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Abstract—The paper proposes a mechanism for real-time retail
pricing of electricity in smart power grids, with price stability as
the primary concern. In previous articles, the authors argued
that relaying the real-time wholesale market prices to the end
consumers creates a closed loop feedback system which could be
unstable or lack robustness, leading to extreme price volatility. In
this paper, a mathematical model is developed for characterization
of the dynamic evolution of supply, (elastic) demand, and market
clearing (locational marginal) prices under real-time pricing. It is
assumed that the real-time prices for retail consumers are derived
from the Locational Marginal Prices (LMPs) of the wholesale
balancing markets. The main contribution of the paper is in
presenting a stabilizing pricing algorithm and characterization
of its effects on system efficiency. Numerical simulations conform
with our analysis and show the stabilizing effect of the mechanism
and its robustness to disturbances.

I. INTRODUCTION AND MOTIVATION

Demand response and dynamic retail pricing in electricity
transmission and distribution (T&D) networks have been long
advocated for improving system efficiency, mitigating whole-
sale price volatility, reducing system peak load, and the need
to hold excessive reserve capacity. Reducing the annual system
peak load lowers the required system-wide maximum capacity
and lessens the need for expensive mega power plants (peakers)
that are brought online for only a couple of hours per year. The
impact on the required level of near real-time reserve capacity
margins could be even greater. As the contribution of renewable
resources to the supply of electricity grows in magnitude
and extent, increased supply-side stochasticity challenges the
system operators. System reliability constraints then compel
the system operators to maintain additional reserve capacity to
deal with the increased uncertainty. Dynamic pricing is one of
the mechanisms that could be used for mitigating the effect
of these uncertainties by allowing the consumers to react—in
their own monetary or environmental interest—to the wholesale
market prices, which reflect the real-time fluctuations in the
system’s capacity. While this real-time price-based coupling
between supply and demand, should, at least in principle,
mitigate the effects of stochastic fluctuations on the supply side,
it challenges system operators in new ways. The first challenge
concerns the endogenous uncertainty introduced by the demand
side due to uncertainty in consumer behavior, preferences, and
reactions to real-time price variations. The second challenge
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concerns system stability (both price and supply/demand stabil-
ity) as we will explore in the sequel. Investigating the trade-offs
between the endogenous uncertainties induced by consumer
behavior and mitigation of exogenous system uncertainties is
outside the scope of this paper. Herein, we will focus entirely
on system stability and efficiency questions that arise when the
retail prices are tied to the spot prices of the wholesale markets.

The literature on dynamic pricing in communication or
transportation networks—so that certain system objectives are
met—is extensive, see for instance [8], [7], [4], [3] and
the references therein. However, the specific characteristics
of power grids arising from the distinctively close interplay
between physics, market operation, and economics, along with
the safety-critical nature of the system pose new and unique
challenges to be addressed. The implications and consequences
of various forms of dynamic pricing such as Critical Peak
Pricing, Time-of-Use Pricing, and Real-Time Pricing, have
been investigated by many economists and regulatory agencies.
They mostly argue in favor of real-time pricing, characterized
by passing on a price, that best reflects the wholesale market
prices, to the end consumers. See for instance the papers by
Borenstein et. al. [2], Hogan [6], technical report by the IEA-
DSMP [5] and the report on California’s 2011 deadline for
mandatory real-time pricing [14]. In [10], the authors argued
that simply relaying the wholesale market spot prices to the
end consumers may create system instabilities. In particular,
it appears that real-time pricing as defined above, in the
absence of well-designed financial instruments for hedging,
could potentially aggravate price volatility in wholesale mar-
kets. Whether real-time pricing will mitigate, or aggravate
wholesale price volatility depends on many factors including
implementation details, contract types, and most importantly,
the mathematical relations between the cost functions of the
producers and the value functions of consumers.

The framework developed in this paper considers the con-
sumer as an autonomous agent myopically adjusting her usage
in response to price signals, based on maximization of a
quasi-linear smooth concave utility function. It is assumed that
supply follows demand precisely, in the following sense: at
each instant of time, any amount of electricity demanded by
the consumers must be matched by the producers and the per
unit price associated with this exchange is the exanté price
corresponding to the marginal cost of supplying the predicted
demand. The consumers then (myopically) adjust their usage
by maximizing their utility functions for the next time period
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based on the new given price. This adjusted demand is in turn,
a feedback signal to the wholesale market and affects the prices
for the next time step. This framework favors the consumers
in that it isolates them from the risk of large discrepancies
between exanté and ex-post prices. We analyze stability and
efficiency properties of the closed loop system arising from this
setup and provide a subgradient-based [1] stabilizing algorithm
for pricing.

II. PRELIMINARIES

A. Market Participants

We develop a market model with three participant types:
1. The consumers, 2. The producers, and 3. An independent
system operator (ISO). Below, we describe the characteristics
of these agents in detail.

1) The Consumers and the Producers: Let D = {1, · · · , n}
and S = {1, · · · ,m} denote the index sets of consumers and
producers respectively. We associate a value function vj (x) to
each consumer j ∈ D, where vj (x) can be thought of as the
dollar value that consumer j derives from consuming x units
of electricity. Similarly, to each producer i ∈ S, we associate
a cost function ci (x) representing the dollar cost of producing
x units of the resource.

Assumption I: For all i ∈ S, the cost functions ci (·) are in
C2[0,∞), strictly increasing, and strictly convex. For all j ∈ D,
the value functions vj (·) are in C2[0,∞), strictly increasing,
and strictly concave.

Given a clearing price λ, the utility function of supplier
i ∈ S is given by ui (λ, x) def= λx − ci (x) . Similarly, the
utility function of consumer j ∈ D is given by uj (λ, x) def=
vj (x) − λx. Let dj : R++ → R+, j ∈ D, and si : R++ →
R+, i ∈ S, denote C1 functions mapping price to consumption
and production respectively. Then

dj (λ) = arg max
x∈R+

vj (x) − λx
(a)
= v̇−1

j (λ) , j ∈ D (1)

si (λ) = arg max
x∈R+

λx − ci (x)
(b)
= ċ−1

i (λ) , i ∈ S (2)

where the rightmost equalities ((a) and (b)) in (1) and (2) are
valid if we extend the inverse functions to define v̇−1

j (λ) = 0,
∀λ > v̇ (0) , and ċ−1

i (λ) = 0, ∀λ < ċ (0) .
2) The Independent System Operator: The independent sys-

tem operator (ISO) is a non-for-profit organization responsible
for operating the wholesale markets and the transmission grid.
The ISO’s primary function is to optimally match supply and
demand (adjusted for reserve requirements) subject to network
constraints. In particular, operation of the real-time balancing
markets involves solving a constrained optimization problem
with the objective of maximizing the aggregate benefits of the
consumers and producers. The constraints include power flow
constraints (Kirchhoff’s current and voltage laws (KCL and
KVL)), transmission line constraints, generation capacity con-
straints, and local and system-wide reserve capacity require-
ments, and possibly a few other ISO-specific constraints. We
refer the interested readers to [12], [9], [13] for more details.

For real-time system and market operation, the constraints are
linearized near the steady state operating point and the ISO’s
problem is reduced to a convex optimization problem—usually
a linear program—often referred to as the Economic Dispatch
Problem (EDP). A set of Locational Marginal Prices (LMPs)
emerge as the dual variables corresponding to the nodal power
balance constraints of this optimization problem. When the
transmission lines are congested, the prices may vary from
location to location as they represent the marginal cost of
supplying electricity at each particular node [11], [12].

In this paper, we work with a simplified DC version of the
EDP and make the following assumptions: 1. Resistive losses
in the T&D lines are negligible. 2. Voltages are fixed and all
generators and loads are ideal current sources/sinks. 3. There
are no reserve capacity requirements. These assumptions are
made in the interest of keeping the technical development in
this paper focused and manageable within the limited space.
They could be relaxed at the expense of heavier notation and
a somewhat more involved technical analysis. The following
DCOPF problem is the EDP problem considered in this paper:

min
s,d,I

−W (s, d)
(3)

s.t.

[
K E
0 R

] [
s
I

]
=

[
d
0

]

−Imax ≤ I ≤ Imax

smin ≤ s ≤ smax

where d = [d1, · · · , dn]T is the demand vector, s =
[s1, · · · , sm]T is the supply vector, E ∈ {−1, 0, 1}n×r is the
graph incidence matrix (n is the number of nodes (buses) and
r the number of branches (transmission lines)), R ∈ R

p×r is
the loop-impedance matrix (RI = 0 accounts for the KVL),
K ∈ {0, 1}n×m is a matrix aggregating the output of several
generators connected to one node 1 (Ks + EI = d accounts
for the KCL), and W (s, d) is the social welfare function:

W (s, d) =
∑

j∈Dvj (dj) −
∑

i∈Sci (si)

The decision parameters of (3) are s, d, and line current flows
I. When the demand is fixed dj = d̃j , ∀j the EDP reduces to
satisfying a given fixed demand at minimum cost. In this case
we have

W(s, d̃) = −∑
i∈Sci (si)

and the decision variables of (3) are s and I .

B. Dynamic Supply-Demand Model

In this sub-section we develop a model for the dynamic
evolution of spot prices in electricity provisioning networks
with price sensitive consumers. In order to prevent a large
deviation from the nominal value in the system frequency, the

1The demand is assumed homogeneous, hence, the effect of all the loads
connected to one node is treated as one flow. Therefore, an analog of the K
matrix for demand is not included in the formulation.
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Fig. 1. λea
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t ) is the exanté (ex-post) LMP for [t, t + 1] , πt is the retail
price for [t, t + 1] and it is announced at the beginning of the interval, dt is
consumption during [t, t + 1] , and will be known at time t + 1.

aggregate supply needs to match the aggregate demand at each
instant of time. Therefore, in real-time, supply must follow the
demand in the sense that the amount of power requested by
the consumers has to be supplied by the producers. The model
developed here is based on this assumption and is consistent
with the current practice in real-time balancing markets in the
United States. The differences are: 1. The consumers adjust
their usage based on the real-time price (which is assumed
to reflect the real-time wholesale market price). 2. There are
no ex-post adjustments to the (exanté) price passed to the end
consumers. Since this model represents the price dynamics in
smart grids with real-time retail pricing, it is reasonable to
assume that the ISO (or the retail pricing entity) does not know
the utility functions of the consumers, hence, a model of how
the consumers will respond to price signals is not available. 2

Before we proceed, we clarify our notation. Let N =
{1, · · · , n} denote the set of all nodes (equivalently buses) in
the network and el the l-th standard unit vector in R

n. We use
E (c, d) to refer to the EDP problem (3) with fixed demand
vector d. The inputs of E (c, d) are the cost functions ci (·) ,
i ∈ S, and the fixed demand d. The decision variables (and the
outputs) of E (c, d) are the vectors of generation s and the line
current flows I. All other parameters E, K, Imax, smax, smin

are also assumed fixed in E (c, d). The partial dual problem to
E (c, d) is defined as:

D (λ|c, d) = min
s,I

∑
i∈S

ci (si) − λ (Ks + EI − d) (4)

s.t.

RI = 0

−Imax ≤ I ≤ Imax

smin ≤ s ≤ smax

Remark 1: In general, even when the cost functions ci (·) ,
i ∈ S are strictly convex, the optimal solution (s∗, I∗) of
D (λ|c, d) need not be unique, though, when ci (·) are strictly
convex, s∗ will be unique for λ > 0. It can be verified that
(4) is separable into two independent optimization problems:
a convex optimization problem in terms of s, and an linear
optimization problem (LP) in I. For a generic loop impedance
matrix R, the feasible set of the LP ({I | RI = 0, |I| ≤ Imax})
may have degenerate basic feasible solutions. Hence, the dual

2In this paper we merge the role of the ISO and that of an entity in charge
of real-time retail pricing. Whether in reality this will or will not be the case,
does not change the message and the results that we intend to deliver.

optimal solution

λ∗ = arg max
λ

D (λ|c, d) (5)

need not be unique. This, however, is not a major issue as: 1.
the degenerate cases are rare (in a measure-theoretic sense),
2. one can remove the degeneracies by reformulating (4) in
a reduced dimension, possibly as small as r − p, i.e., the
dimension of subspace defined by R. Within the scope of this
paper, we will assume that the dual optimal solution λ∗ is
unique.

Remark 2: If (s∗, I∗) is an optimal solution of D (λ|c, d)
then −Ks∗ − EI∗ + d is a subgradient of D (λ|c, d) at λ.

The following sequence of actions taken by the ISO, the
consumers, and the producers define the dynamics of the
system:

1) At time t, the ISO announces the (exanté) wholesale
LMP vector λt = [λ1,t, · · · , λn,t]T and the retail (loca-
tional) price vector πt = [π1,t, · · · , πn,t]T corresponding
to the time interval [t, t + 1] :

πt = Πt(λ̃t, π̃t−1)

λ̃t = [λt, · · · , λt−T ] , π̃t−1 = [πt−1, · · · , πt−1−T ]

where λl,t is the (exanté) LMP at location l ∈ N
corresponding to [t, t + 1] , and Πt : R

2T+2 → R is
the pricing function and T ∈ Z+ is its memory. The
LMP price λl,t is calculated by solving E(ct, d̂t) based
on forecast demand for the time interval and computing
the corresponding dual variables. Alternatively:

λt = arg max
ω

D
(
ω|ct, d̂t

)
(6)

We assume that the forecast function is of the form

d̂l,t = D̂t (dl,t−1, · · · , dl,t−1−T )

for some function D̂t : R
T+1 → R.

2) The consumers adjust their usage for this time period
according to (1):

dl
t = arg max

x∈R+
vl (x) − πl,tx = v̇−1

l (πl,t)

However, the quantity dl,t ≡ v̇−1
l

(
πl

t

)
will not be

realized and revealed until time t + 1, that is, the
beginning of the next pricing interval. Total payments
by the consumers for this time period is

∑
l∈Nπl,tdl,t ≡∑

l∈Nπl,tv̇
−1
l (πl,t) .

3) During [t, t + 1] , the producers supply the total demand
(
∑

l∈Ndl,t), for this time period and they get paid
according to their actual marginal cost of production.
The total payment to the generators for this time period
is3 ∑

l∈N

∑
j∈S(l)λ

ep
l,tsj,l,t, where λep

l,t is calculated by

3This is a specific and simplified ex-post pricing rule for reimbursement of
the generators and is mentioned here only to point out to risk issue. In reality,
the ex-post pricing rules are more complicated and vary across ISOs. They
are designed to encourage generators to follow dispatch instructions while
minimizing the ISO’s exposure.
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Fig. 2. Closed Loop System under Dynamic Pricing. The z−1 block
represents the unit delay element.

solving E(ct, dt), and computing the dual variable. The
ISO’s risk or revenue differential is:

Δt =
∑

l∈N (πl,tdl,t −
∑

j∈S(l)λ
ep
l,tsj,l,t)

It can be verified that in the absence of congestion in
transmission lines, if d̂l,t = dl,t and πl,t = λl,t, ∀l, then
Δt = 0.

4) The ISO re-solves the dispatch problem for the next time
period:

E
(
ct+1, d̂t+1

)
→ min

s
(7)

and dispatches the generation units accordingly. The
process iterates as in Step 1.

Remark 3: Under a different pricing model, that is, ex-
post pricing, the retail price charged for consumption of one
unit of electricity during the interval [t, t + 1] is calculated
and declared only at the end of the interval, when the total
consumption has materialized. In this case, the price uncer-
tainty and the associated risks are all bore by the consumer,
who must estimate the prices for the next time interval. A
price prediction function P̂t will take the role of the demand
prediction function D̂t. Assuming that the consumer’s price
prediction function has the same form as the demand prediction
function, i.e., π̂t+1 = P̂t (πt, ..., πt−T ) , it is not difficult to
see that the emerging price dynamics is essentially the same
as the case with exanté pricing, and hence, with some minor
changes our framework would still be applicable. However,
if this assumption is not satisfied, or if the function P̂t is
very complicated, the system’s dynamics could become very
complex and unpredictable form the ISO’s perspective.

III. MAIN RESULTS

In this section we present the main result of the paper which
is a subgradient-based stabilizing pricing algorithm. Consider
the dynamic model developed in the previous section and
suppose for simplicity, that

Πt(λ̃t, π̃t−1) = Π (λt, πt−1)

and
D̂t (dt−1, · · · , dt−T ) = D̂ (dt−1) = dt−1

Then we obtain the following price dynamics

πt+1 = Π (λt+1, πt) (8)

λt+1 = arg max
ω

D (ω, ct+1, dt) (9)

A. Stabilization

Theorem 1: Suppose that there exist dmax > 0 and strictly
convex functions cj : R+ → R+, j ∈ S, such that dt ∈
[0, dmax] and ∀j ∈ S : cj,t = cj , ∀t. Let the pricing functions
Πλ and ΠG be defined as

Πλ (λ, π) = (1 − γ) π + γλ (10)

ΠG (π) = π + γG (π) (11)

where γ > 0, and G (π) is a subgradient direction given by

G (π) = −Ks̃ − EĨ + d ≡ −Ks̃ − EĨ + v̇−1 (π)

and s̃, Ĩ , d together with π solve D (π, c, d). Then for suffi-
ciently small γ, both Πλ and ΠG stabilize the price dynamics
(8):

πt+1 = Πλ (λt+1, πt) = πt + γ (λt+1 − πt) (12)

πt+1 = ΠG (πt) = πt + γG (πt) (13)

in the sense that (πt, dt, st) converges to a small neighborhood
of (π∗, s∗, d∗) where

π∗ = arg max
λ

D (λ|c, d∗)
and (s∗, d∗) solves (3).

Proof: The proof is based on standard Lyapunov tech-
niques in convergence analysis of subgradient methods, and is
omitted for brevity.

Remark 4: There are two stabilizing mechanisms proposed
In Theorem 1. The first, (12), is based on the LMPs which
are already available at the time when a new retail price must
be computed and communicated. The second, (13), however,
requires solving optimization problem (4) for computing the
subgradient. There are various trade-offs in choosing one
mechanism over another. In (10), the coupling between the
LMPs and the retail prices is relatively tighter. This implies
that wholesale market disturbances would reflect more quickly
and more aggressively in the retail market. Our simulations
(not shown in this paper due to lack of space) conform with
this analysis and it was observed that for the same speed of
convergence, (12) typically leads to more volatile retail prices
than (13). In contrast, in the presence of external disturbances
in demand and supply cost, (13) leads to larger discrepancies
between average wholesale and retail prices. These discrep-
ancies (which exist for both (12) and (13)) lead to excess
or shortage of the pricing entity’s revenue, which possibly
could be adjusted through billing and accounting at slower time
scales. Another trade-off is in that (13) can be implemented in
a semi-distributed manner, whereas (10) requires knowledge
of the LMPs which are computed centrally by the ISO. If
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Fig. 3. The three bus system studied in the Numerical Simulations Section.

the network parameters R, E, and Imax are known to all the
agents, the subgradient direction can be computed at each node
(by the producers) and real-time retail pricing can be done
independently at each node. While this distributed feature may
seem unnecessary at the transmission system operation level, it
is an attractive option for pricing and management of resources
in the electricity distribution grid. Similar subgradient-based
algorithms have in the past been reported for system decom-
position and obtaining distributed algorithms for congestion
control and scheduling in communication networks [4]. The
specific differences and challenges in electricity networks lie
mostly in the coupling and interaction between wholesale and
retail markets, and exposure of the market participants to the
risk of monetary loss (or benefit) from dynamic pricing.

Remark 5: With a properly defined notion of stochastic
convergence, the result can be extended to cover cases with
time-varying costs when {ct} is an i.i.d. or Markovian process.
For arbitrary time varying costs, the result does not hold.

IV. NUMERICAL SIMULATION

In this section we present numerical simulations that confirm
and complement the results presented in the previous sections.

Consider the three bus system shown in Figure 3, where
we have elected to aggregate all the consumers connected
to one bus—which are assumed to be homogeneous—via a
representative agent model. Hence, for our purposes this model
has one consumer connected to each bus. We further assume
that the consumers’ value functions are logarithmic:

vl (x) = αl log x, l = 1, 2, 3.

This implies that given a price πl,t, we have dl,t = v̇−1
l (πl,t) =

αl/πl,t. Different parameters αl represent different consumer
types based on income level, geographical, and demographic
characteristics. Note that under this model, the total payment
by the consumers over any time period of fixed length T, e.g.,
one month, is constant:

1
T

∑k+T
t=k πl,tdl,t = αl

The interpretation is that regardless of the price, consumer l
always consumes an amount which makes the total payment
for one time period equal to αl. While this might appear as
an over-simplification of consumer behavior, it is consistent
with the casual observation that many consumers prefer to
allocate a fixed budget to their utility bills, and while they
might welcome some savings, their total willingness to pay is
more or or less constant. To make the simulation more realistic,
a small perturbations noise alεt where εt ∼ N

(
0, σ2

d

)
is added

to αl/πl,t, and lower and upper bounds (dmin and dmax) are
imposed on the consumption:

dl,t = max (dmin,min (dmax, αl/πl,t (1 + εt))) .

(We could instead, or as well, impose price caps and floors).
It is assumed that there are several generators connected to
each bus and that their aggregate cost is a piecewise linear
approximation of the cost function of a single generator with
quadratic cost cl (x) = βlx

2. The following set of parameters
achieve this piecewise linear approximation with uniformly
sized pieces of length q:

sj,l min = 0, sj,l max = q, dcj,l (x) /dx = qβl(2j − 1),∀l.

We could instead work with a single generator with quadratic
cost and solve the economic dispatch problem as a constrained
quadratic optimization problem. In fact, that would magnify
and aggravate possible system instabilities when the retail
prices are the same as the LMPs. However, we chose the
piecewise linear approximation model for two reasons. First,
to be consistent with the current practice of most ISOs who
formulate the EDP as a linear program. Second, to demon-
strate—via simulations—that system instabilities can occur
even with piecewise constant marginal costs. Once again, in
these simulations, we added a small perturbation noise to the
marginal costs:

dcj,lt (x) /dx = qβl(2j − 1)(1 + δt), δt ∼ N
(
0, σ2

s

)
.

The network parameters corresponding to (3) are both dis-
played in Figure 3 and summarized in Table I.

Generators Consumers Network Network
β1 = 0.5 α1 = 1500 z12 = 1 I12max = 4
β2 = 2 α2 = 1000 z23 = 2 I23max = 4.5
β3 = 1 α3 = 500 z13 = 1 I13max = 3
sj

i max =q =5 dmin = 1
sj

i min = 0 dmax = 100

Table I

The results of the simulations are shown in Figures 4 and 5.
The simulation in Figure 4 corresponds to the case where the
LMPs are directly passed on to the consumers. In this case both
price and consumption at all three buses are very oscillatory
and unstable. If the supply costs grew faster than quadratic (i.e.
with strictly convex marginal costs) the instabilities would be
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Fig. 4. Stochastic evolution of prices (left column) and demand (right column)
when the LMPs are directly relayed to consumers (πl,t = λl,t). Both prices
and consumption are extremely volatile. (simulation parameters: noise SD:
σd = σs = 0.01).
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Fig. 5. Evolution of prices (left column) and demand (right column) under
pricing model (11) with stepsize γ = 0.05. At time t = 100 the cost of
production at node 3 is doubled to simulate a disturbance causing tighter
supply. The demand responds by lowering consumption and the system reaches
a new equilibrium. (simulation parameters: noise SD: σd = σs = 0.001).

much more pronounced. For the simulation shown in Figure 5,
the subgradient algorithm (11) was implemented with constant
step size. At time t = 100 the parameters of the cost functions
at node 3 were increased to simulate a situation where supply
suddenly becomes tight. It can be observed that the system
converges to a new equilibrium with lower consumption.
Moreover, the retail prices are smooth which gives time to the
consumers to gradually adjust, whereas the LMPs rise suddenly
and sharply. This suggests that the mechanism is also robust
to disturbances.

V. CONCLUSIONS AND FUTURE WORK

We argued that directly passing on the wholesale balancing
market’s locational marginal prices to the end consumers
may create an unstable closed loop system, and presented

a pricing algorithm that stabilizes the system. Adaptation of
the proposed framework to more realistic models suitable for
practical implementation is an important direction of future
research. These include AC power flow models, market clear-
ing models with reserve capacity constraints, and consumer
behavior models. The algorithm presented in this paper does
not require knowledge of the utility functions of the consumers,
it instead, uses the consumers’ response to price signals to find
a subgradient direction. It would be however, both interesting
and important to create more realistic models of consumer
behavior. For instance, an energy management software might
be in charge of optimization, decision-making, and schedul-
ing of loads for large consumers. Such software might then
use historical price patterns and predictions along with load-
shifting and (possibly) storage to optimize usage and minimize
energy costs. Several interesting questions arise here. First,
how does presence of storage, load shifting, price-anticipating
consumers, and dynamic optimization affect system stability
and in particular, the algorithm presented in this paper? Is it
possible that in aggregate, such complex demand response can
still be modeled as a concave utility-maximization problem?
Lastly, several fairness and efficiency questions arise. The first
is the effects of price-anticipating consumers in the overall
system efficiency. The second concerns fairness. If only a
portion of the consumer base is subject to dynamic pricing,
the nonparticipating population could conveniently consume
energy at a time when supply is tight and subject the other
consumers to excessive risk or inconvenience.
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