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Abstract

We study the pricing problem faced by a firm that sells a large number of products, de-
scribed via a wide range of features, to customers that arrive over time. Customers in-
dependently make purchasing decisions according to a general choice model that includes
products features and customers’ characteristics, encoded as d-dimensional numerical vec-
tors, as well as the price offered. The parameters of the choice model are a priori unknown
to the firm, but can be learned as the (binary-valued) sales data accrues over time. The
firm’s objective is to maximize its revenue. We benchmark the performance using the clas-
sic regret minimization framework where the regret is defined as the expected revenue loss
against a clairvoyant policy that knows the parameters of the choice model in advance,
and always offers the revenue-maximizing price. This setting is motivated in part by the
prevalence of online marketplaces that allow for real-time pricing.

We assume a structured choice model, parameters of which depend on s0 out of the
d product features. Assuming that the market noise distribution is known, we propose a
dynamic policy, called Regularized Maximum Likelihood Pricing (RMLP) that leverages
the (sparsity) structure of the high-dimensional model and obtains a logarithmic regret in
T . More specifically, the regret of our algorithm is of O(s0 log d · log T ). Furthermore, we
show that no policy can obtain regret better than O(s0(log d + log T )). In addition, we
propose a generalization of our policy to a setting that the market noise distribution is
unknown but belongs to a parametrized family of distributions. This policy obtains regret
of O(

√
(log d)T ). We further show that no policy can obtain regret better than Ω(

√
T ) in

such environments.

Keywords: Revenue Management, Dynamic Pricing, High-dimensional Regression, Max-
imum Likelihood, Regret, Sparsity

1. Introduction

A central challenge in revenue management is determining the optimal pricing policy when
there is uncertainty about customers’ willingness to pay. Due to its importance, this prob-
lem has been studied extensively (Kleinberg and Leighton, 2003; Besbes and Zeevi, 2009;
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Badanidiyuru et al., 2013; Wang et al., 2014; Broder and Rusmevichientong, 2012; Keskin
and Zeevi, 2014; den Boer and Zwart, 2014; Cohen et al., 2016). Most of these models
are built around the following classic setting: customers arrive over time; the seller posts a
price for each customer; if the customer’s valuation is above the posted price, a sale occurs
and the seller collects a revenue in the amount of the posted price; otherwise, no sale occurs
and no revenue is generated. Based on this and the previous feedbacks, the seller updates
the posted price. Therefore, the seller is involved in the realm of exploration-exploitation
as he needs to choose between learning about the valuations and exploiting what has been
learned so far to collect revenue.

In this work, we consider a setting with a large number of products which are defined
via a wide range of features. The valuations are given by v(θ, x) with x being the (ob-
servable) feature vectors of products and θ0 representing the customer’s characteristics true
parameters of the choice model, which is initially unknown to the seller, cf. (Amin et al.,
2014; Cohen et al., 2016). An important special case of this setting is the linear model in
which

v(θ, x) = θ0 · x+ z , (1)

where z captures the idiosyncratic noise in valuations.
Our setting is motivated in part by applications in online marketplaces. For instance,

a company such as Airbnb recommends prices to hosts based on many features including
the space (number of rooms, beds, bathrooms, etc.), amenities (AC, WiFi, washer, parking,
etc.), the location (accessibility to public transportation, walk score of the neighborhood,
etc.), house rules (pet-friendly, non-smoking, etc.), as well as the prediction of the demand
which itself depends on many factors including the date, events in the area, availability
and prices of near-by hotels, etc. (Airbnb Documentation, 2015). Therefore, the vector
describing each property can have hundreds of features. Another important application
comes from online advertising. Online publishers set the (reserve) price of ads based on
many features including user’s demographic, browsing history, the context of the webpage,
the size and location of the ad on the page, etc.

In this work, we propose Regularized Maximum Likelihood Pricing (RMLP) policy for
dynamic pricing in high-dimensional environments. As suggested by its name, the policy
uses maximum likelihood method to estimate the true parameters of the choice model. In
addition, using an (ℓ1-norm) regularizer, our policy exploits the structure of the optimal so-
lution; namely, the performance of the RMLP policy significantly improves if the valuations
are essentially determined by a small subset of features. More formally, the difference be-
tween the revenue obtained by our policy and the benchmark policy that knows in advance
the true parameters of the choice model, θ0, is bounded by O

(
s0 log d · log T

)
, where T , d,

and s0 respectively denote the length of the horizon, number of the features, and sparsity
(i.e., number of non-zero elements of θ0). We show that our results are nearly optimal and
no policy can obtain regret better than O

(
s0(log d+ log T )

)
.

In the RMLP policy it is assumed that the noise distribution (distribution of term z
in valuation model (1)) is known to the seller. We also consider the setting that the noise
distribution is unknown but belongs to a parametrized family of distributions. We propose
RMLP-2 policy for such setting and prove that it achieves a regret of O(

√
(log d)T ). We

further how that no policy can get regret better than Ω(
√
T ) in this setting.
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We point out that our results can be applied to applications where the features di-
mension is larger than the time horizon of interest. A powerful pricing policy for these
applications should obtain regret that scales gracefully with the dimension. Note that in
general, little can be learned about the model parameters θ0 if T < d, because the number
of degrees of freedom d exceeds the number of observations T , and therefore, any estimator
can be arbitrary erroneous. However, when there is prior knowledge about the structure of
unknown parameter θ0, (e.g., sparsity), then accurate estimations are attainable even when
T < d.

1.1. Organization and Contributions

In the remaining part of the introduction, we discuss how our work is positioned with respect
to the literature on dynamic pricing and high-dimensional statistics. The rest of the paper
presents the following contributions:

• Section 2. We formally present our model and discuss the technical assumptions and
the benchmark policy.

• Section 3. We present the RMLP policy that uses a regularized maximum likelihood
function to estimate the parameters of the choice model and subsequently sets the
best prices based on the obtained estimates. The RMLP policy assumes that the
market noise distribution is known and forms the log-likelihood function based on
this knowledge.

• Section 4. We analyze the regret of the RMLP policy with respect to a clairvoyant
who knows the parameters of the choice model in advance. We show that it achieves
a regret of O(s0 log d · log T ).

• Section 5. We provide a lower bound on the regret of any policy that does not know
the parameters of the choice model in advance. Namely, we show that no policy can
obtain regret better than O(s0(log d+ log T )).

• Section 6. We generalize the RMLP policy to non-linear valuations functions and show
that, similar to the case of linear valuations, it achieves a regret of O(s0 log d · log T ).

• Section 7. We consider a setting where the exact underlying noise distribution is not
known but it is assumed to belong to a known class of log-concave distributions. We
propose the RMLP-2 policy, so-named, for this setting whose regret is O(

√
(log d)T ).

We also argue that no policy can get better than O(
√
T ) regret in this setting.

• Section 8. We provide the proofs of our main theorems and results.

We conclude our work along with some future directions in Section 9. Proof of technical
lemmas are deferred to the appendices.

1.2. Related Work

Our work contributes to the literature on dynamic pricing as well as high dimensional
statistics. In the following, we briefly overview the work closest to ours in these contexts.
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Dynamic pricing and learning. The literature on dynamic pricing and learning has been
growing over the past few years, motivated in part by the advances in big data technology
that allow firms to easily collect and utilize information. We briefly discuss some of the
recent lines of research in this literature. We refer to den Boer (2015) for an excellent survey
on this topic.

Parametric Approach. A natural approach to capture uncertainty about the customers’
valuations is to model the uncertainty using a small number of parameters, and then esti-
mate those parameters using classical statistical methods such as maximum likelihood (Broder
and Rusmevichientong, 2012; den Boer and Zwart, 2013, 2014; Chen et al., 2015) or least
square estimation (Keskin, 2014; Bastani and Bayati, 2016). Our work is similar to this
line of work, in that we assume a parametric model for customer’s valuations and apply the
maximum likelihood method using the randomness of the idiosyncratic noise in valuations.
However, the parameter vector θ is high-dimensional, whose dimension d (that can even
exceed the time horizon of interest T ). We use regularized maximum-likelihood in order to
promote sparsity structure in the estimated parameter. Further, our pricing policy has an
episodic theme which makes the posted prices pt in each episode independent of the idiosyn-
cratic noise in valuations, zt, in that episode. This is in contrast to other policies based
on maximum-likelihood, such as MLE-GREEDY (Broder and Rusmevichientong, 2012), or
greedy iterative least square (GILS) (Keskin, 2014; den Boer and Zwart, 2014; Qiang and
Bayati, 2016) that use the entire history of observations to update the estimate for the
model parameters at each step.

Bayesian Approach. One of the earliest work on Bayesian parametric approach in this
context is by (Rothschild, 1974) who consider a Bayesian framework where the firm can
choose from two prices with unknown demand and show that (myopic) Bayesian policies
may lead to “incomplete learning.” However, carefully designed variations of the myopic
policies can (optimally) learn the optimal price (Harrison et al., 2012); see also Keller and
Rady (1999); Araman and Caldentey (2009).

Non-Parametric models. An early work in non-parametric setting is by Kleinberg and
Leighton (2003). They model the dynamic pricing problem as a multi-armed bandit (MAB)
where each arm corresponds to a (discretized) posted price. They propose an O(

√
T )-

algorithm where T is the length of the horizon. Similar results have been obtained in more
general settings (Badanidiyuru et al., 2013; Agrawal and Devanur, 2014) including setting
with inventory constraints (Besbes and Zeevi, 2009; Babaioff et al., 2012; Wang et al., 2014).

Feature-based Models. Recent papers on dynamic pricing consider models with fea-
tures/covariates. Amin et al. (2014), in a model similar to ours, present an algorithm that
obtains regret O(T 2/3); they also study dynamic incentive compatibility in repeated auc-
tions. Another closely related work to ours is by Cohen et al. (2016). Their model differs
from ours in two main aspects: i) their model is deterministic (no idiosyncratic noise) ii) the
arrivals (of features vectors) is modeled as adversarial. They propose a clever binary-search
approach using the Ellipsoid method which obtains regret of O(d2 log(T/d)). Recently, Gol-
rezaei et al. (2018) studied the problem of dynamic pricing when a group of strategic buyers
competes with each other in repeated contextual auctions. To the extent of our knowledge,
ours is the first work that highlights the role of structure/sparsity in dynamic pricing.
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Qiang and Bayati (2016) study a model where the seller can observe the demand itself,
not a binary signal as in our setting. They show that a myopic policy based on least-square
estimations can obtain a logarithmic regret. Bastani and Bayati (2016) study a multi-armed
bandit setting, with discrete arms, and high-dimensional covariates, generalizing results of
Goldenshluger and Zeevi (2013). More precisely, the decision-maker has access to K arms
(decisions), where each arm i has an unknown sparse parameter vector βi ∈ R

d. Upon
pulling arm i at time t, the decision-maker gets reward xt · βi + zt. The authors present
an algorithm, using a LASSO estimator, that obtains regret O

(
K(log T + log d)2

)
where

K denotes the number of arms. By contrast, in our setting decisions (prices) can take
continuous values and also the resulting rewards do not follow a similar relationship with
the covariates and the decisions.

High-dimensional statistics. There has been a great deal of work on regularized esti-
mator under the high-dimensional scaling; see e.g., Van de Geer (2008). Closer to the spirit
of our work is the problem of 1-bit compressed sensing (Plan and Vershynin, 2013; Bhaskar
and Javanmard, 2015). In this problem, linear measurements are observed for an unknown
parameter of interest but only the sign of these measurements are observed. Note that in
our problem, the seller is involved in both the learning task and also the policy design.
Specifically, he should decide on the prices, which directly affect collected revenue and also
indirectly influence the difficulty of the learning task. The market values are then compared
with the posted prices, in contrast to 1-bit compressed sensing where the measurements are
compared with zero (sign information). In addition, the pricing problem has an online na-
ture while the 1-bit compressed sensing is mostly studied for offline setting. Finally, note
that prices are set based on customer’s purchase behavior, and hence introduce dependency
among the collected information about the model parameters.

1.3. Notations

For a vector v, supp(v) represents the positions of nonzero entries of v. Further, for a
vector v and a subset J , vJ is the restriction of v to indices in J . We write ‖v‖p for
the standard ℓp norm of a vector v, i.e., ‖v‖p = (

∑
i |vi|p)1/p and ‖v‖0 for the umber of

nonzero entries of v. If the subscript p is omitted, it should be deemed as ℓ2 norm. For
two vectors a, b ∈ R

d, the notation a · b =
∑d

i=1 aibi represents the standard inner product.
For two functions f(n) and g(n), the notation f(n) = O(g(n)) means that f is bounded
above by g asymptotically, namely, f(n) ≤ Cg(n) for some fixed positive constant C > 0.
Throughout, φ(x) = e−x

2/2/
√
2π is the Gaussian density and Φ(x) ≡

∫ x
−∞ φ(u)du is the

Gaussian distribution.

2. Choice Model

We consider a seller, who has a product for sale in each period t = 1, 2, · · · , T , where T
denotes the length of the horizon and may be unknown the to the seller. Each product is
represented by an observable vector of features (covariates) xt ∈ X ⊆ R

d. Products may
vary across periods and we assume that feature vectors xt are sampled independently from
a fixed, but a priori unknown, distribution PX , supported on a bounded set X .
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The product at time t has a market value vt = v(xt), which is not observed by the seller
and function v is (a priori) unknown. At each period t, the seller posts a price pt. If pt ≤ vt,
a sale occurs, and the seller collects revenue pt. If the price is set higher than the market
value, pt > vt, no sale occurs and no revenue is obtained. The goal of the seller is to design
a pricing policy that maximizes the collected revenue.

We first assume that the market value of a product is a linear function of its covariates,
namely

v(xt) = θ0 · xt + zt , (2)

where a · b denotes the inner product of vectors a and b. Here, {zt}t≥1 are idiosyncratic
shocks, referred to as noise, which are drawn independently and identically from a distribu-
tion with mean zero and cumulative function F , with density f(x) = F ′(x), cf. (Keskin and
Zeevi, 2014). The noise can account for the features that are not measured. We generalize
our model to non-linear valuation functions in Section 6. Parameter θ0 is a priori unknown
to the seller. Therefore, the seller is involved in the realm of exploration-exploitation as he
needs to choose between learning θ0 and exploiting what has been learned so far to collect
revenue.

Let yt be the response variable that indicates whether a sale has occurred at period t:

yt =

{
+1 if vt ≥ pt ,
−1 if vt < pt .

(3)

Note that the above model can be represented as the following probabilistic model:

yt =

{
+1 with probability 1− F (pt − θ0 · xt) ,
−1 with probability F (pt − θ0 · xt) .

(4)

Our proposed algorithm exploits the structure (sparsity) of the feature space to improve
its performance. To this aim, let s0 denote the number of nonzero coordinates of θ0, i.e.,
s0 = ‖θ0‖0 =

∑d
j=1 I(θ0j 6= 0). We remark that s0 is a priori unknown to the seller.

2.1. Technical Assumptions

To simplify the presentation, we assume that ‖xt‖∞ ≤ 1, for all xt ∈ X , and ‖θ0‖1 ≤W for
a known constant W ≥ 1, where for a vector u = (u1, . . . , ud), ‖u‖∞ = maxi∈[d] |ui| denotes
the maximum absolute value of its entries and ‖u‖1 =

∑d
i=1 |ui|. We denote by Ω the set

of feasible parameters, i.e.,

Ω =
{
θ ∈ R

d+1 : ‖θ‖0 ≤ s0 , ‖θ‖1 ≤W
}
. (5)

We also make the following assumption on the distribution of noise F .

Assumption 1 The function F (v) is strictly increasing. Further, F (v) and 1 − F (v) are
log-concave in v.
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Log-concavity is a widely-used assumption in the economics literature (Bagnoli and
Bergstrom, 2005). Note that if the density f is symmetric and the distribution F is log-
concave, then 1−F is also log-concave. Assumption 1 is satisfied by several common proba-
bility distributions including normal, uniform, Laplace, exponential, and logistic. Note that
the cumulative distribution function of all log-concave densities is also log-concave (Boyd
and Vandenberghe, 2004).

Our second assumption is on the product feature vectors.

Assumption 2 Product feature vectors are generated independently from a fixed unknown
distribution PX with a bounded support X ∈ R

d. We denote by Σ = E(xtx
T
t ) the second

moment matrix of distribution PX , and assume that Σ is a positive definite matrix. Namely,
all of its eigenvalues are bounded from below by a constant Cmin > 0. We also denote the
maximum eigenvalue of Σ by Cmax.

The above assumption holds for many common probability distributions, such as uni-
form, truncated normal, and in general truncated version of many more distributions. Gen-
erally, if PX is bounded below from zero on an open set around the origin, then it has a
positive definite second moment matrix. Let us stress that the seller knows neither the
distribution PX , nor its second moment Σ.

2.2. Clairvoyant Policy and Performance Metric

We evaluate the performance of our algorithm using the common notion of regret: the
expected revenue loss compared with the optimal pricing policy that knows θ0 in advance
(but not the realizations of {zt}t≥1). Let us first characterize this benchmark policy.

Using Eq. (2), the expected revenue from a posted price p is equal to

p× P(vt ≥ p) = p(1− F (p− θ0 · xt)) .

Therefore, using first order conditions, for the optimal posted price, denoted by p∗, we have

p∗(xt) =
1− F (p∗ − θ0 · xt)
f(p∗ − θ0 · xt)

. (6)

To simplify the presentation, let p∗t = p∗(xt) denote the optimal price at time t.
We now define ϕ(v) ≡ v−(1−F (v))/f(v) corresponding to the virtual valuation function

commonly used in mechanism design (Myerson, 1981). By Assumption 1, ϕ is injective and
hence we can define function g as follows

g(v) ≡ v + ϕ−1(−v) . (7)

It is easy to verify that g is non-negative. Note that by Eq. (6), for the optimal price we
have

θ0 · xt + ϕ(p∗ − θ0 · xt) = 0 .

Therefore, by rearranging the terms for the optimal price at time t we have

p∗t = g(θ0 · xt) . (8)
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We can now formally define the regret of a policy. Let π be the seller’s policy that sets
price pt at period t, and pt can depend on the history of events up to time t. The worst-case
regret is defined as:

Regretπ(T ) ≡ max
θ0∈Ω

PX∈Q(X )

E

[
T∑

t=1

(
p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt)

)]
, (9)

where the expectation is with respect to the distributions of idiosyncratic noise, zt, and PX ,
the distribution of feature vectors. Also, Q(X ) represents the set of probability distributions
supported on a bounded set X .

Our algorithm uses the sparsity structure of θ0 and learns the model with order of
magnitude less data compared to a structure-ignorant algorithm. In Section 4, we show
that our pricing scheme achieves a regret bound of O

(
s0 log d · log T

)
.

Note that the setting with known market noise distribution is equivalent to positing
a parametric choice model on the users’ behavior. Several parametric choice models have
been widely used by practitioners and have been analyzed by researchers. Perhaps the most
well-known example is the multinomial logit (MNL) model, which has quite a long history
in economic and transportation research (McFadden, 2001), as well as marketing (Hauser
and Koppelman, 1979; Gensch and Recker, 1979; Louviere and Woodworth, 1983; Guadagni
and Little, 2008). Note that the MNL model corresponds to the case where customers are
offered multiple products at each round and the market noise is coming from the Gumbel
distribution (Talluri and Van Ryzin, 2006). In the case of single product offered at each
round (similar to our setting), this reduces to noise coming from the logistic distribution.
Other prominent MNL models include Nested MNL, latent-class MNL, random-parameter
mixed MNL, and hierarchical Bayesian MNL (Elshiewy et al., 2017).

In Section 7 we relax the assumption of knowing the market noise distribution.

3. A Regularized Maximum Likelihood Pricing (RMLP) Policy

In this section, we present our dynamic pricing policy. Our policy runs in an episodic
fashion. Episodes are indexed by k and time periods are indexed by t. The length of episode
k is denoted by τk. Throughout episode k, we set the prices equal to pt = g(xt · θ̂k) where
θ̂k denotes the estimate of θ0 which is obtained from the observations {(xt, yt, pt)} in the
previous episode. Note that by Eq. (7), pt is the optimal posted price if θ̂k was the true
underlying parameter of the model.

We estimate θ0 using a regularized maximum-likelihood estimator; see Eq. (10) where
the (normalized) negative log-likelihood function for θ is given by Eq. (11). We note that as
a consequence of the log concavity assumption on F and 1− F , the optimization problem
(10) is a convex problem. There is a large toolkit of various optimization methods (e.g.,
alternating direction method of multipliers (ADMM), fast iterative shrinkage-thresholding
algorithm (FISTA), accelerated projected gradient descent, among many others) that can be
used to solve this optimization problem. There are also recent developments on distributed
solvers for ℓ1 regularized cost function (Boyd et al., 2011).

Observe that by design, prices posted in the k-th episode are independent from the
market value noises in this period, i.e., {zt}τk+1−1

t=τk
. This allows us to estimate θ0 for each
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Input: (at time 0) function g, regularizations λk, W (bound on ‖θ0‖1),
Input: (arrives over time) covariate vectors {xt}t∈N
Output: prices {pt}t∈N
1: τ1 ← 1, p1 ← 0, θ̂1 ← 0
2: for each episode k = 2, 3, . . . do
3: Set the length of k-th episode: τk ← 2k−1.
4: Update the model parameter estimate θ̂k using the regularized ML estimator

obtained
from observations in the previous episode:

θ̂k = arg min
‖θ‖1≤W

{L(θ) + λk‖θ‖1} , (10)

with

L(θ) = − 1

τk−1

τk−1∑

t=τk−1

{
I(yt = 1) log(1− F (pt − θ · xt)) + I(yt = −1) log(F (pt − θ · xt))

}
.

(11)

5: For each period t during the k-th episode, set

pt ← g(θ̂k · xt) . (12)

Algorithm 1: RMLP policy for dynamic pricing

episode separately; see Proposition 10 in Section 8.1. Comparing to policies that use the
entire data sale history in making decisions, some remarks are in order:

• Perishability of data: In practical applications, the unknown demand parameters will
change over time, raising the concern of perishability of data. Namely, collected data
becomes obsolete after a while and cannot be relied on for estimating the model
parameters (Keskin and Zeevi, 2016; Javanmard, 2017). Common policies to mitigate
this problem (discussed in (Keskin and Zeevi, 2016)) include moving windows and
decaying weights which use only recent data to learn the model parameters. By
contrast, methods that use the entire historical data, with equal weight, suffers from
this problem.

• Simplicity and efficiency: In RMLP policy, estimates of the model parameters are
updated only at the first period of each episode (log T updates). Further, at each
update, the policy uses only the historical data from the previous episode. These
two ideas together, not only allow for a neat analysis of the statistical dependency
among samples but also decrease the computational cost. Scalability of the pricing
policy is indispensable in practical applications as the sales data is collected at an
unprecedented rate.

9
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• The impact on regret: By using half of the historical data at each update, our policy
loses at most a factor 2 in the total regret. (This becomes clear shortly when we
discuss the estimation error rate in terms of number of samples.)

The lengths of episodes in our algorithm increase geometrically (τk = 2k−1), allowing
for more accurate estimate of θ0 as the episode index grows. The algorithm terminates at
the end of the horizon (period T ), but note that it does not need to know the length of the
horizon in advance.

The regularization parameter λk constrains the ℓ1 norm of the estimator θ̂k. Selecting
the value of λk is of crucial importance as it affects the estimator error. We set it as

λk = O
(√

(log d)/τk−1

)
. More precisely, define

uF ≡ sup
|x|≤3W

{
max

{
log′ F (x),− log′(1− F (x))

}}
,

where the derivatives are w.r.t. x. By the log-concavity property of F and 1− F , we have

uF = max
{
log′ F (−2W ),− log′(1− F (2W ))

}
. (13)

Hence, uF captures the steepness of logF . In order to minimize the regret, we run the
RMLP policy with

λk = 4uF

√
log d

τk−1
. (14)

Note that exploration and exploitation tasks are mixed in our algorithm. In the begin-
ning of each episode, we use what is learned from previous episode to improve the estimation
of θ0 and then we exploit this estimate throughout the current episode to incur little re-
gret. Meanwhile, the observations gathered in the current episode are used to update our
estimate of θ0 for the next episode.

The knowledge of the market noise distribution is used by the RMLP policy, in esti-
mating the model parameters (constructing the log-likelihood function and choosing the
regularization λk) as well as in setting the prices. (The pricing function g is defined based
on the noise distribution F .)

In the next section we analyze the regret of the RMLP policy.

4. Regret Analysis

The following theorem bounds the regret of our dynamics pricing policy.

Theorem 3 (Regret Upper Bound) Suppose Assumptions 1 and 2 hold and the . Then,

the regret of the RMLP policy is of O
(

W
C2

min

s0 log d · log T
)
.

Let us stress again that the RMLP policy does not need to know the sparsity s0, although
its regret scales linearly with s0. Further, the RMLP is assumed to know the market noise
distribution F . 1 Below we provide an outline for the proof of Theorem 3 and defer its
complete proof to Section 8.1.

1. It is useful to compare Theorem 3 with the result of Chen et al. (2015), [Theorem 5.4], which
also uses a maximum likelihood estimator without exploiting sparsity structure and achieves regret

O
(

d
Cmin

√

log(Td)T
)

.
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1. In RMLP, the updates in the model parameter estimation only occurs at the begin-
ning of each episode, with using only the samples collected in the previous episode.
Therefore, the prices posted in each episode are independent from the market value
noises in that episode. This observation also verifies that L(θ) given by (11), is indeed
the negative log-likelihood of the samples collected in k-th episode. Note that this
independence is not a mere serendipity, rather it holds because of the specific design
of RMLP policy. Using this property, we use tools from high-dimensional statistics
to bound the estimation error. To bound the error term ‖θk − θ0‖2, we compare the
function values L(θk) and L(θ0). The main challenge here is that L(θ) is not strictly
convex in θ.2 Hence, there can be, in principle, parameter vectors θ1 and θ2 that are
close to each other and nevertheless the values of function L at these points are far
from each other.

To cope with this challenge, we show that a so-called restricted eigenvalue condition
holds for the feature products. This notion implies that L(θ) is strictly convex on the
set of sparse vectors.3 Using the restricted eigenvalue condition, we show the following
ℓ2 error for the regularized log-likelihood estimate in the k-th episode, θ̂k, holds true

‖θ̂k − θ0‖2 = O(
√
s0λk) = O

(√
s0 log d

τk−1

)
.

As expected, the estimate gets more accurate as the episode’s length increases; see
Section 8.1 for more details.

2. For any p ≥ 0, denote by revt(p) = p(1−F (p−xt·θ0)), the expected revenue under price
p. We bound regt in terms of revt(p

∗
t )− revt(pt). Since p

∗
t ∈ argmax{revt(p)}, we have

rev′t(p
∗
t ) = 0, and by Taylor expansion of revt around p

∗
t , we obtain revt(p

∗
t )−revt(pt) =

O((p∗t − pt)2).

3. For t in the k-th episode, namely τk−1 ≤ t ≤ τk − 1, we have

p∗t − pt = g(θ0 · xt)− g(θ̂k · xt) ≤ |(θ0 − θ̂k) · xt| ,

which follows by showing that g is 1-Lipschitz. Further, by Assumption 2 (without
loss of generality assume Cmax > 1), we have

E[((θ0 − θ̂k) · xt)2] = E[(θ0 − θ̂k)TΣ(θ0 − θ̂k)] ≤ CmaxE[‖θ̂k − θ0‖22] ,

where the equality holds because xt is independent of θ̂k, and the last step follows
since the maximum eigenvalue of the second moment matrix Σ = E(xtx

T
t ) is at most

Cmax > 0.

2. Note that ∇2
θL = (−1/τk−1)

∑τk−1

t=τk−1
(∂2/∂2

ut
L)xtx

T

t , where ut = pt − θ · xt − α0. Therefore, ∇2
θL is

a d × d matrix of rank at most τk − τk−1. Hence, L(θ) is strictly convex in θ only if τk − τk−1 ≥ d.
However, since we are not updating our estimates in the middle of an episode, episodes of length d yield
the regret to scale linearly in d, which is not desired.

3. It is strictly convex over the set of s0 sparse vectors in d-dimension if the number of samples is above
cs0 log d for a suitable constant c > 0.

11
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Let regt be the regret occurred at step t. Combining the above bounds (step 2 and 3),
we arrive at E[regt] = O(s0(log d)/τk−1). Therefore, the cumulative expected regret in
episode k works out at O(s0 log d). Since the length of episodes increase geometrically,
there are O(log T ) episodes by time T . This implies that the total expected regret by
time T is O(s0 log d log T ).

4.1. Comparison with the “Common” Regret of Bound Ω(
√
T )

There is an often-seen regret bound Ω(
√
T ) in the literature of online decision making, which

can be improved to a logarithmic regret bound if some type of “separability assumption”
holds true (Dani et al., 2008; Abbasi-Yadkori et al., 2012). Separability assumption posits
that there is a positive constant gap between the rewards of the best and the second best
actions. In our framework, the parameter θ belongs to a continuous set in R

d+1 and therefore
the separability assumption cannot be enforced because by choosing θ arbitrary close to θ0,
one can obtain suboptimal (but arbitrary close to optimal) reward. However, the regret
of our policy scales only logarithmically with T . Here, we contrast our logarithmic regret
bound with the folklore lower bound Ω(

√
T ), to build further insight on our results.

Uninformative prices and Ω(
√
T ) lower-bound. We focus on (Broder and Rusmevichien-

tong, 2012) which has a close framework to ours in that it considers a dynamic pricing
policy from purchasing decisions and presents a pricing policy based on maximum likeli-
hood estimation with regret O(

√
T ). Adopting their notation, it is assumed that market

values vt are independent and identically distributed random variables coming from a dis-
tribution function that belongs to some family parametrized by z. Denote by d(p; z) the
demand curve. This curve determines the probability of a purchase at a given price, i.e.,
d(p; z) = Pz(vt ≥ p). (Broder and Rusmevichientong, 2012) show that the worst-case re-
gret of any pricing policy must be at least Ω(

√
T ) (see Theorem 3.1 therein). The bound

is proved by considering a specific family of demand curves d(p; z), such that all demand
curves in this family intersect at a common price. Further, the common price is the opti-
mal price for a specific choice of parameter z0, i.e, p

∗(z0).
4 Therefore, the price p∗(z0) is

“uninformative” since no policy can gain information about the demand parameter z, while
pricing p∗(z0). The idea behind the derived lower bound for the worst-case regret is that
for a policy to learn the underlying demand curve fast enough, it must necessarily choose
prices that are away from (the uninformative) price p∗(z0) and this leads to a large regret
when the true demand curve is indeed z0.

Intuition behind our results. In contrast to the previous case, for our framework there
is no such uninformative price. First, note that the for a choice model with parameters
θ0 = (θ0, α0), the demand curve at time t is given by

dt(p; θ0) = 1− F (p− θ0 · xt) ,

For n ≥ 1, we define the aggregate demand function up to time n as dn1 = (d1, d2, . . . , dn).
In the following, we argue that under our setting, there is no uninformative price. For any

4. Specifically, they consider d(p; z) = 0.5 + z − zp. Hence d(1; z) = 1, for all z and it is shown that
p∗(z0) = 1 for z0 = 0.5.
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price p and any θ1, θ2, we have

1

n
‖dn1 (p, θ1)− dn1 (p, θ2)‖22 =

c2

n

n∑

ℓ=1

((θ1 − θ2) · xt)2

=
c2

n
‖X(θ1 − θ2)‖22 ,

where X is the matrix with rows xℓ, for 1 ≤ ℓ ≤ t. We also used the fact that f(z) ≥ c > 0
for some constant c because F is strictly increasing by Assumption 1. As we show in
Appendix A, for n ≥ c0s0 log d (with c0 a proper constant), X satisfy a so-called “restricted
eigenvalue”, by which we have

1

n
‖X(θ1 − θ2)‖22 ≥

Cmin

2
‖θ1 − θ2‖22 . (15)

Therefore, for any fixed price p, if we vary the demand parameters θ1 to some other value θ2,
then the aggregate demand at price p also changes by an amount proportional to ‖θ1−θ2‖2.
Hence, any price in this setting is informative about the model parameters.

To build further insight, let us consider a more general choice model, where the utility
of the customer from buying a product with feature vectors xt at price p is given by

u(xt) = θ0 · xt − β0p+ zt , (16)

where θ0, β0 are unknown model parameters and zt is the noise term. The customer buys
the product iff u(xt) ≥ 0. Note that the model we studied in this paper (see Equation (3))
is a special case when the price sensitivity β0 is known and hence can be normalized to 1.
We next argue that in case of unknown β0, the uninformative prices do exist and hence the
Ω(
√
T ) is still in place.
To see this, let θ0,i = 0 for 2 ≤ i ≤ d. Fix arbitrary a, and set β0 = g(a)−a+θ0,1. Also,

let xt,1 = 1, for all t. Then, the demand curves will be unaltered over time and are given
by

dt(p, θ) = 1− F (β0p− θ0,1) = 1− F ((g(a)− a+ θ0,1)p− θ0,1) .
We next verify that p∗ = 1 is the optimal price for the specific choice of θ0,1 = a. In this
case, the expected revenue form a posted price p is given by

p× dt(p, θ) = p (1− F (g(a)p− a)) . (17)

By definition of the pricing function g, given by (7), it is easy to see that p∗ = 1 sets the
gradient of the expected revenue to zero.

Next note that all the demand curves, regardless of value θ0,1, intersect at p
∗ = 1 (they

all have the value 1 − F (g(a) − a) at this price). Therefore, p∗ is an uninformative price
and no policy can gain information about θ0,1 by pricing at p∗. However, when θ0,1 = a,
choosing prices that are away from this informative price leads to a large regret. Prices that
are close to p∗ does not have any information gain, and contrasting these two points, it can
be shown that the worst case regret is of order Ω(

√
T ). A formal proof follows the same

lines of the proof of (Broder and Rusmevichientong, 2012, Theorem 3.1) and is omitted.
Finally, it is worth noting that the rate of learning demand parameter θ0 is chiefly

derived by three factors:

13
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• Non-smoothness of distribution function F , as it controls the amount of information
obtained about xt · θ0 at each t.

• The rate by which the feature vectors xt span the parameter space. This is controlled
through the minimum eigenvalue of Σ, i.e., Cmin. If Cmin is small, the randomly
generated features are relatively aligned and one requires larger sample size to estimate
θ0 within specified accuracy.

• Complexity of θ0. This is captured through the sparsity measure s0.

Later in Proposition 10, we see how these factors contribute to the learning rate of θ0.

4.2. Role of Cmin

In establishing our results, we relied on Assumption 2 which requires the population co-
variance of features to be positive definite. The lower bound on its eigenvalues, denoted by
Cmin, appears in our regret bound as a factor 1/C2

min.
As evident from the proof of Proposition 10, Assumption 1 can be replaced by the weaker

restricted eigenvalue condition (Bühlmann and van de Geer, 2011; Candes and Tao, 2007),
which is a common assumption in high-dimensional statistical learning. While assumption
Cmin > 0 allows for a fast learning rate of model parameters and a regret bound O(log T ),
RMLP policy can still provably achieve regret O(

√
T ), even when Cmin = 0.

Theorem 4 Suppose that product feature vectors are generated independently from a prob-
ability distribution PX with a bounded support X ∈ R

d. Also, assume that the choice model
parameters θ0 ∈ Ω, where the set Ω is given by (5). Under Assumption 1, the regret of
RMLP policy is of O(W 3

√
(log d)T ).

Proof of Theorem 4 is given in Section 8.2. We remark that the regret bound in The-
orem 4 is independent of the sparsity s0 and scales logarithmically with the feature di-
mension d. From the technical point of view, this is due to the fact that in our analysis
instead of bounding the estimation errors ‖θ0 − θ̂k‖2, we directly bound the prediction er-
rors ‖X(k−1)(θ0− θ̂k)‖2, where X(k−1) is the matrix obtained by putting the feature vectors
in episode (k − 1) as its rows. We then connect the total regret in each episode to the
corresponding prediction error. By this analysis, we are able to remove the requirement
Cmin > 0 and obtain a regret that is independent of the sparsity s0, at the cost of getting
O(
√
T ) regret bound.

5. Lower Bound on Regret

As discussed in Section 2.2, if the true parameter θ0 is known, the optimal policy (in
terms of expected revenue) is the one that sets prices as pt = g(xt · θ0). Let Ht =
{x1, x2, . . . , xt, z1, z2, . . . , zt} denote the history set up to time t, and recall that Ω denotes
the set of feasible parameters, i.e., Ω = {θ ∈ R

d : ‖θ‖0 ≤ s0 , ‖θ‖1 ≤ W}. We consider the
following set of policies, Π:

Π =
{
π : π(pt) = g(xt · θt), for some θt ∈ Ω, such that θt is Ht−1-measurable

}
. (18)
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Here π(pt) denotes the price posted by policy π at time t.
We provide a lower bound on the achievable regret by any policy in set Π. Indeed this

lower bound applies to an oracle who fully observes the market values after the price is
either accepted or rejected. Compared to our setting, where the seller observes only the
binary feedbacks (purchase/no purchase), this oracle appears exceedingly powerful at first
sight but surprisingly, the derived lower bound matches the regret of our dynamic policy,
up to a logarithmic factor.

Theorem 5 Consider linear model (2) where the market values v(xt), 1 ≤ t ≤ T , are fully
observed. We further assume that market value noises are generated as zt ∼ N(0, σ2). Let
Π be the set of policies given by (18). Then, there exists constant C ′ > 0 (depending on W
and σ), such that the following holds true for all T ∈ N.

min
π∈Π

Regretπ(T ) ≥ C ′

{
s0 log

( T
s0

)
+min

[
T

s0
, s0 log

( d
s0

)]}
. (19)

In the following we give an outline for the proof of Theorem 5, summarizing its main
steps and defer the complete proof to Section 8.3.

1. We derive a lower bound for regret in terms of the minimax estimation error. Specif-
ically, for t ∈ N, let

regt ≡ p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt) (20)

be the regret at period t. We show that

max
θ0∈Ω

E(regt) ≥ cmax
θ0∈Ω

E{min(‖θt − θ0‖22, C)} , (21)

for some constants c, C > 0.

2. Let θT1 = (θt)
T
t=1 and define d(θT1 , θ) ≡

∑T
t=1min(‖θt− θ‖22, C). We use a standard ar-

gument (Le Cam’s method) that relates the minimax ℓ2 risk, minθT
1
maxθ0∈Ω E[d(θT1 , θ0)],

in terms of the error in multi-way hypothesis problem (Tsybakov, 2008). We first con-
struct a maximal set of points in Ω, such that minimum pairwise distances among them
is at least δ. (Such set is usually referred to as a δ-packing in the literature). Here δ is
a free parameter to be determined in the proof. We then use a standard reduction to
show that any estimator with small minimax risk should necessarily solve a hypothesis
testing problem over the packing set, with small error probability. More specifically,
suppose that nature chooses one point from the packing set uniformly at random and
conditional on nature’s choice of the parameter vector, say θ0, the market value are
generated according to 〈xt, θ0〉 + zt with zt ∼ N(0, σ2). The problem is reduced to
lower bounding the error probability in distinguishing θ0 among the candidates in the
packing set using the observed market values.

3. We apply Fano’s inequality from information theory to lower bound the probability of
error (Tsybakov, 2008). The Fano’s bound involves the logarithm of the cardinality of
the δ-packing set as well as the mutual information between the observations (market
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values) and the random parameter vector θ0 chosen uniformly at random from the
packing set. Le Cam’s method is used to derive minimal risk lower bound for an
estimator θ̂, while here we have a sequence of estimators and need to adjust the Le
Cam’s method to get the lower bound for d(θT1 , θ0).

6. Nonlinear Valuation Function

In previous sections, we focused exclusively on linear valuation function given by Eq (2).
Here, we extend our results and assume that the market valuations are modeled by a
nonlinear function that depends on products’ features and an independent noise term.
Specifically, the market value of a product with feature vector xt is given by

v(xt) = ψ(θ0 · φ(xt) + zt) , (22)

where the original features xt are transformed by a feature mapping φ : Rd 7→ R
d, and func-

tion ψ : R 7→ R is a general function that is log-concave and strictly increasing. Important
examples of this model include log-log model (ψ(x) = ex, φ(x) = ln(x)), semi-log model
(ψ(x) = ex, φ(x) = x), and logistic model (ψ(x) = ex/(1 + ex), ψ(x) = x).

Model (22) allows us to capture correlations and non-linear dependencies on the features.
We next state our assumption on the feature mapping φ and then discuss our dynamic
pricing policy and its regret bound for the general setting (22).

Assumption 6 Let pX be an (unknown) distribution from which the original features xt
are sampled independently. Suppose that the feature mapping φ has continuous derivative
and denote by Σφ ≡ E(φ(x) · φ(x)T) the second moment matrix of φ(x) under PX . We
assume that there exist constants Cmin and Cmax such that for every eigenvalue σ of Σφ,
we have 0 < Cmin ≤ σ < Cmax <∞.

Invoking Assumption 1, PX has a bounded support X and since φ has continuous deriva-
tive, it is Lipschitz on X and hence the image of X under φ remains bounded. Therefore,
the new features φ(xt) are also sampled independently from a bounded set. The condition
on Σφ is analogous to that on Σ, as required by Assumption 2 for the linear setting.

Based on feature mapping φ, validity of Assumption 6 may depend on all moments of
distribution PX . We provide an alternative to this assumption, which only depends on
feature mapping φ and the second moment of PX . In stating the assumption, we use the
notation Dφ to denote the derivative matrix of a feature mapping φ. Precisely, for φ =
(φ1, . . . , φd), with φi real-valued function defined on R

d, we write Dφ = (∂φi/∂xj)1≤i≤j≤d.

Assumption 7 (alternative to Assumption 6) Suppose that feature mapping φ has
continuous derivative and its derivative Dφ(x) is full-rank for almost all x. In addition,
there exist constants Cmin and Cmax such that for every eigenvalue σ of covariance Σ, we
have 0 < Cmin ≤ σ < Cmax <∞.

Recall that the noise terms {zt}t≥1 are drawn independently and identically from a
distribution with cumulative function F and density f(x). Let λ(v) = f(v)/(1 − F (v)) be
the hazard rate function for distribution F . For a log-concave function ψ, we define

g−1
ψ (v) ≡ v − λ−1

(ψ′(v)

ψ(v)

)
. (23)
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Input: (at time 0) function g, regularizations λk, W (bound on ‖θ0‖1)
Input: (arrives over time) covariate vectors {x̃t = φ(xt)}t∈N
Output: prices {pt}t∈N
1: τ1 ← 1, p1 ← 0, θ̂1 ← 0
2: for each episode k = 2, 3, . . . do
3: Set the length of k-th episode: τk ← 2k−1.
4: Update the model parameter estimate θ̂k using the regularized ML estimator

obtained
from observations in the previous episode:

θ̂k = arg min
‖θ‖1≤W

{L(θ) + λk‖θ‖1} , (24)

where L(θ) is given by:

L(θ) = − 1

τk−1

τk−1∑

t=τk−1

{
I(yt = 1) log(1− F (ψ−1(pt)− θ · x̃t))

+I(yt = −1) log(F (ψ−1(pt)− θ · x̃t))
}
. (25)

5: For each period t during the k-th episode, set

pt ← ψ(gψ(θ̂
k · x̃t)) . (26)

Algorithm 2: RMLP Policy for dynamic pricing under the nonlinear set-
ting

Note that ψ′(v)/ψ(v) = log′ ψ(v) and since ψ is log-concave, this term is decreasing. Further,
since 1 − F is log-concave then its hazard rate λ is increasing (See proof of Lemma C.1.)
Combining these observations, we have that −λ−1(ψ′(v)/ψ(v)) is increasing. Consequently,

• Right-hand side of (23) is strictly increasing and hence, g−1
ψ is well-defined.

• We have (g−1
ψ )′(v) ≥ 1, for all v. This implies that 0 < g′ψ(v) ≤ 1, for all v.

It is worth noting that for ψ(v) = v (linear model), we have gψ = g, where g is defined
by (7). Our pricing policy for the nonlinear model is conceptually similar to the linear
setting: The policy runs in an episodic manner. During episode k, the prices are set as
pt = ψ(gψ(θ̂

k · xt)), where θ̂k denotes the estimate of the true parameter vector θ0, using a
regularized maximum-likelihood estimator applied to observations in the previous episode,
and x̃t = φ(xt).

We describe our (modified) RMLP policy in Algorithm 2. There a few differences
between Algorithm 2 and Algorithm 1: Firstly, the features xt are replaced by x̃t = φ(xt).
Secondly, in the regularized estimator, prices pt are replaced by ψ−1(pt). Thirdly, in the
last step of algorithm prices are set as ψ(gψ(θ̂

k · xt)), with gψ defined by Equation (23).
Our next theorem bounds the regret of our pricing policy (Algorithm 2).
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Theorem 8 Let ψ be log-concave and strictly increasing. Suppose that Assumptions 1 and
6 (or its alternative, Assumption 7) hold. Then, regret of the RMLP policy described as
Algorithm 2 is of O(s0 log d · log T ).

Proof of Theorem 8 is given in Appendix 8.4. Here, we summarize its key ingredients.

1. By increasing property of ψ, a sale occurs at period t when zt ≥ ψ−1(pt)−θ0·x̃t. Hence,
the log-likelihood estimator for this setting reads as (25). By virtue of Assumption 6
(or its alternative, Assumption 7) we get a similar estimation error for the regularized
estimator to the one in Proposition 10.

2. Similar to our derivation for linear setting, we show that the optimal pricing policy
that knows θ0 in advance is given by p∗t = ψ(gψ(θ0 · x̃t)), where gψ is defined based on
Equation (23).

3. The difference between the posted price and the optimal price can be bounded as
pt − p∗t = ψ(gψ(θ̂

k · x̃t))−ψ(gψ(θ0 · x̃t)) ≤ L|x̃t · (θ̂k − θ0)|, for a constant L > 0. This
bound is similar to the corresponding bound for the linear setting, and following the
same lines of our regret analysis for that case, we get R(T ) = O(s0 log d · log T ).

7. Knowledge of Market Noise Distribution

The proposed RMLP policy has assumed that the market noise distribution F is known
to the seller. Knowledge of F has been used both in estimating the model parameters θ0
and in setting the prices pt. On the other hand, the benchmark policy is also assumed
to have access to model parameters and the distribution F . Therefore, the regret bound
established in Theorem 3 essentially measures how much the seller loses in revenue due to
lack of knowledge of the underlying model parameters. In practice, however, the underlying
distribution of valuations is not given and this raises the question of distribution-independent
pricing policy.

It is worth mentioning that in some applications, although the underlying distribution of
valuations is unknown, it belongs to a known class of distributions. For example, lognormal
distributions have proved to be a good fit for the distribution of valuations of advertisers
in online advertising markets (Edelman et al., 2007; Lahaie and Pennock, 2007; Xiao et al.,
2009; Balseiro et al., 2014). In Section 7.1, we consider a setting where the underlying
distribution belongs to a known class of log-concave distributions and propose a policy
whose regret is O(

√
T ). We also argue that no policy can get a better regret bound.

7.1. Unknown Distribution from a Known Class

Suppose that the market noises are generated from a log-concave distribution Fm,σ (e.g.,
Log-normal), with unknown mean m and unknown variance σ2. Without loss of generality,
we can assume that m = 0; otherwise, in the valuation model (2), m can be absorbed in
the features as the intercept term. We next explain how the RMLP policy can be adapted
to this case.
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Input: Pricing function g (corresponding to F0,1), regularizations λk, W
Input: (arrives over time) covariate vectors {xt}t∈N
Output: prices {pt}t∈N
1: τ1 ← 1, p1 ← 0, θ̂1 ← 0
2: for each episode k = 2, 3, . . . do
3: Set the length of k-th episode: τk ← 2k−1.
4: Update the model parameter estimate µ̂k using the regularized ML estimator:

(µ̂k, β̂k) = arg min
‖(µ/β,β)‖1≤W

{L(µ, β) + λk‖µ‖1} , (28)

where L(µ, β) is given by:

L(µ, β) = − 1

τk−1

τk−1∑

t=τk−1

{
I(yt = 1) log (1− F (βpt − µ · xt))

+ I(yt = −1) log (F (βpt − µ · xt))
}
. (29)

5: For each period t during the k-th episode, set

pt ←
1

β̂k
g(µ̂k · xt) . (30)

Algorithm 3: RMLP-2 policy for dynamic pricing

Define β0 = 1/σ and consider the transformation ṽt = β0vt, µ0 = β0θ0, z̃t = β0zt. Then,
the valuation model (2) can be written as

ṽt = xt · µ0 + z̃t , (27)

where z̃t are drawn from F0,1. To lighten the notation, we use the shorthand F ≡ F0,1. The
response variables yt are then given by yt = I(ṽt ≥ β0pt).

We propose a variant of RMLP policy, called RMLP-2 for this case. The RMLP-
2 policy is very similar to RMLP except that the maximum log-likelihood is formed to
estimate the parameter vector (µ0, β0) jointly. Likewise, the regularizations are set as
λk = 4uF

√
(log d)/τk−1, where uF is defined based on the distribution F ≡ F0,1 as in

Equation (13). The policy then offers the optimal prices based on the current parameter
estimates at the time. Specifically, for episode k, we set pt = (1/β̂k)g(µ̂k · xt), where the
pricing function g, given by (7), is defined based on the distribution F ≡ F0,1. A formal
description of RMLP-2 is given in Algorithm 3.

Our next result bounds the regret of RMLP-2.

Theorem 9 Consider the valuation model (2), where noises zt are generated from a dis-
tribution Fm,σ, with unknown mean m and variance σ2. Assuming that distribution Fm,σ
satisfies Assumption 1, the regret of RMLP-2 policy is of O(

√
(log d)T ). Further, regret of

any pricing policy in this case is Ω(
√
T ).
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We refer to Section 8.5 for the proof of Theorem 9. As discussed in the proof, the lower
bound Ω(

√
T ) applies to this case due to the existence of non-informative prices; See also

Section 4.1.

8. Proof of Theorems

8.1. Proof of Theorem 3

Following step 1 of the proof outline mentioned in Section 4, we consider the problem
of estimating θ0 based on observations from previous episode. Before we proceed, let us
emphasize once again that the way RMLP is designed, posted prices at each episode are
statistically independent from the market noises in that episode. This can be easily observed
because pt = g(xt · θ̂k) for t belonging in the k-th episode, and θ̂k is estimated based on the
samples in the (k − 1)-th episode.

We fix k ≥ 1 and to lighten the notation, we use the indices 1, 2, . . . , n to correspond to
periods in the k-the episode, i.e., t = τk, τk + 1, . . . , τk+1 − 1.

Using probabilistic model (4), θ0 is estimated by solving a regularized maximum likeli-
hood (ML) optimization problem. The (normalized) negative log-likelihood function for θ
reads as

L(θ) = − 1

n

n∑

t=1

{
I(yt = 1) log(1− F (pt − θ · xt)) + I(yt = −1) log(F (pt − θ · xt))

}
. (31)

Parameter θ is estimated as the solution of the following program:

θ̂ = arg min
‖θ‖1≤W

L(θ) + λ‖θ‖1 . (32)

Define ℓF as follows which corresponds to “flatness” of function logF :

ℓF ≡ inf
|x|≤3W

{
min

{
− log′′ F (x),− log′′(1− F (x))

}}
. (33)

By Assumption 1, the log-concavity property of F and 1− F , we have ℓF > 0.
The next theorem upper bounds the estimation error of the proposed regularized esti-

mator.

Proposition 10 (Estimation Error) Consider linear model (2) with θ0 ∈ Ω, under As-
sumptions 1 and 2. Let θ̂ be the solution of optimization problem (32) with λ ≥ 4uF

√
(log d)/n.

Then, there exist positive constants c0 and C such that, for n ≥ c0s0 log(d), the following
inequality holds with probability at least 1− 1/d− 2e−n/(c0s0):

‖θ̂ − θ0‖22 ≤
16s0λ

2

ℓ2FC
2
min

. (34)

We refer to Appendix A for the proof of Proposition 10.
As we see the ℓ2 estimation error scales linearly with the sparsity level s0. As s0 increases,

the number of parameters to be estimated becomes larger and this makes the estimation
problem harder, leading to worse ℓ2 bound for a fixed number of samples, n. Further,
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choosing λ ∼
√

(log d)/n (where ∼ indicates equality up to a constant factor), our ℓ2
bound scales logarithmically in the dimension of the demand space, d. This allows to deal
with high-dimensional applications and obtain a regret that scales logarithmically in d.
Further, the estimation error shrinks as ∼ 1/n; getting more samples with fixed value of
s0 and d leads to better estimation accuracy. Finally, note that for small values of ℓF , the
log-likelihood function is very flat and there can be, in principle, vectors θ of log-likelihood
value very close to the optimum and nevertheless far from the optimum. In other words,
estimation task becomes harder as ℓF gets smaller and this is clearly reflected in the derived
estimation bound.

We next use Proposition 10 to bound the expected estimation error.

Corollary 11 Under assumptions of Proposition 10, the following holds true:

E(‖θ̂ − θ0‖22) ≤
16s0λ

2

ℓ2FC
2
min

+ 4W 2

(
1

d
+ 2e−n/(c0s0)

)
. (35)

Proof of Corollary 11 is straightforward and is omitted.

In the next proposition, we improve bound (35) for n ≥ c1d, for a constant c1 > 0.
As we will see, the following result is useful to develop sharper upper bound for regret of
RMLP policy.

Proposition 12 Under assumptions of Proposition 10, there exist constants c, c1 > 0, such
that for n ≥ c1d, the following holds true:

E(‖θ̂ − θ0‖22) ≤
16(s0 + 1)λ2

ℓ2FC
2
min

+ 4W 2e−cn
2

. (36)

Proposition 12 is proved in Appendix B.

We next establish some useful properties of the virtual valuation function ϕ and the
price function g.

Lemma 13 If 1− F is log-concave, then the virtual valuation function ϕ is strictly mono-
tone increasing.

Lemma 14 If 1 − F is log-concave, then the price function g satisfies 0 < g′(v) < 1, for
all values of v ∈ R.

Proofs of Lemma 13 and 14 are given in Appendix C.1 and C.2, respectively.

Given that ‖θ̂k‖1 ≤W and |xt · θ̂k| ≤W for all t, k,

pt = g(xt · θ̂k) ≤ 2|xt · θ̂k| ≤ 2W , (37)

where in the first inequality we used the fact that ϕ(v) is increasing as per Lemma 13 and
hence g(v) = v + ϕ−1(−v) ≤ v + |v| ≤ 2|v|. Similarly, we have p∗t ≤ 2W for all t.

We are now ready to bound the regret of our policy. For t ≥ 1, let

regt ≡ p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt) (38)
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be the regret at period t. Further, let Ht = {x1, x2, . . . , xt, z1, z2, . . . , zt} be the history set,
up to time t (more precisely, Ht is the filtration generated by {x1, x2, . . . , xt, z1, z2, . . . , zt}).
We also define H̄t = Ht ∪ {xt+1} as the filtration obtained after augmenting by the new
feature xt+1.

We write

E(regt|H̄t−1) = E(p∗t I(vt ≥ p∗t )|H̄t−1)− E(ptI(vt ≥ pt)|H̄t−1)

= p∗t (1− F (p∗t − xt · θ0))− pt(1− F (pt − xt · θ0)) . (39)

Define revt(p) ≡ p(1 − F (p − xt · θ0)) as the expected revenue under price p. Note that
p∗t ∈ argmax revt(p) and thus r′t(p

∗
t ) = 0. By Taylor expansion,

revt(pt) = revt(p
∗
t ) +

1

2
r′′t (p)(pt − p∗t )2 , (40)

for some p between pt and p
∗
t .

We next show that |r′′t (p)| ≤ 2(B +WB′), with B = maxv f(v), and B
′ = maxv f

′(v).
To see this, we write

|r′′t (p)| = |2f(p− xt · θ0) + pf ′(p− xt · θ0)| ≤ 2B + 2WB′ , (41)

where we use the fact that pt, p
∗
t ≤ 2W and consequently p ≤ 2W . We let C = 2max(B,B′).

Then, combining Equations (39), (40), (41), along with 1-Lipschitz property of g gives

E(regt|H̄t−1) ≤ (B +WB′)(p∗t − pt)2

≤ CW (p∗t − pt)2

= CW (g(θ0 · xt)− g(θ̂k · xt))2

≤ CW |xt · (θ0 − θ̂k)|2 . (42)

Here, in the second inequality we used the fact that W ≥ 1. Given that xt is independent
of Ht−1, we have

E(regt|Ht−1) ≤ CW 〈θ̂k − θ0,Σ(θ̂k − θ0)〉 , (43)

where Σ = E(xtx
T
t ). Since the maximum eigenvalue of Σ is bounded by Cmax, we obtain

E(regt) = E (E(regt|Ht−1)) ≤ CCmaxWE(‖θ̂k − θ0‖22) . (44)

Now, since the length of episodes grows exponentially, the number of episodes by period
T is logarithmic in T . Specifically, T belongs to episode K = ⌊log T ⌋+ 1. Hence,

Regret(T ) =
K∑

k=1

Regret(kth Episode) . (45)

We bound the total regret over each episode by considering three separate cases:
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• 2k−2 ≤ c0s0 log d: Here, c0 is the constant in the statement of Proposition 10. In this
case, episodes are not large enough to estimate θ0 accurately enough, and thus we use
a naive bound on regret. Clearly, by (37), we have E(regt) ≤ p∗t ≤ 2W . Since the
length of k th episode is 2k−1 ≤ 2c0s0 log d, the total regret incurred during episode k
is at most 4c0Ws0 log d.

• c0s0 log d ≤ 2k−2 ≤ c1d: Here, c1 is the constant in the statement of Proposition 12.
Continuing from Equation (44) and applying Corollary 11 to episode k, we obtain

Regret(kth Episode) =

τk+1−1∑

t=τk

E(regt)

≤ CCmaxW

τk+1−1∑

t=τk

E(‖θ̂k − θ0‖22)

≤ CCmaxW

{
16s0λ

2
k

ℓ2FC
2
min

τk + 4W 2
(τk
d

+ 2τke
−τk−1/(c0s0)

)}

≤ CCmaxW

{(
16uF
ℓFCmin

)2

2s0 log d+ 8W 2

(
2c1 + 2τk−1e

−
τk−1

c0s0

)}
,

(46)

where in the last step we used τk = 2τk−1 and τk = 2k−1 ≤ 2c1d. Therefore, in this
case

Regret(kth Episode) ≤ C ′W

C2
min

s0 log d , (47)

where C ′ hides various constants in the right-hand side of (46).

• c1d < 2k−2: Continuing from Equation (44) and applying Proposition 12 to episode
k, we obtain

Regret(kth Episode) =

τk+1−1∑

t=τk

E(regt)

≤ CCmaxW

τk+1−1∑

t=τk

E(‖θ̂k − θ0‖22)

≤ CCmaxW

{
16(s0 + 1)λ2k
ℓ2FC

2
min

τk + 4τkW
2e−cτ

2
k−1

}

≤ CCmaxW

{(
16uF
ℓFCmin

)2

2(s0 + 1) log d+ 8W 2τk−1e
−cτ2

k−1

}
,

(48)

Therefore, in this case

Regret(kth Episode) ≤ C ′W

C2
min

s0 log d , (49)
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where C ′ hides various constants in the right-hand side of (48).

Combining the above three cases into Equation (45), we get

Regret(T ) ≤ KC ′W

C2
min

s0 log d = O
( W

C2
min

s0 log d · log T
)
, (50)

which concludes the proof.

8.2. Proof of Theorem 4

By using Equation (43), we have

E(regt) ≤
C

2
E

(〈
θ̂k − θ0,Σ(θ̂k − θ0)

〉)
, (51)

with Σ = E(xtx
T
t ) and C = 2(B + WB′), where B = maxv f(v) and B′ = maxv f

′(v).
Therefore, letting K = ⌊log T ⌋+ 1, we get

Regret(T ) =

K∑

k=1

Regret(kth Episode) ≤ C

2

K∑

k=1

E

(〈
θ̂k − θ0,Σ(θ̂k − θ0)

〉)
τk . (52)

We next bound the right-hand side of the above bound. Let X(k) ∈ R
τk×d be the matrix

obtained by stacking feature vectors in episode k as rows. By applying bound (91) to
samples in episode (k − 1), we get that with probability at least 1− 1/d,

2ℓF
τk−1

∥∥∥X(k−1)(θ0 − θ̂k)
∥∥∥
2
+ 2λk‖θ̂k‖1 ≤ λk‖θ̂k − θ0‖1 + 2λk‖θ0‖1 . (53)

Hence,

2ℓF
τk−1

∥∥∥X(k−1)(θ0 − θ̂k)
∥∥∥
2
≤ λk‖θ̂k − θ0‖1 + 2λk‖θ0‖1 − 2λk‖θ̂k‖1 ≤ 3λk‖θ̂k − θ0‖1 . (54)

For k ≥ 1, let S(k) ∈ R
d×d be the empirical second moment of X(k), and define E(k) =

Σ− S(k). Then,

〈
θ̂k − θ0,Σ(θ̂k − θ0)

〉
=
〈
θ̂k − θ0, S(k−1)(θ̂k − θ0)

〉
+
〈
θ̂k − θ0, E(k−1)(θ̂k − θ0)

〉
. (55)

The first term is bounded using Equation (54) as follows:

〈
θ̂k − θ0, S(k−1)(θ̂k − θ0)

〉
=

1

τk−1

∥∥∥X(k−1)(θ0 − θ̂k)
∥∥∥
2
≤ 3λk

2ℓF
‖θ̂k − θ0‖1 ≤

3W

ℓF
λk , (56)

with probability at least 1− 1/d.

The second term can be bounded by virtue of the following lemma, whose proof is
deferred to Appendix C.8
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Lemma 15 For any k ≥ 1 and any vector v ∈ R
d, we have

〈v, E(k)v〉 ≤ 3

√
log d

τk
‖v‖21 ,

with probability at least 1− 8/d2.

By Lemma 15, we have

〈
θ̂k − θ0, E(k−1)(θ̂k − θ0)

〉
≤ 12

√
log d

τk−1
W 2 , (57)

with probability at least 1− 8/d2.

Combining Equations (56) and (57), with probability at least 1− 9/d we have

〈
θ̂k − θ0,Σ(θ̂k − θ0)

〉
≤ 3W

ℓF
λk + 12

√
log d

τk−1
W 2 = 12

(
WuF
ℓF

+W 2

)√
log d

τk−1
. (58)

Following a similar argument as in Section 8.1 (see Equation (45) and onwards) we have
that the following holds for a suitable constant C > 0:

Regret(T ) ≤ CW 3
K∑

k=2

√
log d

τk−1
· τk

≤
√
2CW 3

K∑

k=2

√
(log d)τk−1 = O(W 3

√
(log d)T ) ,

which completes the proof.

8.3. Proof of Theorem 5

The regret benchmark (9) is defined as the maximum gap between a policy and the oracle
policy over different θ0 ∈ Ω and pX ∈ Q(X ). Without loss of generality, we assume X =
[−1, 1]d. In order to obtain a lower bound on the regret, it suffices to consider a specific
distribution in Q(X ). We consider a distribution pX that selects coordinates xi, 1 ≤ i ≤ d,
uniformly at random from {−1, 1} and independent of each other. We further assume
θ0 ∈ Ω, with Ω given by (5).

Fix an arbitrary policy π in family Π. By definition of policy set Π, we have π(pt) =
g(xt · θt), for some θt ∈ Ω, which is Ht−1-measurable . Recalling our notation in the proof
of Theorem 3, regt denotes the regret occurred at step t and by Equations (39), (40), we
have

E(regt|H̄t−1) = revt(p
∗
t )− revt(pt) = −

1

2
rev′′t (p)(pt − p∗t )2 , (59)

for some p between pt and p
∗
t .

Our first lemma will be used in lower bounding E(regt|H̄t−1).
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Lemma 16 There exists a constant c1 > 0 (depending on W and σ) such that, with proba-
bility one5, r′′t (p

∗
t ) ≤ −c1, for all t ≥ 1. Further, there exists constant δ > 0 (depending on

W and σ) such that r′′t (p) ≤ −c1/4 for p ∈ [p∗t − δ, p∗t + δ], with probability one.

Proof of Lemma 16 is given in Appendix C.3.
Continuing from Equation (59), we consider two separate cases:

• |pt − p∗t | ≤ δ: We have p ∈ [p∗t − δ, p∗t + δ] and therefore by applying Lemma 16 we
obtain

E(regt|H̄t−1) = revt(p
∗
t )− revt(pt) ≥

c

8
(pt − p∗t )2 . (60)

• |pt−p∗t | > δ: Since function revt has only one local maximum, namely p∗t , the function
is increasing before p∗t and decreasing afterward. Therefore, if pt ≤ p∗t − δ then

revt(pt) ≤ revt(p
∗
t − δ) = revt(p

∗
t ) +

1

2
rev′′t (p)δ

2 ≤ revt(p
∗
t )−

c1
8
δ2 , (61)

where p is some point in [p∗t − δ, p∗t ] and we applied Lemma 16 in the last step.

Similarly, for pt ≥ p∗t + δ we obtain

revt(pt) ≤ revt(p
∗
t + δ) = revt(p

∗
t ) +

1

2
rev′′t (p)δ

2 ≤ revt(p
∗
t )−

c1
8
δ2 , (62)

where p ∈ [p∗t−δ, p∗t ] this time. Combining these two inequalities, we get that revt(p
∗
t )−

revt(pt) ≥ c1δ2/8, if |p∗t − pt| ≥ δ.

Writing the bounds in the two cases together, we get

E(regt|H̄t−1) ≥ revt(p
∗
t )− revt(pt) ≥





c1
8
(pt − p∗t )2 , if |pt − p∗t | ≤ δ ,

c1
8
δ2 , if |pt − p∗t | > δ .

(63)

We proceed by relating the lower bound to the error in estimation θ0.

E(regt|H̄t−1) ≥
c1
8
min

(
(pt − p∗t )2, δ2

)
=
c1
8
min

(
(g(xt · θt)− g(xt · θ0))2, δ2

)

≥ c1
8
min

(
c22 |xt · (θt − θ0)|2, δ2

)
, (64)

where we used the fact that by Lemma 14, g′(v) > c2 over the bounded interval [−W,W ],
for some constant c2 > 0. We recall the definition of history set Ht ≡ H̄t\{xt+1} =
{x1, x2, . . . , xt, z1, z2, . . . , zt}. Since Ht ⊆ H̄t, by iterated law of expectation, we get

E(regt|Ht−1) = E(E(regt|H̄t−1)|Ht−1) ≥
c1
8
E

(
min

(
c22|xt · (θt − θ0)|22, δ2

)∣∣∣Ht−1

)
. (65)

Note that xt is independent of Ht−1 and θt − θ0 is Ht−1-measurable.
We use the following lemma to lower bound the right-hand side of (65).

5. The randomness comes from randomness in prices which in turn comes from randomness in features xt.
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Lemma 17 Let x ∈ R
d be a random vector such that its coordinates are chosen indepen-

dently and uniformly at random from {−1, 1}. Further, suppose that v ∈ R
d and δ > 0 are

deterministic. Then,

E

(
min

(
(x · v)2, δ2

))
≥ 0.1min(‖v‖22, δ2) . (66)

Proof of Lemma 17 is given in Appendix C.4.
Applying Lemma 17 to bound (65), we obtain

E(regt|Ht−1) ≥
c1c

2
2

80
E

(
min

(
‖θt − θ0‖22, δ2/c22

)∣∣∣Ht−1

)
. (67)

Now, taking expectation from both sides with respect to Ht−1, we arrive at

E(regt) ≥
c1c

2
2

80
E

(
min

(
‖θt − θ0‖22, δ2/c22

))
. (68)

Equation (68) lower bounds the expected regret at each step to the ℓ2 estimation error.
We continue by establishing a minimax lower bound on ℓ2-risk of estimation.

Lemma 18 Consider linear model (2), with α0 = 0, and assume that the market values
v(xt), 1 ≤ t ≤ T , are fully observed and the feature vectors are generated according to
pX , described above. We further assume that the noise in market value is generated as
zt ∼ N(0, σ2). For a sequence of estimators θt, we let θt1 = (θ1, θ2, . . . , θt). Then, for any

fixed value C > 0, there exists a nonnegative constant C̃, depending on C, σ, W , such that

min
θT
1

max
θ0∈Ω

T∑

t=1

E

(
min

(
‖θt − θ0‖22, C

) ∣∣∣x1, . . . , xT
)
≥ C̃

{
s0 log

( T
s0

)
+min

[
T

s0
, s0 log

( d
s0

)]}
.

(69)

Proof of Lemma 18 is given in Appendix C.5.
We are now ready to lower bound the regret of any policy in Π.

Regret(T ) ≥ max
θ0∈Ω

T∑

t=1

E(regt) ≥
c1c

2
2

80

T∑

t=1

E

(
min

(
‖θt − θ0‖22, δ2/c22

))

≥ C̃ c1c
2
2

80

{
s0 log

( T
s0

)
+min

[
T

s0
, s0 log

( d
s0

)]}
. (70)

where the last step follows from Lemma 18.

8.4. Proof of Theorem 8

Let x̃t = φ(xt) denote the transformed features under the feature-map. Also, let p̃t =
ψ−1(pt). We first show that Assumption 7 implies Assumption 6, and therefore it suffices
to prove the theorem under Assumption 6.

Lemma 19 Suppose that Assumption 1 hold true. Then, Assumption 7 implies Assump-
tion 6.
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Proof of Lemma 19 is given in Appendix C.6.
By Assumption 1, the support of PX is a bounded set X . Given that φ has a continuous

derivative, it is Lipschitz on the bounded set X and ergo the image of X remains bounded
under the feature-map φ. Putting differently, features x̃t are sampled from a bounded set
in R

d. Without loss of generality, we assume ‖x̃t‖∞ ≤ 1. Further, as per Assumption 6, the
covariance of the underlying distribution Σφ is positive definite with bounded eigenvalues.

On a different note, since ψ is strictly increasing, a sale occurs at period t when θ0 · x̃t+
zt ≥ ψ−1(pt) = p̃t. Therefore the (negative) log-likelihood function for θ reads as

L(θ) = − 1

τk−1

τk−1∑

t=τk−1

{
I(yt = 1) log(1− F (p̃t − θ · x̃t)) + I(yt = −1) log(F (p̃t − θ · x̃t))

}
.

The estimation bound (34) also holds for this setting and the proof goes along the same lines
of the proof of Proposition 10, with slight modifications: (i) the features xt and prices pt
should be replaced by x̃t and p̃t. (ii) Quantity uF and ℓF in the statement of Proposition 10
should be set as M = (1/3)gψ(0) + (2/3)W . This follows from the bounds below

p̃t = gψ(x̃t · θ̂k) ≤ gψ(0) + |x̃t · θ̂k| ≤ gψ(0) +W , (71)

where we used the facts that gψ is 1-Lipschitz and increasing as explained below Equa-
tion (23).

We next characterize the optimal policy when the true parameter θ0 is known. The
expected revenue from a posted price p works out at p(1 − F (ψ−1(p) − θ0 · x̃t)). Writing
this in terms of p̃ = ψ−1(p), the first order condition for the optimal price reads as

λ(p̃∗ − θ0 · x̃t) ≡
f(p̃∗ − θ0 · x̃t)

1− F (p̃∗ − θ0 · x̃t)
=
ψ′(p̃∗)

ψ(p̃∗)
, (72)

where λ denotes the hazard rate function. Equivalently

θ0 · x̃t = p̃∗ − λ−1
(ψ′(p̃∗)

ψ(p̃∗)

)
. (73)

By definition of function gψ as per Equation (23), we get p̃∗ = gψ(θ0 · x̃t) and thus
p∗ = ψ(gψ(θ0 · x̃t)).

We are now ready to bound the regret of the algorithm. Similar to Equation (42), we
have

E(regt|H̄t−1) ≤
C

2
(p∗t − pt)2 =

C

2

[
ψ(gψ(θ0 · x̃t))− ψ(gψ(θ̂k · x̃t))

]2

≤ C

2
L(gψ(θ0 · x̃t))− gψ(θ̂k · x̃t))2 ≤

LC

2
|x̃t · (θ0 − θ̂k)|2 , (74)

where L ≡ max|v|≤ψ(M) |ψ′(v)| (since ψ is continuously differentiable, it attains a maximum
over a bounded set.) In addition, we used the fact that g′ψ(v) ≤ 1 as explained below
Equation (23). The inequalities above then follow from the mean-value theorem.

Given that x̃t is independent of Ht−1, we have

E(regt|Ht−1) ≤
LC

2
〈θ̂k − θ0,Σφ(θ̂k − θ0)〉 , (75)
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where Σφ = E(xtx
T
t ). Using Assumption 6,

E(regt) = E (E(regt|Ht−1)) ≤
1

2
LCCmaxE(‖θ̂k − θ0‖22) . (76)

Rest of the proof is similar to proof of Theorem 8.1 (see after Equation (45)).

8.5. Proof of Theorem 9

We consider representation (27) of the valuations. Letting x̃t = (−xt; pt) and η = (µ;β)
vectors in R

(d+1)×1, we can write the log-likelihood loss as:

L(η) = − 1

τk−1

τk−1∑

t=τk−1

{
I(yt = 1) log (1− F (x̃t · η)) + I(yt = −1) log (F (x̃t · η))

}
. (77)

We let p(k) = (pτk−1
, . . . , pτk−1)

T be the vector of prices posted in episode k. We also

construct feature matrix X(k) by putting features xt that arrive in episode k, as its rows.
Matrix X̃(k) is constructed likewise by stacking augmented features xt. Hence, X̃(k) =
[−X(k), p(k)].

The next lemma is a technical lemma that will be used later in bounding the regret. We
refer the reader to Appendix C.9 for its proof.

Lemma 20 Assume that the product features xt ∈ R
d are generated independently from an

unknown distribution with bounded support in R
d. Then, with the choice of regularization

parameters λk = 4uF
√

(log d)/τk−1 in the RMLP-2 policy, the following inequalities hold
true:

1

τk−1
‖X(k−1)(µ0 − µ̂k)‖2 ≤ 4W

ℓF
λk , (78)

(β0 − β̂k)2 ≤ cW
ℓF
λk , (79)

where cW > 0 is a constant that depends on W .

We next figure out the clairvoyant policy.

Lemma 21 Let g be the pricing function corresponding to distribution F = F0,1, given by
g(v) = v + ϕ−1(−v), where ϕ(v) = v − (1 − F (v))/f(v) is the virtual valuation function.
Then, under model (27), the clairvoyant optimal prices are given by

p∗t =
1

β0
g(xt · µ0) . (80)

Proof of Lemma 21 is given in Appendix C.7.
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We next bound the regret at other periods of the episode. Let H̄t = {x̃1, . . . , x̃t, x̃t+1, z1, . . . , zt}
be the history set up to time t. Similar to (42), we write

E(regt|H̄t−1) ≤ CW (p∗t − pt)2

= CW
( 1

β0
g(xt · µ0)−

1

β̂k
g(xt · µ̂k)

)2

≤ 2CW

β20

(
g(xt · µ0)− g(xt · µ̂k)

)2
+ 2CW

( 1

β0
− 1

β̂k

)2
g(xt · µ̂k)2

≤ 2CW

β20
|xt · (µ0 − µ̂k)|2 +

8CW 3

β20
(β̂k − β0)2 . (81)

In the last step, the first term is bounded by using 1-Lipschitz property of g and the second
term is bounded by using the following chain of inequalities:

1

β̂k
g(xt · µ̂k) ≤

2

β̂k
|xt · µ̂k| ≤

2

β̂k
‖xt‖∞‖µ̂k‖1 ≤ 2W .

Note that in the first inequality we used the fact that ϕ(v) is increasing for log-concave
distributions and hence g(v) = v + ϕ−1(−v) ≤ v + |v| ≤ 2|v|. The last inequality holds
because ‖µ̂k/β̂k‖ ≤W by the optimization constraint in (28).

Recalling our notation Ht = H̄t\{x̃t+1} and applying the law of iterated expectations,
we have

E(regt|Ht−1) ≤
2CW

β20

〈
µ̂k − µ0,Σ(µ̂k − µ0)

〉
+

8CW 3

β20
(β̂k − β0)2

≤ C1W
3
(〈

µ̂k − µ0,Σ(µ̂k − µ0)
〉
+ (β̂k − β0)2

)
, (82)

with C1 = 8CW/β20 . Following a similar derivation to (58) we get

〈
µ̂k − µ0,Σ(µ̂k − µ0)

〉
≤ 16

(
WuF
ℓF

+W 2

)√
log d

τk−1
. (83)

Using Equations (83) and (79) in Equation (82), we get

E(regt) ≤ C1W
3

[
16

(
WuF
ℓF

+W 2

)
+ 4

uF cW
ℓF

]

︸ ︷︷ ︸
C2

√
log d

τk−1
. (84)

Following a similar argument as in Section 8.1 (see Equation (45) and onwards) we have
that the following holds for a suitable constant C > 0:

Regret(T ) ≤ C2

K∑

k=2

√
log d

τk−1
· τk

≤
√
2C2

K∑

k=2

√
(log d)τk−1 = O(

√
(log d)T ) ,
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where we used τk = 2τk−1.

For the lower bound Ω(
√
T ), note that under model (27) we can define the (scaled)

customer’s utility as

ũ(xt) = µ0 · xt − β0p+ z̃t . (85)

Then, a purchase occurs if ũ(xt) > 0. Following our discussion in Section 4.1 (see after
Equation (16)), since β0 is unknown, the uninformative prices do exist and therefore Ω(

√
T )

applies to this case.

9. Conclusion

In this work, we leverage tools from statistical learning to design a dynamic pricing policy
for a setting wherein the products are described via high-dimensional features. Our policy is
computationally efficient and by exploiting the structure of demand parameters, it obtains
a regret that scales gracefully with the features dimension and the time horizon. Namely,
the regret of our algorithm scales linearly with the sparsity of the optimal solution and
logarithmically with the dimension. We also show an O(log T ) dependence of the regret on
the length of the horizon. On the flip side, we provide a lower-bound of O(log T ) on the
regret of any algorithm that does not know the true parameters of the model in advance.

A natural next step is providing a tight bound on the regret, closing the gap between
the derived upper and lower bounds. Another step would be assuming that θ∗ is not exactly
sparse, but it can be well approximated by a sparse vector, i.e, ‖θ0 − θs0‖1 ≤ δ for some
s0-sparse vector θs0 . An interesting question is to figure out how the regret scales with δ.

The choice model that proposed in this work assumes one product arrived at each
period, and describes the customer’s purchase behavior based on the product features and
the posted price. A more general choice model would be the one that assumes multiple
products at each period. More specifically, each customer has a “consideration” set which
includes products left after the customer has narrowed down her choices based on her
own personal screening criteria, and then chooses the product from this set which brings
maximum utility. We model the no purchase option as an extra product. This generalization
is the focus of a future work.

We also believe the ideas and techniques developed in this work can be be applied
to other settings such as personalized pricing where information about the buyers can be
used for price differentiation or optimizing reserve prices in online ad auctions. Another
application would be assortment optimization and learning consumer choice models both
in terms of the role of the structure (Farias et al., 2013; Kallus and Udell, 2016) as well
as inventory-constrained environments (Golrezaei et al., 2014; Ferreira et al., 2018; Cheung
et al., 2018).
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Appendix A. Proof of Proposition 10

We start by reviewing the notion of restricted eigenvalue (RE) which is commonplace in
high-dimensional statistical estimation.

Definition 22 For a given matrix A ∈ R
d×d and some integer s such that 1 ≤ s0 ≤ d and

a positive number c, we say that Restricted Eigenvalue (RE) condition is met if

κ2(A, s0, c) ≡ min
J⊆[p]
|J |≤s0

min
v 6=0

‖vJc‖1≤c‖vJ‖1

vTAv

‖vJ‖22
> 0 .

It is shown in (Bühlmann and van de Geer, 2011) and (Rudelson and Zhou, 2013) that when
two matrices A0, A1 are close to each other (in the maximum element-wise norm) compared
to sparsity s0, the RE condition for A0 implies the RE condition for A1. This is particularly
useful when A0 is a population second moment matrix and A1 is a corresponding empirical
second moment matrix. To apply this result to our case, let X ∈ R

n×d be the feature
matrix with rows xt, corresponding to n products. Let Σ = E(xtx

T
t ) be the empirical second

moment. By Assumption 2, we have Σ � CminI and therefore, Σ satisfies RE condition with
κ2(Σ̃, s0, 3) ≥ Cmin. By using the following result, we conclude that Σ̂ = (XTX)/n also
satisfies RE condition with κ2(Σ̂, s0, 3) ≥ Cmin/2.

Proposition 23 Let Σ̂ = (XTX)/n and let S = supp(θ0) be the support of θ0. Under
Assumption 2, Σ̂ satisfies the restricted eigenvalue condition with constant κ(Σ̂, s0, 3) ≥√
Cmin/2, with probability 1− e−2n/(c0s0) and c0 = 768/C2

min, provided that n ≥ c0s0 log d,

Proposition 23 follows from the results established in (Bühlmann and van de Geer, 2011)
and (Rudelson and Zhou, 2013). We outline the main steps of its proof in Appendix A.1
for the reader’s convenience.

By the second-order Taylor’s theorem, expanding around θ0 we have

L(θ0)− L(θ̂) = −〈∇L(θ0), θ̂ − θ0〉 −
1

2
〈θ̂ − θ0,∇2L(θ̃)(θ̂ − θ0)〉 , (86)

for some θ̃ on the line segment between θ0 and θ̂. Invoking (31), we have

∇L(θ) = 1

n

n∑

t=1

ξt(θ)xt , ∇2L(θ) = 1

n

n∑

t=1

ηt(θ)xtx
T

t , (87)

where ∇ and ∇2 represents the gradient and the hessian w.r.t θ. Further,

ξt(θ) = − f(ut(θ))
F (ut(θ))

I(yt = −1) +
f(ut(θ))

1− F (ut(θ))
I(yt = +1)

= − log′ F (ut(θ))I(yt = −1)− log′(1− F (ut(θ)))I(yt = +1) .

ηt(θ) =

(
f(ut(θ))

2

F (ut(θ))2
− f ′(ut(θ))

F (ut(θ))

)
I(yt = −1) +

(
f(ut(θ))

2

(1− F (ut(θ)))2
+

f ′(ut(θ))

1− F (ut(θ))

)
I(yt = +1)

= − log′′ F (ut(θ))I(yt = −1)− log′′(1− F (ut(θ)))I(yt = +1) ,
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where ut(θ) = pt−〈xt, θ〉, and log′ F (x) and log′′ F (x) represent first and second derivative
w.r.t x, respectively.

By Equation (37), we have

|ut(θ0)| ≤ |pt|+ ‖xt‖∞‖θ0‖1 ≤ 3W .

Further, recall that the sequences {pt}nt=1 and {xt}nt=1 are independent of {zt}nt=1. Therefore,
{ut(θ0)}Tt=1 and {zt(θ0)}Tt=1 are independent and by (4), we have E[ξt(θ0)] = E[E[ξt(θ0)|ut(θ0)]] =
0. Further, by definition of uF , cf. Equation (13), we have |ξt(θ0)| ≤ uF .

We next introduce the set

F ≡
{
‖∇L(θ0)‖∞ ≤ 2uF

√
log d

n

}
. (88)

By applying Azuma-Hoeffding inequality followed by union bounding over d coordinates of
feature vectors, we obtain P(F) ≥ 1− 1/d.

On the other note, ‖θ0‖1, ‖θ̂‖1 ≤ W and hence ‖θ̃‖1 ≤ W . This implies that |ut(θ̃)| ≤
3W . Therefore, by definition of ℓF , cf. Equation (33), we have ηt(θ̃) ≥ ℓF . Recalling
Equation (87), we get ∇2L(θ̃) � ℓF (X̃TX̃/n).

By optimality of θ̂, we write

L(θ̂) + λ‖θ̂‖1 ≤ L(θ0) + λ‖θ0‖1 , (89)

and by rearranging the terms and using (86), we arrive at

ℓF
n
‖X(θ0 − θ̂)‖2 + λ‖θ̂‖1 ≤ ‖∇L(θ0)‖∞‖θ̂ − θ0‖1 + λ‖θ0‖1 . (90)

Form now on, the analysis is exactly similar to the oracle inequality for Lasso estimator.
We bring the analysis here for the reader’s convenience.

Choosing λ ≥ 4uF
√

(log d)/n, we have on F

2ℓF
n
‖X(θ0 − θ̂)‖2 + 2λ‖θ̂‖1 ≤ λ‖θ̂ − θ0‖1 + 2λ‖θ0‖1 . (91)

Let S = supp(θ0). On the left-hand side using triangle inequality, we have

‖θ̂‖1 = ‖θ̂S‖1 + ‖θ̂Sc‖1 ≥ ‖θ̂S‖1 − ‖θ̂S − θ0,S‖1 + ‖θ̂Sc‖1 .

On the right-hand side, we have

‖θ̂ − θ0‖1 = ‖θ̂S − θ0,S‖1 + ‖θ̂Sc‖1 .

Using these two inequalities in (91), we get

2ℓF
n
‖X(θ0 − θ̂)‖2 + λ‖θ̂Sc‖1 ≤ 3λ‖θ̂S − θ0,S‖1 . (92)
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We next write

2ℓF
n
‖X(θ0 − θ̂)‖2 + λ‖θ̂ − θ0‖1 =

2ℓF
n
‖X(θ0 − θ̂)‖2 + λ‖θ̂S − θ0,S‖1 + λ‖θ̂Sc‖1

(a)

≤ 4λ‖θ̂S − θ0,S‖1
(b)

≤ 4λ
√
s0‖θ̂S − θ0,S‖2

(c)

≤ 4λ
√
2s0√

nCmin
‖X(θ̂ − θ0)‖2

(d)

≤ ℓF
n
‖X(θ̂ − θ0)‖22 +

8λ2s0
ℓFCmin

,

where (a) follows from Equation (92); (b) holds by Cauchy-Shwarz inequality; (c) follows
form the RE condition, which holds for Σ̂ = (XTX)/n as stated by Proposition 23, with
κ(Σ̂, s0, 3) ≥

√
Cmin/2, and recalling the inequality ‖θ̂Sc − θ0,Sc‖1 = ‖θ̂Sc‖1 ≤ 3‖θ̂S − θ0,S‖

as per Equation (92); Finally (d) follows from the inequality 2
√
ab ≤ a2 + b2. Rearranging

the terms, we obtain

ℓF
n
‖X(θ0 − θ̂)‖2 + λ‖θ̂ − θ0‖1 ≤

8λ2s0
ℓFCmin

. (93)

Applying the RE condition again to the l.h.s of (93), we get

Cmin
ℓF
2
‖θ0 − θ̂‖22 ≤

ℓF
n
‖X(θ0 − θ̂)‖2 ≤

8λ2s0
ℓFCmin

, (94)

and therefore,

‖θ0 − θ̂‖22 ≤
16s0λ

2

ℓ2FC
2
min

. (95)

The result follows.

A.1. Proof of Proposition 23

The proof follows by combining two lemmas from (Bühlmann and van de Geer, 2011).
We show the desired result holds for a more general case, namely for X with subgaussian

entries. Before stating the proof, we recall a few definitions and notations.

Definition 24 A random variable ν is subgaussian if there exist constants L, σ0 such that

E(e
ν2

L2 ) ≤ σ20
L2

+ 1 .

Note that bounded random variables are subgaussian. Specifically, if |ν| ≤ νmax, then ν
is subgaussian with L = νmax and σ0 = νmax

√
e− 1.

For a matrix A, we let ‖A‖∞ denote its (element wise) maximum norm, i.e., ‖A‖∞ =
maxi,j |Aij |. The next lemma shows that if two matrices are close enough in maximum
norm and if the compatibility condition holds for one of them then it would also hold for
the other one.
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Lemma 25 Suppose that the restricted eigenvalue (RE) condition holds for Σ0 with con-
stant κ(Σ0, s0, 3) > 0. If

‖Σ0 − Σ1‖∞ ≤
κ2(Σ0, s0, 3)

32s0
,

then the RE condition holds for Σ1 with constant κ(Σ1, s0, 3) ≥ κ(Σ0, s0, 3)/
√
2.

Proof Proof of Lemma 25 We refer to Problem 6.10 of (Bühlmann and van de Geer, 2011).

Lemma 26 Consider X ∈ R
n×p with i.i.d. rows generated from a distribution with co-

variance Σ ∈ R
d×d. Let Σ̂ = XTX/n be the corresponding empirical second moment.

Further, suppose that the entries of X are uniformly subgaussian with parameters L, σ0. If
n ≥ c0Ls0 log d with c0 = 768L/κ2(Σ, s0, 3), then

P

[
‖Σ̂− Σ‖∞ ≥

κ2(Σ, s0, 3)

384s0

(
2 +

7σ0
L

)]
≤ e−

2n
cs0 . (96)

Proof Proof of Lemma 26 The result follows readily from Problem 14.3 on page 535
of (Bühlmann and van de Geer, 2011).

Next we note that Σ satisfies the restricted eigenvalue condition with constant κ2(Σ, s0, 3) ≥
Cmin because of Assumption 2. Further, since ‖xt‖∞ ≤ 1, we can apply the result of
Lemma 26 with L = 1, σ0 =

√
e− 1. Proposition 23 then follows from Lemma 25.

Appendix B. Proof of Proposition 12

Define the event Bn as follows:

Bn ≡
{
X ∈ R

n×d : σmin(X
TX/n) > Cmin/2

}
. (97)

Using concentration bounds on the spectrum of random matrices with subgaussian rows
(see (Vershynin, 2010, Equation (5.26))), there exist constants c, c1 > 0 such that for n >
c1d, we have P(Bn) ≥ 1− e−cn2

.
For γ > 0, we define the event Fγ = {‖∇L(θ0)‖∞ ≤ γ}. Using characterization (87),

and by applying Azuma-Hoeffding inequality (similar to our argument after Equation (88)),
we obtain

P(Fγ) ≥ 1− d exp
(
− nγ2

2u2F

)
. (98)

We also let E1,n ≡ Bn∩Fλ/2, E2,n ≡ Bn∩Fcλ/2. To lighten the notation, we use the shorthand

D ≡ ‖θ̂ − θ0‖22.
We then have

E(D) = E(D · I(Bcn)) + E(D · I(E1,n)) + E(D · I(E2,n)) . (99)

We treat each of the terms on the right-hand side separately.
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• Term 1: We have

E(D · I(Bcn)) ≤ 4W 2
P(Bcn) ≤ 4W 2e−cn

2

. (100)

• Term 2: Similar to proof of Proposition 10, on E1,n, we have D ≤ 16s0λ
2/(ℓ2FC

2
min).

Hence,

E(D · I(E1,n)) ≤
16s0λ

2

ℓ2FC
2
min

. (101)

• Term 3: To bound term 3, we first prove the following lemma.

Lemma 27 On event En(γ) ≡ Bn ∩ Fγ, with γ > λ/2, we have

D ≤
( 36

C2
minℓ

2
F

)
γ2d.

Lemma 27 is proved in Section B.1.

We next bound term 3 as follows. Let L = 9λ2d/(C2
minℓ

2
F ).

E(D · I(E2,n)) =
∫ ∞

0
P

(
D · I(E2,n) > α

)
dα

= L

∫ ∞

0
P

(
D · I(E2,n) > Lc

)
dc

= L

∫ 1

0
P

(
D · I(E2,n) > Lc

)
dc+ L

∫ ∞

1
P

(
D · I(E2,n) > Lc

)
dc . (102)

For the first term on the right-hand side we write

L

∫ 1

0
P

(
D · I(E2,n) > Lc

)
dc ≤ L

∫ 1

0
P(E2,n) ≤ LP(Fcλ/2) ≤

L

d
, (103)

where the last step holds from Equation (98) with γ = λ/2.
We next upper bound the second term. For arbitrary fixed c > 1, let γ =

√
Lc/(dκ),

with κ = 36/(ℓ2FC
2
min). It is easy to verify that γ =

√
cλ/2 > λ/2. Further, by virtue of

Lemma 27, on E(γ) we have D ≤ κγ2d = Lc. Hence,

P

(
D · I(E2,n) > Lc

)
≤ P

(
E(γ)c ∩ E2,n

)
≤ P(Fcγ ∩ Bn) ≤ P(Fcγ) . (104)

Further, applying Equation (98) and plugging for γ, we obtain

P(Fcγ) ≤ d exp
(
− nLc

2u2Fκd

)
= d exp

(
− nλ2

8u2F

)
≤ d1−2c . (105)

Here, the second step follows from definition of L and the last step holds because λ ≥
4uF

√
(log d)/n.
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Combining Equations (104) and (105), we have

L

∫ ∞

1
P

(
D · I(E2,n) > Lc

)
dc ≤ L

∫ ∞

1
d1−2c dc ≤ L

2d log d
. (106)

Using bounds (103) and (106) in Equation (102), we obtain

E(D · I(E2,n)) ≤
L

d

(
1 +

1

2 log d

)
≤ 3L

2d
<

16λ2

ℓ2FC
2
min

. (107)

The result follows by putting the upper bounds on the three terms together.

B.1. Proof of Lemma 27

We start by rewriting Equation (90), which follows from optimality of θ̂ and log-concave
property of the loss function:

ℓF
n
‖X(θ0 − θ̂)‖2 + λ‖θ̂‖1 ≤ ‖∇L(θ0)‖∞‖θ̂ − θ0‖1 + λ‖θ0‖1 . (108)

On event En(γ), Equation (108) implies that

1

2
CminℓF ‖θ0 − θ̂‖22 + λ‖θ̂‖1 ≤ γ‖θ̂ − θ0‖1 + λ‖θ0‖1 . (109)

Using the assumption γ > λ/2 and our shorthand D ≡ ‖θ̂ − θ0‖22, we get

1

2
CminℓF ‖θ̂ − θ0‖22 ≤ γ‖θ̂ − θ0‖1 + λ‖θ0‖1 − λ‖θ̂‖1

≤ (γ + λ)‖θ̂ − θ0‖1
≤ 3γ‖θ̂ − θ0‖1 ≤ 3γ

√
d‖θ̂ − θ0‖2 .

Writing the above bound in terms of our shorthand D ≡ ‖θ̂ − θ0‖22, we obtain the desired
result.

Appendix C. Proof of Technical Lemmas

C.1. Proof of Lemma 13

We write the virtual valuation function as ϕ(v) = v − 1/λ(v) where λ(v) = f(v)
1−F (v) =

− log′(1−F (v)) is the hazard rate function. Since 1−F is log-concave, the hazard function
λ(v) is increasing which implies that ϕ is strictly increasing. Indeed, by this argument
ϕ′(v) > 1.

C.2. Proof of Lemma 14

Recalling the definition g(v) = v + ϕ−1(−v), we have g′(v) = 1 − 1/ϕ′(ϕ−1(−v)). Since ϕ
is strictly increasing by Lemma 13, we have g′(v) < 1. The claim g′(v) > 0 follows if we
show ϕ′(ϕ−1(−v)) > 1. For this we refer to the proof of Lemma 13, where we showed that
ϕ′(v) > 1 for all v.
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C.3. Proof of Lemma 16

Let φ(v) and Φ(v) respectively denote the density and the distribution function of standard
normal variable. Function ht and its derivatives read as

revt(p) = p
(
1− Φ

(p− xt · θ0
σ

))
, (110)

rev′t(p) = 1− Φ
(p− xt · θ0

σ

)
− p

σ
φ
(p− xt · θ0

σ

)
, (111)

rev′′t (p) =
1

σ

[ p
σ

(p− xt · θ0
σ

)
− 2
]
φ
(p− xt · θ0

σ

)
. (112)

Define ξ ≡ p∗t − xt · θ0 = g(xt · θ0)− xt · θ0. Writing rev′′t (p
∗
t ) in term of ξ, we obtain

r′′t (p
∗
t ) =

1

σ

[ ξ
σ

(1− Φ(ξ/σ)

φ(ξ/σ)

)
− 2
]
φ(ξ/σ) . (113)

By tail bound inequality for Gaussian distribution 1 − Φ(ξ/σ) ≤ (σ/ξ)φ(ξ/σ) for ξ ≥ 0.
Therefore,

ξ

σ

(1− Φ(ξ/σ)

φ(ξ/σ)

)
− 2 ≤ −1 , (114)

and the same bound obviously holds for ξ < 0.

By definition of function g, |ξ| ≤ 3W with ϕ being the virtual valuation fusion corre-
sponding to the Gaussian distribution. Hence, φ(ξ/σ) ≥ φ(3W/σ). Putting this together
with (114), we get rev′′t (p

∗
t ) ≤ −c1 with c1 = (1/σ)φ(3W/σ).

For the second part of the Lemma statement, set δ = min
{
3W,σ2/(18W ), σ2φ(3W/σ)

}
.

For p ∈ [p∗t − δ, p∗t + δ], we have

∣∣∣ p
σ

(p− xt · θ0
σ

)
− p∗t
σ

(p∗t − xt · θ0
σ

)∣∣∣ ≤ 1

σ2
|p− p∗t | · |p+ p∗t − xt · θ0| ≤

1

σ2
δ(5W + δ) ≤ 1

2
.

(115)

Using Equation (114) we get p(p− xt · θ0)/σ2 ≤ −1/2. Further,
∣∣∣φ
(p− xt · θ0

σ

)
− φ

(p∗t − xt · θ0
σ

)∣∣∣ ≤ |p− p
∗
t |

2σ2
≤ δ

2σ2
≤ 1

2
φ(3W/σ) . (116)

Therefore,

φ
(p− xt · θ0

σ

)
≥ φ(ξ/σ)− 1

2
φ(3W/σ) ≥ 1

2
φ(3W/σ) . (117)

Combining (115), (117) we obtain

rev′′t (p) =
1

σ

[ p
σ

(p− xt · θ0
σ

)
− 2
]
φ
(p− xt · θ0

σ

)
≤ − 1

4σ
φ(3W/σ) = −c1

4
. (118)

The result follows.
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C.4. Proof of Lemma 17

Let Z = x · v and Z̃ = Z/‖v‖2. Note that Var(Z̃) = 1. Write the expectation in terms of
the tail probability

E(min(Z2, δ2)) =

∫ δ2

0
P(Z2 ≥ t)dt =

∫ δ2

0
P

(
|Z̃| ≥

√
t

‖v‖2

)
dt . (119)

We consider two cases:

• δ ≤ ‖v‖2: The right-hand side in (119) can be lower bounded as

∫ δ2

0
P

(
|Z̃| ≥

√
t

‖v‖2

)
dt ≥

∫ δ2

0
P

(
|Z̃| ≥

√
t

δ

)
dt = 2δ2

∫ 1

0
tP(|Z̃| ≥ t)dt . (120)

In the sequel, we provide two separate lower bounds for the right-hand side.

Let ξ ≡ P(|Z̃| ≥ 1). We have

∫ 1

0
tP
(
|Z̃| ≥ t

)
dt ≥

∫ 1

0
t ξdt ≥ ξ

2
. (121)

We proceed to obtain another bound which utilizes the fact Var(Z̃) = 1.

∫ 1

0
tP(|Z̃| ≥ t)dt =

∫ ∞

0
tP(|Z̃| ≥ t)dt−

∫ ∞

1
tP(|Z̃| ≥ t)dt

=
1

2
Var(Z̃)−

∫ ∞

1
tP(|Z̃| ≥ t)dt . (122)

For t ≥ 1, we have P(|Z̃| ≥ t) ≤ ξ. Further, by applying Chernoff bound, we get

P(|Z̃| ≥ t) = 2P(Z̃ ≥ t) = 2P(eλZ̃ ≥ eλt) ≤ e−λtE(eλZ̃)

= 2e−λt
d∏

i=1

(
e
λ

vi
‖v‖2 + e

−λ
vi

‖v‖2

2

)
≤ 2e−λt

d∏

i=1

e
λ2

v2i

2‖v‖2
2 = 2e

λ2

2
−λt .

Setting λ = t leads to P(|Z̃| ≥ t) ≤ 2e−
t2

2 . Combining these bounds into (121), we
obtain

∫ 1

0
tP(|Z̃| ≥ t)dt ≥ 1

2
−
∫ ∞

1
t min(2e−

t2

2 , ξ)dt =
1− ξ
2
− ξ log

(2
ξ

)
. (123)

We summarize bounds (121) and (123) as in

∫ 1

0
tP
(
|Z̃| ≥ t

)
dt ≥ min

ξ∈[0,1]
max

(
ξ,

1− ξ
2
− ξ log

(2
ξ

))
> 0.05 . (124)

Turning back to Equation (120), in this case we have

∫ δ2

0
P

(
|Z̃| ≥

√
t

‖v‖2

)
dt ≥ 0.1δ2 . (125)
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• δ ≥ ‖v‖2: Similar to the previous case, the right-hand side in (119) can be lower
bounded as

∫ δ2

0
P

(
|Z̃| ≥

√
t

‖v‖2

)
dt ≥

∫ ‖v‖2
2

0
P

(
|Z̃| ≥

√
t

‖v‖2

)
dt . ≥ 0.1‖v‖22 (126)

The above two cases can be summarized as E(min(Z2, δ2)) ≥ 0.1min(‖v‖22, δ2).

C.5. Proof of Lemma 18

We use a standard argument that relates minimax ℓ2-risk in terms of the error in multi-way
hypothesis testing problem; See e.g. (Yang and Barron, 1999; Yu, 1997). Let {θ̃1, . . . , θ̃m}
be a δ-packing of set Ω, meaning that their pairwise distances are all at least δ. Parameter δ
is free for now and its value will be determined later in the proof. We further let Pj denote
the induced probability on market values (v(x1), . . . , v(xT )), conditional on (x1, . . . , xT )
and for θ0 = θ̃j . In other words, in defining distributions Pj we treat feature vectors fixed.
Let ν be random variable uniformly distributed on the hypothesis set {1, 2, . . . ,m} which
indicates the index of the true parameter, i.e, ν = j means θ0 = θ̃j .

Define d(θT1 , θ) ≡
∑T

t=1min(‖θt − θ‖22, C) and let µ be the value of j for which d(θT1 , θ̃j)
is a minimum. Suppose that δ is chosen such that δ2 ≤ C. If d(θT1 , θ̃j) < δ2T/4 then µ = j,
because assuming otherwise, we have µ = j′ 6= j, and by triangle inequality

min(‖θ̃j′ − θ̃j‖22, C) ≤ min(2‖θt − θ̃j‖22 + 2‖θt − θ̃j′‖22, C)
≤ min(2‖θt − θ̃j‖22, C) + min(2‖θt − θ̃j′‖22, C) , (127)

for all t, where we used the inequality min(a + b, c) ≤ min(a, c) + min(b, c) for a, b, c ≥ 0.
Summing over t = 1, 2, . . . , T , we get

T min(‖θ̃j′ − θ̃j‖22, C) ≤ 2d(θT1 , θ̃j) + 2d(θT1 , θ̃j′) ≤ 4d(θT1 , θ̃j) < δ2T ,

where we used the assumption µ = j′. But this is a contradiction because ‖θ̃j′ − θ̃j‖2 ≥ δ
(they form a δ-packing of Ω) and δ2 ≤ C.

Using Markov inequality, we can write

max
j

EPj
d(θT1 , θ̃j) ≥

δ2T

4
max
j

P

(
d(θT1 , θ̃j) ≥

δ2T

4

∣∣∣ν = j
)

≥ δ2T

4m

m∑

j=1

P(µ 6= j|ν = j) =
δ2T

4
P(µ 6= ν) . (128)

We use Fano’s inequality to lower bound the error probability on the right-hand side. We
first construct a δ-packing of Ω similar to the one proposed in (Raskutti et al., 2011, proof
of Theorem 1).

Let s = s0/2 ≤ d/2 and define

A = {q ∈ {−1, 0, 1}d : ‖q‖0 = s} .

As proved in (Raskutti et al., 2011, Lemma 5), there exists a subset Ã ⊆ A of cardinality

|Ã| ≥ exp( s2 log
d−s/2
s ) such that the Hamming distance between any two elements in Ã
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is at least s/2. Next, consider the set
√

2
sδÃ for some δ ≤ W/

√
2s whose exact value to

be determined later. Then, for q in this set, ‖q‖1 =
√
2sδ ≤ W and hence

√
2
sδÃ ⊆ Ω.

Further, for q, q′ ∈
√

2
sδÃ, we have the following bounds:

‖q − q′‖22 ≥ δ2 , (129)

‖q − q′‖22 ≤ 8δ2 . (130)

By (129), the set
√

2
sδÃ forms a δ-packing for Ω with size |Ã|.

We now turn back to bound (128). Left-hand side can be lower bounded using Fano’s
inequality. We omit the details here as it is a standard argument and instead we refer
to (Raskutti et al., 2011, proof of Theorem 1) for details. Using Fano’s inequality and
bound (130), we get

P(µ 6= ν) = 1−
8T
2σ2 δ

2 + log(2)

s
2 log(

d−s/2
s )

. (131)

Choosing δ2 ≤ δ21 ≡ σ2s
32T log(d−s/2s ), we obtain P(µ 6= ν) ≥ 1/4. Therefore, setting δ2 =

min(W
2

2s , δ
2
1 , C) and combining with bound (128), we conclude that

min
θT
1

max
θ0∈Ω

E(d(θT1 , θ0)) ≥
δ2T

16
=

1

16
min

{
W 2T

2s
,
σ2s

32
log
(d− s/2

s

)
, CT

}
. (132)

Now since s = s0/2 ≤ d/2, we have log((d− s/2)/s) ≥ c log(d/s) with some constant c > 0.
Therefore, by using Equation (132) and substituting for s = s0/2, we obtain

min
θT
1

max
θ0∈Ω

E(d(θT1 , θ0)) ≥ L1 , (133)

with

L1 ≡
1

16
min

{
W 2T

s0
,
cσ2s0
64

log
( d
s0

)
, CT

}
. (134)

We next derive another separate lower bound for minimax risk, by assuming that an
oracle gives us the true support of θ0. In this case, the least square estimator, applied to the
observed features restricted to the true support S, achieves the optimal minimax ℓ2 rate.
This implies that ‖θt − θ0‖22 ≥ cσ2s0/t, for t ≥ s0 and a constant c > 0. Therefore,

min
θT
1

max
θ0∈Ω

E(d(θT1 , θ0)) ≥
T∑

t=1

min
(
cσ2

s0
t
, C
)
, (135)

from which we obtain

min
θT
1

max
θ0∈Ω

E(d(θT1 , θ0)) ≥ L2 ≡ c′s0 log(T/s0) , (136)
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for some constant c′ > 0, depending on σ and C.

Combining bounds in (134) and (136), we have

min
θT
1

max
θ0∈Ω

E(d(θT1 , θ0)) ≥
1

2
(L1 + L2)

≥ C̃
{
s0 log

( T
s0

)
+min

[
T

s0
, s0 log

( d
s0

)]}
, (137)

for a constant C̃ that depends on C, σ,W . The proof is complete.

C.6. Proof of Lemma 19

We recall the notion of 0-property established by (Ponomarev, 1987).

Definition 28 A continuous function has the 0-property, if the pre-image of any set of
probability zero is a set of probability zero.

As proved in (Ponomarev, 1987, Theorem 1), if a function φ : X ⊆ R
d 7→ R

d is continuously
differentiable, then it satisfies 0-property if and only if its derivative Dφ is full rank for
almost all x ∈ X . Therefore, we need to show that under Assumption 1, if φ has 0-property,
then Assumption 6 holds true.

Supposing otherwise, there exists a nonzero v ∈ R
d such that vTΣφv = 0. Therefore,

E((z · φ(x))2) = 0 which implies that z · φ(x) = 0, almost surely. Define S ≡ {z ∈ R
d :

z · φ(x) = 0}. Space S is (d − 1)-dimensional and all the points in φ(X ) belong to S
almost surely, i.e., P(φ(X ) ∩ Sc) = 0. However, since Σ is positive definite (with all of its
eigenvalues target than Cmin, by Assumption 1), PX(S) = 0. Combining these observations,
P(φ(X )) ≤ P(S)+P(φ(X )∩Sc) = 0. Since φ has the 0-property, this implies that PX(X ) = 0,
which is a contradiction because X is the support of PX and thus PX(X ) = 1. The result
follows.

C.7. Proof of Lemma 21

Under model (27), a purchase occurs at time t with the posted price price p if ṽt ≥ β0p.
This is equivalent to z̃t ≥ β0p−xt ·µ0. Therefore, the expected revenue from a posted price
p is given by

p× P(ṽt ≥ β0p) = p(1− F (β0p− µ0 · xt)) . (138)

By setting the first order conditions, the optimal price p∗t is given by the solution of the
following equation:

β0p
∗
t =

1− F (β0p∗t − µ0 · xt)
f(β0p∗t − µ0 · xt)

. (139)

It is straightforward to verify that the solution p∗t of the above equation is given by
p∗t = (1/β0)g(µ0 · xt).
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C.8. Proof of Lemma 15

Recall the notation ‖E(k)‖∞ = maxi,j |E(k)
ij |. Note that

〈v, E(k)v〉 =
d+1∑

i,j=1

|E(k)
ij ||vi||vj | ≤ ‖E(k)‖∞

d+1∑

i,j=1

|vi| |vj |

≤ ‖E(k)‖∞
(

d∑

i=1

|vi|
)2

= ‖E(k)‖∞‖v‖21 . (140)

Therefore, we only need to bound ‖E(k)‖∞. Fix 1 ≤ i, j ≤ d+ 1. We then have

E
(k)
ij = Σ

(k)
ij − S

(k)
ij =

1

τk

τk∑

ℓ=1

{
E(XℓiXℓj)−XℓiXℓj

}
. (141)

Let u
(ij)
ℓ = XℓiXℓj . Then, |u(ij)ℓ | ≤ 1 because ‖xℓ‖∞ ≤ 1. By applying Hoeffding’s inequal-

ity,

P

(
|E(k)

ij | ≥ 3

√
log d

τk

)
≤ 2

d4
. (142)

Therefore, by union bonding over all indices 1 ≤ i, j ≤ d + 1, we obtain that ‖E(k)‖∞ ≤
3
√
(log d)/τk, with probability at least 1 − 8/d2. The claim follows from this result along

with (140).

C.9. Proof of Lemma 20

Define parameter vectors η0,0 = (µ0;β0), η0,∧ = (µ0; β̂
k), η∧,0 = (µ̂k;β0), and η∧,∧ =

(µ̂k; β̂k) all in R
d+1. By optimality of η∧,∧, we have ∇µL(µ̂k) + λkν

k = 0 and ∇βL(β̂k) +
λkρ

k = 0, where νk is a subgradient of ℓ1 norm at µ̂k and ρk is a subgradient of the absolute
value function at β̂k. Therefore,

∇L(η0,∧) = (∇µL(µ0);∇βL(β̂k)) = (∇µL(µ0);−λkρk) ,
∇L(η∧,0) = (∇µL(µ̂k);∇βL(β0)) = (−λkνk;∇µL(β0)) .

(143)

By a similar argument following (88), we have ‖∇L(η0,0)‖∞ ≤ λk/2, with probability at
least 1− 1/d. Hence, invoking relations (143), we get

‖∇L(η0,∧)‖∞ ≤ λk , ‖∇L(η∧,0)‖∞ ≤ λk . (144)

By optimality of η∧,∧, we have

L(η∧,∧) + λk‖η∧,∧‖1 ≤ L(η0,∧) + λk‖η0,∧‖1 .

Following a similar argument to (91), we have

2ℓF
τk−1

‖X̃(k−1)(η0,∧ − η∧,∧)‖2 + 2λk‖η∧,∧‖1 ≤ 2λk‖η∧,∧ − η0,∧‖1 + 2λk‖η0,∧‖1.
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Applying triangle inequality and rearranging the terms, this yields to the following inequal-
ity:

2ℓF
τk−1

‖X̃(k−1)(η0,∧ − η∧,∧)‖2 ≤ 4λk‖η∧,∧ − η0,∧‖1 ≤ 8Wλk . (145)

By substituting for η0,∧ and η∧,∧, we get Equation (79).
Likewise, we can write (145) with η∧,0 instead of η0,∧:

2ℓF
τk−1

‖X̃(k−1)(η∧,0 − η∧,∧)‖2 ≤ 8Wλk . (146)

By substituting for η∧,0 and η0,0 we obtain

2ℓF
τk−1

(β0 − β̂k)2‖p(k−1)‖2 = 2ℓF
τk−1

‖X̃(k−1)(η∧,0 − η∧,∧)‖2 ≤ 8Wλk , (147)

where p(k) = (pτk−1
, . . . , pτk−1)

T is the vector of prices offered in episode (k − 1). Hence,
in order to prove (79), it suffices to show that pt ≥ c̃W for all t. To see this, note that
since g(v) > 0 it attains its minimum over any bounded interval. Therefore, there exists a
constant c′W > 0, such that g(v) > c′W for v ∈ [−W,W ]. Further, by the constraint in the

optimization (28) we have |β̂(k−1)| ≤W . Combining these two facts, we get

pt =
1

β̂(k−1)
g(xt · µ̂(k−1)) ≥ c′W

W
≡ c̃W . (148)

The result follows from (147) and setting cW = 4W/c̃2W .
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