(t) = det(Pt) = t2Var(p)t > 0, it

follows that λmin(t) > 0. Together with p2
t ≤ ph we thus have λmax(t) ≤ t(1 + p2

t) ≤ t(1 + p2
h).

Furthermore, λmin(t) = λmax(t)
−1 det(Pt) = λmax(t)

−1t2Var(p)t ≥ (1 + p2
h)

−1tVar(p)t.

Proof of Theorem 3.1

Since r(p, a) is twice continuously differentiable in p, it follows from a Taylor series expansion
that, given a, for all p ∈ [pl, ph] there is a p̃ ∈ [pl, ph] on the line segment between p and popt, such
that

r(p, a) = r(popt, a) + r′(popt, a)(p− popt) +
1

2
r′′(p̃, a)(p− popt)

2,

where r′(p, a) and r′′(p, a) denote the first and second derivatives of r with respect to p. The
assumption pl < popt < ph implies r′(popt) = 0, and with K = supp∈[pl,ph] |r′′(p)| < ∞ it follows
that

|r(p) − r(popt)| ≤
K

2
(p− popt)

2, (p ∈ P). (3.13)

On an open neighborhood of popt in P , popt = p(a(0)) is the unique solution to r′(p, a(0)) = 0.
Since by assumption r′′(p, a0, a1) exists and is nonzero at the point (p(a(0)), a(0)), it follows from
the implicit function theorem (see e.g. Duistermaat and Kolk, 2004) that there are open neighbor-
hoods U of p(a(0)) in R and V of a(0) in R2, such that for each a ∈ V there is a unique p ∈ U

with r′(p, a) = 0. Moreover, the mapping V → U, a 7→ p(a), is continuously differentiable in V .
Consequently for all a ∈ V there is a ã ∈ V on the line segment between a and a(0), such that

p(a) = p(a(0)) +
∂p(a)

∂aT

∣

∣

∣

∣

ã

(a− a(0)),

which implies that we can choose V such that for all a ∈ V ,

|p(a) − p(a(0))| = O
(

||a− a(0)||
)

. (3.14)

Let ρ ∈ (0, ρ0) be such that {a :
∣

∣

∣

∣a− a(0)
∣

∣

∣

∣ ≤ ρ} ⊂ V , and such a0 > 0, a1 < 0 whenever
∣

∣

∣

∣a− a(0)
∣

∣

∣

∣ ≤ ρ. Let Tρ be as in (3.9). Then for all t ∈ N,

E[|pt − popt|2] = E[|pt − popt|2 · 1t>Tρ ] + E[|pt − popt|2 · 1t≤Tρ ]

≤ E[|pt − popt|2 · 1t>Tρ ] + (ph − pl)
2P (t ≤ Tρ)

≤ E[|pt − popt|2 · 1t>Tρ ] + (ph − pl)
2E[T

1/2
ρ ]

t1/2
, (3.15)

where 1A denotes the indicator function of the event A.

Since r′(p(a(0)), a(0)) = 0 and r′′(p(a(0)), a(0)) < 0, it follows from continuity arguments that
r′(p(a), a) = 0 and r′′(p(a), a) < 0 for all a in an open neighborhood of a(0). This implies that if
∣

∣

∣

∣ât − a(0)
∣

∣

∣

∣ is sufficiently small and t sufficiently large, arg max
p∈[pl,ph]\TI(t)

r(p, ât) lies on the boundary

of the taboo interval TI(t). It follows that there is a ρ′ ∈ (0, ρ0) such that for all t > Tρ′ ,

|pt − p(ât)| ≤ |TI(t)|, (3.16)
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where |TI(t)| denotes the length of the taboo interval TI(t). Combining (3.14), (3.15), and (3.16),

E[|pt − popt|2] ≤ E[|pt − popt|2 · 1t>Tρ′ ] + (ph − pl)
2
E[T

1/2
ρ′ ]

t1/2
,

≤ 2E[|pt − p(ât)|2 · 1t>Tρ′ ] + 2E[|p(ât) − p(a(0))|2 · 1t>Tρ′ ] + (ph − pl)
2
E[T

1/2
ρ′ ]

t1/2
,

= O

(

E[|TI(t)|2] + E

[

∣

∣

∣

∣

∣

∣ât − a(0)
∣

∣

∣

∣

∣

∣

2

· 1t>Tρ′

]

+ (ph − pl)
2
E[T

1/2
ρ′ ]

t1/2

)

,

= O

(

tα−1 +
log(t)

tα

)

,

by Proposition 3.3, from which follows

Regret(T ) =

T
∑

t=1

E[r(popt) − r(pt)] = O

(

T
∑

t=1

E[(pt − popt)
2]

)

= O

(

T
∑

t=1

tα−1 + t−α log(t)

)

= O
(

Tα + T 1−α log(T )
)

.
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Chapter 4

Dynamic pricing and learning for multiple products

with infinite inventory

4.1 Introduction

In the preceding chapter, we study pricing policies that are suitable for a firm selling a single
type of product. In practice, firms often sell multiple types of products, and the demand for one
product is influenced by the selling prices of the other products. This means that learning the
demand function and determining optimal prices have to be considered for all products simul-
taneously; one can, in general, not simply apply the methods from Chapter 3 independently for
each individual product. We therefore study in the current chapter dynamic pricing and learning
in a setting with multiple products.

Similar as in the single-product case, we consider a parametric setting where the seller knows
the relation between selling prices and the first two moments of the demand distributions, up to
some unknown parameters. The value of these unknown parameters can be estimated by maxi-
mum quasi-likelihood estimation (MQLE); this is an extension of classical maximum-likelihood
estimation to settings where only the first two moments of the distribution are known.

We propose an adaptive pricing policy which is based on the following principle: in each time
period, the seller estimates the unknown parameters with MQLE; subsequently, he chooses the
prices that generate the highest expected revenue, given that these parameter estimates are cor-
rect, and with an additional requirement on a certain measure of price dispersion. This policy
balances at each time step exploration and exploitation: the requirement on the price dispersion
makes sure that the parameter estimates converge to the true values, the current knowledge of
the parameter estimates is exploited by choosing the optimal prices w.r.t. these estimates.

We measure price dispersion by the smallest eigenvalue of the design matrix, which is specified
below, and require that it grows with a certain pre-specified rate. This rate guarantees strong
consistency of the MQL estimates. There is no simple recursive relation between these smallest
eigenvalues in two consecutive time periods. We therefore work with an expression which grows
at the same rate, namely the inverse of the trace of the inverse design matrix. Using the Sherman-
Morrison formula, we show that a simple quadratic constraint on the chosen prices is sufficient
to establish the desired growth rate of the smallest eigenvalue of the design matrix.

The performance of pricing policies is measured in terms of Regret(T ), which is the expected
amount of revenue loss after T time periods, caused by not using the optimal price. We provide
two conditions - one assuring a sufficient amount of price dispersion, the other bounding the cu-

39
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mulative deviation from the certainty equivalence prices - such that any pricing policy satisfying
these conditions admits an upper bound on the regret in terms of the amount of price dispersion.
We show that our proposed adaptive pricing policy satisfies these conditions, and by optimally
choosing the price dispersion rate, we obtain the bound Regret(T ) = O(T 2/3).

In many demand models that are used in practice, the demand functions are so-called canon-
ical link functions. For this important class of demand functions, we show that Regret(T ) =

O(
√

T log(T )) can be achieved. This bound is close to O(
√
T ), which in several (single product)

settings has been shown to be the lowest provable asymptotic upper bound on the regret (see e.g.
Kleinberg and Leighton, 2003, Besbes and Zeevi, 2011, Broder and Rusmevichientong, 2012). The
upper bound Regret(T ) = O(

√

T log(T )) is based on new sufficient conditions that guarantee
strong consistency of MQLE. The proof of this result is based on an extension of a theorem by Lai
(1974) to martingale difference sequences, which may be of independent interest.

One of the strengths of our approach to dynamic pricing and learning for multiple products, is
that our results are valid for a very large class of demand functions and distributions. Other
works, such as Le Guen (2008) or Harrison et al. (2011b), restrict to linear demand functions or
sub-Gaussian demand distributions. In addition, we construct a pricing policy that facilitates
learning of the unknown parameters; in contrast, in a robust approach as Lim et al. (2008), no
learning takes place.

The remainder of this chapter is organized as follows. Section 4.2 introduces the model and nota-
tion, discusses some of the assumptions we make, and introduces the maximum quasi-likelihood
estimator. Section 4.3 describes the proposed adaptive pricing policy. In Section 4.4.1 we provide
an upper bound on the regret of a pricing policy, in terms of the amount of price dispersion.
Section 4.4.2 shows that in case of canonical link functions these bounds can be improved. Some
auxiliary results needed to prove these regret bounds are contained in Section 4.4.3, and the qual-
ity of the regret bounds is discussed in Section 4.4.4. Numerical illustrations are provided in
Section 4.5, and all mathematical proofs are contained in Section 4.6.

4.2 Model, assumptions, and estimation method

4.2.1 Model and notation

In this section, we consecutively discuss the dynamic pricing setting under consideration, the
parametric demand model deployed by the seller, assumptions on the revenue function, the def-
inition of a policy, and the definition of the regret. Subsequently we explain some notation used
in this paper.

We consider a firm that sells n ∈ N different types of products. Time is discretized, and time
periods are denoted by t ∈ N. A time period can represent a day or a week, but also say five
minutes. At the beginning of each time period t ∈ N, the firm determines for each product
k = 1, . . . , n a selling price pk(t) > 0. After setting the prices the firm observes a realization of the
demand dkt for each product k = 1, . . . , n, and collects revenue

∑n
k=1 pk(t)dkt. We assume that

all demand can be met, thus stock-outs do not occur.

Write p(t) = (p0(t), p1(t), . . . , pn(t))
T , where p0(t) = 1 for all t, and pk(t) is the selling price of

product k in period t, (1 ≤ k ≤ n). The term p0(t) = 1 is convenient for notational reasons. We
assume that the prices lie in a compact, convex, non-empty set P ⊂ {1}×Rn>0. The set P is called
the set of admissible prices. A common choice is P = {1} ×∏n

k=1[plk, phk] where 0 < plk < phk
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denote the lowest and highest price for product k that is acceptable to the firm. Our assumptions
on P are more flexible, allowing joint price constraints e.g. of the form p1 ≤ p2.

The random variable Dkt(p(t)) denotes the demand for product k in period t, given selling price
vector p(t). Given the selling prices, the demand in different time periods and for different prod-
ucts are independent of each other, and for each t ∈ N, k = 1, . . . , n and p(t) ∈ P , the demand
dkt is a realization of a random variable Dk(p(t)). The seller assumes the following parametric
model:

E[Dk(p)] = hk(p
Tβ

(0)
k ), (p ∈ P), (4.1)

Var[Dk(p)] = σ2
kvk(E[Dk(p)]), (p ∈ P). (4.2)

Here for all k = 1, . . . , n, the functions hk : R≥0 → R≥0 and vk : R≥0 → R>0 are both thrice
continuously differentiable, with ḣk(x) = ∂hk(x)

∂x > 0, vk(x) > 0 for all x ≥ 0, σ2
k are unknown

positive scalars, and β
(0)
k = (β

(0)
k0 , . . . , β

(0)
kn )T ∈ Rn+1 are unknown parameter vectors. The func-

tions hk are called link functions. With β(0) we denote the n×(n+1) matrix whose k-th row equals
(β

(0)
k0 , . . . , β

(0)
kn ).

Let (Ft)t∈N be the filtration generated by {dki, pki : k = 1, . . . , n, i = 1, . . . , t}, i.e. by all prices and
demand realizations up to and including time t, for t ∈ N, and let F0 be the trivial σ-algebra. A
technical assumption on the demand is

sup
p∈P,k=1,...,n

E[|Dk(p) − E[Dk(p) | Ft−1]|γ ] <∞ a.s., for some γ > 3. (4.3)

The expected revenue collected in a single time period by product k against price p, is denoted by
rk(p) = E[pkDk(p)] = pkh(p

Tβ
(0)
k ). The total expected revenue in a single time period t against

selling price p is r(p) =
∑n
k=1 rk(p). We also write rk(p, βk) and r(p, β) as a function of both the

price vector p and the parameter values βk ∈ Rn+1 resp. β ∈ R(n+1)×n.

We assume there is an open, bounded neighborhood V ∈ Rn×(n+1) around β(0), such that for all
β ∈ V , the function P → R,p 7→ r(p, β) has a unique maximizer

p(β) = arg max
p∈P

r(p, β) ∈ int(P), (4.4)

such that the matrix of all second derivatives of r w.r.t. p (excluding the first component p0 = 1),

H(p, β) =

(

∂2r(p, β)

∂pi∂pj

)

1≤i,j≤n
, (4.5)

is negative definite at the point p(β). In (4.4), and throughout this chapter, int(P) is defined as
{1} × int({(p1, . . . , pn) ∈ Rn | (1, p1, . . . , pn) ∈ P}). The correct optimal price p(β(0)) is also
denoted by popt.

A pricing policy ψ is a method that for each t ∈ N generates a price p(t) ∈ P . This price may
depend on the previously chosen prices p(1), . . . ,p(t − 1) and demand realizations {dki : k =

1, . . . , n, i = 1, . . . , t− 1}, i.e. p(t) is Ft−1-measurable.

The performance of a pricing policy is measured by the regret, which is the expected revenue
loss caused by not using the optimal price popt. For a pricing policy ψ that generates prices
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p(1),p(2), . . . ,p(T ), the regret after T time periods is defined as

Regret(T, ψ) = E

[

T
∑

t=1

r(popt, β
(0)) − r(p(t), β(0))

]

.

The objective of the seller is to find a pricing policy ψ that gives the highest expected revenue over
T time periods. This is equivalent to minimizing Regret(T, ψ). Note that this objective cannot
directly be used by the seller to find a policy, since it depends on the unknown parameters β(0).

Notation. With tr(A) and det(A) we denote the trace and determinant of a matrixA, with λmax(A)

and λmin(A) its largest and smallest eigenvalue (when these are real-valued). The transpose of a
(column) vector v is denoted by vT . Given price vectors p(1), . . . ,p(t), the design matrix P (t) is
defined as

P (t) =

t
∑

i=1

p(i)pT (i). (4.6)

Since the largest and smallest eigenvalue of P (t) play an important role in the analysis, we use
shorthand notation λmax(t) = λmax(P (t)) and λmin(t) = λmin(P (t)). The natural logarithm of
x > 0 is denoted by log(x). If it is clear from the context which pricing policy ψ is used, we
sometimes write Regret(T ) instead of Regret(T, ψ).

4.2.2 Discussion of model assumptions

We only assume knowledge on the first two moments of the demand, not on the complete dis-
tribution. This makes the demand model a little more robust. The assumption that the vari-
ance is a function of the first moment is valid for several demand distributions that are com-
monly used in practice, for example, if the distribution of Dk(p) is normal (vk(h) = 1), Bernoulli
(vk(h) = h(1 − h)), or Poisson (vk(h) = h). The moment assumption (4.3) is not common in the
literature on dynamic pricing, and allows for heavy-tailed demand distributions. The conditions
on the uniqueness of the optimal price p(β) and on the Hessian matrix (4.5) are satisfied when
the revenue function r(p, β(0)) is strictly concave in p. This is for example the case if the demand

functions are linear (hk(x) = x for each k = 1, . . . , n) and the matrix
(

β
(0)
kl + β

(0)
lk

)

k,l=1,...,n
is

negative definite.

4.2.3 Estimation of unknown parameters

The unknown parameters β(0) can be estimated with maximum quasi-likelihood estimation. This
is a natural extension of ordinary maximum-likelihood estimation to settings where only the first
two moments of the distribution are known. For more details we refer to Wedderburn (1974),
McCullagh (1983), Godambe and Heyde (1987), McCullagh and Nelder (1983), Heyde (1997) and
Gill (2001).

Given price vectors p(1), . . . ,p(t) and demand realizations {dki | k = 1, . . . , n, i = 1, . . . , t}, the
maximum quasi-likelihood estimate (MQLE) of β(0)

k , denoted by β̂k(t) ∈ Rn+1, is defined as a
solution to the (n+ 1)-dimensional equation

lkt(βk) =
t
∑

i=1

ḣk(p
T (i)βk)

σ2
kvk(hk(p

T (i)βk))
p(i)(dki − hk(p

T (i)βk) = 0. (4.7)
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4.3 Adaptive pricing policy

A natural and intuitive pricing policy is to set at each time period the selling prices equal to the
prices that are optimal, given that the current parameter estimates are correct. This pricing policy
is usually called myopic pricing or certainty equivalent pricing. At each step, the firm acts as if it
is certain about its parameter estimates. Although this policy is very intuitive and easy to under-
stand, its performance is very poor: in Chapter 3, we show for a single product with normally
distributed demand function whose expectation depends linearly on the selling price, that with
certainty equivalent pricing, the parameter estimates may converge to the wrong value, and the
price may converge to a limit price which is not equal to the optimal price. There we propose an
alternative pricing policy, called Controlled Variance Pricing, and show that under this policy the
price converges to the optimal price. The key idea of this policy is to use at each time period the
optimal price given the current parameter estimates, with an additional constraint on the price
dispersion. In this single product case, the price dispersion at time t is measured by the sample
variance of the prices chosen up to time t, and is required to satisfy a carefully chosen, time-
dependent lower bound. This pricing rule balances at each time step learning of the parameters
and instant revenue optimization, i.e. exploration and exploitation.

We now introduce an adaptive pricing policy for multiple products, which is inspired by the
same principles as Controlled Variance Pricing. The key idea is to choose the optimal price
given the current parameter estimates, with the additional requirement that λmin(t), the small-
est eigenvalue of the design matrix (4.6), grows with a certain rate. More precisely we require
that λmin(t) ≥ L1(t), where L1(t) is a positive monotone increasing non-random function on N.
As we will show, a proper choice of the function L1(t) implies sufficient price dispersion for the
parameter estimates β̂(t) to converge to the true value β(0).

Since there is no simple explicit expression relating two consecutive smallest eigenvalues λmin(t)

and λmin(t+ 1), we instead work with the trace of the inverse design matrix, tr(P (t)−1). This can
be justified by the fact that for any positive definite n× n matrix A,

tr(A−1)−1 ≤ λmin(A) ≤ ntr(A−1)−1. (4.8)

Thus, tr(P (t)−1) = O
(

L1(t)
−1
)

is equivalent to λmin(P (t)) = Ω(L1(t)). The expression tr(P (t)−1)

admits a recursive form via the Sherman-Morrison formula (Bartlett (1951), see Hager (1989) for
a historical treatment of these type of formulas). In particular, one can show

tr(P (t+ 1)−1) − tr(P (t)−1) = −
∣

∣

∣

∣P (t)−1p(t+ 1)
∣

∣

∣

∣

2

1 + pT (t+ 1)P (t)−1p(t+ 1)
. (4.9)

If tr(P (t)−1) ≤ 1
L1(t)

and p(t+1) is chosen such that the right hand side of (4.9) satisfies a carefully

chosen constraint, we can make sure that tr(P (t+ 1)−1) ≤ 1
L1(t+1) .

Let L be the class of non-decreasing differentiable functions L : N → R>0 such that L̇(t) = o(1),
and t 7→ 1

L(t) is convex. Examples of functions contained in L are t 7→ c
√

t log(t) or t 7→ cta,
(c > 0, 0 < a < 1). It is not difficult to derive that for any L ∈ L, L(t) = o(t), and there exists a
CL ∈ N such that L1(CLt) ≤ CLL1(t) for all t ∈ N.

The details of the adaptive pricing policy, named ΦA, are outlined below:

Adaptive pricing policy ΦA for n products



44 Chapter 4 Dynamic pricing and learning for multiple products with infinite inventory

Initialization: Choose L1 ∈ L.
Choose n+ 1 linearly independent initial price vectors p(1),p(2), . . . ,p(n+ 1) in P .
For all t ≥ n+ 2:
Estimation: For each k = 1, . . . , n, calculate the MQLE β̂k(t) using the MQL equations (4.7).
Pricing:

I) If for some k, β̂k(t) does not exist, or tr(P (t)−1)−1 � L1(t), then set p(t+ 1) = p(1), p(t+ 2) =

p(2), . . ., p(t+ j) = p(j), where j is the smallest integer such that tr(P (t+ j)−1)−1 ≥ L1(t+ j).
II) If for all k, β̂k(t) exists, and tr(P (t)−1)−1 ≥ L1(t), let pceqp = p(β̂(t)), and consider the follow-
ing cases:
IIa) If

tr
(

(

P (t) + pceqpp
T
ceqp

)−1
)−1

≥ L1(t+ 1), (4.10)

then choose p(t+ 1) = pceqp.
IIb) If (4.10) does not hold, then choose p(t+ 1) that maximizes

max
p∈P

r(p, β̂(t)) s.t.

∣

∣

∣

∣P (t)−1p
∣

∣

∣

∣

2

1 + pTP (t)−1p
≥ L̇1(t)

L1(t)2
, (4.11)

provided there is a feasible solution.
IIc) If (4.10) does not hold, and (4.11) has no feasible solution, then set p(t+ 1) = p(1), p(t+ 2) =

p(2), . . ., p(t+ j) = p(j), where j is the smallest integer such that
∣

∣

∣

∣P (t+ j)−1p
∣

∣

∣

∣

2 [
1 + pTP (t+

j)−1p
]−1 ≥ L̇1(t+ j)L1(t+ j)−2 is satisfied by some p ∈ P .

Ad I) and IIc) in the policy description deal with possible non-existence of the MQLE β̂k(t) and
other short-timescale effects: in that case, all previously chosen prices are repeated until the
MQLE exists and there is sufficient price dispersion. In the proof of Proposition 4.2 we show
that the term “j” in I) and IIc) is always finite.

Ad IIa) describes the situation where the certainty equivalent price p(β̂(t)) induces sufficient
price dispersion; in that case, the next price is equal to the certainty equivalent price.

Ad IIb) shows which price to choose when the certainty equivalent price induces insufficient
price dispersion. In that case, an additional constraint in (4.11) has to be satisfied.

Computational methods to solve the MQL equations (4.7) are discussed in Osborne (1992) and
Heyde and Morton (1996). The value of pceqp = p(β̂(t)) is the solution in P of a maximization
problem in n variables. The maximization problem (4.11) has one additional constraint, which
can be written as g(p) ≥ 0, where g is a quadratic polynomial in p. Both these problems can
be solved using standard techniques for constrained optimization (see e.g. Bertsekas, 1982, 1999,
Fletcher, 2000).

For sufficiently large t, the maximization problem (4.11) always has a feasible solution:

Proposition 4.1 (Feasibility of (4.11)). There is a T0 ∈ N, depending only on P and L1, such that for
all t ≥ T0: if

tr
(

P (t)−1
)−1 ≥ L1(t), (4.12)

tr
(

(

P (t) + p(β̂(t))p(β̂(t))T
)−1

)−1

< L1(t+ 1), (4.13)
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then the set
{

p ∈ P |
∣

∣

∣

∣P (t)−1p
∣

∣

∣

∣

2

1 + pTP (t)−1p
≥ L̇1(t)

L1(t)2

}

is nonempty.

The following proposition states that for sufficiently large t, the adaptive pricing policy ΦA in-
duces a lower bound on tr(P (t)−1)−1, and thus by (4.8) also on λmin(t).

Proposition 4.2 (Growth rate of tr(P (t)−1)−1). There are T1, CL ∈ N, depending only on T0, L1, and
P (n+ 1), such that for all t ≥ T1,

tr(P (t)−1)−1 ≥ C−1
L L1(t). (4.14)

4.4 Bounds on the regret

In this section, we provide upper bounds on the regret induced by pricing policies. The bounds
depends on two characteristics of a pricing policy: the first is a lower bound L1 on the small-
est eigenvalue λmin(t) of the design matrix P (t); this bound quantifies the amount of emphasis
on learning the unknown parameters. The second characteristic is the cumulative difference be-
tween the chosen prices and the certainty equivalence prices. Theorem 4.1 in Section 4.4.1 states
an upper bound on the regret, in terms of these two characteristics. We apply this result on the
pricing policy introduced in Section 4.3, and show that it can achieve Regret(T ) = O(T 2/3).

In Section 4.4.2, we consider the case of canonical link functions hk, which means that a certain
relation between the functions hk and vk is satisfied (the details are in Section 4.4.2). Canonical
link functions are encountered in several demand models of practical interest. We extend existing
statistical results on the strong consistency of MQLE, and show that Regret(T ) = O(

√

T log(T )

can be achieved. As intermediate result we obtain an extension of Theorem 3 of Lai (1974) to
martingale difference sequences.

Section 4.4.4 discusses the quality of the upper bounds derived in Sections 4.4.1 and 4.4.2.

4.4.1 General link functions

In order to state the main results of this section, we develop some notation that deals with pos-
sible non-existence of solutions to the quasi-likelihood equations. In particular, for ρ > 0 and
k = 1, . . . , n, we define

Tρ,k = sup{n ∈ N : there is no β ∈ Bρ,k such that lkt(β) = 0}, (4.15)

where Bρ,k =
{

β ∈ Rn+1 |
∣

∣

∣

∣

∣

∣β − β
(0)
k

∣

∣

∣

∣

∣

∣ ≤ ρ
}

, and

Tρ = max{Tρ,1, . . . , Tρ,n}. (4.16)

The importance of Tρ becomes clear from following proposition, which relates L1 to the rate at
which the parameter estimate β̂(t) converges to the true value β(0), and in addition provides
moment bounds on Tρ.

Proposition 4.3 (Strong consistency and convergence rates). Let L1 ∈ L, and suppose there are
t0 ∈ N, c > 0 and α ∈ ( 1

2 , 1) such that λmin(t) ≥ L1(t) ≥ ctα a.s. for all t ≥ t0. Then there is a ρ0 > 0
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such that Tρ < ∞ a.s. and E
[

T ηρ
]

< ∞, for all 0 < η < γα − 1 and 0 < ρ ≤ ρ0. In addition, for all

k = 1, . . . , n and t > Tρ, there exists a solution β̂k(t) to (4.7), limt→∞ β̂k(t) = β
(0)
k a.s., and

E

[

∣

∣

∣

∣

∣

∣β̂k(t) − β
(0)
k

∣

∣

∣

∣

∣

∣

2

1t>Tρ

]

= O
(

L1(t)
−1 log(t) + tL1(t)

−2
)

.

The assertions about Tρ follow from applying Theorem 7.1 (Chapter 7) for each Tρ,k, k = 1, . . . , n,
and noting that Tρ ≤

∑n
k=1 Tρ,k a.s. The other statements follow from Theorem 7.2.

The following theorem provides an upper bound on the regret, in terms of the function L1. Let
ρ1 ∈ (0, ρ0) such that {(β1, . . . , βn) ∈ Rn×(n+1) | βk ∈ Bρ,k, k = 1, . . . , n} ⊂ V , where V is defined
in Section 4.2.

Theorem 4.1. Let t0 ∈ N, L1 ∈ L such that L1(t) ≥ ctα for all t ≥ t0 and some c > 0, α ∈ ( 1
2 , 1). Let

0 < ρ ≤ ρ1, and let T2 be a random variable on N such that T2 ≥ Tρ a.s. and E[T
1/2
2 ] < ∞. If ψ is a

pricing policy that satisfies

(i) λmin(t) ≥ L1(t) a.s., for all t ≥ t0,

(ii)
∑T
t=1

∣

∣

∣

∣

∣

∣p(t) − p(β̂(t− 1))
∣

∣

∣

∣

∣

∣

2

1t>T2
≤ K2L1(T ) a.s., for all T ≥ t0 and some K2 > 0,

then Regret(ψ, T ) = O
(

L1(T ) +
∑T
t=1

(

log(t)
L1(t)

+ t
L1(t)2

))

.

Note that if L1(t) = O(t/ log(t)), the bound in Theorem 4.1 equals

Regret(ψ, T ) = O

(

L1(T ) +

T
∑

t=1

t

L1(t)2

)

. (4.17)

In the formulation of the theorem, one naturally can set T2 just equal to Tρ. With the current
formulation we allow for a little more flexibility, e.g., we allow to set T2 = max{Tρ, T}, for a
non-random T ∈ N. Furthermore, note that the theorem bears resemblance with Theorem 6 of
Harrison et al. (2011b). A difference is that they restrict to a linear demand function, Gaussian
distributed noise terms, and a special class of policies called “orthogonal policies”.

In Theorem 4.1, the choice L1(t) = ct2/3, for some c > 0, yields Regret(ψ, T ) = O(T 2/3). This
choice is optimal in the sense that for this choice of L1,

L1(T ) +

T
∑

t=1

( log(t)

L1(t)
+

t

L1(t)2

)

= o

(

L̃1(T ) +
T
∑

t=1

( log(t)

L̃1(t)
+

t

L̃1(t)2

)

)

,

for all L̃1 ∈ L such that L1 = o(L̃1) or L̃1 = o(L1).

The following theorem shows that the adaptive pricing policy ΦA from Section 4.3 satisfies the
conditions of Theorem 4.1.

Theorem 4.2. Consider the adaptive pricing policy ΦA, with L1(t) ≥ ctα for all t ≥ t0 and some c > 0,
α ∈ ( 1

2 , 1). There exist K2 ∈ N, ρ ∈ (0, ρ1] and a random variable T2, that satisfy the conditions of
Theorem 4.1.
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4.4.2 Canonical link functions

The terms
∑T
t=1

(

log(t)
L1(t)

+ t
L1(t)2

)

in the regret bound of Theorem 4.1, come from the convergence

rates in Proposition 4.3. These rates are valid for general functions hk and vk. However, in several
special cases, which are of particular practical interest, Theorem 7.3 shows that Proposition 4.3
can be improved to

E

[

∣

∣

∣

∣

∣

∣β̂k(t) − β
(0)
k

∣

∣

∣

∣

∣

∣

2

1t>Tρ

]

= O
(

L1(t)
−1 log(t)

)

. (4.18)

This is the case when the functions hk are canonical, which means ḣk(x) = vk(hk(x)), for all
x ∈ R, k = 1, . . . , n. Some examples where this occurs, are normally distributed demand with
hk(x) = x, Poisson distributed demand with hk(x) = exp(x), and Bernoulli distributed demand
with hk(x) = exp(x)

1+exp(x) .

It is easy to see that, by slightly altering the proof of Theorem 4.1, these improved bounds (4.18)
for canonical link functions imply

Regret(ψ, T ) = O

(

L1(T ) +
T
∑

t=1

L1(t)
−1 log(t)

)

, (4.19)

assuming exactly the same conditions as in Theorem 4.1. The choice L1(t) = ct
1
2+δ , for some

c > 0 and small δ > 0, then implies Regret(ψ, T ) = O(T
1
2+δ), which is a substantial improvement

to the rate T 2/3 derived in Section 4.4.1.

However, one can show that the optimal choice that minimizes the right hand side of (4.19), is
L1(t) = c

√

t log(t), (c > 0). This choice is optimal in the following sense: if L1(t) = c
√

t log(t)

and L̃1 ∈ L is such that L1 = o(L̃1) or L̃1 = o(L1), then

L1(T ) +

T
∑

t=1

L1(t)
−1 log(t) = o

(

L̃1(T ) +

T
∑

t=1

L̃1(t)
−1 log(t)

)

.

The choice L1(t) = c
√

t log(t) does not satisfy the requirement in Proposition 4.3 that L1 should
grow at least as tα, for some α ∈ ( 1

2 , 1). This raises the question whether this requirement can
be weakened. We show that this is indeed the case; in particular, we show that Proposition 4.3
is still valid if L1(t) ≥ c

√

t log(t), for a sufficiently large c > 0. It then immediately follows
that in Theorem 4.1, the choice L1(t) = c

√

t log(t) with sufficiently large c, leads to Regret(T ) =

O(
√

T log(T )), when the link functions are canonical.

Proposition 4.4 (Strong consistency and convergence rates). Suppose there are t0 ∈ N, c > 0 such
that L1(t) ≥ c

√

t log(t)) a.s. for all t ≥ t0. Then, for all sufficiently small ρ > 0 there exists a c∗ρ > 0,
such that for all 0 < η < γ−1

2 : Tρ < ∞ a.s. and E
[

T ηρ
]

< ∞, provided c > c∗ρ. In addition, for all

k = 1, . . . , n and t > Tρ, there exists a solution β̂k(t) to (4.7), limt→∞ β̂k(t) = β
(0)
k a.s., and

E

[

∣

∣

∣

∣

∣

∣β̂k(t) − β
(0)
k

∣

∣

∣

∣

∣

∣

2

1t>Tρ

]

= O
(

L1(t)
−1 log(t)

)

.

The proof is based on Theorems 7.1 and 7.3, and on Proposition 4.5 contained in the next section.
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4.4.3 Auxiliary results

This section contains a number of auxiliary results that are needed to prove the regret bounds in
Section 4.4.1 and 4.4.2.

Proposition 4.5. Let (Xi)i∈N be a martingale difference sequence w.r.t. a filtration {Fi}i∈N. Write Sn =
∑n
i=1Xi and suppose supi∈N E[X2

i | Fi−1] ≤ σ2 < ∞ a.s. for some σ > 0. Let η > 0, r > 2(η + 1),
c > 2σ

√
η, and define the random variable T = sup{n ∈ N | |Sn| ≥ c

√

n log(n)}, where T takes values
in N ∪ {∞}. If supi∈N E [|Xi|r] ≤ C <∞ for some C > 0, then

T <∞ a.s., and E [T η] <∞.

A key ingredient to Proposition 4.5 is the following theorem. This was proven in Lai (1974,
Theorem 3) for i.i.d. random variables; we extend it to martingale difference sequences.

Theorem 4.3. Let (Xi)i∈N be a martingale difference sequence w.r.t. a filtration {Fi}i∈N. Write Sn =
∑n
i=1Xi, and suppose supi∈N E[X2

i | Fi−1] ≤ σ2 < ∞ a.s., for some σ > 0. Let a > −1, p > 2(a+ 2)

and δ > σ
√

1 + a. If supi∈N E|Xi|p ≤ C <∞ for some C > 0, then

∞
∑

n=1

naP
(

|Sn| > δ
√

2n log(n)
)

<∞, (4.20)

∞
∑

n=1

naP
(

sup
1≤i≤n

|Si| > δ
√

2n log(n)
)

<∞. (4.21)

The proof makes use of the following result, which is based on Stout (1970).

Lemma 4.1. Let (Xi)i∈N, Sn and σ2 be as in Theorem 4.3. If max1≤i≤n |Xi|/(σ
√
n) ≤ c a.s., for some

c > 0, then for all 0 ≤ ǫ ≤ c−1,

P
(

Sn > ǫσ
√
n
)

≤ exp(−(ǫ2/2)(1 − ǫc/2)).

The proof of Theorem 4.3 is not valid when δ < σ
√

1 + a. The method to proof Proposition 4.4
can therefore not easily be extended for all c∗ρ > 0.

4.4.4 Quality of regret bounds

The results from Section 4.4.1 and 4.4.2 show that the adaptive pricing policy ΦA can achieve
a regret bound Regret(T ) = O(T 2/3) in the case of general link functions, and Regret(T ) =

O(
√

T log(T )) in the case of canonical link functions. In this section, we address the question
how good these bounds are.

For canonical link functions, the rate
√

T log(T ) is close to
√
T . In several (single product) set-

tings, it has been shown that
√
T is the best achievable upper bound on the regret, (see e.g.

Kleinberg and Leighton, 2003, Besbes and Zeevi, 2011, Broder and Rusmevichientong, 2012).
Thus, apart from the

√

log(T ) term, the adaptive pricing policy achieves the optimal asymp-
totic growth rate of the regret. This raises the question if the

√

log(T ) term is only a result from
the used proof-techniques, or that the regret really grows at rate

√

T log(T ).

The term
√

log(T ) can be traced back to two sources: Proposition 4.5 and Proposition 7.2. Propo-
sition 4.5 is a building block to prove that for sufficiently large t, a solution to the likelihood equa-
tions exists in a neighborhood of β(0). It considers random variables of the form T = sup{n ∈
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N | |Sn| ≥ c
√

n log(n)}, where Sn is a martingale and c > 0, and discusses finiteness of mo-
ments of T . Clearly, the

√

log(n) term cannot be removed here, since martingales Sn for which
sup{n ∈ N | |Sn| ≥ c

√
n} = ∞ a.s. are easily constructed. The second source of the

√

log(T )

term is Proposition 7.2, where bounds are derived on the expected squared norm of the differ-
ence between a least-squares estimate and the true parameter. Similar to Lai and Wei (1982), a
log(t) term appears in the equations. An example provided by Nassiri-Toussi and Ren (1994)
shows that at least in some instances, the log(t) term is present in the asymptotic behavior of the
estimates. This implies that Proposition 7.2 is sharp, in the sense that the log(t)-term cannot be
removed. However, in this chapter we deal with a particular pricing policy, and it is unclear if
this log(t)-term plays a role in the convergence rates of the estimators induced by our pricing
policy.

For general link functions, our adaptive pricing policy ΦA can achieve Regret(T 2/3). The gap with√
T is caused by the bounds on the estimation error in Proposition 4.3. These bounds are based

on Theorem 7.2, where for maximum quasi-likelihood estimation with general link functions and
adaptive design, mean square error bounds are derived of the form

E

[

∣

∣

∣

∣

∣

∣β̂(t) − β(0)
∣

∣

∣

∣

∣

∣

2
]

= O

(

log(t)

L1(t)
+

t

L1(t)L2(t)

)

. (4.22)

Here L2(t) is a non-random lower bound on the one-but-smallest eigenvalue of P (t). The term
t

L1(t)L2(t)
is not present if the link functions are canonical, cf. Proposition 4.4, and essentially

causes the difference between the regret bounds for general and for canonical link functions. It
is not clear if the bounds (4.22) are tight. But, a noteworthy recent study by Yin et al. (2008) con-
sidering maximum quasi-likelihood estimation with adaptive design, general link functions, and
multivariate response data, provides convergence rates that, in case of bounded design, imply

∣

∣

∣

∣

∣

∣β̂(t) − β(0)
∣

∣

∣

∣

∣

∣

2

= o

(

t

λmin(t)2
log(t)(log(log(t)))1+2δ

)

a.s., for any δ > 0,

where λmin(t) denotes the smallest eigenvalue of P (t). These bounds are even slightly worse than
the (4.22). The question on tight bounds on the convergence rates of maximum quasi-likelihood
estimates with general link functions and adaptive design, remains an open question.

4.5 Numerical illustration

In this section we provide two numerical illustration of the proposed adaptive pricing policy
ΦA. The first considers two products with Poisson distributed demand, and non-canonical link
functions. The second is a larger instance, with ten products, normally distributed demand, and
canonical link functions.

4.5.1 Two products, Poisson distributed demand

Consider two products with Poisson distributed demand, with expectation

E[D1(p1, p2)] = 11.5 − 1.25p1 + 0.34p2,

E[D2(p1, p2)] = 10.22 + 0.25p1 − 1.55p2.

The lowest and highest admissible price are set to pl = (1, 3, 3)T and ph = (1, 7, 7)T , and the three
linearly independent initial prices are p1 = (1, 3.0, 6.7)T ,p2 = (1, 3.3, 3.1)T ,p3 = (1, 6.7, 6.8)T .
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The optimal price is popt = (1, 5.63, 4.37)T , with expected revenue 54.7. We apply the adaptive
pricing policy ΦA with L1(t) = 0.2 · t2/3.

The plots in Figure 4.1 show a sample path of the price dispersion tr(P (t)−1)−1 divided by
t2/3, the squared norm ||β̂(t) − β(0)||2 of the difference between the parameter estimates and
the true parameter, Regret(t), and Regret(t)/t2/3. These pictures illustrate our analytical re-
sults that tr(P (t)−1)−1 ≥ 0.2t2/3 for all sufficiently large t, limt→∞ ||β̂(t) − β(0)||2 = 0, and
Regret(t) = O(t2/3).

Figure 4.1: Numerical results for Section 4.5.1

4.5.2 Ten products, normally distributed demand

We here consider a large instance, with ten products. The demand for each product k is normally
distributed with expectation and variance given by

E[Dk(p)] = β
(0)
k0 + β

(0)
k1 p1 + . . .+ β

(0)
kn pn, (k = 1, . . . , n),

Var[Dk(p)] = σ2
k, (k = 1, . . . , n),

where β(0) is equal to
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.

The lowest and highest admissible price are pl = (1, 1, 1, . . . , 1)T and ph = (1, 20, 20, . . . , 20)T .
The optimal price is popt = (1.00, 5.09, 3.73, 5.23, 3.68, 3.63, 6.90, 3.89, 3.58, 3.51, 4.56)T with ex-
pected revenue 381.9. We apply the adaptive pricing policy ΦA with L1(t) = 0.05

√

t log(t).

Figure 4.2: Numerical results for Section 4.5.2
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The plots in Figure 4.2 show a sample path of the price dispersion tr(P (t)−1)−1 divided by
√

t log(t), the squared norm ||β̂(t) − β(0)||2 of the difference between the parameter estimates
and the true parameter, Regret(t), and Regret(t)/

√

t log(t). These pictures illustrate our results
that tr(P (t)−1)−1 ≥ 0.05

√

t log(t) for all sufficiently large t,
limt→∞ ||β̂(t) − β(0)||2 = 0, and Regret(t) = O(

√

t log(t)).

4.6 Proofs

4.6.1 Proofs of Section 4.3

Proof of Proposition 4.1

Let t > n + 1 and assume (4.12) and (4.13). Let λ1 ≥ . . . ≥ λn+1 > 0 be the eigenvalues of
P (t), and let v1, . . . , vn+1 be associated eigenvectors. Since P (t) is symmetric, we can assume
that v1, . . . , vn+1 form an orthonormal basis of Rn+1.

Choose some φ = (φ0, φ1, . . . , φn) ∈ int(P) and r ∈ (0, 1), such that {(p0, p1, . . . , pn) ∈ Rn+1 |
p0 = 1, supk=1,...,n |pk − φk| ≤ r} ⊂ P , and let φ =

∑n+1
i=1 αivi expressed in the basis induced by

the eigenvectors. Define q = φ+ ǫ(vn+1,1φ− vn+1), where ǫ is chosen such that

|ǫ| = min
k=1,...,n

r(1 + φk)
−1,

and
ǫ ≥ 0 if αn+1 ≤ 0, ǫ < 0 if αn+1 > 0.

Note that ǫ2 is independent of t (but sign(ǫ) is not). We choose T0 ∈ N such that

L̇1(t) ≤ ǫ2(n+ 1)−2

(

1 + L1(n+ 1)−1 max
p∈P

||p||2
)−1

,

for all t ≥ T0. The existence of such a T0 follows from L̇1(t) = o(1).

Now q0 = 1, and for all k = 1, . . . , n,

|qk − φk| = |ǫ||(vn+1,1φk − vn+1,k)| ≤ |ǫ|(φk + 1) ≤ r,

since |vn+1,i| ≤ 1 for all i. By construction of φ and r, this implies q ∈ P .

Observe

qTP (t)−1q ≤ λmax(P (t)−1) ||q||2 = λmin(P (t))−1 ||q||2

≤ L1(t)
−1 ||q||2 ≤ L1(n+ 1)−1 max

p∈P
||p||2 .
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Furthermore,

∣

∣

∣

∣P (t)−1q
∣

∣

∣

∣

2
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P (t)−1

(

n
∑

i=1

(1 + ǫvn+1,1)αivi + ((1 + ǫvn+1,1)αn+1 − ǫ)vn+1

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

(1 + ǫvn+1,1)αiλ
−1
i vi + ((1 + ǫvn+1,1)αn+1 − ǫ)λ−1

n+1vn+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

n
∑

i=1

(1 + ǫvn+1,1)
2α2

iλ
−2
i + ((1 + ǫvn+1,1)αn+1 − ǫ)2λ−2

n+1

≥ ((1 + ǫvn+1,1)αn+1 − ǫ)2λ−2
n+1

≥ ((1 + ǫvn+1,1)αn+1 − ǫ)2(n+ 1)−2L1(t+ 1)−2,

since

λn+1 ≤ (n+ 1)tr(P (t)−1)−1 ≤ (n+ 1)tr
(

(

P (t) + p(β̂(t))p(β̂(t))T
)−1

)−1

< (n+ 1)L1(t+ 1).

Note that |ǫ| < 1 and thus 1 + ǫvn+1,1 ≥ 0. By choice of the sign of ǫ it follows that

((1 + ǫvn+1,1)αn+1 − ǫ)2 ≥ (1 + ǫvn+1,1)
2α2

n+1 + ǫ2 ≥ ǫ2,

and thus

∣

∣

∣

∣P (t)−1q
∣

∣

∣

∣

2 ≥ ǫ2(n+ 1)−2L1(t+ 1)−2. (4.23)

The definition of T0 implies that for t ≥ T0,

∣

∣

∣

∣P (t)−1q
∣

∣

∣

∣

2

1 + qTP (t)−1q
≥ ǫ2(n+ 1)−2L1(t+ 1)−2

1 + L1(n+ 1)−1 maxp∈P ||p||2
≥ L̇1(t)

L1(t+ 1)2
.

Proof of Proposition 4.2

In IIa) and IIb) of the pricing policy, a decision is made only for the next price p(t+ 1). In I) and
IIc), decisions are made for a number of forthcoming periods: prices p(1),p(2), . . . are repeated
in periods t+1, t+2, . . ., until tr(P (t+j)−1) ≥ L1(t+j), in I), or until (4.11) has a feasible solution,
in IIc). By Proposition 4.1, IIc) does not occur for t ≥ T0.

In addition, since prices are merely repeated in I), and tr(P (ct)−1)−1 = ctr(P (t)−1)−1 for all c ∈ N,
and L(t) = o(t), it follows that the j in I) has to be finite. This implies the existence of a T1 ≥ T0

such that tr(P (T1)
−1)−1 ≥ L1(T1).

From the assumption limt→∞ L̇1(t) = 0 one can derive that there exists a CL ∈ N such that
L1(CLt) ≤ CLL1(t) for all t ∈ N.

We now show for all t ≥ T1 that if tr
(

P (t)−1
)−1 ≥ L1(t), then the following holds:

1) If β̂k(t) does not exist for some k, then

tr
(

P (t+ j)−1
)−1 ≥ L1(t+ j) for some 1 ≤ j ≤ (CL − 1)t,
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and
tr
(

P (t+ i)−1
)−1 ≥ C−1

L L1(t+ i) for all 1 ≤ i ≤ j;

2) If β̂k(t) exists for all k, then

tr
(

P (t+ 1)−1
)−1 ≥ L1(t+ 1). (4.24)

1) First suppose that tr
(

P (t)−1
)−1 ≥ L1(t), and β̂k(t) does not exist for some k. Then by I) in

the adaptive pricing policy ΦA, p(t + i) = p(i), for i = 1, . . . , j, for some j ∈ N, where j is the
smallest number such that tr

(

P (t+ j)−1
)−1 ≥ L1(t+ j). From

tr
(

P (CLt)
−1
)−1

= CLtr
(

P (t)−1
)−1 ≥ CLL1(t) ≥ L1(CLt)

follows that j ≤ (CL − 1)t. Moreover, for all t+ i, i = 1, . . . , j it holds that

tr
(

P (t+ i)−1
)−1 ≥ tr

(

P (t)−1
)−1 ≥ L1(t) ≥ C−1

L L1(CLt) ≥ C−1
L L1(t+ i).

Thus, if tr
(

P (t)−1
)−1 ≥ L1(t), then there is a 1 ≤ j ≤ (CL − 1)t such that for all 1 ≤ i < j,

tr
(

P (t+ j)−1
)−1 ≥ L1(t+ j) and tr

(

P (t+ i)−1
)−1 ≥ C−1

L L1(t+ i).

2) Now suppose that tr
(

P (t)−1
)−1 ≥ L1(t), and β̂k(t) does exist for all k. The case (4.10) is trivial;

suppose that (4.10) does not hold. Then p(t + 1) is determined by IIb). The Sherman-Morrison
formula (Bartlett, 1951),

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
,

applied to A = P (t), u = v = p(t+ 1), implies

tr
(

P (t) + p(t+ 1)pT (t+ 1)
)−1

)

=tr(P (t)−1) − tr((P (t)−1p(t+ 1))(P (t)−1p(t+ 1))T )

1 + p(t+ 1)P (t)−1p(t+ 1)

=tr(P (t)−1) −
∣

∣

∣

∣P (t)−1p(t+ 1)
∣

∣

∣

∣

2

1 + p(t+ 1)P (t)−1p(t+ 1)

≤ 1

L1(t)
+
∂

∂t

1

L1(t)
.

By a Taylor expansion it follows that 1
L1(t+1) = 1

L1(t)
+ ∂

∂t
1

L1(t)

∣

∣

∣

t=t̃
, for some t̃ between t and t+1.

Since t 7→ 1
L1(t)

is convex, 1
L1(t)

+ ∂
∂t

1
L1(t)

≤ 1
L1(t+1) and thus

tr
(

P (t) + p(t+ 1)pT (t+ 1)
)−1

)−1 ≥ L1(t+ 1).
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4.6.2 Proofs of Section 4.4.1

Proof of Theorem 4.1

Since p(β(0)) ∈ int(P), it follows that ∂r(p,β
(0))

∂pk
= 0 in the point popt, for all k = 1, . . . , n. A Taylor

series expansion of p 7→ r(p, β(0)) then implies

r(popt, β
(0)) − r(p, β(0)) ≤

(

sup
p∈P

|λmax(∇2r(p, β(0))|
)

·
∣

∣

∣

∣popt − p
∣

∣

∣

∣

2
, (4.25)

for all p ∈ P .

By assumption, there exists an open neighborhood V of β(0) in Rn×(n+1), such that for all β ∈ V ,
there is a unique optimal price p(β), for which the matrix (4.5) of second partial derivatives w.r.t.
p1, . . . ,pn exists and is negative definite in the point (p(β), β). It follows from the implicit func-
tion theorem (see e.g. Duistermaat and Kolk, 2004) that V can be chosen such that the function
β 7→ p(β) is continuously differentiable with bounded derivatives. Then, by a Taylor expansion,

∣

∣

∣

∣

∣

∣p(β) − p(β(0))
∣

∣

∣

∣

∣

∣ ≤ K1

∣

∣

∣

∣

∣

∣β − β(0)
∣

∣

∣

∣

∣

∣ ,

for all β ∈ V and some non-random constant K1 > 0. By choice of ρ1, β̂(t) ∈ V for all t > Tρ, and
since T2 ≥ Tρ a.s. we obtain

∣

∣

∣

∣

∣

∣p(β(0)) − p(β̂(t))
∣

∣

∣

∣

∣

∣

2
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∣
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∣

∣

∣

∣

∣

∣

2

1t>T2 a.s.

We have

E

[

T
∑

t=t0

∣

∣

∣

∣p(t) − popt
∣

∣

∣

∣

2

]

≤E
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T
∑

t=t0

∣

∣

∣

∣p(t) − popt
∣

∣

∣

∣

2
1t>T2

]

+ E

[

T
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t=t0

∣

∣

∣
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∣

∣

∣

∣

2
1t≤T2

]

≤2E
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T
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t=t0

∣

∣

∣
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∣
p(t) − p(β̂(t− 1))

∣
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∣
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∣

∣

2

1t>T2

]

+ 2E

[

T
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t=t0

∣

∣

∣
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∣
p(β̂(t− 1)) − popt

∣
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∣
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∣

2

1t>T2

]

+E

[

T
∑

t=t0

∣

∣

∣

∣p(t) − popt
∣

∣

∣

∣

2
1t≤T2

]

≤2K2L1(T ) + 2K1E

[

T
∑

t=t0

∣

∣

∣

∣

∣

∣β̂(t− 1) − β(0)
∣

∣

∣

∣

∣

∣

2

1t>T2

]

+

T
∑

t=t0

max
q,q′∈P

||q − q′||2 P (t ≤ T2)

=O

(

L1(T ) +

T
∑

t=1

(

L1(t)
−1 log(t) + tL1(t)

−2 + E
[

T
1/2
2

]

t−1/2
)

)

.

Since
∑T
t=1E

[

T
1/2
2

]

t−1/2 = O(T 1/2) = o(L1(T )), it follows by (4.25) that

Regret(T ) = O

(

L1(T ) +
T
∑

t=1

(

L1(t)
−1 log(t) + tL1(t)

−2
)

)

.
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Proof of Theorem 4.2

Since (i) of Theorem 4.1 follows from Proposition 4.2 and (4.8), it suffices to show
||p(t)−p(β̂(t−1))||21t>T2

≤ K2L̇1(t)1t>T2
a.s., for appropriately chosenK2 and T2 and all t ∈ N.

Because
∑T
t=1 L̇1(t) = O(L1(T )), this implies (ii).

Choose any ρ ∈ (0, ρ1), let CL, T1 be as in Proposition 4.2, and set T2 = max{CLTρ, T1, T3, T4},
where T3, T4 are non-random constants specified below. Clearly, E [T η2 ] < ∞ if and only if
E
[

T ηρ
]

< ∞, for all η > 0, and thus E [T η2 ] < ∞ for all 0 < η < γα − 1. In particular, α > 1
2 and

γ > 3 implies E
[

T
1/2
2

]

<∞.

T2 is chosen such that I) and IIc) of the pricing policy, do not occur for t ≥ T2. For IIc) this follows
from T2 ≥ T1 ≥ T0, together with Proposition 4.1. For I), note that since tr(P (T1)

−1)−1 ≥ L1(T1)

is shown in the proof of Proposition 4.2, and since T2 ≥ max{CLTρ, T1}, it suffices to show
tr(P (CLTρ)

−1)−1 ≥ L1(CLTρ). This follows since tr(P (Tρ + j)−1)−1 ≥ L1(Tρ + j) must hold for
some 1 ≤ j ≤ (CL − 1)Tρ, cf. the proof of Proposition 4.2.

Let β ∈ V be arbitrary. The uniqueness of the maximum p(β), together with compactness of P ,
imply that there is a neighborhood Uβ ⊂ P of p(β), such that r(p1, β) > r(p2, β) for all p1 ∈ Uβ ,
p2 ∈ P\Uβ . For all β ∈ V , choose Uβ such that

l = inf
β∈V

inf
p∈Uβ

λmin(∇2r(p)) > 0,

L = sup
β∈V

sup
p∈Uβ

λmax(∇2r(p)) <∞;

in view of (4.5), this is always possible.

Now, fix t > T2; then β̂(t) ∈ V . For any p′ ∈ Uβ̂(t) that is a feasible solution of (4.11), we have

r(p(t+ 1), β̂(t)) ≥ r(p′(β̂(t)), β̂(t)), both in case IIa) and IIb), and thus p(t+ 1) ∈ Uβ̂(t). A Taylor
expansion yields

r(p(β̂(t)), β̂(t)) − r(p(t+ 1), β̂(t)) =
1

2
(p(t+ 1) − p(β̂(t)))T∇2r(p̃1, β̂(t))(p(t+ 1) − p(β̂(t)))

≥ l

2
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and

r(p(β̂(t)), β̂(t)) − r(p′, β̂(t)) =
1

2
(p′ − p(β̂(t)))T∇2r(p̃2, β̂(t))(p′ − p(β̂(t)))

≤ L

2

∣
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∣

∣

∣
p′ − p(β̂(t))

∣

∣

∣

∣

∣

∣

2

,

for some p̃1, p̃2 ∈ Uβ̂(t), and consequently,

∣

∣

∣

∣

∣

∣p(t+ 1) − p(β̂(t))
∣

∣

∣

∣

∣

∣

2

≤ 2l−1
[

r(p(β̂(t)), β̂(t)) − r(p(t+ 1), β̂(t))
]

≤ 2l−1
[

r(p(β̂(t)), β̂(t)) − r(p′, β̂(t))
]

≤ l−1L
∣

∣

∣

∣

∣

∣p
′ − p(β̂(t))

∣

∣

∣

∣

∣

∣

2

.

Assertion (ii) of Theorem 4.1 thus follows if for all t > T2, there exists a p′ ∈ Uβ̂(t) which is a

feasible solution of (4.11), such that ||p′ − p(β̂(t))||2 ≤ K3L̇1(t) for some K3 > 0 independent of
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β̂t, t. If p(t + 1) = p(β̂(t)), then this holds trivially by choosing p′ = p(β̂(t)); assume therefore
that p(t+ 1) is determined by (4.11).

Let C0 > 2, and

T3 = sup

{

t ∈ N | there exists a β ∈ V and p ∈ Rn+1\Uβ ,
such that ||p(β) − p||2 ≤ C2

0 L̇1(t)(1 + maxp∈P ||p||2)

}

,

T4 = sup{t ∈ N | C2
0 L̇1(t) > 1 or L1(t+ 1) >

C0

2
L1(t)}.

It follows from L̇1(t) = o(1) that T3 and T4 are finite.

Let λ1 ≥ . . . ≥ λn+1 be the eigenvalues of P (t), and v1, . . . , vn+1 the corresponding normalized
eigenvectors. Note that all eigenvalues are real and positive. Since P (t) is symmetric we can
choose the eigenvectors such that they form an orthonormal basis. Let p(β̂(t)) =

∑n+1
i=1 αivi be

p(β̂(t)) expressed in the orthonormal basis of eigenvectors.

Choose C such that |C| = C0, and

sign(C) =

{

1 if αn+1(vn+1,1αn+1 − 1) = 0,

sign
(

αn+1

vn+1,1αn+1−1

)

otherwise,

where vn+1,1 is the first component of vn+1. Let

p′ = p(β̂(t)) +

√

L̇1(t)C(vn+1,1p(β̂(t)) − vn+1)

Suppose p′ /∈ Uβ̂(t). Note that since ||vn+1|| ≤ 1 and
∣
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∣

∣p(β̂(t))
∣

∣
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∣

∣

∣ ≤ maxp∈P ||p||,

∣

∣
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∣

2

= C2
0 L̇1(t)

∣
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∣vn+1,1p(β̂(t)) − vn+1
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∣

∣

∣

2

≤ C2
0 L̇1(t)(1 + max

p∈P
||p||2).

Since t > T3, this is a contradiction, and thus p′ ∈ Uβ̂(t).

We now show that p′ satisfies the constraint in (4.11). Observe that

p′TP (t)−1p′ ≤ λmax(P (t)−1) ||p′||2 ≤ λmin(P (t))−1 max
p∈P

||p||2 ≤ tr(P (t)−1) max
p∈P

||p||2

≤ L1(n+ 1)−1 max
p∈P

||p||2 (4.26)
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and
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∣
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∣

∣

∣
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∣

∣

∣
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∣

∣
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∣

∣
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∣
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∣

∣

∣

∣

∣

P (t)−1





(αn+1 +
√
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√
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+
∑n
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√

L̇1(t)Cvn+1,1)αivi
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∣
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∣

∣
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∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(αn+1 +
√

L̇1(t)Cvn+1,1αn+1 −
√

L̇1(t)C)λ−1
n+1vn+1

+
∑n
i=1(1 +

√

L̇1(t)Cvn+1,1)αiλ
−1
i vi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= (αn+1 +

√

L̇1(t)Cvn+1,1αn+1 −
√

L̇1(t)C)2λ−2
n+1

+

n
∑

i=1

(1 +

√

L̇1(t)Cvn+1,1)
2α2

iλ
−2
i

≥ (αn+1 + C

√

L̇1(t)(vn+1,1αn+1 − 1))2λ−2
n+1

≥ (αn+1 + C

√

L̇1(t)(vn+1,1αn+1 − 1))2tr(P (t)−1)2,

and thus

∣

∣

∣

∣P (t)−1p′∣
∣

∣

∣

2 ≥ (αn+1 + C

√

L̇1(t)(vn+1,1αn+1 − 1))2L1(t+ 1)−2. (4.27)

By construction of C,

∣

∣

∣

∣P (t)−1p′∣
∣

∣

∣

2 ≥ (α2
n+1 + C2L̇1(t)(vn+1,1αn+1 − 1)2)L1(t+ 1)−2. (4.28)

If |vn+1,1αn+1 − 1| ≥ 1/2, then

∣

∣

∣

∣P (t)−1p′∣
∣

∣

∣

2 ≥ 1

4
C2L̇1(t)L1(t+ 1)−2.

If |vn+1,1αn+1 − 1| < 1/2, then vn+1,1 6= 0, and vn+1,1αn+1 > 1/2, thus α2
n+1 > (1/4)v−2

n+1,1 ≥ 1/4

since vn+1,1 ≤ 1. We then also have

∣

∣

∣

∣P (t)−1p′∣
∣

∣

∣

2 ≥ α2
n+1L1(t+ 1)−2 ≥ 1

4
C2

0 L̇1(t)L1(t+ 1)−2, (4.29)

since C2
0 L̇1(t) ≤ 1 for t > T2 ≥ T4.

Using L1(t+ 1) ≤ C0

2 L1(t) for t > T4, we have

∣

∣

∣

∣P (t)−1p′∣
∣

∣

∣

2

1 + p′TP (t)−1p′ ≥
1
4C

2
0 L̇1(t)L1(t+ 1)−2

1 + L1(n+ 1)−1 maxp∈P ||p||2
≥ L̇1(t)

L1(t)2
.
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4.6.3 Proofs of Section 4.4.2

Proof of Proposition 4.4

The assertions on Tρ are proven in Theorem 7.1, under the assumption L1(n) ≥ cnα, for some
c > 0, 1

2 < α ≤ 1, n0 ∈ N and all n ≥ n0. The proof of that theorem considers last-time variables
of the form

TA[i] = sup{n ≥ n0 | ρ−1An[i] − 1
d+2d2 (c2/2)L1(n)},

TB[i,j] = sup{n ≥ n0 | Bn[i, j] − 1
d+2d2 (c2/2)L1(n)},

TJ[i,j] = sup{n ≥ n0 | ρJn[i, j] − 1
d+2d2 (c2/2)L1(n)},

(4.30)

where (An[i])n∈N, (Bn[i, j])n∈N, and (Jn[i, j])n∈N are martingales with square-integrable differ-
ences. It is shown that these last-times are a.s. finite and have finite η-moments, using Proposition
7.1 which considers these properties for general last-times of the form

T = sup{n ∈ N | |Sn| ≥ cnα},

for a martingale Sn and constants c > 0, 1
2 < α ≤ 1.

In the current Proposition, the assertions Tρ < ∞ a.s. and E
[

T ηρ
]

< ∞ follow exactly as in
Theorem 7.1, with the difference that we apply Proposition 4.5 instead of Proposition 7.1 on the
last-times (4.30). In particular, for fixed ρ > 0, let σC > 0 such that

σC ≥ ρ−1 max
1≤i≤d

{sup
n∈N

E
[

(An[i] −An−1[i])
2 | Fn−1

]

},

σC ≥ max
1≤i,j≤d

{sup
n∈N

E
[

(Bn[i, j] −Bn−1[i, j])
2 | Fn−1

]

},

σC ≥ ρ max
1≤i,j≤d

{sup
n∈N

E
[

(Jn[i, j] − Jn−1[i, j])
2 | Fn−1

]

}.

Furthermore, define c2 = infp∈P,β∈Bρ ḣ(p
Tβ) (cf. the definition of c2 in (7.7)), and let c∗ρ = d+2d2

(c2/2)
·

2σC
√
η.

Proposition 4.5 implies that the last-times

TA[i] = sup{n ≥ n0 | ρ−1An[i] − 1
d+2d2 (c2/2)c

√

n log(n)},
TB[i,j] = sup{n ≥ n0 | Bn[i, j] − 1

d+2d2 (c2/2)c
√

n log(n)},
TJ[i,j] = sup{n ≥ n0 | ρJn[i, j] − 1

d+2d2 (c2/2)c
√

n log(n)},
(4.31)

are all finite a.s., with finite η-th moment, provided c > c∗ρ and 0 < η < γ−1
2 .

The asymptotic existence, strong consistency, and mean square bounds for β̂k(t), follow directly
from Theorems 7.2 and 7.3.

4.6.4 Proofs of Section 4.4.3

Proof of Proposition 4.5

Let 0 < c′ < c such that c′ > 2σ
√
η. There exists an n′ ∈ N such that for all n > n′,

c
√

(n/2) log(n/2) −
√

2σ2n ≥ c′
√

(n/2) log(n/2).
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For all n > n′,

P (T > n) = P
(

∃k > n : |Sk| ≥ c
√

k log(k)
)

≤
∑

j≥⌊log2(n)⌋
P
(

∃2j−1 ≤ k < 2j : |Sk| ≥ c
√

k log(k)
)

≤
∑

j≥⌊log2(n)⌋
P
(

sup
1≤k≤2j

|Sk| ≥ c
√

2j−1 log(2j−1)
)

(1)

≤ 2
∑

j≥⌊log2(n)⌋
P
(

|S2j | ≥ c
√

2j−1 log(2j−1) −
√

2σ22j
)

(2)

≤ 2
∑

j≥⌊log2(n)⌋
P
(

|S2j | ≥ c′
√

2j−1 log(2j−1)
)

,

where (1) follows from Lemma 7.4, and (2) from the definition of n′.

By Chebyshev’s and Rosenthal’s inequality (see e.g. Hall and Heyde, 1980, Theorem 2.12), there
is a C2 > 0 such that for all k > e, c > 0,

P
(

|Sk| ≥ c
√

k log(k)
)

≤ E [|Sk|r] c−rk−r/2(log(k))−r/2

≤ C2

(

(σ2k)r/2 + k sup
i∈N

E [|Xi|r]
)

c−rk−r/2(log(k))−r/2

≤ (C2σ
p + C2C) c−r(log(k))−r/2.

Consequently,

2
∑

j≥⌊log2(n)⌋
P
(

|S2j | ≥ c′
√

2j−1 log(2j−1)
)

≤2
∑

j≥⌊log2(n)⌋
P

(

|S2j | ≥
√
j − 1√
2j

c′
√

2j log(2j)

)

≤2
∑

j≥⌊log2(n)⌋
Kj−r/2 <∞,

for some K > 0, and thus P (T = ∞) ≤ lim infn→∞ P (T > n) = 0. This proves T <∞ a.s.

For t ∈ R+ write St = S⌊t⌋. Then

∑

j≥log2(n)

P
(

|S2j | ≥ c′
√

2j−1 log(2j−1)
)

(4.32)

=

∫

j≥log2(n)

P

(

|S2j | ≥ c′
√
j − 1√
2j

√

2j log(2j)

)

dj (4.33)

=

∫

k≥n
P

(

|Sk| ≥ c′

√

1

2
− log(2)

2 log(k)

√

k log(k)

)

1

k log(2)
dk (4.34)

≤
∑

k≥n
P

(

|Sk| ≥ c′

√

1

2
− log(2)

2 log(n′)

√

k log(k)

)

1

k log(2)
, (4.35)
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using a variable substitution k = 2j . Since

E[T η] ≤ η



1 +
∑

n≥1

nη−1P (T > n)





≤ η

[

1 + n′ max{1, (n′)η−1} +
∑

n>n′

nη−1P (T > n)

]

≤M
∑

n>n′

nη−1
∑

j≥⌊log2(n)⌋
P

(

|Sk| ≥ c′

√

1

2
− log(2)

2 log(n′)

√

k log(k)

)

k−1,

for some constant M > 0, it follows that E[T η] <∞ if

∑

n≥1

nη−1
∑

k≥n
P
(

|Sk| ≥ δ
√

2k log(k)
)

k−1 <∞,

where we write δ = c′
√

1
4 − log(2)

4 log(n′) . By interchanging the sums, it suffices to show

∑

k≥1

kη−1P
(

|Sk| ≥ δ
√

2k log(k)
)

<∞. (4.36)

We can choose n′ sufficiently large such that δ > σ
√
η. Then (4.36) follows from Theorem 4.3 with

a = η − 1

Proof of Lemma 4.1

Apply Lemma 1 of Stout (1970) on the sequence
(

Xi

σ
√
n

)

1≤i≤n
, with l = 0. Then for all 0 ≤ λc ≤ 1,

1 ≥ E[exp(λSn/(σ
√
n)) exp(−(λ2/2)(1 + λc/2)

[

n
∑

i=1

E[X2
i | Fi−1]

]

/(σ2n))]

≥ E[exp(λSn/(σ
√
n)) exp(−(λ2/2)(1 + λc/2)].

For 0 ≤ ǫ ≤ c−1, we thus have

P
(

Sn/(σ
√
n) ≥ ǫ

)

≤ E [exp(λSn/(σ
√
n))]

exp(λǫ)
≤ exp((λ2/2)(1 + λc/2) − λǫ).

Take λ = ǫ to prove the assertion.

Proof of Theorem 4.3

The proof of Theorem 4.3 uses the concepts median and symmetrization. For a random variable
Y , the symmetrization Y s of Y is defined as Y s = Y − Y ′, where Y ′ is independent of Y and
has the same distribution. A median med(Y ) of Y is a scalar m ∈ R such that P (Y ≥ m) ≥ 1

2 ≤
P (Y ≤ m). A median always exists, but is not necessarily unique. Moreover, if E[Y ] < ∞ then
|med(Y ) − E[Y ]| ≤

√

2Var(Y ) (Loève, 1977a, 18.1.a).

The first step in the proof is to bound the tail-probabilities P (Sn > δ
√

2n log(n)) in terms of
symmetrized random variables. To this end, choose δ1 ∈ (σ

√
1 + a, δ) and n1 ∈ N such that
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δ
√

2n log(n) −
√

2σ2n ≥ δ1
√

2n log(n) for all n ≥ n1. The weak symmetrization inequalities
(Loève, 1977a, 18.1.A(i)) state that P (Y − med(Y ) ≥ ǫ) ≤ 2P (Y s ≥ ǫ) for any random variable Y
and all ǫ > 0. Since E [Sn] = 0 and Var(Sn) ≤ σ2n for all n ∈ N, it follows that for all n ≥ n1,

P (Sn > δ
√

2n log(n)) ≤ P (Sn − med(Sn) > δ
√

2n log(n) −
√

2σ2n)

≤ 2P (Ssn > δ
√

2n log(n) −
√

2σ2n)

≤ 2P (Ssn > δ1
√

2n log(n)). (4.37)

As a next step, we consider a truncation of Ssn. In particular, for all i ∈ N, write X̃s
i = Xs

i 1|Xs
i |≤g(i),

where g(i) = σ2κδ−1
1

√
i/
√

2 log(i) and 0 < κ < 1 is specified below, and write S̃sn =
∑n
i=1 X̃

s
i .

Define T 6= = sup{i ∈ N | Xs
i 6= X̃s

i } = sup{i ∈ N | |Xs
i | > g(i)}. Then

∞
∑

n=1

naP
(

Ssn > δ1
√

2n log(n)
)

≤
∞
∑

n=1

naP
(

Ssn > δ1
√

2n log(n), n > T 6=
)

+

∞
∑

n=1

naP (n ≤ T 6=) .

(4.38)

If n > T 6= then Ssn = S̃sn+(SsT6=
−S̃sT6=

). Let δ2 ∈ (σ
√

1 + a, δ1) and n2 ∈ N such that δ1
√

2n log(n)−
(SsT − S̃sT ) ≥ δ2

√

2n log(n) for all n ≥ max{T, n2}. Then

P (Ssn > δ1
√

2n log(n), n > T 6=) = P (S̃sn > δ1
√

2n log(n) − (SsT − S̃sT ), n > T 6=)

≤ P (S̃sn > δ2
√

2n log(n)).

Note that (X̃s
i )i∈N is a martingale difference sequence w.r.t. {Fi}i∈N, with

supi∈N E[(X̃s
i )

2 | Fi−1] ≤ σ2 <∞ a.s.

Let ǫn = σ−1δ2
√

2 log(n), choose κ ∈ (0, 1) such that δ2 > (1− κ
2 )−1/2σ

√
1 + a, and set cn = κǫ−1

n .
Then 0 ≤ ǫncn = κ ≤ 1 and max1≤i≤n |X̃s

i | ≤ g(n) ≤ σ
√
ncn, using δ−1

1 ≤ δ−1
2 . By Lemma 4.1,

P
(

S̃sn > δ2
√

2n log(n)
)

= P
(

S̃sn > ǫnσ
√
n
)

≤ exp(−(ǫ2n/2)(1 − ǫncn/2))

= exp

(

− δ22
σ2

(

1 − κ

2

)

log(n)

)

.

Since δ2 > (1 − κ
2 )−1/2σ

√
1 + a, we have −1 > a− δ22σ

−2(1 − κ
2 ) and thus

∞
∑

n=1

naP
(

S̃sn > δ2
√

2n log(n))
)

= O

( ∞
∑

n=1

na−δ
2
2σ

−2(1−κ/2)
)

<∞ a.s. (4.39)

This proves that the first term of the right hand side of (4.38) is finite a.s.
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For the second term, we have

∞
∑

n=1

naP (T 6= ≥ n) =
∞
∑

n=1

naP (∃k ≥ n : |Xk|/g(k) > 1)

≤
∞
∑

n=1

na
∑

j≥⌊log(2)(n)⌋
P
(

∃2j ≤ k < 2j+1 : |Xk|/g(k) > 1
)

≤
∞
∑

n=1

na
∑

j≥⌊log(2)(n)⌋
P

(

sup
1≤k≤2j+1

|Xk| > g(2j+1)

)

≤
∞
∑

n=1

na
∑

j≥⌊log(2)(n)⌋

C

g(2j+1)p
, (4.40)

by Doob’s inequality for martingales. Furthermore,

∑

j≥⌊log2(n)⌋

1

g(2j+1)p
= O

(

∫ ∞

log(2)(n)

1

(σ2δ−1
1 κ)p(2j+1)p/2(log(2j+1))−p/2

dj

)

= O

(∫ ∞

2n

1

kp/2(log(k))−p/2
· 1

k
dk

)

= O
(

n1−p/2(log(n))p/2
)

.

where we applied a change of variables k = 2j+1. Combining this with (4.40), it follows from the
assumption p > 2(a+ 2) that

∞
∑

n=1

naP (T 6= ≥ n) = O

( ∞
∑

n=1

na+1−p/2(log(n))p/2

)

<∞. (4.41)

It follows from (4.37), (4.38), (4.39) and (4.41) that

∞
∑

n=1

naP (Sn > δ
√

2n log(n)) <∞.

By replacing Xi and Si with −Xi and −Si in the proof, (4.20) follows. For (4.21), choose δ3 ∈
(σ
√

1 + a, δ), and let n3 ∈ N such that δ3
√

2n log(n) ≤ δ
√

2n log(n) −
√

2σ2n for all n ≥ n3. Then
for all n ≥ n3,

P
(

sup
1≤i≤n

|Si| > δ
√

2n log(n)
)

≤ 2P
(

|Sn| ≥ δ
√

2n log(n) −
√

2σ2n
)

≤ 2P
(

|Sn| ≥
1

2
δ3
√

2n log(n)
)

,

using Lemma 7.4. Now (4.21) follows from (4.20).
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Chapter 5

Dynamic pricing and learning for a single product

with finite inventory

5.1 Introduction

In this chapter, we study dynamic pricing and learning in a setting where finitely many products
are sold during finite selling periods, and where unsold inventory perishes at the end of each
selling season. This setting is applicable for airline tickets, hotel rooms, concert tickets, car rental
reservations, and many other products. The key feature that distinguishes this setting from the
situation with infinite inventory is the nature of the optimal selling prices. In the single-product
infinite-inventory setting, studied in Chapter 3, the optimal selling price is a single value that
remains constant over time. In the current setting things are different: the optimal selling price is
not a single value, but it changes over time, depending on the inventory level and the remaining
length of the selling season (see, for example, Gallego and van Ryzin, 1994). It turns out that these
price fluctuations drastically change the structural properties of dynamic pricing and learning
problems.

Existing literature on dynamic pricing and learning with a finite inventory focuses on results for a
single selling season, cf. Besbes and Zeevi (2009) or Wang et al. (2011). To asses the performance of
proposed pricing strategies, they consider an asymptotic regime where the demand rate and the
initial amount of inventory grow to infinity. Such an asymptotic regime may have practical value
if demand, initial inventory, and the length of the selling season are relatively large. In many sit-
uations, however, this is not the case. For example, in the hotel rooms industry, a product may be
modeled as a combination of arrival date and length-of-stay (Talluri and van Ryzin, 2004, section
10.2, Weatherford and Kimes, 2003). Different products may have different, overlapping selling
periods, and similar demand characteristics. It would therefore be unwise to learn the consumer
behavior for each product and selling period separately. In addition, the average demand, initial
capacity and length of a selling period may be quite low, which makes the asymptotic regime
not a suitable setting to study the performance of pricing strategies. This motivates the present
chapter on dynamic pricing of perishable products with finite initial inventory, during multiple
consecutive selling seasons of finite duration.

Similar to Chapters 3 and 4, we assume a parametric demand model with unknown parameters
which can be estimated with maximum-likelihood estimation. We then propose a pricing policy
that, apart from a finite number of time periods, essentially is a certainty equivalent policy: at
each decision moment the price is chosen that is optimal w.r.t. the available parameter estimates.
Somewhat surprisingly, the certainty equivalent policy has a very good performance. The pa-
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rameter estimates converge to the correct values, and the selling prices converge to the optimal
prices. The regret, which measures the expected amount of revenue loss due to not using the op-
timal prices, is O(log2(T )), where T denotes the number of selling seasons. This is considerably
better than

√
T , which is the best achievable bound on the regret when inventory is infinite.

This difference in qualitative behavior of the regret can be explained as follows. In the infinite
inventory model, prices and parameter estimates can get stuck in what Harrison et al. (2011a)
call an “indeterminate equilibrium”. This means that for some values of the parameter estimates,
the expected observed demand at the certainty equivalent price is equal to what the parame-
ter estimates predict; in other words, the observations confirm the correctness of the (incorrect)
parameter estimates. As a result, certainty equivalent pricing induces insufficient dispersion in
the chosen selling prices to eventually learn the true value of the parameters. Such cannot occur
in the setting with finite inventories and finite selling seasons. An optimal price - optimal w.r.t.
certain parameter estimates - is namely not a fixed number, but changes depending on the re-
maining inventory and the remaining length of the selling season. As a result, an optimal policy
naturally induces endogenous price dispersion, and prices cannot get stuck in an “indeterminate
equilibrium”. On the contrary, the large amount of price dispersion implies that the unknown
parameters are learned quite fast and that Regret(T ) is only O(log2(T )).

The rest of this chapter is organized as follows. Section 5.2 discusses the mathematical model,
the structure of the demand distribution, the full-information optimal solution, and the regret
measure. Section 5.3 shows how the unknown parameters of the model can be estimated, and
contains a result concerning the speed at which parameter estimates converge to the true value.
The endogenous-learning property of the system is described in Section 5.4; our pricing policy
and its performance bound in terms of the regret is contained in Section 5.5. A numerical illus-
tration of the policy and its performance is provided in Section 5.6. All mathematical proofs are
contained in Section 5.7.

5.2 Preliminaries

In this section we subsequently introduce the model, describe the characteristics of the demand
distribution, discuss the optimal pricing policy under full information, and introduce the regret
as quality measure of pricing policies.

5.2.1 Model formulation

We consider a monopolist seller of perishable products which are sold during consecutive selling
seasons. Each selling season consists of S ∈ N discrete time periods: the i-th selling season starts
at time period 1 + (i− 1)S, and lasts until period iS, for all i ∈ N. We write SSt = 1 + ⌊(t− 1)/S⌋
to denote the selling season corresponding to period t, and st = t − (SSt − 1)S to denote the
relative time in the selling period. At the start of each selling season, the seller has C ∈ N discrete
units of inventory at his disposal, which can only be sold during that particular selling season.
At the end of a selling season, all unsold inventory perishes.

In each time period t ∈ N the seller has to determine a selling price pt ∈ [pl, ph]. Here 0 < pl < ph
denote the lowest and highest price admissible to the firm. After setting the price the seller
observes a realization of demand, which takes values in {0, 1}, and collects revenue. We let ct,
(t ∈ N), denote the capacity or inventory level at the beginning of period t ∈ N, and dt the
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demand in period t. The dynamics of (ct)t∈N are given by

ct = C, if st = 1,
ct = max{ct−1 − dt−1, 0}, if st 6= 1.

The pricing decisions of the seller are allowed to depend on previous prices and demand realiza-
tions, but not on future ones. More precisely, for each t ∈ N we define the set of possible histories
Ht as

Ht = {(p1, . . . , pt, d1, . . . , dt) ∈ [pl, ph]
t × {0, 1}t},

with H0 = {∅}. A pricing strategy ψ = (ψt)t∈N is a collection of functions ψt : Ht−1 → [pl, ph],
such that for each t ≥ 2, the seller chooses the price pt = ψt(p1, . . . , pt−1, d1, . . . , dt−1), and p1 =

ψ1(∅).

The revenue collected in period t equals pt min{ct, dt}. The purpose of the seller is to find a pric-
ing strategy ψ that maximizes the cumulative expected revenue earned after T selling seasons,
∑TS
i=1Eψ[pi min{di, ci}]. Here we write Eψ to emphasize that this expectation depends on the

pricing strategy ψ.

5.2.2 Demand distribution

The demand in a single time period against selling price p is a realization of the random variable
D(p). We assume that D(p) is Bernoulli distributed with mean E[D(p)] = h(β0 + β1p), for all
p ∈ [pl, ph], some (β0, β1) ∈ R2, and some function h. The true value of β is denoted by β(0),
and is unknown to the seller. If we wish to emphasize the dependence of the demand on the
unknown parameters β, we write D(p, β). Conditionally on selling prices, the demand in any
two different time periods are independent.

To ensure existence and uniqueness of revenue-maximizing selling prices, we make a number
of assumptions on h and β. First, we assume that β(0) lies in the interior of a compact known
set B ⊂ R2, and assume that β1 < 0 for all β ∈ B. Second, we assume that h is three times
continuously differentiable, log-concave, h(β0 + β1p) ∈ (0, 1) for all β ∈ B and p ∈ [pl, ph], and
the derivative ḣ(z) of h(z) is strictly positive. This last assumption, together with β1 < 0 for all
β ∈ B, implies that expected demand is decreasing in p, for all β ∈ B.

Write r∗ = maxp∈[pl,ph] p · h(β(0)
0 + β

(0)
1 p), and for (a, β, p) ∈ R ×B × [pl, ph], define

ga,β(p) = −(p− a)β1
ḣ(β0 + β1p)

h(β0 + β1p)
.

We assume that ga,β(0)(pl) < 1, ga,β(0)(ph) > 1, and ga,β(0)(p) is strictly increasing in p, for all
0 ≤ a ≤ r∗. These conditions, which for a = 0 coincide with the assumptions in Lariviere (2006,
page 602), ensure that p 7→ (p− a)h(β

(0)
0 + β

(0)
1 p) has a unique maximizer in (pl, ph).

Examples of functions h that satisfy the assumptions (with appropriate conditions on B and
[pl, ph]), are h(z) = exp(z), h(z) = z, and h(z) = logit(z) = exp(z)/(1 + exp(z)).

5.2.3 Full-information optimal solution

If the value of β is known, the optimal prices can be determined by solving a Markov decision
problem (MDP). Since each selling season corresponds to the same MDP, the optimal pricing
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strategy for the infinite-horizon average reward criterion is to repeatedly use the optimal policy
for a single selling season. The state space of this MDP is X = {(c, s) | c = 0, . . . , C, s = 1, . . . , S},
where (c, s) means that there are c units of remaining inventory at the beginning of the s-th period
of the selling season, and the action space is the interval [pl, ph]. If action p is used in state (c, s),
s < S, then with probability h(β0 + β1p) a state transition (c, s) → ((c − 1)+, s + 1) occurs and
reward ph(β0 + β1p)1c>0 is obtained; with probability 1 − h(β0 + β1p) a state transition (c, s) →
(c, s+1) occurs and zero reward is obtained. If action p is used in state (c, S), then with probability
one a state transition (c, s) 7→ (C, 1) occurs; the obtained reward equals ph(β0 + β1p)1c>0 with
probability h(β0 + β1p), and zero with probability 1 − h(β0 + β1p).

A (stationary deterministic) policy π is a matrix (π(c, s))0≤c≤C,1≤s≤S in the policy space Π =

[pl, ph]
(C+1)×S . Given a policy π ∈ Π, let V πβ (c, s) be the expected revenue-to-go function starting

in state (c, s) ∈ X and using the actions of π. Then V πβ (c, s) satisfies the following recursion:

V πβ (c, s) = P (D(π(c, s), β) = 0) · V πβ (c, s+ 1)

+ P (D(π(c, s), β) = 1) · (π(c, s) + V πβ (c− 1, s+ 1)), (c ≥ 1), (5.1)

V πβ (0, s) = 0, (5.2)

for all 1 ≤ s ≤ S, where we write V πβ (c, S + 1) = 0 for all 0 ≤ c ≤ C.

By Proposition 4.4.3 of Puterman (1994), for each β ∈ B there is a corresponding optimal policy

π∗
β ∈ Π. This policy can be calculated using backward induction. Write Vβ(c, s) = V

π∗
β

β (c, s) for
the optimal revenue-to-go function. Then Vβ(c, s) and π∗

β(c, s), for (c, s) ∈ X , satisfy the following
recursion:

Vβ(c, s) = max
p∈[pl,ph]

[

p− ∆Vβ(c, s+ 1)
]

h(β0 + β1p) + Vβ(c, s+ 1),

π∗
β(c, s) ∈ arg max

p∈[pl,ph]

[

p− ∆Vβ(c, s+ 1)
]

h(β0 + β1p),
(5.3)

where we define ∆Vβ(c, s) = Vβ(c, s) − Vβ(c− 1, s), and ∆Vβ(0, s) = 0 for all 1 ≤ s ≤ S.

The optimal average reward of the MDP is equal to Vβ(C, 1), and the true optimal average reward
is equal to Vβ(0)(C, 1).

5.2.4 Regret measure

To asses the quality of the pricing decisions of the seller, we define the regret. This quantity
measures the expected amount of money lost due to not using the optimal prices. The regret of
pricing strategy ψ after the first T selling seasons is defined as

Regret(ψ, T ) = T · Vβ(0)(C, 1) −
TS
∑

i=1

Eψ[pi min{di, ci}], (5.4)

where (pi)i∈N denote the prices generated by the pricing strategy ψ.

Maximizing the cumulative expected revenue is equivalent to minimizing the regret, but observe
that the regret cannot directly be used by the seller to find the optimal strategy, since it depends
on the unknown β(0). Also note that we calculate the regret over a number of selling seasons, and
not over a number of time periods. The reason is that the optimal policy π∗

β(0) is optimized over
an entire selling season, and not over each individual state of the underlying MDP: a chosen price
pt may induce a higher instant reward in a certain state (ct, st) than the optimal price π∗

β(0)(ct, st).
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This effect is averaged out by looking at the optimal expected reward in an entire selling season.

5.3 Parameter estimation

5.3.1 Maximum-likelihood estimation

The value of β(0) can be estimated with maximum-likelihood estimation. In particular, given a
sample of prices p1, . . . , pt and demand realizations d1, . . . dt, the log-likelihood function Lt(β)

equals

Lt(β) =

t
∑

i=1

log
[

h(β0 + β1pi)
di(1 − h(β0 + β1pi))

1−di
]

.

The score function, the derivative of Lt(β) with respect to β, equals

lt(β) =

t
∑

i=1

ḣ(β0 + β1pi)

h(β0 + β1pi)(1 − h(β0 + β1pi))

(

1

pi

)

(di − h(β0 + β1pi)). (5.5)

We let β̂t be a solution to lt(β) = 0. If no solution exists, we define β̂t = β(1), for some predefined
β(1) ∈ B. If a solution to lt(β) = 0 exists but lies outside B, we define β̂t as the projection of this
solution on B. For most choices of h there is no explicit formula for the solution of lt(β) = 0, and
numerical methods have to be deployed to calculate it.

5.3.2 Convergence rates of parameter estimates

Define the design matrix

Pt =

t
∑

i=1

(

1

pi

)

(1, pi), (t ∈ N). (5.6)

The smallest eigenvalue of Pt, denoted by λmin(Pt), is a measure for the amount of price disper-
sion in p1, . . . , pt. The growth rate of λmin(Pt) plays an important role in establishing bounds on
the speed at which the parameter estimates β̂t converge to the true value β(0). In particular, the
higher the growth rate of λmin(Pt), the faster E[||β̂t−β(0)||2] converges to zero. This is formalized
in the next proposition. To state the result, we define the last-time random variable

Tρ = sup
{

t ∈ N | there is no β ∈ B with
∣

∣

∣

∣

∣

∣β − β(0)
∣

∣

∣

∣

∣

∣ ≤ ρ and lt(β) = 0
}

, (5.7)

for ρ > 0.

Proposition 5.1. SupposeL is a non-random function on N such that λmin(Pt) ≥ L(t) > 0 a.s., for all t ≥
t0 and some non-random t0 ∈ N, and such that inft≥t0 L(t)t−α > 0, for some α > 1/2. Then there exists

a ρ1 > 0 such that for all 0 < ρ ≤ ρ1 we have Tρ < ∞ a.s., E [Tρ] < ∞, and E
[

||β̂t − β(0)||21t>Tρ

]

=

O (log(t)/L(t)).

This follows directly from Theorem 7.1, Theorem 7.2, and Remark 7.2 in Chapter 7.
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5.4 Endogenous learning

Proposition 5.1 shows that the growth rate of λmin(Pt) influences the speed at which the param-
eter estimates converge to the true value. The main result of this section is that λmin(Pt) strictly
increases if, during a selling season, prices are used that are close to that prescribed by π∗

β(0) . This
means that a continuous use of prices close to π∗

β(0) leads to a linear growth rate of λmin(Pt), which
by Proposition 5.1 implies that the parameter estimates converges very fast to the true value, in

particular with rate E
[

||β̂t − β(0)||21t>Tρ

]

= O (log(t)/t).

This result can be interpreted as the system having an endogenous learning property: the un-
known parameters are learned very fast when a policy close to the optimal policy is used.

Theorem 5.1. Let 1 < C < S and k ∈ N. There exist a constant v0 > 0, depending on β(0), and an open
neighborhood U ⊂ B containing β(0), such that, if

ps+(k−1)S = π∗
β(s)(cs+(k−1)S , s)

for all s = 1, . . . , S and some sequence β(1), . . . , β(S) ∈ U , then

λmin(PkS) − λmin(P(k−1)S) ≥ 1

8
v2
0(1 + p2

h)
−1,

and
min

1≤s,s′≤S
|ps+(k−1)S − ps′+(k−1)S | ≥ v0/2.

In Theorem 5.1, the requirement C < S is crucial. If C > S, then clearly C − S items cannot be
sold during the selling season. The selling of the remaining S items can be interpreted as that
each item can be sold only in a single, dedicated period. There is then no interaction between
individual items, and the pricing problem is equivalent to S repeated problems with a single
item and a single selling period. This setting does not satisfy an endogenous learning property.
On the contrary, the seller needs to actively experiment with selling prices in order to learn the
unknown parameters. A pricing strategy for this setting is elaborated in Chapter 3.

The proof of Theorem 5.1 makes use of the following auxiliary lemmas. Lemma 5.1 shows that
the assumptions we impose on ga,β(p) do not only hold for a ∈ [0, r∗] and β = β(0), but also
on an open neighborhood around [0, r∗] × {β(0)}. This result, which follows directly from the
continuity assumptions on h, enables us in later proofs to apply the implicit function theorem.
Lemma 5.2 considers the optimization problem underlying (5.3), and shows uniqueness, differ-
entiability, and sensitivity properties. These results are applied in Lemma 5.3 to conclude that
(π∗
β)1≤c≤C,1≤s≤S is uniquely defined and continuous in β, on an open neighborhood around β(0).

Lemma 5.4 relates price differences to the growth of λmin(Pt) during a selling season.

Lemma 5.1. There are open sets Ua ⊂ R containing [0, r∗], and UB ⊂ B containing β(0), with

sup
β∈UB

max
p∈[pl,ph]

p · h(β0 + β1p) ∈ Ua, (5.8)

and such that

ga,β(pl) < 1, ga,β(ph) > 1 and ga,β(p) strictly increasing in p, (5.9)

holds for all (a, β) ∈ Ua × UB .

Lemma 5.2. Let Ua and UB be as in Lemma 5.1, and for all (a, β) ∈ Ua × UB define the function
fa,β(p) = (p − a)h(β0 + β1p). Write ḟa,β(p) and f̈a,β(p) for the first and second derivative of fa,β(p)
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with respect to p, and let p∗a,β = arg max
p∈[pl,ph]

fa,β(p). Then:

(i) p∗a,β is the unique solution to ḟa,β(p) = 0, lies in (pl, ph), and in addition satisfies f̈a,β(p∗a,β) < 0.

(ii) p∗a,β is continuously differentiable in a and β, strictly increasing in a, and fa,β(p∗a,β) is strictly
decreasing in a.

(iii) There is a K0 > 0 such that for all (a, β) ∈ Ua × UB and p ∈ [pl, ph],

fa,β(p
∗
a,β) − fa,β(p) ≤ K0(p− p∗a,β)

2.

Lemma 5.3. Let UB be as in Lemma 5.1. For each β ∈ UB and (c, s) ∈ X with c > 0, π∗
β(c, s) is uniquely

defined and continuous in β.

Lemma 5.4. Let k ∈ N. If there are s, s′ ∈ {1, . . . , S} such that |ps+(k−1)S − ps′+(k−1)S | ≥ δ, then
λmin(PkS) ≥ λmin(P(k−1)S) + 1

2δ
2(1 + p2

h)
−1.

5.5 Pricing strategy

We propose a pricing strategy based on the following principle: in each period, estimate the un-
known parameters, and subsequently use the action from the policy that is optimal with respect
to this estimate.

Pricing strategy Φ(ǫ)

Initialization: Choose 0 < ǫ < (ph − pl)/4, and initial prices p1, p2 ∈ [pl, ph], with p1 6= p2.
For all t ≥ 2: if ct+1 = 0, set pt+1 ∈ [pl, ph] arbitrary. If ct+1 > 0:
Estimation: Determine β̂t, and let pceqp = π∗

β̂t
(ct+1, st+1).

Pricing:

I) If

(a) |pi − pj | < ǫ for all 1 ≤ i, j ≤ t with SSi = SSt+1, and

(b) |pi − pceqp| < ǫ for all 1 ≤ i ≤ t with SSi = SSt+1, and

(c) ct+1 = 1 or st+1 = S,

then choose pt+1 ∈
(

{pceqp + 2ǫ, pceqp − 2ǫ} ∩ [pl, ph]
)

.
II) Else, set pt+1 = pceqp.

Given a positive inventory level, the pricing strategy Φ(ǫ) sets the price pt+1 equal to the price
that is optimal according to the available parameter estimates β̂t, except possibly when the state
(ct+1, st+1) is in the set {(c, s) | c = 1 or s = S}. This set contains all states that, with positive
probability, are the last states in the selling season in which products are sold (either because the
selling season almost finishes, or because the inventory consists of only a single product). In these
states, the price pt+1 deviates from the certainty equivalent price pceqp if otherwise max{|pi−pj | |
SSi = SSt+1} < ǫ.

The endogenous learning property described in Section 5.4 implies that if β̂t is sufficiently close
to β(0) and ǫ is sufficiently small, then I) does not occur. As β̂t converges to β(0), the pricing
strategy Φ(ǫ) eventually acts as a certainty equivalent pricing strategy. The pricing decisions in
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II) are driven by optimizing instant revenue, and do not reckon with the objective of optimizing
the quality of the parameter estimates β̂t. The endogenous learning property makes sure that
learning the parameter values happens on the fly, without active effort.

As a result, the parameter estimates converge quickly to their true values, and the pricing deci-
sions quickly to the optimal pricing decisions. The following theorem shows that the regret of
the strategy Φ(ǫ) is O(log2(T )) in the number of selling seasons T .

Theorem 5.2. Let 1 < C < S, v0 as in Theorem 5.1, and assume ǫ < v0/2. Then

Regret(Φ(ǫ), T · S) = O(log2(T )).

5.6 Numerical illustration

To illustrate the analytical results that we have derived, we provide a small numerical illustration.
We let C = 10, S = 20, pl = 1, ph = 20, β(0)

0 = 2, β(0)
1 = −0.4, and h(z) = logit(z). The optimal

expected revenue per selling season, Vβ(0)(C, 1), is equal to 47.79. We consider a time span of 100
selling periods. Figure 5.1 shows a sample path of ||β̂t− β(0)|| for t = 1, . . . , 100S, Regret(T ), and
the relative regret Regret(T )

T ·V
β(0) (C,1)

× 100%, for T = 1, . . . , 100.

Figure 5.1: Sample path of estimation error, regret, and relative regret
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5.7 Proofs

Proof of Theorem 5.1

Consider the k-th selling season, and write c(1) = c1+(k−1)S , c(2) = c2+(k−1)S , . . ., c(S) = ckS .
First we show that there is a v0 > 0 such that if prices π∗

β(0)(c(s), s) are used in state (c(s), s),
for all s = 1, . . . , S, then there are 1 ≤ s, s′ ≤ S with |π∗

β(0)(c(s), s) − π∗
β(0)(c(s

′), s′)| > v0. Since

π∗
β is continuous in β around β(0) (Lemma 5.3), this implies that there is an open neighborhood

U ⊂ UB around β(0) such that, if price π∗
β(s)(c(s), s) is used in state (c(s), s), for all s = 1, . . . , S,

then there are 1 ≤ s, s′ ≤ S with |π∗
β(s)(c(s), s) − π∗

β(s′)(c(s
′), s′)| > v0/2.

Application of Lemma 5.4 with K1 = (1 + p2
h)

−1 v
2
0

8 proves the theorem.

Define

⊳ = {(c, s) | S + 1 − C ≤ s ≤ S, S + 1 − s ≤ c ≤ C}. (5.10)

See Figure 5.2 for an illustration of ⊳ in the state space X . Notice that since (C, 1) /∈ ⊳ (by the
assumption C < S), the path (c(s), s)1≤s≤S may or may not hit ⊳. We show that in both cases, at
least two different selling prices occur on the path (c(s), s)1≤s≤S .

Case 1. The path (c(s), s)1≤s≤S hits ⊳. Then there is an s such that (c(s), s) ∈ ⊳ and (c(s), s−1) /∈ ⊳.
In particular, (c(s), s−1) ∈ (L⊳) = {(1, S−1), (2, S−2), . . . , (C−1, S−C+1), (C, S−C)}, where
(L⊳) denotes the points (c, s) immediately left to ⊳ in Figure 5.2. The sets ⊳ and (L⊳) satisfy the
following properties:

(P.1) If (c, s) ∈ ⊳ then ∆Vβ(0)(c, s+ 1) = 0, π∗
β(0)(c, s) = arg max

p∈[pl,ph]

ph(β
(0)
0 + β

(0)
1 p), and

Vβ(0)(c, s) = (S − s+ 1) · Vβ(0)(1, S).

(P.2) If (c, s) ∈ (L⊳), then π∗
β(0)(c, s) 6= π∗

β(0)(c, s+1) and ∆Vβ(0)(c+1, S−c) 6= 0 (provided c < C).

Proof of (P.1): Backward induction on s. If s = S and (c, s) ∈ ⊳, then the assertions follow
immediately. Let s < S. Then ∆Vβ(0)(c, s+1) = Vβ(0)(c, s+1)−Vβ(0)(c−1, s+1) = 0, π∗

β(0)(c, s) =

arg max
p∈[pl,ph]

ph(β
(0)
0 + β

(0)
1 p) and Vβ(0)(c, s) = maxp∈[pl,ph] ph(β

(0)
0 + β

(0)
1 p) + Vβ(0)(c, s+ 1) = (S − s+

1) · Vβ(0)(1, S), by (5.3) and the induction hypothesis. This proves (P.1).

Proof of (P.2). Induction on c. If c = 1 and (c, s) ∈ (L⊳), then (c, s) = (1, S − 1). Since
∆Vβ(0)(1, S) = Vβ(0)(1, S) > 0, Lemma 5.2 and equation (5.3) imply π∗

β(0)(1, S − 1) 6= π∗
β(0)(1, S).

In addition,

Vβ(0)(2, S − 1) = max
p∈[pl,ph]

(

(p− ∆Vβ(0)(2, S))h(β
(0)
0 + β

(0)
1 p) + Vβ(0)(2, S)

)

, (5.11)

Vβ(0)(1, S − 1) = max
p∈[pl,ph]

(

(p− ∆Vβ(0)(1, S))h(β
(0)
0 + β

(0)
1 p) + Vβ(0)(1, S)

)

. (5.12)

Property (P.1) implies Vβ(0)(2, S) = Vβ(0)(1, S) and ∆Vβ(0)(2, S) = 0. Furthermore, ∆Vβ(0)(1, S) =

Vβ(0)(1, S) > 0, and thus by Lemma 5.2, ∆Vβ(0)(2, S − 1) = Vβ(0)(2, S − 1) − Vβ(0)(1, S − 1) 6= 0.

Let c > 1 and (c, s) ∈ (L⊳). Then (c, s) = (c, S − c). By the induction hypothesis we have
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Figure 5.2: Schematic picture of ⊳

∆Vβ(0)(c, S − c+ 1) 6= 0, and thus

π∗
β(0)(c, S − c) = arg max

p∈[pl,ph]

(

p− ∆Vβ(0)(c, S − c+ 1)
)

· h(β(0)
0 + β

(0)
1 p) (5.13)

6= arg max
p∈[pl,ph]

ph(β
(0)
0 + β

(0)
1 p) = π∗

β(0)(c, S − c+ 1), (5.14)

where we used Lemma 5.2 for the first inequality, and (P.1) for the second equality. It remains to
show ∆Vβ(0)(c+ 1, S − c) 6= 0, when c < C. Note that

Vβ(0)(c+ 1, S − c) = max
p∈[pl,ph]

(p− ∆Vβ(0)(c+ 1, S − c+ 1)) · h(β(0)
0 + β

(0)
1 p)

+ Vβ(0)(c+ 1, S − c+ 1),

Vβ(0)(c, S − c) = max
p∈[pl,ph]

(

p− ∆Vβ(0)(c, S − c+ 1)
)

· h(β(0)
0 + β

(0)
1 p) + Vβ(0)(c, S − c+ 1).

Since (c+1, S−c+1) ∈ ⊳ and (c, S−c+1) ∈ ⊳, (P.1) implies Vβ(0)(c+1, S−c+1) = Vβ(0)(c, S−c+1).
In addition, c < C implies (c + 1, S − c) ∈ ⊳, and thus ∆Vβ(0)(c + 1, S − c + 1) = 0 by (P.1). The
induction hypothesis implies ∆Vβ(0)(c, S−c+1) 6= 0. Then Lemma 5.2 implies Vβ(0)(c+1, S−c) 6=
Vβ(0)(c, S − c). This proves (P.2), and shows that a price-change occurs when ⊳ is entered.

This concludes case 1.

Case 2. The path (c(s), s)1≤s≤S does not hit ⊳. Then there is an s such that c(s) = 2 and c(s+1) =

1. We show π∗
β(0)(2, s) 6= π∗

β(0)(1, s+ 1), for all 1 ≤ s ≤ S − 2.

π∗
β(0)(2, s) = arg max

p∈[pl,ph]

(

p− ∆Vβ(0)(2, s+ 1)
)

· h(β(0)
0 + β

(0)
1 p), (5.15)

π∗
β(0)(1, s+ 1) = arg max

p∈[pl,ph]

(

p− ∆Vβ(0)(1, s+ 2)
)

· h(β(0)
0 + β

(0)
1 p), (5.16)

By Lemma 5.2, and the fact that π∗
β(0)(2, s) and π∗

β(0)(1, s + 1) are both contained in (pl, ph),
it suffices to show ∆Vβ(0)(2, s + 1) 6= ∆Vβ(0)(1, s + 2). We show by backward induction that



5.7 Proofs 75

Vβ(0)(2, s) − Vβ(0)(1, s) 6= Vβ(0)(1, s+ 1) for all 2 ≤ s ≤ S − 1. Let 2 ≤ s ≤ S − 1.

Vβ(0)(2, s) = max
p∈[pl,ph]

(

p− ∆Vβ(0)(2, s+ 1)
)

· h(β(0)
0 + β

(0)
1 p) + Vβ(0)(2, s+ 1), (5.17)

Vβ(0)(1, s) = max
p∈[pl,ph]

(

p− ∆Vβ(0)(1, s+ 1)
)

· h(β(0)
0 + β

(0)
1 p) + Vβ(0)(1, s+ 1), (5.18)

Vβ(0)(1, s+ 1) = max
p∈[pl,ph]

(

p− ∆Vβ(0)(1, s+ 2)
)

· h(β(0)
0 + β

(0)
1 p) + Vβ(0)(1, s+ 2). (5.19)

Using

Vβ(0)(1, s+ 1) ≥
[

(π∗
β(0)(2, s) − ∆Vβ(0)(1, s+ 2))h(β

(0)
0 + β

(0)
1 π∗

β(0)(2, s)) + Vβ(0)(1, s+ 2)
]

,

we have

Vβ(0)(2, s) − Vβ(0)(1, s) − Vβ(0)(1, s+ 1)

≤(π∗
β(0)(2, s) − ∆Vβ(0)(2, s+ 1))h(β

(0)
0 + β

(0)
1 π∗

β(0)(2, s)) + Vβ(0)(2, s+ 1)

−
[

(π∗
β(0)(1, s) − ∆Vβ(0)(1, s+ 1))h(β

(0)
0 + β

(0)
1 π∗

β(0)(1, s)) + Vβ(0)(1, s+ 1)
]

−
[

(π∗
β(0)(2, s) − ∆Vβ(0)(1, s+ 2))h(β

(0)
0 + β

(0)
1 π∗

β(0)(2, s)) + Vβ(0)(1, s+ 2)
]

= − π∗
β(0)(1, s)h(β

(0)
0 + β

(0)
1 π∗

β(0)(1, s))

+
[

Vβ(0)(2, s+ 1) − Vβ(0)(1, s+ 1) − Vβ(0)(1, s+ 2)
][

1 − h(β
(0)
0 + β

(0)
1 (π∗

β(0)(2, s))
]

+Vβ(0)(1, s+ 1)h(β
(0)
0 + β

(0)
1 π∗

β(0)(1, s))

≤− π∗
β(0)(1, s)h(β

(0)
0 + β

(0)
1 π∗

β(0)(1, s)) + Vβ(0)(1, s+ 1)h(β
(0)
0 + β

(0)
1 π∗

β(0)(1, s))

=Vβ(0)(1, s+ 1) − Vβ(0)(1, s).

The last inequality is implied by Vβ(0)(2, s + 1) − Vβ(0)(1, s + 1) − Vβ(0)(1, s + 2) ≤ 0, which for
s = S − 1 follows from (P.1), and for s < S − 1 follows from the induction hypothesis. The proof
of Lemma 5.3 implies ph−Vβ(0)(1, s+1) > 0, and thus Vβ(0)(1, s) ≥ (ph−Vβ(0)(1, s+1)) ·h(β(0)

0 +

β
(0)
1 ph) + Vβ(0)(1, s+ 1) > Vβ(0)(1, s+ 1). This proves Vβ(0)(2, s) − Vβ(0)(1, s) − Vβ(0)(1, s+ 1) < 0.

This concludes case 2.

We have shown that in case 1, π∗
β(0)(c, S − c) 6= π∗

β(0)(c, S − c + 1), and in case 2, π∗
β(0)(2, s) 6=

π∗
β(0)(1, s+ 1). This implies that on any path (c(s), s)1≤s≤S in X , starting at (C, 1), the policy π∗

β(0)

induces a price-change somewhere along the path (c(s), s)1≤s≤S . Since the number of possible
paths is finite, it follows that there exists a v0 > 0 such that for all paths (c(s), s)1≤s≤S ,

|π∗
β(0)(c(s), s) − π∗

β(0)(c(s
′), s′)| ≥ v0.

Proof of Theorem 5.2

Consider the k-th selling season, for some arbitrary fixed k ∈ N. The prices generated by Φ(ǫ) are
based on the estimates β̂t, which are determined by the historical prices and demand realizations.
Now, different demand realizations can lead to the same state (c, s) of the MDP. For example, a
sale in the first period of a selling season and no sale in the second period leads to state (C−2, 3),
but this state is also reached if there is no sale in the first period and a sale in the second period
of the selling season. These two “routes” may lead to different estimates β̂t, and to different
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pricing decisions in state (C − 2, 3). Thus, with Φ(ǫ), the prices in the k-th selling season are not
determined by a stationary policy for the Markov decision problem described in Section 5.2.3.

To be able to compare the optimal revenue in a selling season with that obtained by Φ(ǫ), we
define a new Markov decision problem, in which the states are sequences of demand realizations
in the selling season. Conditional on all prices and demand realizations from before the selling
season, the policy Φ(ǫ) is then a stationary policy for this new MDP: each state is associated with
a unique price prescribed by Φ(ǫ). This enables us to calculate bounds on the regret obtained in
a single selling season.

We define this new MDP for any β ∈ B. The state space X̃ consists of all sequences of possible
demand realizations in the selling season:

X̃ = {(x1, . . . , xs) ∈ {0, 1}s | 0 ≤ s ≤ S},

where we denote the empty sequence by (∅). The action space is [pl, ph]. Using action p in
state (x1, . . . , xs), for 0 ≤ s < S, induces a state transition from (x1, . . . xs) to (x1, . . . , xs, 1)

with probability h(β0 + β1p) (corresponding to a sale, and inducing immediate reward ph(β0 +

β1p)1Ps
i=1 xi<C), and from (x1, . . . xs) to (x1, . . . , xs, 0) with probability 1 − h(β0 + β1p) (corre-

sponding to no sale, and inducing zero reward). There are no state transitions in the terminal
states (x1, . . . , xS) ∈ X̃ .

It is easily seen that the MDP described in section 5.2.3 is the same as the one described here,
except that there states are aggregated: all states (x1, . . . , xs) and (x′1, . . . , x

′
s′) with s = s′ and

∑s
i=1 xi =

∑s′

i=1 x
′
i are there taken together.

Let π̃ = (π̃(x))x∈X̃ be a stationary deterministic policy for this MDP with augmented state space,
and let Ṽ π̃β (x) be the corresponding value function, for β ∈ B. For x = (x1, . . . , xs) ∈ X̃ with s <

S we write (x; 1) = (x1, . . . , xs, 1) and (x; 0) = (x1, . . . , xs, 0). Then, for any x = (x1, . . . , xs) ∈ X̃
and β ∈ B, Ṽ π̃β (x) satisfies the backward recursion

Ṽ π̃β (x) = (π̃(x)1Ps
i=1 xi<C + Ṽ π̃β (x; 1))h(β0 + β1π̃(x)) + Ṽ π̃β (x; 0)(1 − h(β0 + β1π̃(x))),

where we write Ṽ π̃β (x; 1) = Ṽ π̃β (x; 0) = 0 for all terminal states (x1, . . . , xS) ∈ X̃ .

Let π̃∗
β be the optimal policy corresponding to β ∈ B, and write Ṽβ(x) = Ṽ

π̃∗
β

β (x). Then

Ṽβ(x) = max
p∈[pl,ph]

[

p1Ps
i=1 xi<C −

(

Ṽβ(x; 0) − Ṽβ(x; 1)
)

]

h(β0 + β1p) + Ṽβ(x; 0), (5.20)

π̃∗
β(x) = arg max

p∈[pl,ph]

[

p1Ps
i=1 xi<C −

(

Ṽβ(x; 0) − Ṽβ(x; 1)
)

]

h(β0 + β1p). (5.21)

Using the same line of reasoning as Lemma 5.2 and 5.3, it can easily be shown that π̃∗
β((x1, . . . , xs))

is unique if and only if
∑s
i=1 xi < C. For all x with

∑s
i=1 xi ≥ C, choose π̃∗

β(x) = ph. In this way

π̃∗
β(x) is uniquely defined for all x ∈ X̃ .

Let U and v0 be as in Theorem 5.1, ρ1 as in Proposition 5.1, and choose ρ ∈ (0, ρ1) such that β ∈ U
whenever ||β − β(0)|| ≤ ρ.

If (k − 1)S > Tρ, then β̂t ∈ U for all t = 1 + (k − 1)S, . . . , S(k − 1)S, and Theorem 5.1 implies
λmin(PkS) − λmin(P(k−1)S) ≥ 1

8v
2
0(1 + p2

h)
−1. If (k − 1)S ≤ Tρ, then I) of the pricing strategy

Φ(ǫ) guarantees that there are 1 ≤ s, s′ ≤ S such that |ps+(k−1)S − ps′+(k−1)S | ≥ ǫ. By Lemma
5.4 this implies λmin(PkS) − λmin(P(k−1)S) ≥ 1

2ǫ
2(1 + p2

h)
−1. Since ǫ2 ≤ v2

0/4, this means that
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λmin(PkS) ≥ k · 1
2ǫ

2(1 + p2
h)

−1 for all k ∈ N, and thus for all t > S,

λmin(Pt) ≥ λmin(P(SSt−1)S) ≥ (SSt − 1) · 1

2
ǫ2(1 + p2

h)
−1 ≥ t · 1

4S
ǫ2(1 + p2

h)
−1,

using SSt − 1 ≥ t (SSt−1)
S·SSt

≥ t
2S . By application of Proposition 5.1 with t0 = S and L(t) =

t· 1
4S ǫ

2(1+p2
h)

−1, we have Tρ <∞ a.s.,EΦ(ǫ)[Tρ] <∞, andEΦ(ǫ)[||β̂t−β(0)||21t>Tρ
] = O (log(t)/t).

In addition, v0/2 > ǫ implies that I) of the pricing strategy Φ(ǫ) does not occur for all t with
(SSt − 1)S > Tρ. In particular, if (k − 1)S > Tρ, then

p1+s+(k−1)S = π̃∗
β̂s+(k−1)S

(d1+(k−1)S , d2+(k−1)S , . . . , ds+(k−1)S), (5.22)

for all 1 ≤ s ≤ S − 1, and

p1+(k−1)S = π̃∗
β̂(k−1)S

(∅). (5.23)

Let H = (p1, . . . , p(k−1)S , d1, . . . , d(k−1)S) denote the history of prices and demand up to and
including time period (k − 1)S. Conditional on H , and given that (k − 1)S > Tρ, the parameter
estimates β̂s+(k−1)S in (5.22) and (5.23) are completely determined by the state
(d1+(k−1)S , d2+(k−1)S , . . . , ds+(k−1)S). Thus, for each state x ∈ X̃ there is a uniquely associated
price prescribed by Φ(ǫ). Consequently, there is a stationary deterministic policy, denoted by π̃H ,
such that

p1+s+(k−1)S = π̃H(x), when x = (d1+(k−1)S , d2+(k−1)S , . . . , ds+(k−1)S), 1 ≤ s ≤ S − 1,

p1+(k−1)S = π̃H(∅).

This enables us to bound the regret in the k-th selling season:

Vβ(0)(C, 1) −
kS
∑

i=1+(k−1)S

E[pi min{di, ci}]

=EΦ(ǫ)







Ṽβ(0)(∅) −
kS
∑

i=1+(k−1)S

pi min{di, ci}



1(k−1)S≤Tρ





+EΦ(ǫ)







Ṽβ(0)(∅) −
kS
∑

i=1+(k−1)S

pi min{di, ci}



1(k−1)S>Tρ





≤Ṽβ(0)(∅)P ((k − 1)S ≤ Tρ)

+EΦ(ǫ)



EΦ(ǫ)







Ṽβ(0)(∅) −
kS
∑

i=1+(k−1)S

pi min{di, ci}



1(k−1)S>Tρ
| H









≤Ṽβ(0)(∅)
EΦ(ǫ)[Tρ]

(k − 1)S
(5.24)

+EΦ(ǫ)

[

EΦ(ǫ)

[(

Ṽβ(0)(∅) − Ṽ π̃
H

β(0)(∅)
)

1(k−1)S>Tρ
| H
]]

. (5.25)

The term (5.24) is finite because E[Tρ] < ∞. To obtain an upper bound on the term (5.25), we
need a number of sensitivity results:
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(S.0) For all β ∈ UB and x such that (x; 0), (x; 1) ∈ X̃ , we have

0 ≤ Ṽβ(x; 0) − Ṽβ(x; 1) ≤ max
p∈[pl,ph]

p · h(β0 + β1p). (5.26)

(S.1) Write Ys = (d1+(k−1)S , . . . , ds+(k−1)S) for 1 ≤ s ≤ S−1, and Y0 = (∅). LetK0 be as in Lemma
5.3(iii). Then for all stationary deterministic policies π̃ and all 0 ≤ s ≤ S − 1,

(Ṽβ(0)(Ys) − Ṽ π̃β(0)(Ys))1(k−1)S>Tρ
≤ K0

S−1
∑

σ=s

(π̃∗
β(0)(Yσ) − π̃(Yσ))

21(k−1)S>Tρ
a.s. (5.27)

(S.2) There is a K3 > 0 such that for all β with ||β − β(0)|| ≤ ρ, and all x ∈ X̃ ,

|π̃∗
β(x) − π̃∗

β(0)(x)| ≤ K3||β − β(0)||. (5.28)

The proof of these three sensitivity properties is given below.

Application of (S.1), (S.2), and Proposition 5.1 now gives

EΦ(ǫ)

[

EΦ(ǫ)

[(

Ṽβ(0)(∅) − Ṽ π̃
H

β(0)(∅)
)

1(k−1)S>Tρ
| H
]]

≤EΦ(ǫ)

[

EΦ(ǫ)

[

K0

S−1
∑

σ=0

(π̃∗
β(0)(Yσ) − π̃H(Yσ))

21(k−1)S>Tρ
| H
]]

=EΦ(ǫ)

[

K0

S−1
∑

σ=0

(π̃∗
β(0)(Yσ) − π̃∗

β̂σ+(k−1)S
(Yσ))

21(k−1)S>Tρ

]

≤EΦ(ǫ)

[

K0K
2
3

S−1
∑

σ=0

∣

∣

∣

∣

∣

∣β(0) − β̂σ+(k−1)S

∣

∣

∣

∣

∣

∣

2

1(k−1)S>Tρ

]

≤K4

S−1
∑

σ=0

log(σ + (k − 1)S)

σ + (k − 1)S
,

for some K4 independent of k and S.

We then have

Vβ(0)(C, 1) −
kS
∑

i=1+(k−1)S

EΦ(ǫ)[pi min{di, ci}]

≤Ṽβ(0)(∅)EΦ(ǫ)[Tρ]
1

(k − 1)S
+K4

S−1
∑

σ=0

log(σ + (k − 1)S)

σ + (k − 1)S

≤K5

kS
∑

t=1+(k−1)S

log(t)

t
,

for some K5 > 0, independent of k and S.
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The proof of the theorem is complete by observing

Regret(Φ(ǫ), T · S) =

T
∑

k=1

[

Vβ(0)(C, 1) −
kS
∑

i=1+(k−1)S

EΦ(ǫ)[pi min{di, ci}]
]

≤
T
∑

k=1

K5

kS
∑

t=1+(k−1)S

log(t)

t
= K5

TS
∑

t=1

log(t)

t

= O(log2(T )).

Proof of (S.0)

We prove the assertion for all (x1, . . . , xs−1) ∈ X̃ , s = 1, . . . , S, by backward induction on s. If
x = (x1, . . . , xS−1) ∈ X̃ then Ṽβ(x; 0) = Ṽβ(x; 1) = 0.

Let x ∈ X . If
∑s
i=1 xi ≥ C then Ṽβ(x; 0) − Ṽβ(x; 1) = 0. If

∑s
i=1 xi < C then the induction

hypothesis implies

Ṽβ(x; 0) − Ṽβ(x; 1) =
[

π∗
β(x; 0) −

(

Ṽβ(x; 0; 0) − Ṽβ(x; 0; 1)
)

]

h(β0 + β1π
∗
β(x; 0)) + Ṽβ(x; 0; 0)

−
[

π∗
β(x; 1) −

(

Ṽβ(x; 1; 0) − Ṽβ(x; 1; 1)
)

]

h(β0 + β1π
∗
β(x; 1)) − Ṽβ(x; 1; 0)

≥
[

π∗
β(x; 1) −

(

Ṽβ(x; 0; 0) − Ṽβ(x; 0; 1)
)

]

h(β0 + β1π
∗
β(x; 1)) + Ṽβ(x; 0; 0)

−
[

π∗
β(x; 1) −

(

Ṽβ(x; 1; 0) − Ṽβ(x; 1; 1)
)

]

h(β0 + β1π
∗
β(x; 1)) − Ṽβ(x; 1; 0)

=
(

Ṽβ(x; 0; 0) − Ṽβ(x; 0; 1)
)

(1 − h(β0 + β1π
∗
β(x; 1)))

+
(

Ṽβ(x; 1; 0) − Ṽβ(x; 1; 1)
)

h(β0 + β1π
∗
β(x; 1))

≥ 0,

and

Ṽβ(x; 0) − Ṽβ(x; 1) =
[

π∗
β(x; 0) −

(

Ṽβ(x; 0; 0) − Ṽβ(x; 0; 1)
)

]

h(β0 + β1π
∗
β(x; 0)) + Ṽβ(x; 0; 0)

−
[

π∗
β(x; 1) −

(

Ṽβ(x; 1; 0) − Ṽβ(x; 1; 1)
)

]

h(β0 + β1π
∗
β(x; 1)) − Ṽβ(x; 1; 0)

≤
[

π∗
β(x; 0) −

(

Ṽβ(x; 0; 0) − Ṽβ(x; 0; 1)
)

]

h(β0 + β1π
∗
β(x; 0)) + Ṽβ(x; 0; 0)

−
[

π∗
β(x; 0) −

(

Ṽβ(x; 1; 0) − Ṽβ(x; 1; 1)
)

]

h(β0 + β1π
∗
β(x; 0)) − Ṽβ(x; 1; 0)

=
(

Ṽβ(x; 0; 0) − Ṽβ(x; 0; 1)
)

(1 − h(β0 + β1π
∗
β(x; 0)))

+
(

Ṽβ(x; 1; 0) − Ṽβ(x; 1; 1)
)

h(β0 + β1π
∗
β(x; 0))

≤ max
p∈[pl,ph]

p · h(β0 + β1p).

Proof of (S.1)

Backward induction on s. If s = S − 1 then Lemma 5.3(iii) implies

Ṽβ(0)(YS−1) − Ṽ π̃β(0)(YS−1)

= max
p∈[pl,ph]

p1PS−1
i=1 Yi<C

h(β
(0)
0 + β

(0)
1 p) − π̃(YS−1)1PS−1

i=1 Yi<C
h(β

(0)
0 + β

(0)
1 π̃(YS−1))

≤K0(π̃
∗
β(0)(Ys) − π̃(YS−1))

2 a.s.,
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and thus

(Ṽβ(0)(YS−1) − Ṽ π̃β(0)(YS−1)) · 1(k−1)S>Tρ
≤ K0(π̃

∗
β(0)(Ys) − π̃(YS−1))

2 · 1(k−1)S>Tρ
a.s.

If 0 ≤ s < S − 1, then

Ṽβ(0)(Ys) − Ṽ π̃β(0)(Ys)

= max
p∈[pl,ph]

[

p1Ps
i=1 Yi<C − (Ṽβ(0)(Ys; 0) − Ṽβ(0)(Ys; 1))

]

h(β
(0)
0 + β

(0)
1 p)

−
[

π̃(Ys)1Ps
i=1 Yi<C − (Ṽβ(0)(Ys; 0) − Ṽβ(0)(Ys; 1))

]

h(β
(0)
0 + β

(0)
1 π̃(Ys))

+
[

π̃(Ys)1Ps
i=1 Yi<C − (Ṽβ(0)(Ys; 0) − Ṽβ(0)(Ys; 1))

]

h(β
(0)
0 + β

(0)
1 π̃(Ys))

−
[

π̃(Ys)1Ps
i=1 Yi<C − (Ṽ π̃β(0)(Ys; 0) − Ṽ π̃β(0)(Ys; 1))

]

h(β
(0)
0 + β

(0)
1 π̃(Ys))

+Ṽ (Ys; 0) − Ṽ π̃(Ys; 0)

≤K0(π̃
∗
β(0)(Ys) − π̃(Ys))

2

+
(

Ṽβ(0)(Ys; 0) − Ṽ π̃β(0)(Ys; 0)
)

·
(

1 − h(β
(0)
0 + β

(0)
1 π̃(Ys))

)

+
(

Ṽβ(0)(Ys; 1) − Ṽ π̃β(0)(Ys; 1)
)

· (h(β(0)
0 + β

(0)
1 π̃(Ys))

=K0(π̃
∗
β(0)(Ys) − π̃(Ys))

2 +
[

Ṽβ(0)(Ys+1) − Ṽ π̃β(0)(Ys+1)
]

a.s.

Here the first inequality follows from Lemma 5.3(iii), observing that (S.0) implies Ṽβ(0)(Ys; 0) −
Ṽβ(0)(Ys; 1) ∈ Ua. The induction hypothesis now implies

(Ṽβ(0)(Ys) − Ṽ π̃β(0)(Ys))1(k−1)S>Tρ
≤ K0

S−1
∑

σ=s

(π̃∗
β(0)(Yσ) − π̃(Yσ))

21(k−1)S>Tρ
a.s.

Proof of (S.2)

If
∑s
i=1 xi ≥ C then π̃∗

β(x) − π̃∗
β(0)(x) = ph − ph = 0. If

∑s
i=1 xi < C, then

π̃∗
β(x) − π̃∗

β(0)(x) = p∗
Ṽβ(x;0)−Ṽβ(x;1),β

− p∗
Ṽ

β(0) (x;0)−Ṽβ(0) (x;1),β(0)

= p∗a,β − p∗a(0),β(0) , (5.29)

in the notation of Lemma 5.2, with a = Ṽβ(x; 0) − Ṽβ(x; 1) and a(0) = Ṽβ(0)(x; 0) − Ṽβ(0)(x; 1).

By (S.0) we have a, a(0) ∈ Ua and β ∈ UB , and thus by Lemma 5.2, π̃∗
β(x) is continuously differ-

entiable. The set {β ∈ B | ||β − β(0)|| ≤ ρ} is compact, and so is the set {Ṽβ(x; 0) − Ṽβ(x; 1) |
||β − β(0)|| ≤ ρ, β ∈ B}. As a result, the derivative of p∗a,β w.r.t. (a, β) is bounded on the set

(a, β) ∈ {Ṽβ(x; 0) − Ṽβ(x; 1) | ||β − β(0)|| ≤ ρ, β ∈ B} × {β ∈ B | ||β − β(0)|| ≤ ρ}. It follows by a
first-order Taylor expansion that there is a K6 > 0 such that for all such (a, β),

|p∗a,β − p∗a(0),β(0) | ≤ K6(|a− a(0)| + ||β − β(0)||). (5.30)

It is not difficult to show by backward induction that for all x ∈ X̃ there is a Kx > 0 such that, for
all β with ||β − β(0)|| ≤ ρ,

∣

∣

∣Ṽβ(x) − Ṽβ(0)(x)
∣

∣

∣ ≤ Kx

∣

∣

∣

∣

∣

∣β − β(0)
∣

∣

∣

∣

∣

∣ . (5.31)
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Combining (5.29), (5.30), and (5.31), we obtain

|π̃∗
β(x) − π̃∗

β(0)(x)|
≤K6(|a− a(0)| + ||β − β(0)||)
≤K6(|Ṽβ(x; 0) − Ṽβ(0)(x; 0)| + |Ṽβ(x; 1) − Ṽβ(0)(x; 1)| + ||β − β(0)||)
≤K6(1 + 2 max

x∈X̃
Kx)||β − β(0)||.

This proves (S.2).

5.8 Proofs of auxiliary lemmas

Proof of Lemma 5.2

Since

ḟa,β(p) = h(β0 + β1p)

[

1 + (p− a)β1
ḣ(β0 + β1p)

h(β0 + β1p)

]

= h(β0 + β1p) [1 − ga,β(p)] ,

and h(β0 + β1p) > 0 for all β ∈ UB , p ∈ [pl, ph], we have ḟa,β(p) = 0 if and only if ga,β(p) = 1. By
Lemma 5.1, for all (a, β) ∈ Ua×UB there is a unique p∗a,β ∈ (pl, ph) such that ga,β(p∗a,β) = 1. From

f̈a,β(p) =
∂

∂p

[

h(β0 + β1p)(1 − ga,β(p))
]

= β1ḣ(β0 + β1p)(1 − ga,β(p)) − h(β0 + β1p)
∂

∂p
ga,β(p)

follows

f̈a,β(p
∗
a,β) = −h(β0 + β1p

∗
a,β)

∂

∂p
ga,β(p

∗
a,β) < 0,

since by Lemma 5.1, ga,β is strictly increasing in p. This proves (i).

For all (a, β) ∈ Ua × UB , p∗a,β is the unique solution in (pl, ph) to ga,β(p) − 1 = 0, and

∂ga,β(p)

∂p

∣

∣

∣

p=p∗a,β

> 0.

The implicit function theorem (see e.g. Duistermaat and Kolk, 2004) then implies that p∗a,β is
continuously differentiable at every (a, β) ∈ Ua × UB .

Furthermore, for all (a, β) ∈ Ua × UB and p ∈ [pl, ph] we have

∂ga,β(p)

∂a
= β1

ḣ(β0 + β1p)

h(β0 + β1p)
< 0.

This implies that for all a ∈ Ua, a′ ∈ Ua, with a < a′, and all p ∈ [pl, ph] with p ≤ p∗a,β , we have
ga′,β(p) ≤ ga,β(p) ≤ 1. Therefore p∗a′,β > p∗a,β for all a < a′, and thus p∗a,β is strictly monotone
increasing in a.
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Using ga,β(p∗a,β) = 1 and thus (p∗a,β − a) = (−β−1
1 )

h(β0+β1p
∗
a,β)

ḣ(β0+β1p∗a,β)
, we have

fa,β(p
∗
a,β) = (p∗a,β − a)h(β0 + β1p

∗
a,β) = (−β−1

1 )
h(β0 + β1p

∗
a,β)

2

ḣ(β0 + β1p∗a,β)
,

and thus

∂

∂a
fa,β(p

∗
a,β)) = (−β−1

1 )





∂

∂z

h(z)2

ḣ(z)

∣

∣

∣

∣

z=β0+β1p∗a,β



β1
∂

∂a
p∗a,β . (5.32)

Log-concavity of h implies ∂2 log(h(z))
∂z2 = h(z)ḧ(z)−ḣ(z)2

h(z)2 ≤ 0, and thus

∂

∂z

h(z)2

ḣ(z)
=

2h(z)ḣ(z)2 − h(z)2ḧ(z)

ḣ(z)2
= h(z)

[

2 − h(z)ḧ(z)

h(z)2
h(z)2

ḣ(z)2

]

≥ h(z)

[

2 − ḣ(z)2

h(z)2
h(z)2

ḣ(z)2

]

= h(z).

Since ∂
∂ap

∗
a,β > 0, it follows that fa,β(p∗a,β) is strictly decreasing in a. This completes the proof of

(ii).

Let K0 = sup(a,β,p)∈Ua×UB×[pl,ph] −f̈a,β(p)/2. Since (a, β, p) 7→ fa,β(p) is twice continuously dif-

ferentiable on R × B × [pl, ph] and f̈a,β(p
∗
a,β) < 0, it follows that 0 < K0 < ∞. By a Taylor

expansion, there is a p̃a,β on the line segment between p and p∗a,β , such that

fa,β(p) = fa,β(p
∗
a,β) + ḟa,β(p

∗
a,β)(p− p∗a,β) +

1

2
f̈a,β(p̃a,β)(p− p∗a,β)

2

≥ fa,β(p
∗
a,β) −K0(p− p∗a,β)

2,

using ḟa,β(p∗a,β) = 0. This proves (iii).

Proof of Lemma 5.3

Let β ∈ UB . We show 0 ≤ ∆Vβ(c, s) ≤ maxp∈[pl,ph] ph(β0 + β1p), for all (c, s) ∈ X . By (5.8),
this implies ∆Vβ(c, s) ∈ Ua. In view of (5.3), uniqueness and continuity of π∗

β then follow from
repeated application of Lemma 5.2(i, ii), for each (c, s) ∈ X .

If s = S then ∆Vβ(c, S) = 0 for c > 1 or c = 0, and Vβ(1, S) = maxp∈[pl,ph] ph(β0 + β1p). If s < S,
then by backward induction,

∆Vβ(c, s) = (π∗
β(c, s) − ∆Vβ(c, s+ 1))h(β0 + β1π

∗
β(c, s)) + Vβ(c, s+ 1)

− (π∗
β(c− 1, s) − ∆Vβ(c− 1, s+ 1))h(β0 + β1π

∗
β(c− 1, s)) − Vβ(c− 1, s+ 1)

≥ (π∗
β(c− 1, s) − ∆Vβ(c, s+ 1))h(β0 + β1π

∗
β(c− 1, s)) + Vβ(c, s+ 1)

− (π∗
β(c− 1, s) − ∆Vβ(c− 1, s+ 1))h(β0 + β1π

∗
β(c− 1, s)) − Vβ(c− 1, s+ 1)

= ∆Vβ(c, s+ 1))(1 − h(β0 + β1π
∗
β(c− 1, s)))

+ ∆Vβ(c− 1, s+ 1))h(β0 + β1π
∗
β(c− 1, s))

≥ 0,
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and

∆Vβ(c, s) = (π∗
β(c, s) − ∆Vβ(c, s+ 1))h(β0 + β1π

∗
β(c, s)) + Vβ(c, s+ 1)

− (π∗
β(c− 1, s) − ∆Vβ(c− 1, s+ 1))h(β0 + β1π

∗
β(c− 1, s)) − Vβ(c− 1, s+ 1)

≤ (π∗
β(c, s) − ∆Vβ(c, s+ 1))h(β0 + β1π

∗
β(c, s)) + Vβ(c, s+ 1)

− (π∗
β(c, s) − ∆Vβ(c− 1, s+ 1))h(β0 + β1π

∗
β(c, s)) − Vβ(c− 1, s+ 1)

= ∆Vβ(c, s+ 1))(1 − h(β0 + β1π
∗
β(c, s)))

+ ∆Vβ(c− 1, s+ 1))h(β0 + β1π
∗
β(c, s))

≤ max
p∈[pl,ph]

ph(β0 + β1p).

Proof of Lemma 5.4

For any 2 × 2 positive definite matrix A with eigenvalues 0 < λ1 ≤ λ2, we have λ2 ≤ λ1 +

λ2 = tr(A), det(A) = λ1λ2, and consequentially λ1 = det(A)/λ2 ≥ det(A)/tr(A). If in addition
a, b ≤ ph, then

λmin

(

2 a+ b

a+ b a2 + b2

)

≥ 2a2 + 2b2 − (a+ b)2

2 + a2 + b2)
≥ (a− b)2

2(1 + p2
h)
.

Since λmin(Pt) ≥ λmin(Pr) + λmin(Pr′) for all r, r′, t ∈ N with r + r′ = t (Bhatia, 1997, Corollary
III.2.2, page 63), we have

λmin(PkS) ≥ λmin(P(k−1)S) + λmin





∑

1≤i≤S,i/∈{s,s′}

(

1

pi+(k−1)S

)

(1, pi+(k−1)S)





+ λmin

((

1

ps+(k−1)S

)

(1, ps+(k−1)S) +

(

1

ps′+(k−1)S

)

(1, ps′+(k−1)S)

)

≥ λmin(P(k−1)S) +
(ps+(k−1)S − ps′+(k−1)S)2

2(1 + p2
h)

≥ λmin(P(k−1)S) +
δ2

2(1 + p2
h)
.
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Chapter 6

Dynamic pricing and learning in a changing

environment

6.1 Introduction

The preceding Chapters 3, 4 and 5 study dynamic pricing and learning in a stationary environ-
ment: the parameters that describe the market behavior do not change over time. These chapters
study in different pricing-and-learning settings the question if price experimentation is necessary,
and how that should be conducted in an optimal manner.

The assumption of a stationary environment is a strong condition. Markets are generally not
stable, but may vary over time, without the seller immediately being aware of it (cf. Dolan and
Jeuland (1981), Wildt and Winer (1983), and Section 2 of Elmaghraby and Keskinocak (2003)).
These changes may have various causes: shifts in consumer tastes, competition (Wildt and Winer,
1983), appearance of technological innovations (Chen and Jain, 1992), market saturation and
product diffusion effects, which are related to the life cycle of a product (Bass, 1969, Dolan and
Jeuland, 1981, Raman and Chatterjee, 1995), marketing and advertisement efforts (Horsky and
Simon 1983), competitors entering or exiting the market, appearance of new sales channels, and
many more.

Wildt and Winer (1983, page 365) argued already in 1983 that “constant-parameter models are
not capable of adequately reflecting such changing market environments”. In fact, the histor-
ical literature on statistical economics show that this issue has been known since longtime, as
illustrated by the following quotation of Schultz (1925) on the law of demand:

“The validity of the theoretical law [of demand] is limited to a point in time. But
in order to derive concrete, statistical laws our observations must be numerous; and
in order to obtain the requisite number of observations, data covering a consider-
able period must be used. During the interval, however, important dynamic changes
take place in the condition of the market. In the case of a commodity like sugar,
the principal dynamic changes that need be considered are the changes in our sugar-
consuming habits, fluctuations in the purchasing power of money, and the increase of
population.” (page 409 of Schultz, 1925).

Although the literature on dynamic pricing and learning has increased rapidly in recent years,
cf. Chapter 2, models with a varying market have hardly been considered. This motivates the
current study of dynamic pricing and learning in a changing environment.

85
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The combination of dynamic pricing and learning in a changing market, is a rather unexplored
area. Besbes and Zeevi (2011) study a pricing problem where the willingness-to-pay (WtP) distri-
bution of the customers changes at some unknown point in time. They do however assume that
the WtP distribution before and after the change is fully known to the firm. Chen and Jain (1992)
consider optimal pricing policies in models where the demand not only depends on the selling
price, but also on the cumulative amount of sales; in this way diffusion effects are modeled. In
addition, the demand is influenced by an observable state variable, which models unpredictable
events that change the demand function, and whose dynamics are driven by a Poisson process.
Apart from these random events, the demand again is fully deterministic and known to the firm,
and learning by the firm is not considered. Hanssens et al. (2001) and Leeflang et al. (2009, Section
2.3) discuss several dynamic market models, as well as estimation methods, but do not integrate
this with the problem of optimal dynamic pricing. A relevant study from the control literature
is from Godoy et al. (2009). They consider an estimation problem in a linear system, where the
parameters are subject to shock changes, and analyze the performance of a sliding-window lin-
ear regression method. A major assumption is that the controls are deterministic. This differs
from pricing problems, where the prices (the controls) usually depend in a non-trivial way on all
previously observed sales realizations.

In the present chapter, we study the problem of dynamic pricing and learning in a changing
environment. We consider an additive demand model, where the expected demand is the sum
of a stochastic process and a known function depending on the selling price. This stochastic
process models the size of the market, and its characteristics are initially unknown to the firm. Its
value at a certain point in time may be estimated from accumulated sales data; however, since the
market may be changing over time, estimation methods are needed that are designed for time-
varying systems. We deploy two such estimators, namely estimating with a forgetting factor,
and estimation based on a “sliding window” approach. For both estimators we derive an upper
bound on the expected estimation error.

Next, we propose a simple, intuitive pricing policy: at each decision moment, the firm estimates
the market size with one of the just mentioned estimators, and subsequently sets the next sell-
ing price equal to the optimal price, given that the current market estimate is correct. This is
a so-called myopic or certainty equivalent policy, since at each decision moment the firm acts
as if being certain about its estimates. To measure the quality of this pricing policy, we define
AverageRegret(T ), which measures the expected costs of not choosing optimal prices in the first
T periods, and LongRunAverageRegret, which equals the limit superior of AverageRegret(T )

as T grows large. We derive upper bounds on AverageRegret(T ) and LongRunAverageRegret.
These bounds are not only stated in terms of the variables associated with the used estimation
method (the forgetting factor, or the size of the sliding window), but also in terms of a measure
of the impact that market fluctuations have on the estimation error. Clearly, if the market is very
unstable and inhibits very large and frequent fluctuations, the impact may become extremely
large, which negatively affects the obtained revenue.

The novel, key idea of this study is that (i) this impact can be bounded, using assumptions on the
market process that the firm makes a priori, (ii) the resulting upper bounds on AverageRegret(T )

and LongRunAverageRegret can be used by the firm to determine the optimal estimator of the
market (i.e. the optimal value of the forgetting factor or window size), (iii) this provides the firm
explicit guarantees on the maximum expected revenue loss. This framework enables the firm to
hedge against change: the firm is certain that the expected regret does not exceed a certain known
value, provided the market process satisfies the posed assumptions. These assumptions may be
very general, and cover many important cases; for example, bounds on the probability that the
market value changes in a certain period, bounds on the maximum difference between two con-
secutive market values, or bounds on the maximum and minimum value that the market process



6.2 Model 87

may attain. We provide numerical examples to illustrate the methodology, in three practically
relevant settings: in the first we assume that the market value is continuously changing; in the
second, we make use of the well-known Bass model to model the diffusion of an innovative
products; and in the third, we consider an oligopoly, where price changes by competitors causes
occasional changes in the market. The application of our methodology on the Bass model makes
this the first study that incorporates learning with this widely used product-diffusion model; so-
far, only deterministic settings (Robinson and Lakhani, 1975, Dolan and Jeuland, 1981, Kalish,
1983), or random settings where no learning is present (Chen and Jain, 1992, Raman and Chatter-
jee, 1995, Kamrad et al., 2005) have been considered in the literature.

Summarizing, in one of the first studies on dynamic pricing and learning in a changing environ-
ment, our contributions are as follows:

(i) We introduce a model of dynamic pricing and learning in a changing market environment,
using a very generic description of the market process.

(ii) We discuss two estimators of time-varying processes, and prove upper bounds on the esti-
mation error.

(iii) We propose a methodology that enables the decision maker to hedge against change. This
results in explicit guarantees on the regret, and guides the choice of the optimal estimator.

(iv) We show the application of the methodology in several concrete cases, and offer several
numerical examples to illustrate its use and performance.

The rest of this chapter is organized as follows. The model is introduced in Section 6.2. In Sec-
tion 6.3 we discuss estimation with forgetting factor or with sliding window, and provide upper
bounds on the expected estimation error. The myopic pricing policy is described in Section 6.4,
together with upper bounds on the regret. Section 6.5 discusses our proposed methodology of
hedging against change, and examines its use in several concrete cases. Numerical illustrations
are provided in Section 6.6. All mathematical proofs are contained in Section 6.7.

6.2 Model

We consider a monopolist firm selling a single type of product. In each time period t ∈ N, the
firm decides on a selling price pt ∈ [pl, ph], where 0 ≤ pl < ph <∞ denote the lowest and highest
admissible price. After choosing the price, the seller observes demand dt, which is a realization
of the random variable Dt(pt). Conditional on the selling prices, the demand in different time
periods is independent. The expected demand in period t, against a price p, is of the form

E [Dt(p)] = M(t) + g(p). (6.1)

Here (M(t))t∈N is a nonnegative stochastic process called the market process. The dynamics of this
process are unknown to the seller, and may be quite general: trends, seasonal effects, and shock
changes, can all be captured by the market process. The process may even depend on historical
sales data. In particular, let Ft be the σ-algebra generated by d1, p1,M(1), . . . , dt, pt,M(t), F0

the trivial σ-algebra, and write ǫt = dt − g(pt) −M(t); then we assume that M(t), ǫt and pt are
all Ft−1-measurable, for all t ∈ N. In addition we impose the following mild conditions on the
moments of M(t) and ǫt: there are positive constants σM and σ, such that

sup
t∈N

E
[

M(t)2 | Ft−1

]

≤ σ2
M a.s. and sup

t∈N

E
[

ǫ2t | Ft−1

]

≤ σ2 a.s. (6.2)
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The function g in (6.1) models the dependence of expected demand on selling price. It is assumed
to be known by the seller. A typical example that is widely used in practice is the linear demand
function g(p) = −bp for some b > 0. After observing demand, the seller collects revenue ptdt,
and proceeds to the next period. The purpose of the seller is to maximize expected revenue.

Let r(p,M) = p · (M +g(p)) denote the expected revenue in a single period, when the market size
equalsM and the selling price is set at p. The price that generates the highest amount of expected
revenue, given that the current market size equals M , is denoted by p∗(M)) = arg max

p∈[pl,ph]

r(p,M).

We impose some mild conditions to ensure that this optimal price exists and is uniquely de-
fined. In particular, we assume that for all admissible prices p, g(p) is decreasing in p, and twice
continuously differentiable with first and second derivative denoted by g′(p) and g′′(p). These
two properties immediately carry over to the expected demand, and in fact are quite natural
conditions for demand functions to hold. In addition, we assume that for all M ≥ 0 the revenue
function r(p,M) is unimodal with unique optimum p#(M) ≥ 0 satisfying r′(p#(M),M) = 0, and
in addition supM≥0:p#(M)∈[pl,ph] r

′′(p#(M),M) < 0; here r′(p,M) and r′′(p,M) denote the first
and second derivative of r(p,M) w.r.t. p. These assumptions on g and r are fairly standard con-
ditions of demand and revenue functions, and ensure that the revenue function is locally strictly
concave around the optimum. Clearly, if p#(M) lies in the interval [pl, ph] then p∗(M) = p#(M),
and if p#(M) /∈ [pl, ph], then p∗(M) is the projection of p#(M) on the interval [pl, ph].

Remark 6.1. It is not difficult to show that the conditions on g are satisfied for the linear demand
model g(p) = −bp, b > 0. For nonlinear demand functions like g(p) = −bpc with b > 0, c >

0, c 6= 1, or g(p) = −b log(p), b > 0, the conditions are satisfied if the market process is bounded:
supt∈N M(t) ≤Mmax a.s. for some Mmax > 0. This additional condition ensures that the condition
supM≥0:p#(M)∈P r

′′(p#(M),M) < 0 is satisfied. Note that for practical applications, it is generally
not restrictive to assume a bound on the market.

Remark 6.2. In (6.1) we assume an additive demand model: the expected demand is the sum of
a known and an unknown part. Another approach is to assume a multiplicative demand model,
where the expected demand is the product of the two parts: E [Dt(p)] = M(t) · g(p). However,
such a demand model has a remarkable property. By differentiating the revenue function w.r.t. p,
one can easily show that the optimal price is the solution to the equation pg′(p)/g(p) = −1. This
equation is independent of the market process, and as a result, the firm does not need to know
or estimate the market in order to determine the optimal selling price. Intuitively it is clear that
for many products such a model does not accurately reflect reality.

The value of the market process and the corresponding optimal price are unknown to the seller.
As a result, the decision maker might choose sub-optimal prices, which incurs a loss of revenue
relative to someone who would know the market process and the optimal price. The goal of
the seller is to determine a pricing policy that minimizes this loss of revenue. With a pricing
policy we here mean a sequence of prices (pt)t∈N in [pl, ph] which is predictable w.r.t. (Ft)t∈N;
in other words, each price pt may depend on all previously chosen prices p1, . . . , pt−1, demand
realizations d1, . . . , dt−1, and market values M(1), . . . ,M(t− 1).

To asses the quality of a pricing policy Φ, we define the following two quantities.

AverageRegret(Φ, T ) =
1

T − 1

T
∑

t=2

E [r(p∗(M(t)),M(t)) − r(pt,M(t))] , (6.3)

LongRunAverageRegret(Φ) = lim sup
T→∞

AverageRegret(Φ, T ). (6.4)

Each term in the summand of (6.3) measures the expected revenue loss caused by not using the
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optimal price in period t. The expectation operator is because both pt and M(t) may be random
variables. We start “measuring” the average regret from the second period. This simplifies sev-
eral expressions that appear in further sections; in addition, in the first period, no data is available
to estimate M(1), and minimizing the instantaneous regret encountered in the first period is not
possible. Furthermore, note that AverageRegret(Φ, T ) and LongRunAverageRegret(Φ) are not
observed by the seller, and thus can not directly be used to determine an optimal pricing policy.

6.3 Estimation of market process

Estimating the value of the market process gives vital information that is needed to determine
the selling price. Since the market may change over time, the firm needs an estimation method
that can handle such changes. In this section we describe two such methods: (I) estimation with
forgetting factor, and (II) estimation with a sliding window.

(I) Estimation of M(t) with forgetting factor. Let λ ∈ [0, 1] be the forgetting factor, to be deter-
mined by the decision maker. The estimate M̂λ(t), with forgetting factor λ, based on demand
realizations d1, . . . , dt and prices p1, . . . , pt, is equal to

M̂λ(t) = arg min
M>0

t
∑

i=1

(di −M − g(pi))
2λt−i. (6.5)

The factor λt−i acts as a weight on the data (pi, di)1≤i≤t. Data that lies further in the past gets
a lower weight; data from the recent past receives more weight (unless λ = 1, in which case all
available data gets equal weight, or λ = 0, in which case only the most recent observation is taken
into account). This captures the idea that the longer ago data has been generated, the likelier it
is that the corresponding value of the market process differs from its current value. Accordingly,
data from longer ago is assigned a smaller weight than data from the more recent past. Whether
this intuition is true depends of course on the specific characteristics of M(t).

By differentiating the righthandside of (6.5) w.r.t. M , we obtain the following explicit expression
for M̂λ(t):

M̂λ(t) =

∑t
i=1(di − g(pi))λ

t−i
∑t
i=1 λ

t−i
. (6.6)

(II) Estimation of M(t) with a sliding window. Let N ∈ N≥2 ∪ {∞} be the window size, de-
termined by the decision maker. The estimate M̂N (t), with sliding window size N , based on
demand realizations d1, . . . , dt and prices p1, . . . , pt, is equal to

M̂N (t) = arg min
M>0

t
∑

i=max{t−N+1,1}
(di −M − g(pi))

2. (6.7)

Here only data from the N most recent observations is used to form an estimate. All data that
is generated longer than N time periods ago, is neglected (if N = ∞, then all available data is
taken into account). Similar to the estimate with forgetting factor, the rationale behind the esti-
mate M̂N (t) is the idea that for data generated long ago, it is more likely that the corresponding
market value differs from its current value. This is captured in the fact that only the N most
recent observations are used to estimate M(t). Whether this idea is correct depends again on the
specifics of M(t).
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Differentiating the righthandside of (6.7) w.r.t. M , we obtain the following expression:

M̂N (t) =
1

min{N, t}

t
∑

i=max{t−N+1,1}
(di − g(pi)). (6.8)

Both estimation methods (I) and (II) depend on a decision variable, (λ resp. N ), that can be inter-
preted as a measure for the responsiveness to changes in the market. A high value of λ resp. N
means that much information from the historical data is used to form estimates; this is advanta-
geous in case of a stable market, but disadvantageous in case of many or large recent changes in
the market process. Similarly, a low value of λ resp.N implies that the estimate ofM(t) is mainly
determined by recent data; naturally, this is more beneficial in a volatile market than in a stable
market. In Section 6.5 we offer several guidelines how to choose the values of λ or N .

Remark 6.3. The estimation methods (I) and (II) are designed for a very generic market process
M(t), that can capture various ’forms’ such as trends, shock changes, seasonal effects, Markov-
modulated processes, et cetera. Instead, if one imposes a certain structure on M(t), estimators
for M(t) can be tailored according to this specific structure. For example, the firm could assume
that M(t) = ct + ǫt, where c ∈ R is a non-random constant and (ǫt)t∈N is a sequence of zero-
mean i.i.d. random variables. Then a more sensible estimator of M(t) would be M̂(t) = 2(t +

1)−1
∑t
i=1(di − g(pi)), which satisfies E

[

M̂(t)
]

= 2
t+1

∑t
i=1 c · i = ct, and thus is an unbiased

estimator. However, assuming such additional structure comes with the cost of misspecification:
if M(t) is not of the form assumed by the firm, but for example c suffers from shock changes, this
estimator may perform quite badly. We avoid such misspecifications by using estimators that are
applicable in a very generic setting.

Market fluctuations influence the accuracy of the estimates M̂λ(t) and M̂n(t). The following
quantities Iλ(t) and IN (t) measure this impact or influence of market variations on the estimates.
Observe that this impact is not solely determined by the market process, but also by the choice
of λ and N :

Iλ(t) = E
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The following proposition gives a bound on the expected estimation error of (I) and (II), in terms
of λ, N , and the impact measures Iλ(t) and IN (t).

Proposition 6.1. For all t ∈ N,

E

[

∣

∣

∣M̂λ(t) −M(t+ 1)
∣

∣

∣

2
]

≤ 2σ2

[

(1 − λ)

(1 + λ)

(1 + λt)

(1 − λt)
1(λ < 1) +

1

t
1(λ = 1)

]

+ 2Iλ(t) (6.9)

and

E

[

∣

∣

∣M̂N (t) −M(t+ 1)
∣

∣

∣

2
]

≤ 2
σ2

min{N, t} + 2IN (t). (6.10)
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If the processes (ǫt)t∈N and (M(t))t∈N are independent, then

E

[

∣

∣

∣M̂λ(t) −M(t+ 1)
∣

∣

∣

2
]

≤ σ2

[

(1 − λ)

(1 + λ)

(1 + λt)

(1 − λt)
1(λ < 1) +

1

t
1(λ = 1)

]

+ Iλ(t) (6.11)

and

E

[

∣

∣

∣M̂N (t) −M(t+ 1)
∣

∣

∣

2
]

≤ σ2

min{N, t} + IN (t), (6.12)

with equality in (6.11), (6.12) if the disturbance terms are homoscedastic, i.e. E[ǫ2t | Ft−1] = σ2 for all
t ∈ N.

The first terms of the righthandsides of (6.9) - (6.12) are related to the natural fluctuations in
demand. The lower these fluctuations, measured by σ2, the lower this part of the estimation
error becomes. The second terms of the righthandsides of (6.9) - (6.12) relate to the impact that
market fluctuations have on the quality of the estimate of M(t).

6.4 Pricing policy and performance bounds

The two estimation methods (I) and (II), introduced in Section 6.3, can be used by the seller to
determine the selling prices. We study the situation where the seller uses the following simple,
myopic pricing policy: at each decision moment, the seller estimates the market value with one
of the two estimation methods described in Section 6.3. Subsequently, s/he chooses the selling
price that is optimal w.r.t. this estimate. In other words, the seller always act as if the current
estimate of the market is correct.

We denote this policy by Φλ if the market is estimated by method (I), with forgetting factor λ,
and by ΦN if the market is estimated by method (II), with sliding window of size N . The formal
description of Φλ and ΦN is as follows.

Myopic pricing policy Φλ / ΦN

Initialization: Choose λ ∈ [0, 1] or N ∈ N≥2 ∪ {∞}.
Set p1 ∈ [pl, ph] arbitrarily.
For all t ∈ N:
Estimation: Let M̂·(t) denote either M̂λ(t) (for policy Φλ) or M̂N (t) (for policy ΦN ).
Pricing: Set pt+1 = p∗(max{0, M̂·(t)}).

The following theorem provides upper bounds on the (long run) average regret, for both myopic
pricing policies Φλ and ΦN :

Theorem 6.1. There is a K0 > 0, only depending on g, such that for all T ≥ 2,

AverageRegret(Φλ, T ) ≤ 2K0σ
2

[

1 − λ

1 + λ
+

2

T − 1

(

λ log(λ) + (1 − λ) log(1 − λ)

(1 + λ) log(λ)

)]

1(λ < 1)

+ 2K0σ
2

[

1 + log(T − 1)

T − 1

]

1(λ = 1)

+ 2K0
1

T − 1

T−1
∑

t=1

Iλ(t),
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and

AverageRegret(ΦN , T ) ≤ 2K0σ
2

[

log(min{T − 1, N})
T − 1

+
1

min{N,T − 1}

]

+
2K0

T − 1

T−1
∑

t=1

IN (t).

Consequentially,

LongRunAverageRegret(Φλ) ≤ 2K0

[

σ2 1 − λ

1 + λ
+ lim sup

T→∞

1

T

T
∑

t=1

Iλ(t)

]

, (6.13)

for all λ ∈ [0, 1], and

LongRunAverageRegret(ΦN ) ≤ 2K0

[

σ2 1

N
+ lim sup

T→∞

1

T

T
∑

t=1

IN (t)

]

, (6.14)

for all N ∈ N≥2 ∪ {∞}, where we write 1/∞ = 0.

The main idea of the proof is to show that there is a K0 > 0 such that for any M and M ′, we
have r(p∗(M),M) − r(p∗(M ′),M) ≤ K0(M −M ′)2. Subsequently we apply the bounds derived
in Proposition 6.1.

Remark 6.4. By (6.11) and (6.12), if the processes (ǫt)t∈N and (M(t))t∈N are independent, then all
four inequalities of Theorem 6.1 are still valid if all righthandsides are divided by 2.

Remark 6.5. An explicit expression for K0 is derived in the proof of Theorem 6.1. To obtain the
most sharp bounds, one could also define K0 directly as
K0 = infM,M ′>0,M 6=M ′(r(p∗(M),M) − r(p∗(M ′),M))/(M −M ′)2. For the important special case
of a linear demand function, g(p) = −bp for some b > 0, it is not difficult to show p∗(M) =

min{max{M/(2b), pl}, ph} and K0 = 1/(4b).

Remark 6.6. In dynamic pricing and learning studies that assume a stable market, one often
considers the asymptotic behavior of Regret(Φ, T ) = (T − 1) · AverageRegret(Φ, T ), where Φ the
pricing policy that is used. Typically one proves bounds on the growth rate of Regret(Φ, T ) for
a certain policy, e.g. Regret(Φ, T ) = O(

√
T ) or Regret(Φ, T ) = O(log(T )). A policy is considered

’good’ if the speed of convergence of the regret is close the best achievable rate, cf. Chapters 3, 4,
5. In the setting with a changing market, a simple example makes clear that one cannot do better
than Regret(Φ, T ) = O(T ) or AverageRegret(Φ, T ) = O(1). Suppose M(t) is a Markov process
taking values in {M1,M2}, with M1 6= M2, and suppose P (M(t + 1) = Mi | M(t) = Mj) = 1

2 ,
for all i, j ∈ {1, 2} and t ∈ N. Let g(p) = −bp, for some b > 0, and choose [pl, ph] such that
p#(Mi) = Mi/(2b) ∈ (pl, ph), for i = 1, 2. Then for all t ∈ N, the instantaneous regret incurred in
period t+ 1 satisfies

E [r(p∗(M(t+ 1)),M(t+ 1)) − r(pt+1,M(t+ 1))]

≥ inf
p∈[pl,ph]

[1

2
(r(p∗(M1),M1) − r(p,M1)) +

1

2
(r(p∗(M2),M2) − r(p,M2))

]

≥ b

2
inf

p∈[pl,ph]

[

(p∗(M1) − p)2 + (p∗(M2) − p)2
]

≥ b

4
(p∗(M1) − p∗(M2))

2

≥ 1

16b
(M1 −M2)

2 > 0,

which implies that no policy can achieve a sub-linear Regret(Φ, T ) = o(T ). In fact, any pricing
policy achieves the optimal growth rate Regret(Φ, T ) = O(T ). Thus, the challenge of dynamic
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pricing and learning in such a changing environment is not to find a policy with optimal asymp-
totic growth rate, but rather to make the (long run) average regret as small as possible.

In view of the remark above, the question raises whether the bounds from Theorem 6.1 are sharp.
The following proposition answers this question for the case of a linear demand function with
homoscedastic disturbance terms independent of the market process.

Proposition 6.2. Suppose g(p) = −bp for some b > 0, E[ǫ2t | Ft−1] = σ2 for all t ∈ N, the processes
(ǫt)t∈N and (M(t))t∈N are independent, and M(t) ∈ [2bpl, 2bph] a.s. for all t ∈ N. Then with K0 =

1/(4b),

LongRunAverageRegret(Φλ) = K0

[

σ2 1 − λ

1 + λ
+ lim sup

T→∞

1

T

T
∑

t=1

Iλ(t)

]

, (6.15)

for all λ ∈ [0, 1], and

LongRunAverageRegret(ΦN ) = K0

[

σ2 1

N
+ lim sup

T→∞

1

T

T
∑

t=1

IN (t)

]

, (6.16)

for all N ∈ N≥2 ∪ {∞}, where we write 1/∞ = 0.

6.5 Hedging against changes

The bounds on the regret that we derive in Theorem 6.1 can be used by the firm to hedge against
changes in the market. To this end, the firm should first decide what type of changes it is an-
ticipating on, in the form of assumptions on the market process. Examples of such assumptions
are (i) the market process is contained in an interval of known size, (ii) the maximum change in
the market between two consecutive periods is bounded, (iii) market changes are bounded and
occur only with a small probability, (iv) the market process is a sequence of i.i.d. realizations of
a random variable. Given such assumptions on the market process, the firm can determine the
corresponding optimal choice of λ (in case policy Φλ is used) or N (in case of ΦN ).

This is done as follows. First, one needs to translate the assumptions on the market process into
upper bounds on the impact measures Iλ(t) and IN (t). In particular, the goal is to find (non-
random) functions cT (λ) and cT (N), such that for all λ ∈ [0, 1] and N ∈ N≥2 ∪ {∞},

1

T − 1

T−1
∑

t=1

Iλ(t) ≤ cT (λ), (6.17)

1

T − 1

T−1
∑

t=1

IN (t) ≤ cT (N). (6.18)

By plugging these bounds into Theorem 6.1, we obtain bounds on AverageRegret(Φλ, T ) and
AverageRegret(ΦN , T ) in terms of λ and N . The optimal choices of λ and N are then determined
by simply minimizing these bounds with respect to λ and N . In some cases an explicit expres-
sion for the optimal choice may exist, otherwise numerical methods are needed to determine the
optimum.

The resulting optimal optimal λ andN may depend on the length of the time horizon T . This may
be undesirable to the firm, for instance because T is not known in advance, or because the time
horizon is infinite. In this case it is more appropriate to minimize the LongRunAverageRegret. If



94 Chapter 6 Dynamic pricing and learning in a changing environment

c(λ) and c(N) are functions that satisfy

lim sup
T→∞

1

T − 1

T−1
∑

t=1

Iλ(t) ≤ c(λ), (6.19)

lim sup
T→∞

1

T − 1

T−1
∑

t=1

IN (t) ≤ c(N), (6.20)

then (6.13) and (6.14) imply

LongRunAverageRegret(Φλ) ≤ 2K0

[

σ2 1 − λ

1 + λ
+ c(λ)

]

, (6.21)

LongRunAverageRegret(ΦN ) ≤ 2K0

[

σ2 1

N
+ c(N)

]

, (6.22)

and the optimal choices of λ andN can be determined by minimizing the righthandsides of (6.21)
and (6.22).

Remark 6.7. It is interesting to observe that the optimal choices of λ and N are independent of the
function g. The relevant properties of g are captured by the constantK0, but its value does not in-
fluence the optimal λ and N . In a way this separates optimal estimation and optimal pricing: the
first is determined by the impact of the market process, while only the latter involves the func-
tion g. On the other hand, the variance of the demand distribution, related to σ2, does influence
the optimal λ and N . In addition, note that by Remark 6.4, the factor 2 on the righthandsides
of (6.21) and (6.22) can be removed if the processes (ǫt)t∈N and (M(t))t∈N are independent. In
practice, it may not always be known to the decision maker whether this condition is satisfied;
but fortunately, this does not influence the optimal choice of λ and N .

To illustrate the methodology, we now look in more detail to the market scenarios (i) - (iv) men-
tioned in the beginning of this section. We derive the bound functions c(λ) and c(N) for each
scenario, and show how to choose λ and N in order to minimize the righthandsides of (6.21) and
(6.22).

Scenario (i). Bounds on the range of the market process. Here the firm assumes that for all
t ∈ N, M(t) is a.s. contained in an interval with size d > 0. Then |M(i) −M(t + 1)| ≤ d for all
i = 1, . . . , t, and it follows that we can take c(λ) = c(N) = d2.

The righthandsides of (6.21) and (6.22) are minimized by taking λ = 1 and N = ∞. This is true
regardless the value of d.

At first sight it may seem somewhat surprising that it is beneficial to take into account all avail-
able sales data to estimate the market, including ’very old’ data. This can be explained by noting
that in a period t+ 1, all preceding values of the market M(1), . . . ,M(t) may differ by d from the
current valueM(t+1). In such a volatile market situation, it is best to ’accept’ an unavoidable er-
ror caused by market fluctuations, and instead focus on minimizing the estimation error caused
by natural fluctuations ǫ1, . . . , ǫt in the demand distribution. This is best done when all available
data is taken into account; hence the optimality of choosing λ = 1 and N = ∞, even when d is
very small.

Scenario (ii). Bounds on one-step market changes. Here the firm assumes that for all t ∈ N,
|M(t) −M(t+ 1)| ≤ d a.s., for some d > 0. At the end of Section 6.7, we derive

c(λ) =

{

d2(1 − λ)−2 if λ ∈ [0, 1)

∞ if λ = 1
,
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and

c(N) =

{

1
4d

2(N + 1)2 if N ∈ N≥2

∞ if N = ∞ .

Both c(λ) and c(N) are increasing in d. This can be interpreted as larger deviations in the market
process having more impact on the estimates. In addition, c(λ) and c(N) are both increasing in
its variables λ, N . This means that in this scenario, the impact increases if more data is taken into
account. This can be explained intuitively by observing that in this scenario, older data may have
been influenced by more changes in the market process than recent data.

Consider the upper bound (6.21). The derivative of σ2 (1−λ)
(1+λ) + d2(1 − λ)−2 w.r.t. λ ∈ (0, 1) is zero

if and only if (σ/d)2(1 − λ)3 = (1 + λ)2; this follows from basic algebraic manipulations. Since
(1 − λ)3 is decreasing and (1 + λ)2 is increasing in λ, we have the following possibilities:

1. (σ/d)2 ≤ 1. Then σ2 (1−λ)
(1+λ) + d2(1 − λ)−2 is increasing on λ ∈ (0, 1), and the optimal choice

is λ = 0.

2. (σ/d)2 > 1. Then there is a unique λ∗ ∈ (0, 1) that minimizes σ2 (1−λ)
(1+λ) + d2(1 − λ)−2. Al-

though an explicit expression exists for λ∗, it is rather complicated, and it is not informative
to state it here. Computing λ∗ numerically is easy, and only involves solving a cubic equa-
tion.

Now consider the upper bound (6.22). The expression σ2

N + 1
4d

2(N+1)2 is minimized by choosing
N as the solution to N2(N + 1) = 2(σ/d)2, which follows by taking the derivative w.r.t. N and
some basic algebraic manipulations. It can easily be shown that there is a unique solution N∗ ∈
R++, at which the minimum is attained, and that σ

2

N +c(N) is minimized by choosingN as either
⌊N∗⌋ or ⌈N∗⌉. If (σ/d)2 ≤ 10/4 then the optimal N equals 1, if (σ/d)2 > 10/4 then the optimal N
is strictly larger than 1.

In this scenario, the quantity (σ/d)2 serves as a proxy for the volatility of the market process
(M(t))t∈N relative to the variance of the disturbance terms (ǫt)t∈N. Both for Φλ and ΦN one
can show that the optimal choice of λ and N is monotone increasing in this quantity (σ/d)2.
The larger the volatility of the market compared to the variance of the disturbance terms, the
fewer data should be used to estimate the market. If (σ/d)2 is sufficiently small, then the market
fluctuations are quite large relative to the variance of the disturbance terms, and it is optimal to
take only the most recent data point into account to estimate the market.

Figure 6.1: Relation between (σ/d)2 and λ∗, N∗, for scenario (ii)

Scenario (iii). Bounded jump probabilities for the market process This scenario does not only
involve assumptions on the maximum amount of change in the market, but also on the probabil-
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ity of change. In particular, the firm assumes that for all t ∈ N, P (M(t+ 1) 6= M(t)) ≤ ǫ, and that
all M(t) are contained in an interval of size d, for some ǫ ∈ (0, 1) and d > 0. At the end of Section
6.7, we derive

c(λ) =

{

d2ǫ(1 − λ2)−1 if λ ∈ [0, 1)

∞ if λ = 1
,

c(N) =

{

d2ǫ (N+1)(2N+1)
6N if N ∈ N≥2

∞ if N = ∞ .

Both c(λ) and c(N) are increasing in d and ǫ: the impact increases if market changes occur more
often (ǫ increases), or if the magnitude of the jumps increases (d increases). Furthermore, c(λ) and
c(N) are both increasing in λ and N , which means that taking more data into account increases
the impact of market changes on the market estimate.

Consider the upper bound (6.21). The derivative of σ2 (1−λ)
(1+λ) +d2ǫ(1−λ2)−1 w.r.t. λ ∈ (0, 1) is zero

if and only if σ2

d2ǫ (1 − λ2)2 = λ(1 + λ)2; this follows from basic algebraic manipulations. Since
(1 − λ2)2 is decreasing and λ(1 + λ)2 is increasing in λ, we have the following possibilities:

1. σ2

d2ǫ ≤ 1. Then σ2 (1−λ)
(1+λ) + d2ǫ(1 − λ2)−1 is increasing on λ ∈ (0, 1), and the optimal choice is

λ = 0.

2. σ2

d2ǫ > 1. Then there is a unique λ∗ ∈ (0, 1) that minimizes σ2 (1−λ)
(1+λ) + d2ǫ(1 − λ2)−1. It is the

unique solution in (0, 1) of the quartic equation σ2

d2ǫ (1 − λ2)2 = λ(1 + λ)2, which can easily
be solved numerically.

Now consider the upper bound (6.22). The expression σ2

N + d2ǫ (N+1)(2N+1)
6N is minimized on R++

by choosing N∗ =
√

3σ2

d2ǫ + 1
2 , and the optimal N is equal to either ⌊N∗⌋ or ⌈N∗⌉. In addition, one

can easily show that the optimal N equals 1 if σ2

d2ǫ ≤ 1
2 , and is strictly larger than 1 if σ2

d2ǫ >
1
2 .

The quantity σ2

d2ǫ serves as a proxy for the volatility of the market process (M(t))t∈N relative to the

variance of the disturbance terms (ǫt)t∈N. A low value of σ2

d2ǫ means a high volatility, a high value
means a small volatility. This quantity is decreasing in the jump probability ǫ and the maximum
market jump d, and increasing in the variance σ2 of the disturbance terms (ǫt)t∈N. The effect of
σ2

d2ǫ on λ∗ and N∗ is shown in Figure 6.2. It clearly shows that the smaller the volatility of the

market (e.g. the larger σ2

d2ǫ ), the more data should be taken into account to estimate the market
process.

Figure 6.2: Relation between σ2

d2ǫ and λ∗, N∗, for scenario (iii)
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Scenario (iv). Market process as i.i.d. sequence. In this last scenario we consider, the firm
assumes that (M(t))t∈N is a sequence of i.i.d. realizations of a random variable X on [0,∞), with
finite variance denoted by Var(X). At the end of Section 6.7, we show

c(λ) = Var(X)
2

1 + λ
,

and
c(N) = Var(X)

(

1 +
1

N

)

,

where we write 1/∞ = 0.

These bounds are increasing in Var(X): the higher the variance, the larger the impact of market
fluctuations on the estimates. Both c(λ) and c(N) are decreasing in its variables λ resp.N , and the
righthandsides of (6.22) and (6.21) are minimized by taking λ = 1 and N = ∞; in other words, in
this scenario it is optimal to take into account all available data to estimate the market process.

Remark 6.8. The above presented methodology of hedging against change has some similarities
with robust optimization. There, one usually considers optimization problems whose optimal
solutions depend on some parameters. These parameters are not known exactly by the decision
maker, but assumed to lie in a certain “uncertainty set” which is known in advance. The optimal
decision is then determined by optimizing against the worst case of the possible parameter val-
ues. An improvement of our methodology compared to robust optimization, is that we allow for
many different types of assumptions on the market process, as illustrated by the four scenarios
described above. In contrast, robust optimization generally only assumes a setting of an uncer-
tainty set (comparable to our scenario (i)); trends, or Markov-modulated processes, are generally
not considered. In addition, in robust optimization there is often no learning of the unknown
parameters, whereas our methodology allows using accumulating data to estimate the unknown
process; in several instances this enables us to “track” the market process.

6.6 Numerical illustration

In this section, we perform several numerical experiments to illustrate the pricing policy and
choice of variables λ, N , as described in Section 6.5.

Experiment 1: continuously fluctuating market process. For each t, M(t) is an independent
realization of a random variable, uniformly distributed on the interval [21, 24]. Take g(p) = −p,
pl = 5, ph = 15, and let (ǫt)t∈N be i.i.d. realizations of a standard normal distribution. For
each λ ∈ {0.81, 0.82, . . . , 0.99, 1} we run 1000 simulations of the policy Φλ, and for all N ∈
{5, 15, 25, . . . , 195}, we run 1000 simulations of ΦN .

Figure 6.3 shows a typical sample path of M(t) and M̂(t), both for Φλ and ΦN . The market, in-
dicated by the solid line, is continuously fluctuating around its mean, 22.5. The market estimate,
depicted by the dashed line, stays much closer to 22.5.

The solid lines in Figure 6.4 show the simulation average of AverageRegret at t = 2000 for both
Φλ and ΦN , at different values of λ. The dashed lines show the upper bounds K0(σ

2 1−λ
1+λ + c(λ))

for Φλ, and K0(σ
2/N + c(N)) for ΦN , where c(λ) and c(N) are as in Scenario (iv), K0 = 1/4 and

Var(M(t)) = 3/4 for all t ∈ N. Note that (ǫt)t∈N and (M(t))t∈N are here independent, and thus by
Remark 6.7, the factor 2 in the righthandsides of (6.21) and (6.22) is not present. The dashed and
solid lines practically coincide in these figures.

This figure shows exactly the structure predicted by Scenario (iv): the average regret decreases
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Figure 6.3: Sample path of M(t) and M̂(t) in a continuously fluctuating market

as λ or N increases. The optimal choice of λ and N that minimize the long run average regret, is
to set λ = 1 and N = ∞.

Figure 6.4: AverageRegret(Φλ, 2000) and AverageRegret(ΦN , 2000) for experiment 1.

Experiment 2: Bass model for market process. The Bass model (Bass, 1969) is a widely-used
model to describe the life-cycle or diffusion of an innovative product. An important property of
this model is that the market process M(t) is dependent on the realized cumulative sales up to
time t. The model for M(t) is

M(t) = max

{

0, a+ b

t−1
∑

i=1

di + c
(

t−1
∑

i=1

di
)2
}

,

cf. equation (4) of Dodds (1973). We choose a = 33.6, c = −10−6 and b = 0.0116, and set
g(p) = −p, pl = 1 and ph = 50. Let (ǫt)t∈N be i.i.d. realizations of a standard normal distribution.
The characteristic shape of the market that arises from this model, is depicted in Figure 6.5. The
solid lines denote a sample path of M(t), the dashed lines a sample path of the estimates M̂λ(t)

and M̂N (t).

For each λ ∈ {0.05, 0.10, 0.15, . . . , 0.90} we run 1000 simulations of the policy Φλ, and for all
N ∈ {2, 3, 4, . . . , 25}, we run 1000 simulations of ΦN .

The solid lines in Figure 6.6 show the simulation-average of AverageRegret at t = 500 for both Φλ
and ΦN , at different values of λ. The dashed lines show the upper bounds 2K0(σ

2 1−λ
1+λ + c(λ)) for

Φλ, and 2K0(σ
2/N + c(N)) for ΦN , where c(λ) and c(N) are as in Scenario (ii), σ2 = 1, K0 = 1/4,
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Figure 6.5: Sample path of M(t) and M̂(t) in the Bass-model

and d = 0.27 (this was the largest observed value of |M(t+1)−M(t)| over all t and all simulations.
Of course, this quantity is in practice not observed by the seller, and a larger value of d just shifts
the dashed lines upward in the figure).

Figure 6.6: AverageRegret(Φλ, 500) and AverageRegret(ΦN , 500) for experiment 2.

The optimal value of λ according to our upper bound equals λ = 0.45, with a corresponding up-
per bound on the regret of 0.31. The simulation average of AverageRegret(Φ0.45, 500) was equal
to 0.27. The optimal value of λ according to the simulations, was λ = 0.60, with a simulation
average of AverageRegret(Φ0.60, 500) equal to 0.26.

The optimal value ofN according to our upper bound equalsN = 3, with a corresponding upper
bound on the regret of 0.32. The simulation average of AverageRegret(Φ3, 500) was equal to 0.27.
The optimal value of N according to the simulations, was N = 4, with a simulation average of
AverageRegret(Φ4, 500) equal to 0.26.

Figure 6.6 illustrates that taking into account all available data (i.e. λ = 1 or N = ∞) would
lead to a very large regret. Thus, in this scenario, taking into account the changing nature of the
market process improves the performance of the firm significantly.

Experiment 3: presence of price-changing competitors. Suppose the firm is acting in an envi-
ronment where several competing companies are selling substitute products on the market. The
firm knows that the competitors occasionally update their selling prices, but is not aware of the
moments at which these changes occur. For this setting, the assumptions of scenario (iii) are
appropriate.
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In particular, consider the following case. The firm assumes that in each period, the probability
that the market process changes because of the behavior of competitors, is not more than ǫ. If a
change occurs, the maximum jump is assumed to be not more than d.

We choose g(p) = −p, pl = 1 and ph = 50, and let ǫ = 0.02, d = 5. At each period t a realization zt
of a uniformly distributed random variable on [0, 1] is drawn. If zt ≥ 0.02 then M(t) = M(t− 1);
otherwise, M(t) is drawn uniformly from the interval [30, 35]. Let (ǫt)t∈N be i.i.d. realizations of a
standard normal distribution. (Note that these differ from the constant ǫ determined by the firm).

The characteristic the shape of the market that arises from this model, is depicted in Figure 6.7.
The solid lines denote a sample path of M(t), the dashed lines a sample path of the estimates
M̂λ(t) and M̂N (t).

Figure 6.7: Sample path of M(t) and M̂(t) in the model with price-changing competitors.

For each λ ∈ {0.10, 0.15, 0.20, . . . , 0.95} we run 1000 simulations of the policy Φλ, and for all
N ∈ {2, 3, 4, . . . , 25}, we run 1000 simulations of ΦN .

The solid lines in Figure 6.8 show the simulation average of AverageRegret at t = 500 for both Φλ
and ΦN , at different values of λ. The dashed lines show the upper bounds K0(σ

2 1−λ
1+λ + c(λ)) for

Φλ, and K0(σ
2/N + c(N)) for ΦN , where c(λ) and c(N) are as in Scenario (iii), σ2 = 1, K0 = 1/4,

ǫ = 0.02, and d = 5. Note that (ǫt)t∈N and (M(t))t∈N are here independent, and thus by Remark
6.7, the factor 2 in the righthandsides of (6.21) and (6.22) is not present.

Figure 6.8: AverageRegret(Φλ, 500) and AverageRegret(ΦN , 500) for experiment 3.

The optimal value of λ according to our upper bound equals λ = 0.50, with a corresponding
upper bound on the regret of 0.25.The simulation average of AverageRegret(Φ0.50, 500) was equal
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to 0.11. The optimal value of λ according to the simulations, was λ = 0.75, with a simulation
average of AverageRegret(Φ0.75, 500) equal to 0.08.

The optimal value ofN according to our upper bound equalsN = 3, with a corresponding upper
bound on the regret of 0.28. The simulation average of AverageRegret(Φ3, 500) was equal to 0.12.
The optimal value of N according to the simulations, was N = 6, with a simulation average of
AverageRegret(Φ6, 500) equal to 0.09.

Figure 6.8 illustrates that taking into account all available data (i.e. λ = 1 or N = ∞) would lead
to much larger regret than obtained at the optimal λ and N . Thus, similar to scenario (ii), taking
into account the changing nature of the market process leads to a significant profit improvement.

6.7 Proofs

Proof of Proposition 6.1

Equation (6.6) can be rewritten as

M̂λ(t) −M(t+ 1) =

∑t
i=1 ǫiλ

t−i
∑t
i=1 λ

t−i
+

∑t
i=1(M(i) −M(t+ 1))λt−i

∑t
i=1 λ

t−i
.

Note that (
∑t
i=1 λ

t−i)−1 = (1−λt)−1(1−λ)1(λ < 1)+ 1
t1(λ = 1) andE [ǫiǫj ] = E [ǫiE [ǫj | Fi]] = 0

whenever i < j. As a result,

E





∣

∣

∣

∣

∣

t
∑

i=1

ǫiλ
t−i

∣

∣

∣

∣

∣

2


 =

t
∑

i=1

λ2(t−i)E
[

ǫ2i
]

≤ σ2

(

1 − λ2t

1 − λ2
1(λ < 1) + t1(λ = 1)

)

,

and (6.9) follows using |a+ b|2 ≤ 2a2 + 2b2 for all a, b ∈ R, and

(

1 − λ2t

1 − λ2
1(λ < 1) + t1(λ = 1)

)(

1 − λ

1 − λt
1(λ < 1) +

1

t
1(λ = 1)

)2

=
1 − λ

1 + λ

1 + λt

1 − λt
1(λ < 1) +

1

t
1(λ = 1).

If (ǫt)t∈N and (M(t))t∈N are independent, then E[ǫiM(j)] = 0 for all i, j ∈ N, and (6.11) follows
from

E

[

∣

∣

∣M̂λ(t) −M(t+ 1)
∣

∣

∣

2
]

= E





∣

∣

∣

∣

∣
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i=1 ǫiλ
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∣

∣

∣

∣

2


+ E





∣

∣

∣

∣

∣

∑t
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∣

∣

∣

∣

2




≤ σ2
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∣

∣

∣

∑t
i=1 λ
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i=1 λ
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∣

∣

∣

∣

∣

2

+ E





∣

∣

∣

∣

∣

∑t
i=1(M(i) −M(t+ 1))λt−i

∑t
i=1 λ

t−i

∣

∣

∣

∣

∣

2


 ,

with equality if (ǫt)t∈N is homoscedastic.

Similarly, equation (6.8) can be rewritten as

M̂N (t) −M(t+ 1) =
1

min{N, t}

( t
∑

i=1+(t−N)+

ǫi +

t
∑

i=1+(t−N)+

M(i) −M(t+ 1)

)

.
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Equation (6.10) follows using |a+ b|2 ≤ 2a2 + 2b2 for all a, b ∈ R, and by noting

E







∣

∣

∣

∣

∣

∣

1

min{N, t}

t
∑

i=1+(t−N)+

ǫi

∣

∣

∣

∣

∣

∣

2





=

1

min{N, t}2

t
∑

i=1+(t−N)+

E
[

ǫ2i
]

≤ σ2/min{N, t}.

If (ǫt)t∈N and (M(t))t∈N are independent, then E[ǫiM(j)] = 0 for all i, j ∈ N, and (6.12) follows
from

E

[

∣

∣

∣M̂N (t) −M(t+ 1)
∣

∣

∣

2
]

= E
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∣

∣

∣
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∣

∣

∣

∣

∣
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∣

∣
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∣
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∣

∣

∣

∣

2






≤ σ2

∣

∣
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∣
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∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣
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,

with equality if (ǫt)t∈N is homoscedastic.

Proof of Theorem 6.1

We prove the theorem in two steps. In step 1, we show that there exists a K0 > 0 such that for all
M ≥ 0, M ′ ∈ R,

r(p∗(M),M) − r(p∗(M ′),M) ≤ K0(M −M ′)2. (6.23)

In step 2 we apply this result with M = M(t), M ′ = M̂λ(t) or M ′ = M̂N (t), to obtain the regret
bounds.

Step 1.

Fix M ≥ 0, and let r′(p,M) and r′′(p,M) denote the first and second derivative of r(p,M) w.r.t.
p. Let M ′ ∈ R.

Case 1: p∗(M) = p#(M). Then r′(p∗(M),M) = 0, and a Taylor series expansion yields

r(p,M) = r(p∗(M),M) +
1

2
r′′(p̃,M)(p− p∗(M))2,

for some p̃ on the line segment between p and p∗(M). Let

K1 = sup
p∈P

|r′′(p,M)| = sup
p∈P

|2g′(p) + g′′(p)|,

and note that K1 is independent of M , and finite, because of the continuity of g′′(p). Then

r(p∗(M),M) − r(p,M) ≤ K1

2
(p− p∗(M))2 for all p ∈ P. (6.24)

Write h(p) = −g(p) − pg′(p), and note that r′(p,M) = M − h(p). By assumption, for each M ≥ 0

there is a unique p#(M) such that h(p) = M , i.e. p#(M) = h−1(M) is well-defined. In addition,
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for all M ∈ h(P) = {h(p) | p ∈ P}, we have ∂
∂M p#(M) = (h−1)′(M) = 1/h′(h−1(M)) =

−1/r′′(p∗(M),M) > 0. Thus, p#(M) is continuous, differentiable, and monotone increasing on
M ∈ h(P). These properties imply the following: if there is an M ≥ 0 s.t. p#(M) > ph, then there
is an Mh > 0 s.t. h−1(M) > ph whenever M > Mh, h−1(Mh) = ph, and h−1(M) < ph whenever
M < Mh. Similarly, if there is an M ≥ 0 s.t. p#(M) < ph, then there is an Ml ∈ (0,Mh) s.t.
h−1(M) > pl whenever M > Ml, h−1(Ml) = pl, and h−1(M) < pl whenever M < Ml.

If M ′ ≥ 0 and p∗(M ′) = p#(M ′), then a Taylor expansion yields

|p∗(M ′) − p∗(M)| = |h−1(M ′) − h−1(M)| ≤ |M ′ −M |K2,

where K2 = supM∈h(P) |(h−1)′(M)| = 1/ infM∈h(P) |r′′(p∗(M),M)|, which is finite by assump-
tion.

If M ′ ≥ 0 and p∗(M ′) < p#(M ′), then p∗(M ′) = p∗(Mh) = ph, M ′ > Mh, and

|p∗(M ′) − p∗(M)| = |p∗(Mh) − p∗(M)| ≤ |Mh −M |K2 ≤ |M ′ −M |K2.

If M ′ ≥ 0 and p∗(M ′) > p#(M ′), then p∗(M ′) = p∗(Ml) = pl, M ′ < Ml, and

|p∗(M ′) − p∗(M)| = |p∗(Ml) − p∗(M)| ≤ |Ml −M |K2 ≤ |M ′ −M |K2,

It follows that |p∗(M ′) − p∗(M)| ≤ K2|M ′ −M | for all M ′ ≥ 0, and thus by (6.24) we have

r(p∗(M),M) − r(p∗(M ′),M) ≤ 1

2
K1K

2
2 (M ′ −M)2, (6.25)

for all M ′ ≥ 0, M ∈ h(P). That this inequality is also valid when M ′ < 0, follows immediately
from the observation

r(p∗(M),M) − r(p∗(M ′),M) = r(p∗(M),M) − r(p∗(0),M) ≤ 1

2
K1K

2
2 (0 −M)2

≤ 1

2
K1K

2
2 (M ′ −M)2.

Case 2: p∗(M) 6= p#(M). Then M /∈ [Ml,Mh]. Suppose M > Mh, the case M < Ml is treated
likewise. Suppose M ′ ≥ 0. If M ′ > Mh then r(p∗(M),M) − r(p∗(M ′),M) = 0, suppose therefore
M ′ ≤Mh. We have

r(p∗(M),M) − r(p∗(M ′),M) = r(p∗(Mh),M) − r(p∗(M ′),M)

=p∗(Mh)[M + g(p∗(Mh))] − p∗(M ′)[M + g(p∗(M ′))]

=r(p∗(Mh),Mh) − r(p∗(M ′),Mh) + (p∗(Mh) − p∗(M ′))(M −Mh)

≤1

2
K1K

2
2 (M ′ −Mh)

2 +K2(Mh −M ′)(M −Mh)

≤
(

1

2
K1K

2
2 +

1

4
K2

)

(M ′ −M)2,

where in the last inequality we use the fact xy ≤ 1
4 (x + y)2, x, y ∈ R, with x = Mh − M ′,

y = M −Mh.
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We have proven that for all M ∈ R, M ′ ≥ 0,

r(p∗(M),M) − r(p∗(M ′),M) ≤
(

1

2
K1K

2
2 +

1

4
K2

)

(M ′ −M)2,

That this inequality is also valid when M ′ < 0, follows immediately from the observation

r(p∗(M),M) − r(p∗(M ′),M) = r(p∗(M),M) − r(p∗(0),M) ≤
(

1

2
K1K

2
2 +

1

4
K2

)

(0 −M)2

≤
(

1

2
K1K

2
2 +

1

4
K2

)

(M ′ −M)2.

This completes the proof of (6.23), with K0 = 1
2K1K

2
2 + 1

4K2.

Step 2.

By Proposition 6.1, we obtain

AverageRegret(Φλ, T )

=
1

T − 1

T−1
∑

t=1

E
[

r(p∗(M(t+ 1)),M(t+ 1)) − r(p∗(M̂λ(t)),M(t+ 1))
]

≤ K0

T − 1

T−1
∑

t=1

E

[

∣

∣

∣
M̂λ(t) −M(t+ 1)

∣

∣

∣

2
]

≤ 2K0

T − 1

T−1
∑

t=1

[

σ2

[

(1 − λ)

(1 + λ)

(1 + λt)

(1 − λt)
1(λ < 1) +

1

t
1(λ = 1)

]

+ Iλ(t)

]

.

Since

T−1
∑

t=1

λt

1 − λt
=

λ

1 − λ
+

T−1
∑

t=2

λt

1 − λt
≤ λ

1 − λ
+

∫ T−2

t=1

λt

1 − λt
dt

≤ λ

1 − λ
+

−1

log(λ)

∫ λ

x=0

1

1 − x
dx =

λ

1 − λ
+

log(1 − λ)

log(λ)
,

we have for λ < 1,

1

T − 1

T−1
∑

t=1

(1 − λ)

(1 + λ)

(1 + λt)

(1 − λt)
=

1 − λ

1 + λ
+

2

T − 1

1 − λ

1 + λ

T−1
∑

t=1

λt

1 − λt

≤ 1 − λ

1 + λ
+

1

T − 1

(

2λ

1 + λ
+ 2

1 − λ

1 + λ

log(1 − λ)

log(λ)

)

, (6.26)
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and thus

AverageRegret(Φλ, T )

≤2K0σ
2

[

1 − λ

1 + λ
+

1

T − 1

(

2λ

1 + λ
+ 2

1 − λ

1 + λ

log(1 − λ)

log(λ)

)]

1(λ < 1)

+2K0σ
2

[

1 + log(T − 1)

T − 1

]

1(λ = 1)

+
2K0

T − 1

T−1
∑

t=1

Iλ(t).

In addition, we have

AverageRegret(ΦN , T )

=
1

T − 1

T−1
∑

t=1

E
[

r(p∗(M(t+ 1)),M(t+ 1)) − r(p∗(M̂N (t)),M(t+ 1))
]

≤ K0

T − 1

T−1
∑

t=1

E

[

∣

∣

∣M̂N (t) −M(t+ 1)
∣

∣

∣

2
]

≤ 2K0

T − 1

T−1
∑

t=1

[

σ2

min{N, t} + IN (t)

]

≤2K0σ
2

[

log(min{T − 1, N})
T − 1

+
1

min{N,T − 1}

]

+
2K0

T − 1

T−1
∑

t=1

IN (t),

where we used

T−1
∑

t=1

1

min{N, t} =

N
∑

t=1

1

t
+

T−1
∑

t=N+1

1

N
≤ 1 + log(N) +

T − 1 −N

N
if T − 1 ≥ N,

T−1
∑

t=1

1

min{N, t} =

T−1
∑

t=1

1

t
≤ 1 + log(T − 1) if T − 1 < N,

and thus
T−1
∑

t=1

1

min{N, t} ≤ log(min{T − 1, N}) +
T − 1

min{N,T − 1} .

Proof of Proposition 6.2

The condition M(t) ∈ [2bpl, 2bph] a.s., for all t ∈ N, implies p∗(M) = M/(2b) for all attainable
values of M , and r(p∗(M),M) − r(p∗(M ′),M)) = (M −M ′)2/(4b) for all attainable values of M
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and M ′. By Proposition 6.1 we obtain

LongRunAverageRegret(Φλ)

= lim sup
T→∞

1

T − 1

T−1
∑

t=1

E
[

r(p∗(M(t+ 1)),M(t+ 1)) − r(p∗(M̂λ(t)),M(t+ 1))
]

= lim sup
T→∞
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E
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∣

∣

2
]
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T→∞

K0
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σ2
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(1 − λ)

(1 + λ)

(1 + λt)

(1 − λt)
1(λ < 1) +

1

t
1(λ = 1)

]

+ Iλ(t)

]

=K0
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σ2 (1 − λ)

(1 + λ)
+ lim sup

T→∞

1

T

T
∑

t=1

Iλ(t)

]

,

and

LongRunAverageRegret(ΦN )

= lim sup
T→∞

1

T − 1

T−1
∑

t=1

E
[

r(p∗(M(t+ 1)),M(t+ 1)) − r(p∗(M̂N (t)),M(t+ 1))
]

= lim sup
T→∞

K0
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∑

t=1

E

[

∣

∣

∣M̂N (t) −M(t+ 1)
∣

∣

∣

2
]

= lim sup
T→∞

K0

T − 1

T−1
∑

t=1

[
σ2

min{N, t} + IN (t)]

=K0

[

σ2 1

N
+ lim sup

T→∞

1

T − 1

T−1
∑

t=1

IN (t)

]

.
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Calculation of cT (λ), c(λ), cT (N) and c(N) for scenario (2)

Let λ ∈ [0, 1). Then
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∣
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∑

t=1

(1 − λ)2

(1 − λt)2
d2

∣

∣

∣

∣

(t+ 1)(1 − λt+1)

λ(1 − λ)
− (t+ 1)

λ(1 − λ)
+

(1 − λt+1)

(1 − λ)2

∣

∣

∣

∣

2

=
1

T − 1

T−1
∑

t=1

(1 − λ)2

(1 − λt)2
d2
∣

∣−(t+ 1)(1 − λ)−1λt + (1 − λ)−2(1 − λt+1)
∣

∣

2

=
1

T − 1

T−1
∑

t=1

(1 − λ)−2

(1 − λt)2
d2
∣

∣−(t+ 1)(1 − λ)λt + (1 − λt+1)
∣

∣

2

=
1

T − 1
(1 − λ)−2d2

T−1
∑

t=1

(

(

1 − λt − tλt + tλt+1
)

(1 − λt)

)2

=
1

T − 1
(1 − λ)−2d2

T−1
∑

t=1

(

1 − tλt
1 − λ

1 − λt

)2

,

where we used
∑t+1
i=1(t+ 1)λt−i = (t+ 1)λ−1(1 − λ)−1(1 − λt+1) and

t+1
∑

i=1

iλt−i =

t+1
∑

i=1

λt−i
i
∑

j=1

1 =

t+1
∑

j=1

t+1
∑

i=j

λt−i =

t+1
∑

j=1

(

λ−1
t+1
∑

i=1

λt+1−i − λt−j+1

j−1
∑

i=1

λj−1−i)

=

t+1
∑

j=1

(

λ−1(1 − λ)−1(1 − λt+1) − λt−j+1(1 − λ)−1(1 − λj−1)
)

= (t+ 1)λ−1(1 − λ)−1(1 − λt+1) − (1 − λ)−1
t+1
∑

j=1

(

λt−j+1 − λt)
)

= (t+ 1)λ−1(1 − λ)−1(1 − λt+1) − (1 − λ)−1
(

(1 − λ)−1(1 − λt+1) − (t+ 1)λt
)

= (t+ 1)λ−1(1 − λ)−1 − (1 − λ)−2(1 − λt+1).

We obtain

cT (λ) = (1 − λ)−2d2 1

T − 1

T−1
∑

t=1

(

1 − tλt
1 − λ

1 − λt

)2

,
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and taking the lim supT→∞ yields c(λ) = (1 − λ)−2d2. For λ = 1,

1

T − 1

T−1
∑

t−1

Iλ(t)

=
1

T − 1

T−1
∑

t=1

E





∣

∣

∣

∣

∣

1

t

t
∑

i=1

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

2




≤ 1

T − 1

T−1
∑

t=1

∣

∣

∣

∣

∣

1

t

t
∑

i=1

d(t+ 1 − i)

∣

∣

∣

∣

∣

2

=
1

T − 1

T−1
∑

t=1

d2

∣

∣

∣

∣

∣

1

t

t
∑

i=1

i

∣

∣

∣

∣

∣

2

=
1

T − 1

T−1
∑

t=1

d2 (t+ 1)2

4
,

and lim supT→∞
1

T−1

∑T−1
t=1 d2 (t+1)2

4 = ∞.

Let N ∈ N≥2, then

1

T − 1

T−1
∑

t=1

IN (t)

=
1

T − 1

T−1
∑

t=1

E







∣

∣

∣

∣

∣

∣

1

min{N, t}

t
∑

i=1+(t−N)+

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

∣

2






≤ 1

T − 1

T−1
∑

t=1

∣

∣

∣

∣

∣

∣

1

min{N, t}

t
∑

i=1+(t−N)+

d(t+ 1 − i)

∣

∣

∣

∣

∣

∣

2

=
1

T − 1

T−1
∑

t=1

∣

∣

∣

∣

∣

∣

d

min{N, t}

min{N,t}
∑

j=1

j

∣

∣

∣

∣

∣

∣

2

=
1

T − 1

T−1
∑

t=1

1

4
d2(min{N, t} + 1)2

=
d2

4

1

T − 1

T−1
∑

t=1

(N + 1)2 +
d2

4

1

T − 1

min{T−1,N−1}
∑

t=1

[(t+ 1)2 − (N + 1)2]

=
d2

4
(N + 1)2 +

d2

4

1

T − 1

[

− min{T − 1, N − 1}(N + 1)2 +

min{T,N}
∑

t=2

t2
]

=
d2

4
(N + 1)2 +

d2

4

1

T − 1
·

[

(1 − min{T,N})(N + 1)2 − 1 + min{T,N}(min{T,N} + 1)(2 min{T,N} + 1)/6

]

,

where we used
∑N
t=1 t

2 = N(N + 1)(2N + 1)/6. After some algebraic manipulations, we derive
that

cT (N) =

{

1
4d

2 −1+T (T+1)(2T+1)/6
T−1 if T < N

1
4d

2
[

(N + 1)2 + 1
T−1N(−4N2 − 3N + 7)/6

]

if T ≥ N
.
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Taking lim supT→∞, we obtain c(N) = 1
4d

2(N + 1)2. For N = ∞,

1

T − 1

T−1
∑

t=1

IN (t) =
1

T − 1

T−1
∑

t=1

E





∣

∣

∣

∣

∣

1

t

t
∑

i=1

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

2




≤ 1

T − 1

T−1
∑

t=1

∣

∣

∣

∣

∣

1

t

t
∑

i=1

d(t+ 1 − i)

∣

∣

∣

∣

∣

2

=
1

T − 1

T−1
∑

t=1

d2 (t+ 1)2

4
,

and lim supT→∞
1

T−1

∑T−1
t=1 d2 (t+1)2

4 = ∞.

Calculation of cT (λ), c(λ), cT (N) and c(N) for scenario (3)

For t ∈ N, define

X(t) = min{k ∈ {1, . . . , t+ 1} |M(k) = M(k + 1) = . . . = M(t+ 1)},

and note that P (X(t) = k) ≤ P (M(k − 1) 6= M(k)) ≤ ǫ. for all k = 2, . . . , t+ 1.

For λ ∈ [0, 1),

E





∣

∣

∣

∣

∣

t
∑

i=1

(M(i) −M(t+ 1))λt−i

∣

∣

∣

∣

∣

2




=

t+1
∑

k=1

E





∣

∣

∣

∣

∣

t
∑

i=1

(M(i) −M(t+ 1))λt−i

∣

∣

∣

∣

∣

2

| X(t) = k



P (X(t) = k)

≤
t+1
∑

k=2

E





∣

∣

∣

∣

∣

k−1
∑

i=1

(M(i) −M(t+ 1))λt−i

∣

∣

∣

∣

∣

2

| X(t) = k



 ǫ

≤
t+1
∑

k=2

d2

∣

∣

∣

∣

∣

k−1
∑

i=1

λt−i

∣

∣

∣

∣

∣

2

ǫ

=

t+1
∑

k=2

d2
∣

∣

∣λt−(k−1)(1 − λ)−1(1 − λk−1)
∣

∣

∣

2

ǫ

=

t
∑

k=1

d2λ2(t−k)(1 − λ)−2(1 − 2λk + λ2k)ǫ

=d2ǫ(1 − λ)−2[(1 − λ2)−1(1 − λ2t) − 2λt(1 − λ)−1(1 − λt) + tλ2t],
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and thus

c(λ) = lim sup
T→∞

1

T − 1

T−1
∑

t−1

Iλ(t)

= lim sup
T→∞

1

T − 1

T−1
∑

t=1

E





∣

∣

∣

∣

∣

1 − λ

1 − λt

t
∑

i=1

(M(i) −M(t+ 1))λt−i

∣

∣

∣

∣

∣

2




≤ lim sup
T→∞

1

T − 1

T−1
∑

t=1

1

(1 − λt)2
d2ǫ[(1 − λ2)−1(1 − λ2t) − 2λt(1 − λ)−1(1 − λt) + tλ2t]

= d2ǫ(1 − λ2)−1.

For λ = 1,

1

t
E





∣

∣

∣

∣

∣

t
∑

i=1

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

2




=

t+1
∑

k=1

1

t
E





∣

∣

∣

∣

∣

t
∑

i=1

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

2

| X(t) = k



P (X(t) = k)

≤
t+1
∑

k=2

1

t
d2(k − 1)2ǫ =

t
∑

k=1

1

t
d2k2ǫ = d2ǫ(t+ 1)(2t+ 1)/6,

and lim supT→∞
1

T−1

∑T−1
t=1 d2ǫ(t+ 1)(2t+ 1)/6 = ∞.

Let N ∈ N≥2, then

IN (t) = E







∣

∣

∣

∣

∣

∣

1

min{N, t}

t
∑

i=1+(t−N)+

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

∣

2






=
t+1
∑

k=1

E







∣

∣

∣

∣

∣

∣

1

min{N, t}

t
∑

i=1+(t−N)+

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

∣

2

| X(t) = k






P (X(t) = k)

≤
t+1
∑

k=2

∣

∣

∣

∣

∣

∣

1

min{N, t}

k−1
∑

i=1+(t−N)+

d

∣

∣

∣

∣

∣

∣

2

ǫ

= d2ǫ

t
∑

k=1+(t−N)+

(

k − (t−N)+

min{N, t}

)2

= d2ǫ

min{N,t}
∑

k=1

(

k

min{N, t}

)2

= d2ǫ
(min{N, t} + 1)(2 min{N, t} + 1)

6 min{N, t} ,
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and thus

c(N) = lim sup
T→∞

1

T − 1

T−1
∑

t=1

IN (t)

≤ lim sup
T→∞

1

T − 1

T−1
∑

t=1

d2ǫ
(min{N, t} + 1)(2 min{N, t} + 1)

6 min{N, t}

=d2ǫ
(N + 1)(2N + 1)

6N
.

If N = ∞, then

lim sup
T→∞

1

T − 1

T−1
∑

t=1

IN (t)

= lim sup
T→∞

1

T − 1

T−1
∑

t=1

E





∣

∣

∣

∣

∣

1

t

t
∑

i=1

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

2




= lim sup
T→∞

1

T − 1

T−1
∑

t=1

t+1
∑

k=1

E





∣

∣

∣

∣

∣

1

t

t
∑

i=1

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

2

| X(t) = k



P (X(t) = k)

≤ lim sup
T→∞

1

T − 1

T−1
∑

t=1

t+1
∑

k=2

∣

∣

∣

∣

∣

1

t

k−1
∑

i=1

d

∣

∣

∣

∣

∣

2

ǫ

=∞.
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Calculation of cT (λ), c(λ), cT (N) and c(N) for scenario (4)

Let λ ∈ [0, 1). Then

E





∣

∣

∣

∣

∣

t
∑

i=1

(M(i) −M(t+ 1))λt−i

∣

∣

∣

∣

∣

2




=E

[

t
∑

i=1

(M(i) −M(t+ 1))2λ2(t−i)
]

+E





∑

i 6=j,1≤i,j≤t
(M(i) −M(t+ 1))λt−i(M(j) −M(t+ 1))λt−j





=

t
∑

i=1

E
[

M(i)2 +M(t+ 1)2 − 2M(i)M(t+ 1)
]

λ2(t−i)

+
∑

i 6=j,1≤i,j≤t
E
[

M(i)M(j) −M(i)M(t+ 1) −M(t+ 1)M(j) +M(t+ 1)2
]

λ2t−i−j

=(E
[

X2
]

− E [X]
2
)

t
∑

i=1

2λ2(t−i) +
∑

i 6=j,1≤i,j≤t
(E
[

X2
]

− E [X]
2
)λ2t−i−j

=(E
[

X2
]

− E [X]
2
)





t
∑

i=1

λ2(t−i) +

t
∑

i=1

λt−i
t
∑

j=1

λt−j





=Var(X)
(

(1 − λ2)−1(1 − λ2t) + (1 − λ)−2(1 − λt)2
)

,

and thus

c(λ) = lim sup
T→∞

1

T − 1

T−1
∑

t=1

Iλ(t)

= lim sup
T→∞

1

T − 1

T−1
∑

t=1

(1 − λ)2

(1 − λt)2
Var(X)

(

(1 − λ2)−1(1 − λ2t) + (1 − λ)−2(1 − λt)2
)

= Var(X)
(

(1 − λ)2(1 − λ2)−1 + 1
)

= Var(X)
2

1 + λ
.

If λ = 1 then

E





∣

∣

∣

∣

∣

t
∑

i=1

(M(i) −M(t+ 1))λt−i

∣

∣

∣

∣

∣

2




=(E
[

X2
]

− E [X]
2
)





t
∑

i=1

1 +

t
∑

i=1

t
∑

j=1

1





=Var(X)(t+ t2),
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and

c(1) = lim sup
T→∞

1

T − 1

T−1
∑

t=1

Iλ(t)

= lim sup
T→∞

1

T − 1

T−1
∑

t=1

1

t2
Var(X)(t+ t2)

= Var(X).

Let N ∈ N≥2 ∪ {∞}, then

E







∣

∣

∣

∣

∣

∣

1

min{N, t}

t
∑

i=1+(t−N)+

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

∣

2






=E

[

1

min{N, t}2

t
∑

i=1+(t−N)+

(M(i) −M(t+ 1))2

+
1

min{N, t}2

∑

i 6=j,1+(t−N)+≤i,j≤t
(M(i) −M(t+ 1))(M(j) −M(t+ 1))

]

=
1

min{N, t}2

t
∑

i=1+(t−N)+

E
[

M(i)2 +M(t+ 1)2 − 2M(i)M(t+ 1)
]

+
1

min{N, t}2

∑

i 6=j,1+(t−N)+≤i,j≤t
E
[

M(i)M(j) −M(i)M(t+ 1) −M(t+ 1)M(j) +M(t+ 1)2
]

=
2

min{N, t} (E
[

X2
]

− E [X]
2
) +

min{N, t} − 1

min{N, t} (E
[

X2
]

− E [X]
2
)

=

(

1 +
1

min{N, t}

)

Var(X),

and thus

c(N) = lim sup
T→∞

1

T − 1

T−1
∑

t=1

E







∣

∣

∣

∣

∣

∣

1

min{N, t}

t
∑

i=1+(t−N)+

(M(i) −M(t+ 1))

∣

∣

∣

∣

∣

∣

2






= lim sup
T→∞

1

T − 1

T−1
∑

t=1

(

1 +
1

min{N, t}

)

Var(X)

=Var(X)

(

1 +
1

N

)

.
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Chapter 7

Mean square convergence rates for maximum

quasi-likelihood estimators

7.1 Introduction

7.1.1 Motivation

We consider a statistical model of the form

E [Y (x)] = h(xTβ(0)), Var(Y (x)) = v(E [Y (x)]), (7.1)

where x ∈ Rd is a design variable, Y (x) is a random variable whose distribution depends on x,
β(0) ∈ Rd is an unknown parameter, and h and v are known functions on R. Such models arise,
for example, from generalized linear models (GLMs), where in addition to (7.1) one requires
that the distribution of Y (x) comes from the exponential family (cf. Nelder and Wedderburn
(1972), McCullagh and Nelder (1983), Gill (2001)). We are interested in making inference on the
unknown parameter β(0).

In GLMs, this is commonly done via maximum-likelihood estimation. Given a sequence of de-
sign variables (xi)1≤i≤n and observed responses (yi)1≤i≤n, where each yi is a realization of the
random variable Y (xi), the maximum-likelihood estimator (MLE) β̂n is a solution to the equation
ln(β) = 0, where ln(β) is defined as

ln(β) =

n
∑

i=1

ḣ(xTi β)

v(h(xTi β))
xi(yi − h(xTi β)), (7.2)

and where ḣ denotes the derivative of h.

As discussed by Wedderburn (1974) and McCullagh (1983), if one drops the requirement that
the distribution of Y (x) is a member of the exponential family, and only assumes (7.1), one can
still make inference on β by solving ln(β) = 0. The solution β̂n is then called a maximum quasi-
likelihood estimator (MQLE) of β(0).

In this chapter, we are interested in the quality of the estimate β̂n for models satisfying (7.1) by
considering the expected value of ||β̂n−β(0)||2, where ||·|| denotes the Euclidean norm. We derive
conditions such that β̂n converges a.s. to β(0) as t grows large, and obtain bounds on the mean
square convergence rates. These bounds are key in proving regret bounds for the pricing policies
considered in Chapters 3,4 and 5.
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7.1.2 Literature

Although much literature is devoted to the (asymptotic) behavior of maximum (quasi-)likelihood
estimators for models of the form (7.1), practically all of them focus on a.s. upper bounds on
||β̂n − β(0)|| instead of mean square bounds. The literature may be classified according to the
following criteria:

1. Assumptions on (in)dependence of design variables and error terms.
The sequence of vectors (xi)i∈N is called the design, and the error terms (ei)i∈N are defined
as

ei = yi − h(xTi β
(0)), (i ∈ N).

Typically, one either assumes a fixed design, with all xi non-random and the ei mutually in-
dependent, or an adaptive design, where the sequence (ei)i∈N forms a martingale difference
sequence w.r.t. its natural filtration and where the design variables (xi)i∈N are predictable
w.r.t. this filtration. This last setting is appropriate for sequential decision problems under
uncertainty, where decisions are made based on current parameter-estimates.

2. Assumptions on the dispersion of the design vectors.
Define the design matrix

Pn =

n
∑

i=1

xix
T
i , (7.3)

and denote by λmin(Pn), λmax(Pn) the smallest and largest eigenvalues of Pn. Bounds on
||β̂n − β(0)|| are typically stated in terms of these two eigenvalues, which in some sense
quantify the amount of dispersion in the sequence (xi)i∈N.

3. Assumptions on the link function.
In GLM terminology, h−1 is called the link function. It is called canonical or natural if ḣ = v ◦

h, otherwise it is called a general or non-canonical link function. For canonical link functions,
the quasi-likelihood equations (7.2) simplify to ln(β) =

∑n
i=1 xi(yi − h(xTi β)) = 0.

To these three sets of assumptions, one usually adds smoothness conditions on h and v, and
assumptions on the moments of the error terms.

An early result on the asymptotic behavior of solutions to (7.2), is from Fahrmeir and Kaufmann
(1985). For fixed design and canonical link function, provided λmin(Pn) = Ω(λmax(Pn)

1/2+δ)

a.s. for a δ > 0 and some other regularity assumptions, they prove asymptotic existence and
strong consistency of (β̂n)n∈N (their Corollary 1; for the definition of Ω(·), O(·) and o(·), see
the next paragraph on notation). For general link functions, these results are proven assum-
ing λmin(Pn) = Ω(λmax(Pn)) a.s. and some other regularity conditions (their Theorem 5). Chen
et al. (1999) consider only canonical link functions. In the fixed design case, they obtain strong
consistency and convergence rates

||β̂n − β(0)|| = o({(log(λmin(Pn)))
1+δ/λmin(Pn)}1/2) a.s.,

for any δ > 0; in the adaptive design case, they obtain convergence rates

||β̂n − β(0)|| = O({(log(λmax(Pn))/λmin(Pn)}1/2) a.s.

Their proof however is reported to contain a mistake, see Zhang and Liao (2008, page 1289).
Chang (1999) extends these convergence rates for adaptive designs to general link functions,
under the additional condition λmin(Pn) = Ω(nα) a.s. for some α > 1/2. His proof however also
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appears to contain a mistake, see Remark 7.1. Yin et al. (2008) extends the setting of Chang (1999),
with adaptive design and general link function, to multivariate response data. They obtain strong
consistency and convergence rates

||β̂n − β(0)|| = o({λmax(Pn) log(λmax(Pn))}1/2{log(log(λmax(Pn)))}1/2+δ/λmin(Pn)) a.s.,

for δ > 0, under assumptions on λmin(Pn), λmax(Pn) that ensure that this asymptotic upper bound
is o(1) a.s. A recent study restricted to fixed designs and canonical link functions is Zhang and
Liao (2008), who show ||β̂n−β(0)|| = Op(λmin(Pn)

−1/2), provided λmin(Pn) = Ω(λmax(Pn)
1/2) a.s.

and other regularity assumptions.

7.1.3 Assumptions and contributions

In contrast with the above-mentioned literature, we study bounds for the expected value of
||β̂n − β(0)||2. The design is assumed to be adaptive; i.e. the error terms (ei)i∈N form a mar-
tingale difference sequence w.r.t. the natural filtration {Fi}i∈N, and the design variables (xi)i∈N

are predictable w.r.t. this filtration. For applications of our results to sequential decision prob-
lems, where each new decision can depend on the most recent parameter estimate, this is the
appropriate setting to consider. In addition, we assume supi∈N E

[

e2i | Fi−1

]

≤ σ2 < ∞ a.s. for
some σ > 0, and supi∈N E [|ei|r] <∞ for some r > 2.

We consider general link functions, and only assume that h and v are thrice continuously dif-
ferentiable with ḣ(z) > 0, v(h(z)) > 0 for all z ∈ R. Concerning the design vectors (xi)i∈N,
we assume that they are contained in a bounded subset X ⊂ Rd. Let λ1(Pn) ≤ λ2(Pn) denote
the two smallest eigenvalues of the design matrix Pn (if the dimension d of β(0) equals 1, write
λ2(Pn) = λ1(Pn)). We assume that there is a (non-random) n0 ∈ N such that Pn0 is invertible,
and there are (non-random) functions L1, L2 on N such that for all n ≥ n0: λ1(Pn) ≥ L1(n),
λ2(Pn) ≥ L2(n), and

L1(n) ≥ cnα, for some c > 0,
1

2
< α ≤ 1 independent of n. (7.4)

Based on these assumptions, we obtain three important results concerning the asymptotic exis-
tence of β̂n and bounds on E[||β̂n − β(0)||2]:

1. First, notice that a solution to (7.2) need not always exist. Following Chang (1999), we
therefore define the last-time that there is no solution in a neighborhood of β(0):

Nρ = sup
{

n ≥ n0 : there exists no β ∈ Rd with ln(β) = 0 and
∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣ ≤ ρ
}

.

For all sufficiently small ρ > 0, we show in Theorem 7.1 that Nρ is finite a.s., and provide
sufficient conditions such that E[Nη

ρ ] <∞, for η > 0.

2. In Theorem 7.2, we provide the upper bound

E

[

∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣

2

1n>Nρ

]

= O

(

log(n)

L1(n)
+

n(d− 1)2

L1(n)L2(n)

)

, (7.5)

where 1n>Nρ
denotes the indicator function of the event {n > Nρ}.
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3. In case of a canonical link function, Theorem 7.3 improves these bounds to

E

[

∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣

2

1n>Nρ

]

= O

(

log(n)

L1(n)

)

. (7.6)

This improvement clearly is also valid for general link functions provided d = 1. It also
holds if d = 2 and ||xi|| is bounded from below by a positive constant (see Remark 7.2).

An important intermediate result in proving these bounds is Proposition 7.2, where we derive

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

n
∑

i=1

xix
T
i

)−1 n
∑

i=1

xiei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= O

(

log(n)

L(n)

)

,

for any function L that satisfies λmin
(
∑n
i=1 xix

T
i

)

≥ L(n) > 0 for all sufficiently large n. This
actually provides bounds on mean square convergence rates in least-squares linear regression,
and forms the counterpart of Lai and Wei (1982) who prove similar bounds in an a.s. setting.

7.1.4 Applications

A useful application of Theorems 7.1 and 7.2 is the derivation of upper bounds of quadratic cost
functions in β. For example, let c(β) be a non-negative bounded function with ||c(β)− c(β(0))|| ≤
K||β − β(0)||2 for all β ∈ Rd and some K > 0. Application of Theorems 7.1 and 7.2 yield the
upper bound

E
[∣

∣

∣

∣

∣

∣c(β̂n) − c(β(0))
∣

∣

∣

∣

∣

∣

]

≤ E
[∣

∣

∣

∣

∣

∣c(β̂n) − c(β(0))
∣

∣

∣

∣

∣

∣1n>Nρ

]

+ E
[∣

∣

∣

∣

∣

∣c(β̂n) − c(β(0))
∣

∣

∣

∣

∣

∣1n≤Nρ

]

≤ K · E
[

∣

∣

∣

∣

∣

∣
β̂n − β(0)

∣

∣

∣

∣

∣

∣

2

1n>Nρ

]

+
E
[

Nη
ρ

]

nη
max
β

∣

∣

∣

∣

∣

∣
c(β) − c(β(0))

∣

∣

∣

∣

∣

∣

2

= O

(

log(n)

L1(n)
+ n−η

)

.

In dynamic pricing problems, such arguments are used to design decision rules and derive upper
bounds on the regret, cf. Chapters 3, 4, and 5. These type of arguments can also be applied to other
sequential decision problems with parametric uncertainty where the objective is to minimize the
regret; for example, the multiperiod inventory control problem (Anderson and Taylor (1976), Lai
and Robbins (1982)), or parametric variants of bandit problems (Goldenshluger and Zeevi (2009),
Rusmevichientong and Tsitsiklis (2010)).

In his review on experimental design and control problems, Pronzato (2008, page 18, Section
9) mentions that existing consistency results for adaptive design of experiments are usually re-
stricted to models that are linear in the parameters. The class of statistical models that we con-
sider is much larger than only linear models; it includes all models satisfying (7.1). Our results
may therefore also find application in the field of sequential design of experiments.

7.1.5 Organization of the chapter

The rest of this chapter is organized as follows. Section 7.2 contains our results concerning the
last-time Nρ and upper bounds on E[||β̂n − β(0)||21n>Nρ

], for general link functions. In Section
7.3 we derive these bounds in the case of canonical link functions. Section 7.4 contains the proofs
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of the assertions in Section 7.2 and 7.3. In the appendix, Section 7.5, we collect and prove several
auxiliary results which are used in the proofs of the theorems of Sections 7.2 and 7.3.

Notation. For ρ > 0, let Bρ = {β ∈ Rd |
∣

∣

∣

∣β − β(0)
∣

∣

∣

∣ ≤ ρ} and ∂Bρ = {β ∈ Rd |
∣

∣

∣

∣β − β(0)
∣

∣

∣

∣ = ρ}.
The closure of a set S ⊂ Rd is denoted by S̄, the boundary by ∂S = S̄\S. For x ∈ R, ⌊x⌋ denotes
the largest integer that does not exceed x. The Euclidean norm of a vector y is denoted by ||y||.
The norm of a matrix A equals ||A|| = maxz:||z||=1 ||Az||. The 1-norm and ∞-norm of a matrix are
denoted by ||A||1 and ||A||∞. yT denotes the transpose of a vector or matrix y. If f(x), g(x) are
functions with domain in R and range in (0,∞), then f(x) = O(g(x)) means there exists a K > 0

such that f(x) ≤ Kg(x) for all x ∈ N, f(x) = Ω(g(x)) means g(x) = O(f(x)), and f(x) = o(g(x))

means limx→∞ f(x)/g(x) = 0.

7.2 Results for general link functions

In this section we consider the statistical model introduced in Section 7.1.1 for general link func-
tions h, under all the assumptions listed in Section 7.1.3. The first main result is Theorem 7.1,
which shows finiteness of moments of Nρ0 . The second main result is Theorem 7.2, which proves
asymptotic existence and strong consistency of the MQLE, and provides bounds on the mean
square convergence rates.

Our results on the existence of the quasi-likelihood estimate β̂n are based on the following fact,
which is a consequence of the Leray-Schauder theorem (Leray and Schauder, 1934).

Lemma 7.1 (Ortega and Rheinboldt, 2000, 6.3.4, page 163). Let C be an open bounded set in Rn,
F : C̄ → Rn a continuous mapping, and (x − x0)

TF (x) ≥ 0 for some x0 ∈ C and all x ∈ ∂C. Then
F (x) = 0 has a solution in C̄.

This lemma yields a sufficient condition for the existence of β̂n in the proximity of β(0) (recall the
definitions Bρ = {β ∈ Rd |

∣

∣

∣

∣β − β(0)
∣

∣

∣

∣ ≤ ρ} and ∂Bρ = {β ∈ Rd |
∣

∣

∣

∣β − β(0)
∣

∣

∣

∣ = ρ}):

Corollary 7.1. For all ρ > 0, if supβ∈∂Bρ
(β − β(0))T ln(β) ≤ 0 then there exists a β ∈ Bρ with

ln(β) = 0.

A first step in applying Corollary 7.1 is to provide an upper bound for (β − β(0))T ln(β). To this

end, write g(x) = ḣ(x)
v(h(x)) , and choose a ρ0 > 0 such that (c2 − c1c3ρ) ≥ c2/2 for all 0 < ρ ≤ ρ0,

where

c1 = sup
x∈X,
β∈Bρ0

1

2
|g̈(xTβ)| ||x|| , c2 = inf

x∈X,
β,β̃∈Bρ0

g(xTβ)ḣ(xT β̃), c3 = sup
i∈N

E[|ei| | Fi−1]. (7.7)

The existence of such a ρ0 follows from the fact that ḣ(x) > 0 and g(x) > 0 for all x ∈ R.

Lemma 7.2. Let 0 < ρ ≤ ρ0, β ∈ Bρ, n ∈ N, and define

An =

n
∑

i=1

g(xTi β
(0))xiei, Bn =

n
∑

i=1

ġ(xTi β
(0))xix

T
i ei, Jn = c1

n
∑

i=1

(|ei| − E[|ei| | Fi−1])xix
T
i .

Then (β−β(0))T ln(β) ≤ Sn(β)−(c2/2)(β−β(0))TPn(β−β(0)), where the martingale Sn(β) is defined
as

Sn(β) = (β − β(0))TAn + (β − β(0))TBn(β − β(0)) +
∣

∣

∣

∣

∣

∣
β − β(0)

∣

∣

∣

∣

∣

∣
(β − β(0))TJn(β − β(0)).
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Following Chang (1999), define the last-time

Nρ = sup{n ≥ n0 | there is no β ∈ Bρ s.t. ln(β) = 0}.

The following theorem shows that the η-th moment of Nρ is finite, for 0 < ρ ≤ ρ0 and sufficiently
small η > 0. Recall our assumptions supi∈N E [|ei|r] <∞, for some r > 2, and λmin(Pn) ≥ L1(n) ≥
cnα, for some c > 0, 1

2 < α ≤ 1 and all n ≥ n0.

Theorem 7.1. Nρ <∞ a.s., and E[Nη
ρ ] <∞ for all 0 < ρ ≤ ρ0 and 0 < η < rα− 1.

Remark 7.1. Chang (1999) also approaches existence and strong consistency of β̂n via application
of Corollary 7.1. To this end, he derives an upper boundAn+Bn+Jn−nαǫ∗ for (β−β(0))T ln(β),
cf. his equation (21). He proceeds to show that for all β ∈ ∂Bρ the last time that this upper bound
is positive, has finite expectation (cf. his equation (22)). However, to deduce existence of β̂n ∈ Bρ
from Corollary 7.1, one needs to prove (in Chang’s notation)

E [sup{n ≥ 1 | ∃β ∈ ∂Bρ : An +Bn + Jn − nαǫ∗ ≥ 0}] <∞,

but Chang proves

∀β ∈ ∂Bρ : E [sup{n ≥ 1 | An +Bn + Jn − nαǫ∗ ≥ 0}] <∞.

(Here the terms An, Bn, Jn and ǫ∗ depend on β).

The following theorem shows asymptotic existence and strong consistency of β̂n, and provides
mean square convergence rates.

Theorem 7.2. Let 0 < ρ ≤ ρ0. For all n > Nρ there exists a solution β̂n ∈ Bρ to ln(β) = 0, and
limn→∞ β̂n = β(0) a.s. Moreover,

E

[

∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣

2

1n>Nρ

]

= O

(

log(n)

L1(n)
+

n(d− 1)2

L1(n)L2(n)

)

. (7.8)

Remark 7.2. If d = 1 then the term n(d−1)2

L1(n)L2(n) in (7.8) vanishes. If d = 2, the next to smallest
eigenvalue λ2(Pn) of Pn is actually the largest eigenvalue of Pn. If in addition infi∈N ||xi|| ≥
dmin > 0 a.s. for some dmin > 0, then λmax(Pn) ≥ 1

2 tr(Pn) ≥ dmin
2 n, and n(d−1)2

L1(n)L2(n) = O
(

1
L1(n)

)

.

The bound in Theorem 7.2 then reduces to

E

[

∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣

2

1n>Nρ

]

= O

(

log(n)

L1(n)

)

. (7.9)

Remark 7.3. In general, the equation ln(β) = 0 may have multiple solutions. Procedures for
selecting the “right” root are discussed in Small et al. (2000) and Heyde (1997, Section 13.3). Tza-
velas (1998) shows that with probability one there exists not more than one consistent solution.

7.3 Results for canonical link functions

In this section we consider again the statistical model introduced in Section 7.1.1, under all the as-
sumptions listed in Section 7.1.3. In addition, we restrict to canonical link functions, i.e. functions
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h that satisfy ḣ = v ◦ h. The quasi-likelihood equations (7.2) then simplify to

ln(β) =

n
∑

i=1

xi(yi − h(xTi β)) = 0. (7.10)

This simplification enables us to improve the bounds from Theorem 7.2. In particular, the main

result of this section is Theorem 7.3, which shows that the term O
(

n(d−1)2

L1(n)L2(n)

)

in (7.8) vanishes,

yielding the following upper bound on the mean square convergence rates:

E

[

∣

∣

∣

∣

∣

∣
β̂n − β(0)

∣

∣

∣

∣

∣

∣

2

1n>Nρ

]

= O

(

log(n)

L1(n)

)

.

In the previous section, we invoked a corollary of the Leray-Schauder Theorem to prove existence
of β̂n in a proximity of β(0). In the case of canonical link function, a similar existence result is
derived from the following fact:

Lemma 7.3 (Chen et al., 1999, Lemma A(i)). Let H : Rd → Rd be a continuously differentiable
injective mapping, x0 ∈ Rd, and δ > 0, r > 0. If infx:||x−x0||=δ ||H(x) −H(x0)|| ≥ r then for all
y ∈ {y ∈ Rd | ||y −H(x0)|| ≤ r} there is an x ∈ {x ∈ Rd | ||x− x0|| ≤ δ} such that H(x) = y.

Chen et al. (1999) assume that H is smooth, but an inspection of their proof reveals that H being
a continuously differentiable injection is sufficient.

We apply Lemma 7.3 with H(β) = P
−1/2
n ln(β) and y = 0:

Corollary 7.2. Let 0 < ρ ≤ ρ0, n ≥ Nρ, δ > 0 and r > 0. If infβ∈∂Bδ

∣

∣

∣

∣Hn(β) −Hn(β
(0)))

∣

∣

∣

∣ ≥ r and
∣

∣

∣

∣Hn(β
(0))
∣

∣

∣

∣ ≤ r then there is a β ∈ Bδ with P−1/2
n ln(β) = 0, and thus ln(β) = 0.

Remark 7.4. The proof of Corollary 7.2 reveals that ln(β) is injective for all n ≥ n0, and thus β̂n
is uniquely defined for all n ≥ Nρ.

The following theorem improves the mean square convergence rates of Theorem 7.2 in case of
canonical link functions.

Theorem 7.3. In case of a canonical link function,

E

[

∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣

2

1n≥Nρ

]

= O

(

log(n)

L1(n)

)

, (0 < ρ ≤ ρ0). (7.11)

Remark 7.5. Some choices of h, e.g. h the identity or the logit function, have the property that
infx∈X,β∈Rd ḣ(xTβ) > 0, i.e. c2 in equation (7.7) has a positive lower bound independent of ρ0.
Since canonical link functions have c1 = 0 in equation (7.7), we then can choose ρ0 = ∞ in Lemma
7.2, Theorem 7.1 and Theorem 7.3. Then Nρ0 = n0 and β̂n exists a.s. for all n ≥ n0. Moreover, we
can drop assumption (7.4) and obtain

E

[

∣

∣

∣

∣

∣

∣
β̂n − β(0)

∣

∣

∣

∣

∣

∣

2
]

= O

(

log(n)

L1(n)

)

, (n ≥ n0). (7.12)

for any positive lower bound L1(n) on λmin(Pn). Naturally, one needs to assume log(n) =

o(L1(n)) in order to conclude from (7.12) that E
[

||β̂n − β(0)||2
]

converges to zero as n→ ∞.
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7.4 Proofs

Proof of Lemma 7.2

A Taylor expansion of h and g yields

yi − h(xTi β) = yi − h(xTi β
(0)) + h(xTi β

(0)) − h(xTi β) = ei − ḣ(xTi β̃
(1)
i,β )xTi (β − β(0)), (7.13)

g(xTi β) = g(xTi β
(0)) + ġ(xTi β

(0))xTi (β − β(0)) +
1

2
(β − β(0))T g̈(xTi β̃

(2)
i,β )xix

T
i (β − β(0)), (7.14)

for some β̃(1)
i,β , β̃(2)

i,β on the line segment between β and β(0). As in Chang (1999, page 241), it
follows that

(β − β(0))T ln(β) = (β − β(0))T
n
∑

i=1

g(xTi β)xi(ei − ḣ(xTi β̃
(1)
i,β )xTi (β − β(0)))

= (β − β(0))T
n
∑

i=1

g(xTi β
(0))xiei

+ (β − β(0))T
n
∑

i=1

ġ(xTi β
(0))xTi (β − β(0))xiei

+ (β − β(0))T
n
∑

i=1

[

1

2
(β − β(0))T g̈(xTi β̃

(2)
i,β )xix

T
i (β − β(0))

]

xiei

− (β − β(0))T
n
∑

i=1

g(xTi β)xiḣ(x
T
i β̃

(1)
i,β )xTi (β − β(0))

= (β − β(0))TAn + (β − β(0))TBn(β − β(0)) + (I) − (II),

where we write (I) = (β − β(0))T
∑n
i=1

[

1
2 (β − β(0))T g̈(xTi β̃

(2)
i,β )xix

T
i (β − β(0))

]

xiei and (II) =

(β − β(0))T
∑n
i=1 g(x

T
i β)xiḣ(x

T
i β̃

(1)
i,β )xTi (β − β(0)). Since

(I) =(β − β(0))T
n
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2
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]
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T
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T
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and

(II) ≥ c2(β − β(0))T
n
∑

i=1

xix
T
i (β − β(0)),

by combining all relevant inequalities we obtain

(β − β(0))T ln(β) ≤ (β − β(0))TAn + (β − β(0))TBn(β − β(0))

+
∣

∣

∣

∣

∣

∣β − β(0)
∣

∣

∣

∣

∣

∣ (β − β(0))TJn(β − β(0)) − (c2/2)(β − β(0))T
n
∑

i=1

xix
T
i (β − β(0)),

using (c1c3
∣

∣

∣

∣β − β(0)
∣

∣

∣

∣− c2) ≤ (c1c3ρ− c2) ≤ −c2/2.

Proof of Theorem 7.1

Fix ρ ∈ (0, ρ0] and 0 < η < rα− 1. Let Sn(β) be as in Lemma 7.2. Define the last-time

T = sup{n ≥ n0 | sup
β∈∂Bρ

Sn(β) − ρ2(c2/2)L1(n) > 0}.

By Lemma 7.2, for all n > T ,

0 ≥ sup
β∈∂Bρ

Sn(β) − ρ2(c2/2)L1(n) ≥ sup
β∈∂Bρ

Sn(β) − (c2/2)(β − β(0))TPn(β − β(0))

≥ sup
β∈∂Bρ

(β − β(0))T ln(β),

which by Corollary 7.1 implies n > Nρ. Then Nρ ≤ T a.s., and thus E[Nη
ρ ] ≤ E[T η] for all η > 0.

The proof is complete if we show the assertions for T .

If we denote the entries of the vector An and the matrices Bn, Jn by An[i], Bn[i, j], Jn[i, j], then

sup
β∈∂Bρ

Sn(β) ≤ ρ ||An|| + ρ2 ||Bn|| + ρ3 ||Jn||

≤ ρ
∑

1≤i≤d
|An[i]| + ρ2

∑

1≤i,j≤d
|Bn[i, j]| + ρ3

∑

1≤i,j≤d
|Jn[i, j]|,

using the Cauchy-Schwartz inequality and the fact that ||x|| ≤ ||x||1, ||A|| ≤ ∑

i,j |A[i, j]| for

vectors x and matrices A. (This can be derived from the inequality ||A|| ≤
√

||A||1 ||A||∞). We
now define d+ 2d2 last-times:

TA[i] = sup{n ≥ n0 | ρ|An[i]| −
1

d+ 2d2
ρ2(c2/2)L1(n) > 0}, (1 ≤ i ≤ d),

TB[i,j] = sup{n ≥ n0 | ρ2|Bn[i, j]| −
1

d+ 2d2
ρ2(c2/2)L1(n) > 0}, (1 ≤ i, j ≤ d),

TJ[i,j] = sup{n ≥ n0 | ρ3|Jn[i, j]| −
1

d+ 2d2
ρ2(c2/2)L1(n) > 0}, (1 ≤ i, j ≤ d).

By application of Proposition 7.1, Section 7.5, the last-times TA[i] and TB[i,j] are a.s. finite and
have finite η-th moment, for all η > 0 such that r > η+1

α > 2. Chow and Teicher (2003, page 95,
Lemma 3) states that any two nonnegative random variables X1, X2 satisfy

E [(X1 +X2)
η] ≤ 2η(E [Xη

1 ] + E [Xη
2 ]), (7.15)
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for all η > 0. Consequently

sup
i∈N

E [||ei| − E [|ei| | Fi−1] |r] ≤ sup
i∈N

E [||ei| + E [|ei| | Fi−1] |r]

≤ sup
i∈N

2r(E [|ei|r] + E [(E [|ei| | Fi−1])
r]) <∞,

and Proposition 7.1 implies that the last-times TJ[i,j] are also a.s. finite and have finite η-th mo-
ment, for all η > 0 such that r > η+1

α > 2. Now set T =
∑

1≤i≤d TA[i] +
∑

1≤i,j≤d TB[i,j] +
∑

1≤i,j≤d TJ[i,j]. If n > T , then supβ∈∂Bρ
Sn(β) − ρ2(c2/2)L1(n) ≤ 0, and thus T ≤ T a.s. and

E [T η] ≤ E [T η]. T is finite a.s., since all terms TA[i], TB[i,j] and TJ[i,j] are finite a.s. Moreover, by
repeated application of (7.15), for all η > 0 there is a constant Cη such that

E[T η] ≤ Cη





∑

1≤i≤d
E
[

TA[i]

]

+
∑

1≤i,j≤d
E
[

T ηB[i,j]

]

+
∑

1≤i,j≤d
E
[

T ηJ[i,j]

]



 .

It follows that E [T η] <∞ for all η > 0 such that r > η+1
α > 2. In particular, this implies Nρ <∞

a.s., and E
[

Nη
ρ

]

<∞.

Proof of Theorem 7.2

The asymptotic existence and strong consistency of β̂n follow directly from Theorem 7.1 which
shows Nρ <∞ a.s. for all 0 < ρ ≤ ρ0.

To prove the mean square convergence rates, let 0 < ρ ≤ ρ0.

By contraposition of Corollary 7.1, if there is no solution β ∈ Bρ to ln(β) = 0, then there exists a
β′ ∈ ∂Bρ such that (β′ − β(0))T ln(β

′) > 0, and thus Sn(β′) − (c2/2)(β′ − β(0))TPn(β
′ − β(0)) > 0

by Lemma 7.2. In particular,

(β′−β(0))T (c2/2)Pn(β
′−β(0))−(β′−β(0))T

[

An +Bn(β
′ − β(0)) +

∣

∣

∣

∣

∣

∣
β′ − β(0)

∣

∣

∣

∣

∣

∣
Jn(β

′ − β(0))
]

≤ 0,

and, writing

(I) =
∣

∣

∣

∣

∣

∣(c2/2)−1P−1
n

[

An +Bn(β
′ − β(0)) + ρJn(β

′ − β(0))
]∣

∣

∣

∣

∣

∣

2

and

(II) =
(d− 1)2

∣

∣

∣

∣An +Bn(β
′ − β(0)) + ρJn(β

′ − β(0))
∣

∣

∣

∣

2

L1(n)L2(n)(c2/2)2
,

Lemma 7.7, Section 7.5, implies

ρ2 =
∣

∣

∣

∣

∣

∣β′ − β(0)
∣

∣

∣

∣

∣

∣

2

≤ (I) + (II). (7.16)

We now proceed to show

(I) + (II) < Un, (7.17)

for some Un, independent of β′ and ρ, that satisfies

E [Un] = O

(

log(n)

L1(n)
+

n(d− 1)2

L1(n)L2(n)

)

.
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Thus, if there is no solution β ∈ Bρ of ln(β) = 0, then ρ2 < Un. This implies that there
is always a solution β ∈ B

U
1/2
n

to ln(β) = 0, and thus ||β̂n − β(0)||21n>Nρ ≤ Un a.s., and

E
[

||β̂n − β(0)||21n>Nρ

]

≤ E [Un].

To prove (7.17), we decompose (I) and (II) using the following fact: if M,N are d × d matrices,
and N(j) denotes the j-th column of N , then

||MN || = max
||y||=1

||MNy|| = max
||y||=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M

d
∑

j=1

y[j]N(j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ max
||y||=1

d
∑

j=1

||My[j]N(j)|| ≤
d
∑

j=1

||MN(j)|| .

As a result we get

∣

∣

∣

∣

∣

∣P−1
n Bn(β

′ − β(0))
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

ġ(xTi β
(0))xieix

T
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣β′ − β(0)
∣

∣

∣

∣

∣

∣

≤ ρ

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

ġ(xTi β
(0))xieixi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and

∣

∣

∣

∣

∣

∣P−1
n Jn(β

′ − β(0))
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

c1xi(|ei| − E [|ei| | Fi−1])x
T
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣β′ − β(0)
∣

∣

∣

∣

∣

∣

≤ ρ

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

c1xi(|ei| − E [|ei| | Fi−1])xi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In a similar vein we can derive

∣

∣

∣

∣

∣

∣Bn(β
′ − β(0))

∣

∣

∣

∣

∣

∣ ≤ ρ

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

ġ(xTi β
(0))xieixi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and

∣

∣

∣

∣

∣

∣Jn(β
′ − β(0))

∣

∣

∣

∣

∣

∣ ≤ ρ

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

c1xi(|ei| − E [|ei| | Fi−1])xi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It follows that

(I) ≤ 2(c2/2)−2

(

∣

∣

∣

∣P−1
n An

∣

∣

∣

∣

2
+
∣

∣

∣

∣

∣

∣P−1
n Bn(β

′ − β(0))
∣

∣

∣

∣

∣

∣

2

+ ρ2
0

∣

∣

∣

∣

∣

∣P−1
n Jn(β

′ − β(0))
∣

∣

∣

∣

∣

∣

2
)

≤ Un(1) + Un(2) + Un(3),

where we write

Un(1) = 2(c2/2)−2
∣

∣

∣

∣P−1
n An

∣

∣

∣

∣

2
,

Un(2) = 2(c2/2)−2ρ2
02





d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

ġ(xTi β
(0))xieixi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2


 ,

Un(3) = 2(c2/2)−2ρ4
02





d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1
n

n
∑

i=1

c1xi(|ei| − E [|ei| | Fi−1])xi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2


 ,



126 Chapter 7 Mean square convergence rates for maximum quasi-likelihood estimators

and

(II) ≤ Un(4) + Un(5) + Un(6),

where we write

Un(4) =
2(d− 1)2 ||An||2
L1(n)L2(n)(c2/2)2

,

Un(5) =
2(d− 1)2

L1(n)L2(n)(c2/2)2



ρ0

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

ġ(xTi β
(0))xieixi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





2

,

Un(6) =
2(d− 1)2

L1(n)L2(n)(c2/2)2
ρ2
0



ρ0

d
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

c1xi(|ei| − E [|ei| | Fi−1])xi[j]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





2

.

The desired upper bound Un for (I) + (II) equals Un =
∑6
j=1 Un(j). For Un(1), Un(2), Un(3),

apply Proposition 7.2 in Section 7.5 on the martingale difference sequences (g(xTi β
(0))ei)i∈N,

(ġ(xTi β
(0))xi[j]ei)i∈N and (c1(|ei|−E [|ei| | Fi−1]xi[j])i∈N, respectively. This implies the existence

of a constant K1 > 0 such that E[Un(1) + Un(2) + Un(3)] ≤ K1 log(n)
L1(n) . For Un(4), Un(5), Un(6), the

assumption
sup
i∈N

E
[

e2i | Fi−1

]

≤ σ2 <∞ a.s.

implies the existence of a constant K2 > 0 such that E [Un(4) + Un(5) + Un(6)] ≤ K2n(d−1)2

L1(n)L2(n) .

Proof of Corollary 7.2

It is sufficient to show that H(β) is injective. Suppose P−1/2
n ln(β) = P

−1/2
n ln(β

′) for some β, β′.
Since n ≥ n0 this implies ln(β) = ln(β

′). By a first order Taylor expansion, there are β̃i, 1 ≤ i ≤ n,
on the line segment between β and β′ such that ln(β) − ln(β

′) =
∑n
i=1 xix

T
i ḣ(x

T
i β̃i)(β − β′) = 0.

Since infx∈X,β∈Bρ ḣ(x
Tβ) > 0, Lemma 7.8 in Section 7.5 implies that the matrix

∑n
i=1 xix

T
i ḣ(x

T
i β̃i)

is invertible, and thus β = β′.

Proof of Theorem 7.3

Let 0 < ρ ≤ ρ0 and n ≥ Nρ. A Taylor expansion of ln(β) yields

ln(β) − ln(β
(0)) =

n
∑

i=1

xi(h(x
T
i β

(0)) − h(xTi β)) =

n
∑

i=1

xix
T
i ḣ(x

T
i βin)(β

(0) − β),

for some βin, 1 ≤ i ≤ n, on the line segment between β(0) and β.

Write Tn(β) =
∑n
i=1 xix

T
i ḣ(x

T
i βin), and choose k2 >

(

infβ∈Bρ,x∈X ḣ(x
Tβ)

)−1

. Then for all β ∈
Bρ,

λmin (k2Tn(β) − Pn) = λmin

(

n
∑

i=1

xix
T
i (k2ḣ(x

T
i βin) − 1)

)

≥
(

inf
β∈Bρ0

,x∈X
(k2ḣ(x

Tβ) − 1)

)

λmin(Pn),
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by Lemma 7.8. This implies

yT k2Tn(β)y ≥ yTPny and yT k−1
2 Tn(β)−1y ≤ yTP−1

n y for all y ∈ Rd,

cf. Bhatia (2007, page 11, Exercise 1.2.12).

Define Hn(β) = P
−1/2
n ln(β), rn =

∣

∣

∣

∣Hn(β
(0))
∣

∣

∣

∣, and δn = rn

k−1
2

√
L1(n)

. If δn > ρ then it follows

immediately that ||β̂n − β(0)|| ≤ ρ <
||Hn(β(0))||
k−1
2

√
L1(n)

. Suppose δn ≤ ρ. Then for all β ∈ ∂Bδn ,

∣

∣

∣

∣

∣

∣Hn(β) −Hn(β
(0))
∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∣P−1/2
n (ln(β) − ln(β

(0)))
∣

∣

∣

∣

∣

∣

2

= (β(0) − β)TTn(β)P−1
n Tn(β)(β(0) − β)

≥ (β(0) − β)TTn(β)k−1
2 Tn(β)−1Tn(β)(β(0) − β)

≥ (β(0) − β)TPnk
−2
2 (β(0) − β)

≥ k−2
2

∣

∣

∣

∣

∣

∣β(0) − β
∣

∣

∣

∣

∣

∣

2

λmin(Pn)

≥ k−2
2 δ2nL1(n),

and thus infβ∈∂Bδn

∣

∣

∣

∣Hn(β) −Hn(β
(0))
∣

∣

∣

∣ ≥ k−1
2

√

L1(n)δn = rn and
∣

∣

∣

∣H(β(0))
∣

∣

∣

∣ ≤ rn. By Corol-

lary 7.2 we conclude that
∣

∣

∣

∣

∣

∣β̂n − β(0)
∣

∣

∣

∣

∣

∣ ≤ ||Hn(β(0))||
k−1
2

√
L1(n)

a.s.

Now E
[

∣

∣

∣

∣Hn(β
(0))
∣

∣

∣

∣

2
]

= E
[

(
∑n
i=1 xiei)

T
P−1
n (

∑n
i=1 xiei)

]

= E[Qn], where Qn is as in the proof

of Proposition 7.2. There we show E[Qn] ≤ K log(n), for some K > 0 and all n ≥ n0, and thus

we have E
[

∣

∣

∣

∣β − β(0)
∣

∣

∣

∣

2
1n≥Nρ

]

= O
(

log(n)
L1(n)

)

.

7.5 Appendix: auxiliary results

In this appendix, we prove and collect several probabilistic results which are used in the pre-
ceding sections. Proposition 7.1 is fundamental to Theorem 7.1, where we provide sufficient
conditions such that the η-th moment of the last-time Nρ is finite, for η > 0. The proof of the
proposition makes use of two auxiliary lemma’s. Lemma 7.4 is a maximum inequality for tail
probabilities of martingales; for sums of i.i.d. random variables this statement can be found e.g.
in Loève (1977a, Section 18.1C, page 260), and a martingale version was already hinted at in
Loève (1977b, Section 32.1, page 51). Lemma 7.5 contains a so-called Baum-Katz-Nagaev type
theorem proven by Stoica (2007). There exists a long tradition of these type of results for sums of
independent random variables, see e.g. Spataru (2009) and the references therein. Stoica (2007)
makes an extension to martingales. In Proposition 7.2 we provide L2 bounds for least-squares
linear regression estimates, similar to the a.s. bounds derived by Lai and Wei (1982). The bounds
for the quality of maximum quasi-likelihood estimates, Theorem 7.2 in Section 7.2 and Theorem
7.3 in Section 7.3, are proven by relating them to these bounds from Proposition 7.2. Lemma 7.6
is an auxiliary result used in the proof of Proposition 7.2. Finally, Lemma 7.7 is used in the proof
of Theorem 7.2, and Lemma 7.8 in the proof of Theorem 7.3.

Lemma 7.4. Let (Xi)i∈N be a martingale difference sequence w.r.t. a filtration {Fi}i∈N. Write Sn =
∑n
i=1Xi, and suppose supi∈N E[X2

i | Fi−1] ≤ σ2 < ∞ a.s., for some σ > 0. Then for all n ∈ N and
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ǫ > 0,

P

(

max
1≤k≤n

|Sk| ≥ ǫ

)

≤ 2P
(

|Sn| ≥ ǫ−
√

2σ2n
)

. (7.18)

Proof. We use similar techniques as de la Peña et al. (2009, Theorem 2.21, p.16), where (7.18)
is proven for independent random variables (Xi)i∈N. Define the events A1 = {S1 ≥ ǫ} and
Ak = {Sk ≥ ǫ, S1 < ǫ, . . . , Sk−1 < ǫ}, 2 ≤ k ≤ n. Then Ak(1 ≤ k ≤ n) are mutually disjoint, and
{max1≤k≤n Sk ≥ ǫ} =

⋃n
k=1Ak.

P

(

max
1≤k≤n

Sk ≥ ǫ

)

≤ P
(

Sn ≥ ǫ−
√

2σ2n
)

+ P

(

max
1≤k≤n

Sk ≥ ǫ, Sn < ǫ−
√

2σ2n

)

≤ P
(

Sn ≥ ǫ−
√

2σ2n
)

+
n
∑

k=1

P
(

Ak, Sn < ǫ−
√

2σ2n
)

≤ P
(

Sn ≥ ǫ−
√

2σ2n
)

+

n
∑

k=1

P
(

Ak, Sn − Sk < −
√

2σ2n
)

(1)
= P

(

Sn ≥ ǫ−
√

2σ2n
)

+

n
∑

k=1

E
[

1Ak
E
[

1Sn−Sk<−
√

2σ2n | Fk
]]

(2)

≤ P
(

Sn ≥ ǫ−
√

2σ2n
)

+

n
∑

k=1

1

2
P (Ak)

= P
(

Sn ≥ ǫ−
√

2σ2n
)

+ P

(

max
1≤k≤n

Sk ≥ ǫ

)

,

where (1) uses Ak ∈ Fk, and (2) uses E[1Sn−Sk<−
√

2σ2n | Fk] = P (Sk − Sm >
√

2σ2n | Fk) ≤
E[(Sn − Sk)

2 | Fk]/(2σ2n) ≤ 1/2 a.s. This proves P (max1≤k≤n Sk ≥ ǫ) ≤ 2P (Sn ≥ ǫ −
√

2σ2n).
Replacing Sk by −Sk gives P (max1≤k≤n−Sk ≥ ǫ) ≤ 2P (−Sn ≥ ǫ −

√
2σ2n). If ǫ −

√
2σ2n ≤ 0

then (7.18) is trivial; if ǫ >
√

2σ2n then

P

(

max
1≤k≤n

|Sk| ≥ ǫ

)

≤ P

(

max
1≤k≤n

Sk ≥ ǫ

)

+ P

(

max
1≤k≤n

−Sk ≥ ǫ

)

≤ 2P
(

Sn ≥ ǫ−
√

2σ2n
)

+ 2P
(

−Sn ≥ ǫ−
√

2σ2n
)

= 2P
(

|Sn| ≥ ǫ−
√

2σ2n
)

.

Lemma 7.5 (Stoica, 2007). Let (Xi)i∈N be a martingale difference sequence w.r.t. a filtration {Fi}i∈N.
Write Sn =

∑n
i=1Xi and suppose supi∈N E[X2

i | Fi−1] ≤ σ2 < ∞ a.s. for some σ > 0. Let c > 0,
1
2 < α ≤ 1, η > 2α− 1, r > η+1

α . If supi∈N E [|Xi|r] <∞, then

∑

k≥1

kη−1P (|Sk| ≥ ckα) <∞.

Proposition 7.1. Let (Xi)i∈N be a martingale difference sequence w.r.t. a filtration {Fi}i∈N. Write Sn =
∑n
i=1Xi and suppose supi∈N E[X2

i | Fi−1] ≤ σ2 < ∞ a.s. for some σ > 0. Let c > 0, 1
2 < α ≤ 1,

η > 2α − 1, r > η+1
α , and define the random variable T = sup{n ∈ N | |Sn| ≥ cnα}, where T takes

values in N ∪ {∞}. If supi∈N E [|Xi|r] <∞, then

T <∞ a.s., and E [T η] <∞.
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Proof. There exists an n′ ∈ N such that for all n > n′, c(n/2)α −
√

2σ2n ≥ c(n/2)α/2. For all
n > n′,

P (T > n) = P (∃k > n : |Sk| ≥ ckα)

≤
∑

j≥⌊log2(n)⌋
P
(

∃2j−1 ≤ k < 2j : |Sk| ≥ ckα
)

≤
∑

j≥⌊log2(n)⌋
P
(

sup
1≤k≤2j

|Sk| ≥ c(2j−1)α
)

(1)

≤ 2
∑

j≥⌊log2(n)⌋
P
(

|S2j | ≥ c(2j−1)α −
√

2σ22j
)

(2)

≤ 2
∑

j≥⌊log2(n)⌋
P
(

|S2j | ≥ c(2j−1)α/2
)

.

where (1) follows from Lemma 7.4 and (2) from the definition of n′.

For t ∈ R+ write St = S⌊t⌋. Then

∑

j≥log2(n)

P
(

|S2j | ≥ c(2j−1)α/2
)

=

∫

j≥log2(n)

P
(

|S2j | ≥ c(2j−1)α/2
)

dj (7.19)

=

∫

k≥n
P (|Sk| ≥ c(k/2)α/2)

1

k log(2)
dk =

∑

k≥n
P (|Sk| ≥ c(k/2)α/2)

1

k log(2)
, (7.20)

using a variable substitution k = 2j .

By Chebyshev’s inequality,

P (T > n) ≤ 2
∑

k≥n
P (|Sk| ≥ c(k/2)α/2)

1

k log(2)
≤ 2

∑

k≥n
σ2k(c(k/2)α/2)−2 1

k log(2)
,

which implies P (T = ∞) ≤ lim infn→∞ P (T > n) = 0. This proves T <∞ a.s.

Since

E[T η] ≤ η



1 +
∑

n≥1

nη−1P (T > n)





≤ η

[

1 + n′ · (n′)η−1 +
∑

n>n′

nη−1P (T > n)

]

≤M
∑

n>n′

nη−1
∑

j≥⌊log2(n)⌋
P
(

|S2j | ≥ c(2j−1)α/2
)

,

for some constant M > 0, it follows by (7.19), (7.20) that E[T η] <∞ if

∑

n≥1

nη−1
∑

k≥n
P (|Sk| ≥ c(k/2)α/2) k−1 <∞.

By interchanging the sums, it suffices to show

∑

k≥1

kη−1P
(

|Sk| ≥ 2−1−αckα
)

<∞.
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This last statement follows from Lemma 7.5.

Let (ei)i∈N be a martingale difference sequence w.r.t. a filtration {Fi}i∈N, such that supi∈N E[e2i |
Fi−1] = σ2 < ∞ a.s., for some σ > 0. Let (xi)i∈N be a sequence of vectors in Rd. Assume that
(xi)i∈N are predictable w.r.t. the filtration (i.e. xi ∈ Fi−1 for all i ∈ N), and supi∈N ||x||i ≤ M < ∞
for some (non-random) M > 0. Write Pn =

∑n
i=1 xix

T
i . Let L : N → R+ be a (non-random)

function and n0 ≥ 2 a (non-random) integer such that λmin(Pn) ≥ L(n) for all n ≥ n0, and
limn→∞ L(n) = ∞.

Proposition 7.2. There is a constant K > 0 such that for all n ≥ n0,

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

n
∑

i=1

xix
T
i

)−1 n
∑

i=1

xiei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ K
log(n)

L(n)
.

The proof of Proposition 7.2 uses the following result:

Lemma 7.6. Let (yn)n∈N be a nondecreasing sequence with y1 ≥ e. Write Rn = 1
log(yn)

∑n
i=1

yi−yi−1

yi
,

where we put y0 = 0. Then Rn ≤ 2 for all n ∈ N.

Proof. Induction on n. R1 = 1
log(y1)

≤ 1 ≤ 2. Let n ≥ 2 and define g(y) = 1
log(y)

y−yn−1

y +
log(yn−1)

log(y) Rn−1. If Rn−1 ≤ 1, then Rn = g(yn) ≤ 1
log(yn) + 1 ≤ 2. Now suppose Rn−1 > 1. Since

z 7→ (1 + log(z))/z is decreasing in z on z ≥ 1, and since yn−1 ≥ 1, we have (1 + log(y))/y ≤
(1 + log(yn−1))/yn−1 for all y ≥ yn−1. Together with Rn−1 > 1 this implies

∂g(y)

∂y
=

1

y(log(y))2

[

−1 +
yn−1

y
(1 + log(y)) − log(yn−1)Rn−1

]

< 0, for all y ≥ yn−1.

This proves Rn = g(yn) ≤ maxy≥yn−1
g(y) = g(yn−1) = Rn−1 ≤ 2.

Proof of Proposition 7.2. Write qn =
∑n
i=1 xiei and Qn = qnP

−1
n qn. For n ≥ n0, Pn is invertible,

and

∣

∣

∣

∣P−1
n qn

∣

∣

∣

∣

2 ≤
∣

∣

∣

∣

∣

∣P−1/2
n

∣

∣

∣

∣

∣

∣

2

·
∣

∣

∣

∣

∣

∣P−1/2
n qn

∣

∣

∣

∣

∣

∣

2

≤ λmin(Pn)
−1qnP

−1
n qn ≤ L(n)−1Qn a.s.,

where we used
∣

∣

∣

∣

∣

∣P
−1/2
n

∣

∣

∣

∣

∣

∣ = λmax(P
−1/2
n ) = λmin(Pn)

−1/2. We show E[Qn] ≤ K log(n), for a

constant K to be defined further below, and all n ≥ n0.

Write Vn = P−1
n . Since Pn = Pn−1 + xnx

T
n , it follows from the Sherman-Morrison formula

(Bartlett, 1951) that Vn = Vn−1 − Vn−1xnx
T
nVn−1

1+xT
nVn−1xn

, and thus

xTnVn = xTnVn−1 −
(xTnVn−1xn)x

T
nVn−1

1 + xTnVn−1xn
= xTnVn−1/(1 + xTnVn−1xn).
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As in Lai and Wei (1982), Qn satisfies

Qn =

(

n
∑

i=1

xTi ei

)

Vn

(

n
∑

i=1

xiei

)

=

(

n−1
∑

i=1

xTi ei

)

Vn

(

n−1
∑

i=1

xiei

)

+ xTnVnxne
2
n + 2xTnVn

(

n−1
∑

i=1

xiei

)

en

= Qn−1 +

(

n−1
∑

i=1

xTi ei

)

(

−Vn−1xnx
T
nVn−1

1 + xTnVn−1xn

)

(

n−1
∑

i=1

xiei

)

+ xTnVnxne
2
n + 2

xTnVn−1

1 + xTnVn−1xn

(

n−1
∑

i=1

xiei

)

en

= Qn−1 −
(xTnVn−1

∑n−1
i=1 xiei)

2

1 + xTnVn−1xn
+ xTnVnxne

2
n + 2

xTnVn−1

1 + xTnVn−1xn

(

n−1
∑

i=1

xiei

)

en.

Observe that

E

[

xTnVn−1

1 + xTnVn−1xn

(

n−1
∑

i=1

xiei

)

en

]

= E

[

xTnVn−1

1 + xTnVn−1xn

(

n−1
∑

i=1

xiei

)

E [en | Fn−1]

]

= 0

and
E
[

xTnVnxne
2
n

]

= E
[

xTnVnxnE
[

e2n | Fn−1

]]

≤ E
[

xTnVnxn
]

σ2.

By telescoping the sum we obtain

E[Qn] ≤ E[Qmin{n,n1}] + σ2
n
∑

i=n1+1

E[xTi Vixi],

where we define n1 ∈ N to be the smallest n ≥ n0 such that L(n) > e1/d for all n ≥ n1. We have

det(Pn−1) = det(Pn − xnx
T
n )

= det(Pn) det(I − P−1
n xnx

T
n )

= det(Pn)(1 − xTnVnxn), (n ≥ n1). (7.21)

Here the last equality follows from Sylvester’s determinant theorem det(I +AB) = det(I +BA),
for matrices A,B of appropriate size. We thus have xTnVnxn = det(Pn)−det(Pn−1)

det(Pn) . Define the
sequence (yn)n∈N by yn = det(Pn+n1

). Then (yn)n∈N is a nondecreasing sequence with y1 ≥
det(Pn1+1) ≥ λmin(Pn1+1)

d ≥ e. Lemma 7.6 implies

n
∑

i=n1+1

xTi Vixi =

n
∑

i=n1+1

yi−n1
− yi−1−n1

yi−n1

=

n−n1
∑

i=1

yi − yi−1

yi
≤ 2 log(yn−n1

) = 2 log(det(Pn)), a.s.

Now log(det(Pn)) ≤ d log(λmax(Pn)) ≤ d log(tr(Pn)) ≤ d log(n supi∈N ||xi||2) ≤ d log(nM2). Fur-
thermore, for all n0 ≤ n ≤ n1 we have

E [Qn] ≤ E
[

||qn||2 λmax(P
−1
n )

]

≤ E





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

xiǫi

∣

∣

∣

∣

∣

∣
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∣

∣

∣

2

L(n0)
−1



 ≤ L(n0)
−1E

[

2

n
∑

i=1

ǫ2i sup
i∈N

||xi||2
]

≤ 2L(n0)
−1M2n1σ

2,
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and thus for all n ≥ n0,

E [Qn] ≤ E
[

Qmin{n,n1}
]

+ σ2
n
∑

i=n1+1

E
[

xTi Vixi
]

≤ 2L(n0)
−1M2n1σ

2 + d log(n) + d log(M2)

≤ K log(n),

where K = d+ [2L(n0)
−1M2n1σ

2 + d log(M2)]/ log(n0).

Lemma 7.7. Let A be a positive definite d × d matrix, and b, x ∈ Rd. If xTAx + xT b ≤ 0 then

||x||2 ≤
∣

∣

∣

∣A−1b
∣

∣

∣

∣

2
+ (d− 1)2 ||b||2

λ1λ2
, where 0 < λ1 ≤ λ2 are the two smallest eigenvalues of A.

Proof. Let 0 < λ1 ≤ . . . ≤ λd be the eigenvalues of A, and v1, . . . , vd the corresponding eigenvec-
tors. We can assume that these form an orthonormal basis, such that each x ∈ Rd can be written
as
∑d
i=1 αivi, for coordinates (α1, . . . , αd), and b =

∑d
i=1 βivi for some (β1, . . . , βd). Write

S =

{

(α1, . . . , αd) |
d
∑

i=1

αi(λiαi + βi) ≤ 0

}

.

The orthonormality of (vi)1≤i≤d implies that S equals
{

x ∈ Rd | xTAx+ xT b ≤ 0
}

.

Let α = (α1, . . . , αd) ∈ S and write R = {i | αi(λiαi + βi) ≤ 0, 1 ≤ i ≤ d}. For all i ∈ R, standard

properties of quadratic equations imply α2
i ≤ λ−2

i β2
i and αi(λiαi + βi) ≥ −β2

i

4λi
. For all i ∈ S\R,

αi(λiαi + βi) ≤
∑

i∈S\R
αi(λiαi + βi) ≤ −

∑

i∈S
αi(λiαi + βi) ≤ c,

where we define c =
∑

i∈S
β2

i

4λi
. By the quadratic formula, αi(λiαi + βi) − c ≤ 0 implies

−βi −
√

β2
i + 4λic

2λi
≤ αi ≤

−βi +
√

β2
i + 4λic

2λi
.

(Note that λi > 0 and c > 0 implies that the square root is well-defined). It follows that

α2
i ≤ 2

β2
i + β2

i + 4λic

4λ2
i

=
β2
i

λ2
i

+ 2c/λi, (i ∈ S\R),

and thus

||x||2 =

d
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i∈R
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i β2
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where we used
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∣
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−2
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i∈S\R 1
)(
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j∈R 1
)
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Lemma 7.8. Let (xi)i∈N be a sequence of vectors in Rd, and (wi)i∈N a sequence of scalars with 0 <

infi∈N wi. Then for all n ∈ N,

λmin

(

n
∑

i=1

xix
T
i wi

)

≥ λmin

(

n
∑

i=1

xix
T
i

)
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wi).

Proof. For all z ∈ Rd,

zT
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n
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T
i wi

)

z ≥ (inf
i∈N

wi)z
T

(

n
∑

i=1
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T
i

)

z.

Let ṽ be a normalized eigenvector corresponding to λmin
(
∑n
i=1 xix

T
i wi

)

. Then
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(

n
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i=1
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T
i

)
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vT

(

n
∑

i=1

xix
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T
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)
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T
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)

ṽ(inf
i∈N
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−1
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(

n
∑

i=1
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T
i wi

)

(inf
i∈N

wi)
−1.
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Future directions

In this section we identify several open questions and relevant avenues for future research, which
could lead to interesting extensions of the results obtained in this thesis.

We show in Chapter 3 that certainty equivalent pricing in a single product setting, with infinite
inventory and linear demand function, is not strongly consistent. More precisely, we show that
with positive probability the price converges to the highest admissible price, which is different
from the optimal price. Simulations however suggest that a much stronger result holds: the
price sequence converges with probability one, but the limit price equals the optimal price with
probability zero. This means that with certainty equivalent pricing the price never converges to
the optimal price. This has, however, not yet been formally proven.

In Chapter 4, we study dynamic pricing and learning for multiple products with infinite inven-
tory, and in Chapter 5, we consider a single product with finite inventory. A natural extension is
to combine both settings, and to consider multiple products with finite inventories. Some addi-
tional modeling is then needed to describe what happens if some of the products are out-of-stock:
does this increase the demand for substitute products? And how does this depend on the selling
prices? An interesting question is whether a certainty equivalent policy has a good performance,
as in Chapter 5, or whether exogenous price dispersion is necessary.

The excellent performance of certainty equivalent pricing in the finite capacity setting of Chap-
ter 5 can be explained by an endogenous learning property: using a policy that is optimal with
respect to a parameter estimate close to the true parameter induces price dispersion, which leads
to fast learning of the parameters. This property does not only occur in dynamic pricing prob-
lems, but possibly also in many other Markov decision problems. One could formulate a general
framework of repeated Markov decision problems with incomplete information, and study how
the presence or absence of an endogenous learning property influences the performance of a cer-
tainty equivalent policy. Another interesting question is whether the derived O(log2(T )) bound
on the regret can be improved by any pricing strategy.

The demand function of Chapter 6 consists of an unknown, time-varying part and a known,
price-dependent part. An extension that would be of great practical interest is to assume that
the price-dependent part is also unknown to the firm and has to be learned from data. One step
further, one could assume that this term is time-varying as well. It is not clear if a certainty
equivalent pricing policy performs well in such a setting, or that active price experimentation
is necessary. Two other interesting extensions related to pricing in time-varying markets are
models with finite inventory (see, for instance, the recent work by Besbes and Saure, 2012), and
non-parametric approaches (for example, similar to Yu and Mannor, 2011).

Selling prices of competitors often play a major role in the pricing strategy of a firm, and it there-
fore seems natural to study pricing and learning policies in a competitive environment. Neglect-
ing competitive aspects may have negative consequences, as shown in Cooper et al. (2012). The
area of repeated games with incomplete information may provide a natural framework to study
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dynamic pricing and learning in a competitive environment. However, even without incomplete
information, the long-term dynamics of repeated games can be very complicated. This possibly
explains why the literature on dynamic pricing and learning with competition is still relatively
scarce.

Recent literature on pricing and assortment problems reveals that it may be beneficial to consider
pricing decisions and assortment planning simultaneously instead of separately. The same holds
for pricing and inventory problems: in many situations, it is beneficial to determine a joint pricing
and inventory replenishment strategy. These observations imply that it may be rewarding to
study data-driven policies for these combined decision problems under uncertainty. For joint
pricing and assortment problems, a first step in this direction is taken by Talebian et al. (2012).

A further suggestion for future research is related to the quality of the upper bounds on mean
square convergence rates of maximum quasi-likelihood estimators, which are studied in Chapter
7. In Theorem 7.2, we provide such upper bounds for general link functions. Application of these
bounds in Chapter 4 leads to Regret(T ) = O(T 2/3) for the pricing policy studied there. It is an
open question whether this growth rate on the regret can be improved upon, and whether the
bounds in Theorem 7.2 are tight. Likewise, the growth rate Regret(T ) = O(

√

T log(T )) of the pol-
icy discussed in Section 4.4.2 is based on Theorem 7.3, where upper bounds on the mean square
convergence rates for maximum quasi-likelihood estimators are obtained in case of canonical
link functions. These bounds involve a log(t)-term, which causes the factor

√

log(T ) in the regret
bounds. It is an open question whether this log(t)-term is only a result of the used proof tech-
niques, or that this term really is present in the asymptotic behavior of the regret. In the former
case, removing this

√

log(T )-term in the regret bound would imply that, for canonical link func-
tions, the pricing policy of Chapter 4 has Regret(T ) = O(

√
T ). In single-product settings such

policies are asymptotically optimal, in the sense that there is no policy with Regret(T ) = o(
√
T ).

The MLE-cycle policy by Broder and Rusmevichientong (2012) is an example of a pricing policy
that achieves optimal rate Regret(T ) = O(

√
T ). However, in this policy the unknown parameters

are estimated using only a small subset of the available sales data. The fact that this subset is non-
random and determined in advance greatly simplifies the mathematical analysis. In contrast, the
pricing policies of Chapter 3 and 4 do always use all available sales data; this comes with the
price of a small additional term in the regret bounds. It would be somewhat remarkable and
counterintuitive if a policy that uses all available data does always perform worse than a policy
that neglects a large part of the data. However, den Boer (2012b) shows that adding data does
not necessarily improve the expected quality of parameter estimates. It is interesting to study
conditions that guarantee improved parameter estimates when data is added, and to apply these
results to different pricing policies.



Nederlandse samenvatting

Dynamisch prijzen is voor veel commerciële bedrijven een onmisbaar onderdeel van het prijsbe-
leid. Het kernidee van dynamisch prijzen is dat verkoopprijzen op een slimme manier continu
aangepast kunnen worden aan veranderende omstandigheden. Dit omvat zowel externe factoren
(bijvoorbeeld variërende marktomstandigheden of prijswijzigingen bij concurrenten) als interne
factoren (bijvoorbeeld wisselende voorraadniveaus van de aangeboden producten). Dynamisch
prijzen is met name effectief als verkoopprijzen eenvoudig en kosteloos zijn aan te passen, zoals
bijvoorbeeld bij internetverkoop of als gebruik wordt gemaakt van digitale prijsetiketten.

In zulke digitale verkoopomgevingen is vaak veel historische verkoopdata beschikbaar, met
waardevolle informatie over klantengedrag en marktomstandigheden. Zulke gegevens hebben
een enorm potentieel om prijsbeslissingen van bedrijven te verbeteren, en een belangrijke vraag
is dan ook hoe deze gegevensstroom effectief gebruikt kan worden om optimale verkoopprijzen
te genereren. Idealiter zou een bedrijf steeds beter willen “leren” hoe klanten reageren op ver-
schillende verkoopprijzen naarmate er meer gegevens beschikbaar komen, om vervolgens haar
prijsbeleid daar op aan te passen. Er is dan een continue wederzijdse beïnvloeding tussen de
prijsbeslissingen van het bedrijf en de verkoopdata die daardoor voortgebracht wordt. In dit
proefschrift bestuderen we de vraag hoe deze “combinatie van dynamisch prijzen en leren” het
beste gerealiseerd kan worden.

Een belangrijke eerste stap om bruikbare informatie te abstraheren uit de stroom van verkoopge-
gevens is het formuleren van een vraagmodel: een wiskundige beschrijving van de relatie tussen
verkoopprijzen en de vraag naar producten. Zo’n model bevat doorgaans een aantal onbekende
parameters, en het model wordt pas bruikbaar in de praktijk als een schatting van de waarden
van deze parameters beschikbaar is. Er bestaan diverse statistische technieken om op basis van
de beschikbare verkoopgegevens zulke schattingen te bepalen. Telkens als er nieuwe verkoop-
gegevens bijkomen kunnen deze schattingen worden bijgewerkt, zodat deze op steeds meer ge-
gevens zijn gebaseerd. In het ideale geval leidt dit ertoe dat, naarmate er meer verkoopgegevens
beschikbaar komen, het vraagmodel een steeds betere beschrijving van de werkelijkheid geeft,
en het bedrijf zo steeds beter “leert” hoe de vraag naar haar producten afhangt van de verkoop-
prijzen.

Dit leren is geen vanzelfsprekendheid. Sommige prijsstrategieën die in de praktijk veel gebruikt
worden staan leren juist in de weg. Eén van deze strategieën is het zogenaamde “certainty equi-
valent” (CE) prijzen, waarbij, op elk moment dat de prijs wordt aangepast, de prijs wordt ge-
kozen die optimaal is als men aanneemt dat de dan beschikbare statistische schattingen correct
zijn. Met andere woorden, men kiest altijd voor de verkoopprijs die op het moment van beslis-
sen het beste lijkt. Dit lijkt een logische en intuïtieve manier van prijzen bepalen: waarom zou
men afwijken van wat de beste beslissing lijkt te zijn? Het blijkt echter dat deze manier van prij-
zen in sommige situaties tot grote verliezen kan leiden. Een illustratief voorbeeld hiervan wordt
beschreven in hoofdstuk 3.
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Een verklaring voor dit enigszins tegenintuïtieve en verrassende resultaat ligt in het feit dat het
leren van parameterwaarden en het bepalen van optimale prijzen niet twee volkomen onafhan-
kelijke processen zijn, maar juist sterk van elkaar afhangen. De kwaliteit van prijsbeslissingen
wordt rechtstreeks beïnvloed door de kwaliteit van de schatters in het vraagmodel, en deze wor-
den op hun beurt sterk beïnvloed door de mate van variatie of spreiding in de verkoopprijzen.
Over het algemeen geldt: hoe meer spreiding in de prijzen, hoe betere schattingen. Spreiding in
prijzen betekent echter ook dat er afgeweken wordt van de optimale prijs, en dit brengt kosten
met zich mee. Een goede prijsstrategie zorgt dus voor een optimale balans tussen enerzijds opti-
malisatie van de verwachte opbrengsten op korte termijn, en anderzijds de optimalisatie van het
leerproces. Bij CE prijzen wordt geen rekening gehouden met deze balans, maar ligt de nadruk
volledig op het maximaliseren van de directe opbrengsten. Dit gaat ten koste van de kwaliteit
van het leerproces, wat resulteert in slechtere prijs-beslissingen op de lange termijn.

In hoofdstuk 3 stellen we een prijsstrategie voor die wél een optimale balans bereikt: “controlled
variance pricing” (CVP). Het idee is dat de prijzen zo dicht mogelijk bij de CE prijzen worden ge-
kozen, maar met een extra conditie die een bepaalde hoeveelheid prijsvariatie garandeert. Door
deze mate van prijsvariate zorgvuldig te fine-tunen kan deze prijsstrategie een goede balans vin-
den tussen de twee doelen van winstmaximalisatie en optimalisatie van het leerproces. We leiden
structurele resultaten af over de kwaliteit van deze prijsstrategie (dat wil zeggen: resultaten die
onafhankelijk zijn van specifieke getallenvoorbeelden). Hieruit blijkt dat CVP in structurele zin
vrijwel niet meer te verbeteren is. Daarnaast is CVP eenvoudig implementeerbaar en geschikt
voor een zeer grote klasse van vraagmodellen, waardoor deze prijsstrategie in veel praktische
toepassingen van nut kan zijn.

De vraag naar een product hangt doorgaans niet alleen af van de eigen prijs, maar ook van prij-
zen van vergelijkbare producten die aangeboden worden. Als een bedrijf meerdere producten
aanbiedt hangen de optimale verkoopprijzen niet alleen af van de prijselasticiteit van de afzon-
derlijke producten, maar ook van de verschillende substitutie-effecten. Dit vraagt om een ge-
meenschappelijke prijsstrategie voor het gehele aanbod van producten.

In hoofdstuk 4 introduceren we een prijsstrategie die in staat is om uit de stroom van binnenko-
mende verkoopdata al deze substitutie-effecten te leren. De prijsstrategie is gebaseerd op dezelf-
de principes als CVP: het optimaal balanceren van winstmaximalisatie op de korte termijn en het
leren van alle onbekende parameters op de lange termijn. Net als bij de situatie met één product
vindt het leren alleen plaats als er voldoende prijsvariatie is. Door deze prijsvariatie in meerdere
dimensies op een slimme manier te meten kunnen we een prijsstrategie formuleren die in staat is
om alle onbekende prijselasticiteiten en substitutie-effecten te leren. We leiden structurele resul-
taten af over de kwaliteit van deze prijsstrategie. Hieruit blijkt ondermeer dat, voor een bepaalde
klasse van vraagmodellen, dynamisch prijzen en leren met meerdere producten niet structureel
moeilijker is dan met één product.

In de situatie beschreven in hoofdstuk 3 en 4 worden de verkoopprijzen niet beïnvloed door
voorraadniveaus van de aangeboden producten. Er zijn echter ook producten waarvan de op-
timale prijs sterk afhangt van de resterende voorraad. Dit is in het bijzonder het geval bij pro-
ducten die in beperkte hoeveelheid gedurende een begrensde periode worden aangeboden, zoals
vliegtickets, hotelkamerreserveringen en concertkaartjes. Voor dit type producten geldt dat alle
voorraad die gedurende de verkoopperiode niet wordt verkocht geen geld oplevert. Als gevolg
hiervan is het optimaal om de verkoopprijs continu aan te passen, afhankelijk van de resterende
voorraad en de duur van de resterende verkoopperiode. Als er nog veel producten op voor-
raad zijn die nog maar korte tijd verkocht kunnen worden, dan is het voordelig om de prijs te
laten zakken; als er nog slechts enkele producten beschikbaar zijn die nog vrij lange tijd verkocht
kunnen worden, dan is het optimaal om de prijs te verhogen. Dit continu aanpassen van de ver-
koopprijs, afhankelijk van de resterende voorraad en de duur van de resterende verkoopperiode,



139

wordt al in veel branches toegepast.

Hoofdstuk 5 behandelt dynamisch prijzen en leren voor de situatie dat een beperkte voorraad
gedurende een begrensde periode aangeboden wordt. Net als in hoofdstuk 3 en 4 is er een on-
derliggend vraagmodel dat de relatie tussen vraag en prijs beschrijft. Onbekende parameters
in het vraagmodel worden geschat op grond van binnenkomende verkoopdata, gebruikmakend
van statistische technieken. We bestuderen de vraag wat een goede prijsstrategie is en hoe de
kwaliteit ervan gekarakteriseerd kan worden.

Een verrassend resultaat uit hoofdstuk 5 is dat de eenvoudige CE strategie in de situatie met
eindige voorraad en eindige verkoopperiode uitstekend werkt. De firma hoeft geen rekening te
houden met het optimaliseren van het leerproces, maar kan op elk moment eenvoudigweg de
prijs kiezen die optimaal lijkt op grond van de beschikbare parameterschattingen. De onbekende
parameters worden “geleerd” naarmate er steeds meer data beschikbaar komt, en vergeleken
met de situatie beschreven in hoofdstuk 3 en 4 gebeurt dit leren ook nog eens zeer snel.

De verklaring voor deze uitkomsten ligt in de grote mate van variatie in verkoopprijzen die de CE
prijsstrategie genereert. De optimale verkoopprijs van het aangeboden product wordt bepaald
door de hoeveelheid resterende voorraad en de duur van de resterende verkoopperiode; om-
dat deze twee constant wijzigen, varieert de optimale verkoopprijs ook voortdurend. Daardoor
treedt er als vanzelf veel prijsvariatie op, waardoor de onbekende parameters van het vraagmo-
del zeer snel geleerd worden. Dit snelle leren leidt er toe dat de CE prijzen al snel van goede
kwaliteit zijn. Ter vergelijking: in de situatie beschreven in hoofdstuk 3 en 4 moet de firma zelf
actief zorgen voor voldoende prijsvariatie om uiteindelijk de onbekende parameters te leren. Le-
ren is in die situatie daardoor in structurele zin veel moeilijker.

Het leren van klantengedrag en marktkarakteristieken uit binnenkomende verkoopdata veron-
derstelt een zekere stabiliteit in de markt. Fluctuaties in de marktomstandigheden hebben door-
gaans een negatief effect op de kwaliteit van het leerproces. In de praktijk zijn veranderingen in
de markt vaak eerder regel dan uitzondering: technologische innovaties, marketing campagnes,
prijsveranderingen bij concurrenten en vele andere gebeurtenissen kunnen veranderingen in de
relatie tussen vraag en prijs veroorzaken. Deze veranderingen verhinderen het daadwerkelijk
leren van de vraag-prijs relatie. Dit roept de vraag op of de binnenkomende verkoopdata dan
nog wel bruikbaar is voor het bepalen van verkoopprijzen, en zo ja, hoe dat dan het beste kan
gebeuren.

Hoofdstuk 6 behandelt dynamisch prijzen en leren in een omgeving met veranderende markt-
omstandigheden. We introduceren twee technieken om fluctuerende marktcijfers te schatten uit
historische verkoopdata, en karakteriseren de kwaliteit van deze schattingsmethodes. Beide tech-
nieken kennen aan elk datapunt een gewicht toe dat bepaalt hoeveel invloed dit punt heeft op
de schatter; deze gewichten worden steeds kleiner naarmate de corresponderende data langer
geleden is gegenereerd. Door deze gewichten zorgvuldig te kiezen kan de verkoper een schatter
definiëren die zowel snel reageert op veranderingen in de markt, als ook gebaseerd is op zoveel
mogelijk relevante data.

We bestuderen een eenvoudige CE prijsstrategie, die op elk beslismoment op basis van de be-
schikbare schattingen de optimale verkoopprijs kiest. We karakteriseren de kwaliteit van deze
prijsstrategie, en laten zien hoe vervolgens de optimale gewichten in de schatter gekozen moeten
worden. Dit resulteert in een methodologie die een bedrijf in staat stelt dynamisch te prijzen en
te leren in een veranderende markt, en zo gefundeerde prijsbeslissingen te nemen en actief te
reageren op fluctuaties in de markt.

In hoofdstuk 7 onderzoeken we de relatie tussen de kwaliteit van statistische schatters en de
mate van spreiding in de design variabelen. De resultaten uit dit hoofdstuk worden veelvuldig
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toegepast in de hoofdstukken 3 - 6 om de kwaliteit van prijsstrategieën te karakteriseren.

De resultaten in dit proefschrift zijn niet alleen relevant voor dynamisch prijzen, maar in feite
voor elk beslissingsprobleem waarbij er meerdere beslissingen na elkaar genomen moeten wor-
den en waarbij de kwaliteit van beslissingen niet van tevoren bekend is maar slechts “al doende”
geleerd kan worden. Belangrijke vragen bij zulke beslissingsproblemen zijn: is het genoeg om
altijd de beslissing te nemen die, op het moment van beslissen, het beste lijkt? Of moet daar soms
bewust van afgeweken worden, met het doel meer te leren over hoe het systeem werkt, ook als
dit kosten met zich meebrengt? Hoe snel vindt dit leren plaats? En wat gebeurt er als het gedrag
van het systeem aan veranderingen onderhevig is? Dit proefschrift behandelt deze vragen in de
context van dynamisch prijzen en leren.
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