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ABSTRACT

A model for general insurance pricing is developed which represents a sto-
chastic generalisation of the discrete model proposed by Taylor (1986). This model
determines the insurance premium based both on the breakeven premium and
the competing premiums offered by the rest of the insurance market. The opti-
mal premium is determined using stochastic optimal control theory for two
objective functions in order to examine how the optimal premium strategy
changes with the insurer’s objective. Each of these problems can be formu-
lated in terms of a multi-dimensional Bellman equation.

In the first problem the optimal insurance premium is calculated when the
insurer maximises its expected terminal wealth. In the second, the premium is
found if the insurer maximises the expected total discounted utility of wealth
where the utility function is nonlinear in the wealth. The solution to both these
problems is built-up from simpler optimisation problems. For the terminal
wealth problem with constant loss-ratio the optimal premium strategy can be
found analytically. For the total wealth problem the optimal relative premium
is found to increase with the insurer’s risk aversion which leads to reduced
market exposure and lower overall wealth generation.

1. INTRODUCTION

Dynamic programming has found widespread application in both finance and
insurance originating with the optimal asset allocation problem (Samuelson
1969, Merton 1971; 1990). Merton found the optimal allocation of resources
in a portfolio consisting of a risky asset and a risk-free asset in order to max-
imise some measure of wealth. Part of the attraction of the theory is that the
optimal strategy can be determined in closed-form under certain assumptions
concerning the form of the process describing the risky asset and the objective
of the portfolio manager. The strategy is dynamic since it uses information
as it arises: the optimal strategy can be determined as long as we specify the
distributions of the underlying processes and the current values of the state
variables. There are many generalisations of the problem in the literature includ-
ing, for example, an N dimensional state space, non-Markov underlying processes,
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and random time horizons. Reviews of the literature are contained in Karatzas &
Shreve (1998) and Campbell & Viceira (2001).

In actuarial science there are a number of established problems which have
been tackled using dynamic programming. The optimal asset allocation problem
for an insurer was investigated by Browne (1995). The problem is more com-
plex for an insurance company because it invests in risky assets in order to
maintain a reserve to pay out incoming claims. There are then at least two, pos-
sibly correlated, random processes required for the model: the invested asset
and the claims process. Browne used a normal random process to model the
cash flow and found it is optimal to invest a fixed amount of the reserve if the
objective is to maximise the expected utility of wealth for an exponential utility
function. He also found that this strategy corresponds to minimising the prob-
ability of ruin when the risk-free interest rate is zero. Hipp & Plum (2000) con-
sidered the problem with a compound Poisson process for the claims process:
the optimal strategy now depends on the current value of the insurer’s reserve.
Other insurance problems which use dynamic programming include optimal
proportional reinsurance (Højgaard & Taksar 1997), optimal new business
generation (Hipp & Taksar 2000) and optimal dividend payout for an insurer
(Asmussen & Taksar 1997). A comprehensive review of optimal control theory
applied to insurance can be found in Hipp (2004).

In this paper we determine the optimal premium strategy for an insurer which
maximises a particular objective over a fixed planning horizon. Actuaries tradi-
tionally price insurance through a premium principle, which relates the charge for
cover to the moments of the claims distribution. In this work we determine the pre-
mium by using a competitive demand model (following Taylor 1986) as well as the
expected claim size. Consequently, we suppose that the premium is determined
in part by the price relative to the rest of the insurance market. It is not enough
that an insurer set a price to cover claims if the rest of the market undercuts that
price since then the insurer will gain insufficient income to remain viable.

The demand law specifies how the insurer’s income and exposure change
with the relative to market premium: a low relative premium generates expo-
sure but leads to reduced premium income. The approach builds on the work
in Emms, Haberman & Savoulli (2007) and Emms & Haberman (2005), but
develops a more sophisticated and realistic model, so that the dependence of
the optimal strategy on the current state is stochastic. Emms, Haberman &
Savoulli (2007) developed a continuous time version of Taylor’s model (Tay-
lor 1986) because continuous time control systems are often easier to analyse
than discrete problems. However, the continuous time version of Taylor’s model
leads to a bang-bang optimal premium strategy which is not realistic. Conse-
quently, Emms & Haberman (2005) developed an accrued premium pricing
model by supposing that the continuously varying premium is paid at a rate
fixed at the start of the policy. Here, we also suppose that the premium is a
continuous process; however, policyholders are assumed to pay a fixed amount
at the start of the policy in return for a constant period of cover. A renewal
of insurance is treated as if the policyholder were buying a new period of
cover. This assumption reduces the state space of the optimisation problem and
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so makes the analysis easier. Emms & Haberman (2005) determined the optimal
premium strategy which maximised the expected terminal wealth of the insurer.
We examine a terminal wealth and a total wealth objective and assess the qual-
itative impact of this change on the optimal premium strategy.

In Section 2 we propose a two factor model of the general insurance market:
one factor models the randomness of the claim size and intensity, whilst the
other models the market average premium. This model is used to determine the
premium which maximises a number of possible objective functions of the
insurer. Section 3 describes the derivation of the Bellman equation which gives
the optimal dynamic premium strategy to maximise the expected terminal wealth
of the insurer. The problem reduces to the solution of a reaction-diffusion
equation, which is straightforward to solve numerically. Next in Section 4 we
consider the objective of maximising the expected total discounted utility of
wealth with a utility function linear in the wealth. This is probably a more
realistic objective for an insurer given the regulatory constraints imposed over
the course of the planning horizon. The resulting reaction-diffusion equation
is slightly more complex but it is again straightforward to solve numerically.
We consider a nonlinear utility function by constructing a perturbation expansion
in the risk aversion of the insurer. This leads to a pair of coupled reaction-dif-
fusion equations and a numerical solution gives the optimal premium strategy.
Finally in Section 5 we compare the strategies and suggest further work.

2. MARKOV MODEL

Emms, Haberman & Savouilli (2007) extended Taylor’s model to the case that
the market average premium is stochastic and the breakeven premium is con-
stant. Here we generalise further by adopting stochastic processes with given
distributions for the market average premium pt (per unit exposure) and the
loss-ratio gt. Since the market average premium is positive we suppose that it
is lognormally distributed:

dpt = pt(mdt + s1d W1t), (1)

where the drift m and the coefficient of volatility s1 are constants and W1t is a
Brownian motion. Note that all premiums are specified as per unit of exposure
so that each policyholder pays the same premium irrespective of the exposure
that is being insured. Hereafter we shall omit this qualification.

We introduce the relative loss ratio which we define as the ratio between the
breakeven premium pt of the insurer and the market average premium1:

t .g
p

pt

t
= (2)
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The breakeven premium is the random amount a policy of length t costs the
insurance company. This is the actuarial premium without any profit margin
and can be deduced from the insurer’s previous claims data and a loading fac-
tor to account for expenses and interest rates (Daykin & Hey 1990). Rather
than complicating the model with a precise formulation for this factor we sup-
pose that the breakeven premium is a stochastic process (Pentikäinen 1986).
The advantage of this formulation is that there are no outstanding liabilities
at the end of the planning horizon T because as soon as policies of total expo-
sure dqt are bought, the insurer sets aside ptdqt to cover the resulting claims.
Appendix A describes the modifications to the theory if we adopt a stochastic
process for the mean claim size rate.

We expect a direct correlation between the premium that the market charges
and the breakeven premium of the insurer. If we suppose that claims are identi-
cally distributed for the market and the individual insurer then the discrepancy
between these quantities represents the different loadings that insurance compa-
nies apply to their policies. Consequently we suppose that the log of the loss-ratio
is a Vasicek process (gt must be positive) and that the mean of loggt reverts to zero:

d loggt = – r log gt dt + s2 d W2t,

where r is the rate of reversion, s2 is the coefficient of volatility and W2t is a
Brownian motion independent of W1t. Ito’s Lemma gives the SDE for gt as

dgt = gt [ 2
1
s2

2 – r log gt ] dt + s2gt d W2t. (3)

This definition forces the market average premium towards the breakeven pre-
mium: � [gt ] = es2

2 /4r as t → ∞. Market data often show the market average pre-
mium drifting above and below the breakeven premium so this would seem to
be a reasonable model (Daykin et al. 1994).

Suppose a policyholder pays a premium p(t) to the insurer at the start of
the policy for a fixed term of insurance cover t. We suppose that at the end of
the cover the policyholder can renew by paying p(t + t), that is the same pre-
mium as that charged to new business. We suppose the insurer writes a number
of these policies in a time interval dt generating total exposure dqt and receives
the premium income ptdqt in return. Thus pt is the premium charged to new
policyholders and existing policyholders who want to renew their policies.

The model is completed by evolution equations for the insurer’s exposure
qt and wealth wt. We suppose that the rate of generation of new and renewed
exposure bt is parameterised as

bt = qtG(kt), (4)

where G is a demand function which represents the fractional increase in expo-
sure per unit time arising from the relative premium charged, kt, defined by

kt = pt /pt.
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Consequently the wealth generated by premium income over time dt due to a
fractional increase in exposure is pt dqt = ptbtdt.

This notation leads to the following SDEs:

dq t = (bt – kqt)dt, (5)

dwt = – awtdt + (pt – pt)btdt, (6)

where k> 0 is a constant representing the fractional loss of exposure due to
non-renewed business and a > 0 represents the loss of wealth due to returns
paid to shareholders. In reality, this loss of exposure is related to the number
of policies initiated at times t – t, t – 2t, … since it is only these policyholders
who make a renewal decision at time t. Models incorporating this feature lead
to either high dimensional state spaces or non-Markov processes both of which
considerably complicate the optimisation theory and are not considered here
(see Kolmanovskii & Shaikhet 1996). In practice kmust be determined by data
on policy renewals: for simplicity we set k = t –1.

The main difference between this model and that presented in Emms &
Haberman (2005) is the interpretation of the “new business’’ parameterisation.
This means that the term ptbt dt appears in the wealth equation (6) reflecting
the idea that it is only new business and renewed business who pay a premium
not the entire customer base. The simplification arises because we set a premium
at the start of the policy rather than a premium rate which varies over the
course of the policy. The claims arising from insurance taken out at time t are
accounted for by the term pt bt in (6): claims on existing exposure were
accounted for when these policies were initiated.

3. TERMINAL WEALTH

The premium strategy is determined by maximising the objective function of the
insurer. Due to the parameterisation of the demand law it is simpler if we use
the relative premium kt as the control in the dynamic optimisation problem.
Thus, first we aim to find the optimal relative premium k* which maximises the
insurer’s wealth at the end of the planning horizon T. We define the value
function

V(x, t) =
k

sup� [wT | Xt = x], (7)

where the state of the system is Xt = (pt,qt,wt,gt), the current state is x = (p, q,
w, g), and for the moment T =T. If the value function is sufficiently smooth
then it satisfies the Bellman equation

Vt + mpVp + 2
1
s1

2
p

2Vpp+ g ( 2
1
s2

2 – r logg) Vg + 2
1
s2

2g2Vgg – kqVq – awVw +

q
k

sup{G(k) (Vq + p(k – g)Vw)} = 0,
(8)
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with boundary condition

V(x,T ) = w.

The first-order condition for a maximum of k is

q ,k
G k

G k
g
p w

+ = -
� V

V

^̂ hh

where � denotes differentiation wrt. k. The control determined by this first
order condition is called interior and is denoted with a superscript i. The con-
trol which satisfies the maximisation operation of the Bellman equation is
denoted by k*, and may not equal the interior control ki. For simplicity, we
adopt a linear demand function (Lilien & Kotler 1983):

,

> ,
G k

a b k k b

k b

if

if0

#
=

-^ ^h h* (9)

where a > 0 has dimension of per unit time and b ≥ 1 is dimensionless. Notice
that there is no lower bound on the control. The interior relative premium is
now given by

q ,k b g
p2

1i

w

= + -
V

Vf p (10)

providing that g ≤ b + Vq /pVw.
Since Vq = 0 and Vw = 1 at t = T, the terminal interior relative premium is 

ki
T =

2
1

(b + g) if g ≤ b. (11)

The terminal interior premium is at least the breakeven premium pi
T ≥ p since

ki
T ≥ g. If g> b, that is p> bp, then the interior premium is undefined. In this

case, the insurer can set any relative premium k > b since no-one will buy insur-
ance at this price according to the demand law (9). In such circumstances we
set k* = b for continuity of the control.

3.1. Constant loss ratio

We need the results from this section to determine the appropriate boundary
condition for (8) when g is stochastic. Suppose the loss ratio g is constant cor-
responding to setting r= s2 = 0. Let us look for a value function of the form

V(x, t) = ea (t –T ) (w + qp f0(t)). (12)
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Substituting this expression into the Bellman equation (8) yields

dt

d
0

f
+ (m+ a – k) f0 +

k

sup{G (k) ( f0 + k – g)} = 0, (13)

with boundary condition f0(T ) = 0. The interior control is given by

k0
i (t) = 2

1 (b + g – f0(t)). (14)

At termination k0
i (T ) = 2

1 (b + g). If g > b then k*(T ) = b and G* = 0. Conse-
quently, the Bellman equation integrates immediately to give f0 / 0 and so
k*(t) / b for t ! [0,T ]. This means the optimal strategy is to set a price so that
no insurance is ever sold. It is easy to see why this is optimal: the insurer only
generates wealth from insurance if k > g> b from the wealth equation. But at
this relative premium no exposure is generated, so the insurer can never make
a profit from selling insurance.

If g ≤ b then at termination k*(T) = k0
i (T). Substituting the interior control

into the Bellman equation (13) yields

dt

d
0

f
+

4

1
af0

2 + Af0 + B = 0, (15)

where 

A(g) =
2

1
a (b – g) + ƒ,

B(g) =
4

1
a (b – g)2,

ƒ = m+ a – k. (16)

Note that g is constant and so therefore A(g) and B(g) are also constants. On
integrating (15) and applying the boundary condition we obtain

f0(t; g) =

+

+

> ,

< ,

,

tan tan
a

D
T t

D
D
A

A aB A

a E t

E t D A D A
aB A

a A T t

A T t
aB A

if

if

if

2

2

2

1

2

2

1 2

2

2

2

-
+ -

-

+ + -

- -

-
=

+

-

- -

dde

^^ ^f

^_
^

nn o

hh h p

hih

Z

[

\

]
]
]
]

]
]
]
]

(17)

where

expE t
A D
A D

T t D=
+

-
-

-

-

-^ d ^_h n h i, (18)
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and 

D2
! = !aB " A2 = "ƒ (a (b – g ) + ƒ). (19)

At termination f0(T) = 0 and from (15), df0 /dt ≤ 0 so that as we integrate from
t = T towards t = 0, f0 increases and it is positive. Further, if f0 is continuous
then it must remain positive because if at any point f0 = 0 then df0 /dt ≤ 0 and
f0 increases. Consequently, k*(t) = k0

i (t) ≤ k0
i (T ) = 2

1 (b + g) providing that f0(t)
remains continuous in [0,T ].

The value function V, given by (12), is twice continuously differentiable in
the state variables and once continuously differentiable in time (under paramet-
ric restrictions). Moreover k*(t), by definition, does satisfy the maximisation
operator of the Bellman equation, and it is admissible because the state equa-
tions are linear in the state variables. Consequently, k*(t) is the optimal relative
premium strategy by Verification Theorem 4.1 of Fleming & Rishel (1975) as long
as f0 !C1[0,T ]. This premium strategy corresponds to that found in Emms &
Haberman (2005), although here we are able to give an analytical expression
for the strategy because of the simplification of the model. It is only the first
case in (17) that leads to discontinuities, which corresponds to the blow-up in
the Ricatti equation of the accrued premium model. Specifically, there is blow-
up at tb if

, .tant T
D D

A
T

p2

2
0b

1
!= - -

+

-

+

dd nn 6 @ (20)

If this is the case then f0(tb) = ∞ and the optimal control is not smooth.

3.2. Stochastic loss ratio

When the loss ratio is stochastic we are unable to solve the Bellman equation
analytically. Motivated by the previous section we introduce the stopping time

t = inf{t > 0 : gt = b}

and set

T = t / T.

Consequently, we bound the sample paths so that the loss ratio does not become
too large. We have chosen to bound the loss ratio by b because if gt > b then
there is no relative premium which generates immediate wealth for the insurer.
Essentially, we restrict sample paths to those for which the insurer actively sells
insurance: the insurer cannot leave the market and then return should conditions
become favourable. The Bellman equation for this value function is identical
to (8) providing that it is sufficiently smooth (see Fleming & Rishel (1975) p. 154).
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However, now the state space is restricted to 0 ≤ g ≤ b and on the boundary
g= b we have V = w.

If the optimal control is given by the first order condition then substitut-
ing (10) into the Bellman equation (8) we find

Vt + mpVp + 2
1
s1

2
p

2Vpp + g ( 2
1
s2

2 – r log g)Vg + 2
1
s2

2 g2Vgg+

q ( 2
1

a (b – g) – k) Vq + (–aw + 4
1

apq (b – g)2)Vw +
q

w

a

V

qV

p4

2

= 0, (21)

where we have used

w

q .G
a

b
V

g
p2

i
= - +

Vf p
The Bellman equation (21) determines the evolution of the value function
when the optimal control is interior, that is, it is given by (10).

Assuming that the solution to the interior equation is sufficiently smooth,
a Taylor series expansion yields at t = T – dt

VT – dt = w + (–aw + 4
1

apq (b – g)2) dt (22)

so that Vq = 4
1

ap (b – g)2 dt and Vw = 1 – adt. Consequently, the interior relative
premium at t = T – dt is

ki
T – dt = 2

1 (b + g – 4
1

a (b – g)2dt), (23)

neglecting terms of O(dt2). This gives the premium strategy close to the end
of the planning horizon. It gives us confidence that the premium is well-defined
locally using an explicit finite difference scheme and it is not determined by
external constraints.

The local expansion (22) suggests that the value function takes the form

V(x, t) = ea(t – T ) (w + qp f (g, t )). (24)

If this is the case, the optimal strategy is independent of the coefficient of
volatility for the market average premium s1. Substituting this expression into
the Bellman equation (8) yields a nonlinear PDE for f :

ft + g ( 2
1
s2

2 – r log g) fg + 2
1
s2

2 g2 fgg + ƒ f +
k

supM (k,g, t) = 0, (25)

where the function M (k,g, t) is defined by

M (k,g, t) =
, ,

> .

a b k f t k k b

k b

if

if

g g

0

#- + -^ ^_h h i* (26)
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We require three boundary conditions in order to solve this problem numeri-
cally. The first condition arises from the definition of the value function (7):
V = w at t = T giving f (g,T ) = 0. If g= 0 then from the SDE (3) the loss ratio
gs / 0 for s ! [t,T ]. Thus the loss ratio is constant and the optimal premium
strategy is that derived in Section 3.1. Consequently the appropriate boundary
condition on g= 0 is f (0, t) = f0(t;0) where f0 is given by (17). The third condi-
tion is determined from the stopping time of sample paths: V = w at t = t giving
f (b, t) = 0. Figure 1 shows how M varies as we vary the relative premium k for
a number of values of the loss-ratio g and at a fixed time t. The function M
is quadratic in k and has an interior maximum as long as g ≤ b + f (g, t). If f (g,
t) is non-negative then the interior control yields the supremum of (25) in the
domain [0,b] ≈ [0,T ].

If f is non-negative the Bellman equation (25) becomes

ft + g ( 2
1
s2

2 – r log g) fg + 2
1
s2

2 g2 fgg + 4
1

af 2 + A(g) f +B (g) = 0, (27)

where A(g) and B (g) are given by (16). The boundary conditions for (27) are 

f (g,T ) = 0, f (0, t ) = f0(t; 0), f (b, t) = 0. (28)

Given the solution to equation (27) and its associated boundary conditions (28)
the interior relative premium is given by

ki = 2
1 (b + g – f (g, t)). (29)
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the loss-ratio g at a fixed time t. For k > b the value of M is zero corresponding to a withdrawal

from the insurance market.



The complexity of the boundary conditions and the nonlinearity of (27) suggests
that the problem must be solved numerically. Indeed, the equation is similar
to the Fisher equation in Mathematical Biology (Britton 1986, Murray 2002),
which is the canonical reaction-diffusion equation. In contrast, (27) has an
additional advective term fg, the diffusion coefficient is not constant, and the
equation is inhomogeneous. One usually looks for travelling wave solutions of
the Fisher equation, which reduces the problem to an ODE, but here the spa-
tial domain is restricted so this is not appropriate.

Equation (27) is a semi-linear PDE and it is in the form of an initial-boundary
value problem. Friedman (1964) gives existence and uniqueness results for this
class of problem. Specifically, if there is a solution of the equation then it is
unique by Theorem 8 on p. 41, which follows from the weak Maximum Principle
for Parabolic PDEs. Friedman (1964) proves a global existence theorem for semi-
linear PDEs providing a linear growth condition is satisfied. The quadratic
term f 2 in (27) prevents the application of this result. A general global existence
result is clearly not available since we know the boundary condition can blow-
up at time tb dependent on the model parameters. Consequently, we must be
content with the local existence result of Theorem 10 on p. 206, which means
the equation has a solution providing the time horizon T is sufficiently small.

If the numerical solution is robust with respect to grid spacing then it seems
reasonable to assume that the numerical solution does converge to the exact
solution of (27). If f is sufficiently smooth, non-negative and bounded on
[0,b ] ≈ [0,T ] then the verification theorem in Fleming & Rishel (1975) can be
applied so that ki is the optimal control. The qualitative behaviour of the opti-
mal control for the general problem is determined in large part by the variation
of f0 with the model parameters since this is the only forcing function in the
problem. We know that if tb ! [0,T ] then f0 is unbounded, and so therefore f
is unbounded. Consequently, there are parameter sets for which (29) does not
yield the optimal control. Next we shall describe the form of f0 in terms of a
reduced set of non-dimensional parameters.

3.3. Numerical Solution

We solve the nondimensionalised problem numerically. There are many possi-
ble time scales based on the drift and volatilities of the stochastic processes:
we choose the planning horizon T and introduce the non-dimensional time to
termination, s, given by

t = T (1 – s ).

This scale leads to the following nondimensional parameter set:

r̂ = rT, s2
2 = s2

2T, ƒ̂ = ƒT,

a = aT, A = AT, B = BT,
(30)
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which has the advantage of reducing the number of free parameters by one.
Henceforth we shall drop the hats on the nondimensional parameters for the
numerical work in order to simplify the notation. Numerical results are pre-
sented solely in terms of nondimensional parameters and variables.

The free parameters are now r, s2, a, b, ƒ and in terms of these parame-
ters (27) becomes

fs = g ( 2
1
s2

2 – r log g) fg + 2
1
s2

2 g2 fgg + 4
1

af 2 + A(g) f +B (g), (31)

with boundary conditions 

f (0,s ) – f0(s;0) = f (∞,s) = f (g,0) = 0. (32)

In the first case of (17), the governing inequality is ƒ (ab + ƒ) < 0 and since ab
is positive then this condition becomes ab > –ƒ > 0. Therefore (17) becomes

f0(s; 0) =
0

+
> > ,

> ,

.

tan tan f

f f

f f

D sD A ab

E s

E s D A D A
ab

a A s

A s
ab

if

if

if or

a

a

0

1
0

2
2

0

2

2

D

A

0 2
1

0
1

0

0 0 0 0

0

0
2

+ - -

-

+ + -
+

-
= = -

+

-

- -

+0

0bbb
^^ ^f ^

^

ll l
hh h p h

h

Z

[

\

]
]
]
]

]
]
]
]

(33)

The remaining notation is from (18) and (19) and we have used the subscript
zero to denote that the quantity must be evaluated at g= 0. We find that for
the numerical values quoted in Table 1, ab > –ƒ > 0 so that the expression for
f0 is given by the first of these cases.
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TABLE 1

SAMPLE DATA SET

Time horizon T 2 yr

Depreciation of wealth a 0.05 p.a.

Discount factor b 0.05 p.a.

Demand parameterisation a 1.5 p.a.

Demand parameterisation b 1

Length of policy t = k –1 1 yr

Market average premium growth m 0.1 p.a.

Market average premium volatility s1 0.1 p.a.

Loss ratio mean reversion r 0.1 p.a.

Loss ratio volatility s2 0.1 p.a.



It is clear from (29) that we must have f0(s; 0) < b for a positive interior
premium. If we suppose that f0 is given by the first alternative in (33) then this
condition is at s = 1 (corresponding to t = 0)

, : > ,tan tanf
f f

F ab
D

ab

D

ab
D 01

0

2
1

1

0
2
1

0=
+

-
+

-
-

+

-

+

+

J

L

K
K^ dN

P

O
Oh n (34)

Figure 2 shows a plot of the contour F = 0 for a range of values of ab and ƒ.
Only the parameter set containing the cross in the figure lead to a positive
optimal premium at t = 0.

Table 1 gives a sample data set to solve the problem numerically. The plan-
ning horizon T is taken to be only two years because the optimal strategy is
often loss-leading. In the unconstrained model that we consider here, this can
lead to an initially negative premium as T is increased. The remaining para-
meters are fairly arbitrary, but they are chosen so that the initial premium is
positive. Graphs of f0 and the associated interior premium k0

i for g = 0 are
shown in Figure 3. These results demonstrate that the interior premium strategy
is optimal for this particular choice of parameters. For the parameters given

DYNAMIC PRICING OF GENERAL INSURANCE IN A COMPETITIVE MARKET 13

FIGURE 2: Parameteric conditions for a positive initial premium if f0 is given by the first expression in (17),
which requires ƒ > – ab. In the figure we show the contour F = 0 where F is given by (34) as a function of

ƒ and ab. To the left of the contour the parameters yield a positive value of f0(0; 0).
The cross represents the parameters given in Table 1.



in Table 1 the first of the alternatives for f0 is applicable. From (20) there is
blowup if

/
, ,

tan
s

D

A Dp 2
0 1b

0

1
0 0

!=
-

+

-

+^ h 6 @

and then f0(sb) = ∞. For these parameter sets the value function is infinite and
it is possible to generate infinite wealth.

We adopt a simple explicit finite difference scheme to solve (31) with a first
order time difference and second order spatial differences (Smith 1985). Con-
sequently, there is a restriction on how large the time step can be in order to
maintain numerical stability. In the computations, the nondimensional time
step was taken as Ds = 10 –3 and the spatial step was taken as Dg = 10 –2 unless
stated otherwise. The results for the parameters in Table 1 are shown in Fig-
ure 4. Figure 4(a) shows the variation of the value function V through (24) with
the current state gt = g. The largest value function occurs when s = 0 and the
loss ratio is g= 0 corresponding to, say, an infinite market average premium.
From (29) and the boundary conditions (32) the interior relative premium is
linear in g at termination s = 0 and on g= b = 1, ki = b = 1 for this particular
data set (see Figure 4(b)).

14 P. EMMS

FIGURE 3: Optimal dynamic premium strategy for constant loss ratio g= 0 as a function of the time to
termination s using the parameters in Table 1. The expression for f0 is given by the first alternative in (33)

and the approximate relative strategy is given by (23).
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FIGURE 4: Optimal dynamic premium which maximises the expected terminal wealth using the parameters
given in Table 1. These parameters lead to a boundary condition with f0 given by the first expression in

(33). Graph (a) shows the evolution of the function f (s, g) and graph (b) shows the optimal relative
premium k*(s, g ).



Suppose the finite difference grid is indexed by the points {( i, j ) | i = 0,1,…,Ns ;
j = 0,1,…, Ng} where Ns, Ng are the number of time and spatial steps respec-
tively. We adopt a fixed time step Ds = 1/Ns and a fixed spatial step Dg= b /Ng
and on the grid we write fij = f (iDs, jDg). We can assess the convergence of
the finite difference scheme by defining

s g

,f
N N

f
1 1

1

,
ij

i j

=
+ +

!^ _h i
which measures the size of f over the domain and

dg = (Ds2 +Dg2)1/2,

which measures the resolution of the grid. In Figure 6 we plot || f || against dg
using the grid refinement Ns = 10k, Ng = 2000k with k = 1,2,…,50 and the
parameters in Table 1. It is clear that the scheme is converging to || f || ∼ 0.104
as dg → 0 with a linear convergence rate as one might expect given that we
adopt a first order difference for the time step.

The optimal relative premium in Figure 4(b) gradually increases over the
planning horizon and this increase is greatest when the loss ratio g= 0. As g=
p /p decreases so the breakeven premium becomes much less than the market
average premium p. This means the insurance market is overpricing insurance
and so there is greater scope to undercut the market price and still generate
demand. This strategy leads to large market exposure through the demand law
and large profits as can be seen in Figure 4(a) since as f increases so does the
value function V. The form of the premium strategy is strongly influenced by
the qualitative features of the boundary condition on g= 0 given by (33). As
the point of blow-up sb nears the domain [0,1] so the values of f0 become very
large, which leads to negative values of k0. If k < g then this is a loss-leading
strategy so one can identify the first form of (33) as of loss-leading type pro-
viding the time horizon is sufficiently large.

We study the sensitivity of the model by varying the parameters r, s2, a, b,
and ƒ in turn in Figures 5(a)-(e). The plots show the optimal relative premium
k* at t = 0 given the current state variable g. The optimal strategy is fairly insen-
sitive to the mean reversion, r, and the volatility of the loss ratio, s2. The expected
value of the loss-ratio tends to one as r gets large so that there are few oppor-
tunities for loss-leading and it is optimal to set a higher premium as shown in
Figure 5(a). If the volatility is large and the current loss-ratio g is small then
the loss ratio may substantially increase over the time horizon, so that it is
optimal to set a higher premium and diminish loss-leading. Conversely, if the
volatility and the current loss-ratio g are large then there is the possibility that
the loss-ratio will substantially decrease over the planning horizon and loss-
leading opportunities will become available. This lowers the optimal premium
as seen in Figure 5(b).

16 P. EMMS



DYNAMIC PRICING OF GENERAL INSURANCE IN A COMPETITIVE MARKET 17



18 P. EMMS



The optimal strategy is strongly dependent on the form of the demand func-
tion (parameters a and b) and the parameter ƒ as shown in Figures 5(c)-(e).
As a or b is increased the demand for insurance is larger for a fixed relative pre-
mium. This favours a loss-leading strategy because lowering the premium gen-
erates considerable exposure. Ultimately this leads to negative initial premium
values as shown in Figure 5(c),(d) because there is no borrowing constraint in
the model. The parameter ƒ encompasses the drift in the market average pre-
mium and the policy length: large growth and long policies tend to increase ƒ,
which increases the magnitude of loss-leading and leads to negative initial pre-
mium values. If the market average premium grows rapidly whilst the breakeven
premium is fixed this again favours loss-leading.

4. TOTAL DISCOUNTED UTILITY OF WEALTH

It is not clear that the objective of maximising the expected terminal wealth
is the most appropriate goal for an insurer. Insurance companies must have
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FIGURE 5: Sensitivity of the optimal initial relative premium k*(g,1) to (a) the loss ratio mean reversion r,
(b) the loss ratio volatility s2 (Ds = 10 –5), (c) the demand parameter a, (d) the demand parameter b,

and (e) the parameter ƒ. The objective is to maximise the expected terminal wealth and the
remaining data is taken from Table 1.



sufficient funds to cover legal requirements and satisfy the demands of their
shareholders. If an insurer adopts a strategy which leads to large losses in the
expectation of significant income in the future then this generates substantial
risk. An alternative objective often used in financial applications of stochas-
tic control theory is to maximise the expected total discounted utility of wealth:

t

b

k

,sup� e U dt
t

T

0

-
w# ^ h( 2

where U = U (wt) is the utility function and T = t / T. From such an objective
one might expect a more conservative optimal strategy k* because initial loss-
leading does affect the objective. For simplicity, we consider the exponential
utility function

U(w) =
c

1
(1 – e–cw) and c > 0.

This function has constant (absolute) risk aversion c and is a member of the
Hyperbolic Absolute Risk Aversion (HARA) family (Pratt 1964; Gerber &
Pafumi 1998). Browne (1995) used this utility function to calculate the optimal
investment strategy for an insurer. We adopt a utility function of this form since
as c → 0, U → w so that the objective is linear in the wealth and it is easier to
find the solution to the Bellman equation.

The appropriate definition for the value function is

s

b

k

, ,sup�V x t e U ds xt
t

T

= =
- s

w X#^ ^h h( 2 (35)

and the corresponding Bellman equation is

Vt + mpVp + 2
1
s1

2
p

2Vpp + g ( 2
1
s2

2 – r log g)Vg + 2
1
s2

2g2Vgg – kqVq – awVw +

q
k

sup{G(k) (Vq + p(k – g )Vw)} +
b

c
e t-

(1 – e–cw) = 0, (36)

with boundary conditions

V (g= b, t ) = 0, V (x,T ) = 0.

The interior premium is given by (10), as before, since the control does not enter
the objective function in (35). Substituting the interior premium into the above
equation yields

Vt + mpVp + 2
1
s1

2
p

2Vpp + g ( 2
1
s2

2 – r log g)Vg + 2
1
s2

2g2Vgg +

q( 2
1

a(b – g) – k)Vq + (–aw + 4
1

apq(b – g)2)Vw +
q

w

aqV

4

2

Vp
+

b

c
e t-

(1 – e–cw) = 0. (37)
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Again, we suppose that the first order condition does fulfill the maximisation
operation in the Bellman equation and that the value function is sufficiently
smooth that Ito’s lemma can be applied in deriving (36).

At termination t = T the optimal premium is undefined because the value
function is identically zero. This should be contrasted with the well-defined
terminal optimal premium given by (11) for the terminal wealth case. However,
near the end of the time horizon at t = T – dt where dt is a small time incre-
ment we find by differencing the Bellman equation

VT – dt =
b

c
t ed T-

(1 – e–cw).

Therefore, Vq = 0 and the terminal optimal premium is identical to (11) as
dt → 0 providing that the differencing is consistent with the spatial boundary
conditions.

We nondimensionalise the Bellman equation by using the scales in (30) sup-
plemented by

p = [ p ] p̂ , q = [q ]q, w = [p ] [q ]w, V = [p ] [q ]T, b̂ = bT,

where [p] and [q ] are scales derived from the value of the market average pre-
mium and the exposure at t = 0. Let us introduce the parameter

e = c [ p ] [q ],

as a dimensionless measure of the risk aversion of the insurer. Henceforth we
shall drop the hats on the nondimensional variables. The nondimensional Bell-
man equation is therefore

Vs = mpVp + 2
1
s1

2
p

2Vpp + g ( 2
1
s2

2 – r log g)Vg + 2
1
s2

2g2Vgg – kqVq – awVw +

q
k

sup{G(k) (Vq + p(k – g)Vw)} +
be
e

s1- -] g
(1 – e – ew). (38)

We aim to solve this equation approximately using a perturbation expansion
for e% 1.

4.1. No Risk Aversion

If the insurer has no risk aversion then e = 0 (corresponding to c → 0) and the
utility function is linear in the wealth process. We look for a solution of the
form

V (x,s) = e–b (1 – s) (g(s)w + qph(g,s)). (39)
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Substituting into (38) we obtain two equations for g and h:

g� + (a + b )g – 1 = 0, (40)

hs = g ( 2
1
s2

2 – r log g)hg + 2
1
s2

2g2hgg + 
k

sup{G(k) (h + (k – g)g)}, (41)

where the boundary conditions are derived in a similar way to the terminal
wealth case and are

g(0) = 0, h(0,s) – h0(s) = h(b,s) = h(g,0) = 0. (42)

In terms of these functions the interior relative premium is

,
k b

g s

h s
g

g

2

1i
= + - ^^f hhp (43)

and when the control is interior the equation for h becomes

hs = g ( 2
1
s2

2 – r log g)hg + 2
1
s2

2g2hgg + C(s)h2 + D (g)h + E (g,s), (44)

where

C (s) =
g s

a

4 ^ h,
D (g) = 2

1
a (b – g) + m – b – k,

E (g,s) = 4
1

a (b – g)2g(s).

The equation for g can be integrated immediately to give

g(s) =
a b

1
+

(1 – e– (a + b )s), (45)

and, as before, the function h0 is given by the solution to the problem indepen-
dent of g :

ds

dh
0 = C(s)h0

2 + D(0)h0 + E (0, s),

with terminal condition h0(0) = 0. This is a Riccati equation for which there is
no general technique for obtaining a solution. Moreover, these equations
can exhibit spontaneous singularities for finite s: this phenomenon restricts the
parameter range over which the control will be smooth in a similar way to (17).

In order to determine how the relative premium differs from Section 3 we set

F (g,s) =
,

g s

h sg^^ hh ,
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so that (29) and (43) have the same form. After some manipulation (44) becomes

Fs = g ( 2
1
s2

2 – r log g)Fg + 2
1
s2

2g2
Fgg + 4

1
aF

2 + A
g s

g
1

-^ ^d h hn F + B (g). (46)

Notice there is an extra term –F /g on the RHS of this equation compared
with (27). Since g(s) is a non-negative function and we expect F is positive as
before, the gradient Fs is reduced and so –F is increased as the time to termi-
nation, s, is increased. Therefore, in comparison with the terminal wealth case,
the optimal relative premium is larger and the strategy is more conservative.
If the discount rate b is made larger then g decreases and so F is made smaller.
This in turn makes –F larger and therefore increases the interior premium ki.

We can reduce the free parameter set by writing

h = a + b. (47)

Thus the nondimensional free parameters are r, s2, a, b, ƒ, h: these parame-
ters and the current state, x, determine the optimal relative premium. We have
an additional free parameter over the terminal wealth case because we have
introduced the discount factor b.

Again, an explicit finite difference scheme is used to solve equation (41) with
the boundary conditions in (42) using the grid Ds = 10 –4, Dg= 10 –2. Figure 7
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FIGURE 6: Convergence of the finite difference scheme as the mesh is refined. The resolution of the mesh
is proportional to dg while || f || is the average value of f over the domain.
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FIGURE 7: Optimal dynamic premium which maximises the total discounted utility of wealth using the
parameters given in Table 1 with a linear utility function. Graph (a) shows the evolution of the function

h (s,g) and graph (b) shows the optimal relative premium k*(s, g).



shows plots of h(g,s) and k*(g,s) for the sample data set in Table 1. The opti-
mal strategy is qualitatively similar to the terminal wealth case although the
optimal relative premium is larger. The optimal premium strategy is more
conservative here because loss-leading affects the total utility of wealth of the
insurer. The robustness of the control with respect to the objective gives us
confidence that the analytical control in (14) is an appropriate strategy to
consider for an insurer. The sensitivity of the optimal control to the model
parameters is similar to the terminal wealth case and so this is not shown.

4.2. Weakly Nonlinear Utility Function

We consider a nonlinear objective by including the next term in an asymptotic
expansion for the utility function

U(w) a w –
2
1
ew2, (48)

where we assume w a O (1) by the choice of scaling.
We use a perturbation expansion for V in terms of e% 1 to yield a succes-

sion of linear systems. Thus we write

V a V0 + eV1 + …

k* a k0
* + ek1

* + …

Substituting into (38) and assuming an interior control, V0 is given by (39) while
at O (e) we find

V1s = mpV1p + 2
1
s1

2
p

2V1pp + g ( 2
1
s2

2 – r log g)V1g + 2
1
s2

2 g2V1gg +

q( 2
1

a (b – g) – k)V1q + (–aw + 4
1

apq (b – g)2)V1w +

q1
w1,

g t

aqh t
V h

g t

g
p

4
2 2

1
- -

V^̂ ^eh h ho e– b (1 – s) w2, (49)

and

V1(g = b,s) = 0, V1(x,0) = 0.

This is a linear PDE with four space dimensions. The value function V1 is not
linear in each of the state variables because of the last term in the equation.

We aim to reduce the dimension of the problem by looking for a solution
of the form

V1(x,s) = e–b (1 – s) (m (g,s)p2q2 + n(g,s)pqw + r(s)w2). (50)
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Substituting (50) into (49) and collecting together the O(1), O(w) and O(w2)
terms yields three equations for m, n and r:

ms = g ( 2
1
s2

2 – r log g)mg + 2
1
s2

2 g2 mgg +

2
,f aa b

g
ah

m
a

b
g

h
ng h s g2

41
2

2

2

- + - - + + + - -

J

L
K
K^d ^ N

P
O
Oh n h

ns = g ( 2
1
s2

2 – r log g)ng + 2
1
s2

2 g2 ngg +

2
,f aa b

g
ah

n
a

b
g

h
rg h g

2 22
1

2

2

- + - - + + - -

J

L
K
K^d ^ N

P
O
Oh n h

,a
ds
dr

rb2
2
1

= - + -^ h (51)

with boundary conditions

m(0,s) – m0(s) = m(b,s) = m(g,0) = 0,

n(0,s) – n0(s) = n(b,s) = n(g,0) = 0,

r(0) = 0,

and where g = g(s) and h = h(g,s) are given by (41) and (45). The boundary func-
tions m0(s) and n0(s) satisfy the coupled ODEs:

2

2
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,
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f a
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h
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2 2
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with initial conditions m0(0) = n0(0) = 0. On integrating (51) and applying the
boundary condition we obtain 

s

.
a

r s
e

b2 2
1a b2

=
+

-
- +^ ^
]h h

g

From (10) the leading-order interior relative premium is given by (43) whilst
the second-order term is

w1

w w

q

0 0

1*

,
, , , .

k

s s

h s
qn s r s w q m s wn s
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g g gp p

2

2
1

2 2

q

q
1

0

0
= -

= + - -
g g

V

V

V

V

V

V

p
f

^ ^^ ^ ^_ ^ ^f

p

h hh h h i h hp

26 P. EMMS



DYNAMIC PRICING OF GENERAL INSURANCE IN A COMPETITIVE MARKET 27

For a nonlinear objective function the optimal relative premium is a function
of all four state variables. This complicates the comparison of how the premium
strategy changes if the insurer changes its objective. Also note that m (g,s)
depends on the coefficient of volatility of the market average premium, s1, and
consequently so does the relative optimal premium.

Figure 8(a) and (b) show the solutions for m and n computed using an
explicit finite difference scheme and the parameters in Table 1. All of the
functions m, n and r are negative over the domain of integration indicating that
risk aversion decreases the value function V. The greatest decrease in V is at
t = g = 0 since that is where most wealth is generated. Figure 8(c) shows
the perturbation to the optimal relative premium if we set the current state
variables p / q / w / 1. Notice that k1* is positive for these processes, so that
increasing the risk aversion increases the optimal relative premium. This increase
is greatest if the current loss ratio is small. Figure 9 shows the qualitative effect
of increasing the insurer’s risk aversion e. Risk aversion leads to a more con-
servative interior premium strategy – this generates less exposure over the plan-
ning horizon, which decreases the total claims and maintains premium income.

5. CONCLUSIONS

We have found the optimal premium strategy for an insurer in a competitive
market using optimal control theory. In general, the Bellman equation arising
from control theory contains a degenerate diffusion operator. For the current
model we have shown how this degeneracy can be removed by a change of
variables, which makes the resulting problems easy to solve numerically. The
choice of a linear demand function (in the relative premium) leads to a single
nonlinear term in the Bellman equation which considerably simplifies the analy-
sis. Our ability to find the optimal premium strategy is limited by the values
given to the model parameters. We have found the conditions that lead to a pos-
itive initial premium for the terminal wealth case. In general, if the optimal con-
trol is smooth then the optimal premium gradually increases over the term of
the planning horizon for the parameter sets considered here. We find that as
risk aversion is increased so does the optimal relative premium strategy. This
generates lower exposure and so ultimately lower overall wealth. The numeri-
cal value of the terminal relative premium is identical for all the objectives
studied here.

One significant assumption is that we can treat the market distinctly from
the insurer so that whatever the insurer’s premium, the market does not react
with a competitive price. Currently we are investigating how one might relax this
assumption by incorporating an adjustment term in the process followed by the
market average premium. Another modelling simplification is the specification
of a stochastic process for the breakeven premium. This premium represents
the cost of insurance for the insurer and assessment of this quantity requires
a good model for the claims process and an accurate definition of the loading
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Figure 8: Optimal premium strategy when the insurer maximises its expected total utility of wealth.
The utility function is a quadratic function of the wealth w in (48) and represents the second order

expansion of an exponential utility function when risk aversion is small. Plots (a) and (b) show the solution
for m (g,s ) and n (g,s ) for the parameters in Table 1, while (c) shows the deviation in the interior relative

premium k*
1 (g,s ) for p = q = w = 1.

FIGURE 9: Qualitative comparison of the optimal premium strategy p* if the loss-ratio is constant and the
market average premium is constant for the objective of either maximising expected terminal wealth or
total discounted utility of wealth with a linear utility function. The loss ratio in the diagram is g = 1/2

so the terminal optimal premium is p*
T

= †p (b + † ).



factor. The benefit of using this process to define a loss-ratio is that the wealth
process wt directly reflects the current wealth of the insurer including its liabili-
ties.

Sample paths have been restricted to prevent the insurer leaving and the re-
entering the insurance market. If one relaxes this assumption then one must
cope with the non-differentiability of the demand function (9) at k = b and the
determination of when the insurer should stop selling insurance. We have intro-
duced this non-differentiability in order that the feedback control is tractable.
However, it is not clear that there is a classical solution to the Bellman equation
for the more general problem and so one cannot apply a verification theorem
to ensure optimality of the feedback control. The problem is reminiscent of the
American option pricing problem posed as an optimal control problem from
which one obtains a semi-linear Black-Scholes equation with a discontinuous
cash flow. Benth, Karlson & Reikvam (2003) have determined simple numerical
schemes using viscosity solutions of the Black-Scholes equation (Fleming &
Soner 1993). For these schemes it is not required to track the free boundary
representing when it is optimal to exercise the option: its position is given
implicitly from the numerical solution. It is tempting to suggest that a similar
construction might be applied to the competitive pricing problem when the
insurer is permitted to have periods of no sales.

The difficulty with using dynamic programming to calculate an optimal
premium strategy lies with the balance between posing a realistic model and the
ability to solve and interpret the resulting high-dimensional Bellman equation.
We have found an analytical solution for a restricted case, and shown that the
numerical solution of the more general problem is feasible, even for a quite
sophisticated objective function. Often the premium that the insurer can set is con-
strained by both legislation and the desire to minimise the risk of loss-leading.
The incorporation of constraints into the optimal control problem is another
area of ongoing research.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the EPSRC under grant
GR/S23056/01 and the Actuarial Research Club of the Cass Business School,
City University.

APPENDIX

A. MEAN CLAIM SIZE RATE PROCESS

If we drop the assumption that the evolution of the breakeven premium can
be deduced from policy data then we must deal directly with the mean claim
size rate (and related claims expenses) ut. This is, for example, the average size
of claims received in one day per unit of exposure. It must be measured per
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unit time because it incorporates the intensity of claims as well as their mag-
nitude. An appropriate wealth process is now given by

dwt = – awt dt + ptbtdt – utqt dt.

As before, the new and renewed business generates wealth ptbtdt in time dt while
claims are now accounted for as they arise so that the loss of wealth is utqtdt.

In order to calculate a simple expression for the liabilities, it is convenient
to adopt separate processes for the market average premium and the mean claim
size rate. We suppose that the market average premium reverts to current cost
of insurance in the long term and that the mean claim size rate is lognormally
distributed:

dpt = l (jut – pt) dt + m1pt dt + s1pt d W1t , (52)

dut = ut(m2 dt + s2d W2t) , (53)

where the mean reversion rate is l. The drifts m1,m2 and coefficients of volatility
s1, s2 are taken as constants. The current cost of insurance per unit exposure
for the whole market is

js ,� ds uX t
t

t

t

t

=
+

u#< F
where t is the length of policies, the current state of the system is Xt = (pt, ut,
qt, wt) and

.
e

j
m

1m

2
=

-
t2J

L
K
K

N

P
O
O

If no more insurance is sold at time t then the outstanding claims generate a
loss of wealth for the insurer equal to

s s dsu q
t

3

# ,

and the exposure decays exponentially according to (5):

qs = qte
–k (s – t),

for s ≥ t. The expected liabilities of the insurer at the end of the time horizon
is therefore

s .� q e e ds
q u

u X
k mT

T s
T

T

T Tk k

2

=
-

3
-#= G

We must have k> m2 otherwise the outstanding liabilities are infinite.
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If the insurer aims to maximise its net terminal wealth then the appropriate
value function is

p

, .sup�V x t xw
q u

X
k mT

T T
t

2

= -
-

=^ h = G

Assuming the value function is sufficiently smooth the corresponding Bellman
equation is

Vt + (l (ju – p ) + mp )Vp + 2
1
s1

2
p

2Vpp + m2 uVu + 2
1
s2

2u2Vuu +

p
sup{q (G – k)Vq + (–aw + q(Gp – u))Vw} = 0, (54)

with boundary condition

V(t = T ) = w –
qu

k m
2

-
.

The first order condition for a maximum gives the interior relative premium as

w

q ,k b
p2

1i
= -

V

Vf p
where we have adopted the linear demand function (9). Consequently at termi-
nation of the planning horizon this relative premium is

.k b
u

k mp2
1

T

i

2

= +
-^d hn

If we write the loss ratio for this model using the conventional definition then
g = ju /p. The terminal relative premium then only differs from (11) by the
term j (k – m2). For policies of length one year t= 1 yr and m2 = 0.1 p.a. gives
j (k – m2) + 0.9 so that the optimal strategies are similar near termination.

Let us suppose the value function is of the form

V (x, t) = ea (T – t ) (w + qf (p,u, t)).

Substituting this function into (54) yields

ft + (l (ju – p) + m1p) fp + 2
1
s1

2
p

2 fpp + m2ufu + 2
1
s2

2u2 fuu +

4
a
p

f 2 + ( 2
1

ab – k – a) f + 4
1

ab2
p – u = 0,

with the interior relative premium given by

, ,
.k b

f u t

p

p

2
1i

= -
^f hp
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The function f is not linear in p or u because of the quadratic term in f so it
appears as though we must solve this equation numerically. Consequently,
rather than present a premium strategy as a function of three independent
variables (t, p and u), we have chosen in the main body of the paper to model
the breakeven premium directly, which yields a strategy which is simpler to
interpret. However, the mean claim size rate model does have the merit of
explicitly accounting for the risk in holding an exposure qt, and therefore may
be a suitable model for studying the optimisation problem when there are con-
trol and state constraints.

If we drop (52) and explicitly relate the market average premium pt to the
mean claim size rate ut then the model only contains a single factor W2t. In this
case analytical solutions similar to (17) can be found.

REFERENCES

ASMUSSEN, S. and TAKSAR, M. (1997) Controlled diffusion models for optimal dividend pay-out.
Insurance: Mathematics and Economics, 20, 1-15.

BENTH, F.E., KARLSEN, K.H. and REIKVAM, K. (2003) A semilinear Black and Scholes partial
differential equation for valuing American options. Finance and Stochastics, 7, 277-298.

BRITTON, N.F. (1986) Reaction-Diffusion Equations and Their Applications to Biology. Academic
Press.

BROWNE, S. (1995) Optimal investment policies for a firm with a random risk process: Expo-
nential utility and minimizing the probability of ruin. Math. Oper. Res., 20, 937-958.

CAMPBELL, J.Y. and VICEIRA, L.M. (2001) Strategic Asset Allocation: Portfolio Choice for Long-
Term Investors. New York: Oxford University Press.

DAYKIN, C.D. and HEY, G.B. (1990) Managing Uncertainty in a General Insurance Company.
Journal of the Insitute of Actuaries, 117(2), 173-277.

DAYKIN, C.D., PENTIKÄINEN, T. and PESONEN, M. (1994) Practical Risk Theory for Actuaries.
Chapman and Hall.

EMMS, P. and HABERMAN, S. (2005) Pricing general insurance using optimal control theory. Astin
Bulletin, 35(2), 427-453.

EMMS, P., HABERMAN, S. and SAVOULLI, I. (2007) Optimal strategies for pricing general insurance.
Insurance: Mathematics & Economics, 40(1), 15-34.

FLEMING, W. and RISHEL, R. (1975) Deterministic and Stochastic Optimal Control. New York:
Springer Verlag.

FLEMING, W.H. and SONER, H.M. (1993) Controlled Markov Processes and Viscosity Solutions.
Springer-Verlag.

FRIEDMAN, A. (1964) Partial Differential Equations of Parabolic type. Prentice-Hall.
GERBER, H.U. and PAFUMI, G. (1998) Utility Functions: From Risk Theory to Finance. North

American Actuarial Journal, 2(3), 74-100.
HIPP, C. (2004) Stochastic Control with Application in Insurance. Working Paper, Universität Karls-

ruhe, Germany.
HIPP, C. and PLUM, M. (2000) Optimal Investment for Insurers. Insurance: Mathematics and Eco-

nomics, 27, 215-228.
HØJGAARD, B. and TAKSAR, M. (1997) Optimal Proportional Reinsurance Policies for Diffusion

Models. Scand. Actuarial J., 2, 166-180.
KARATZAS, I. and SHREVE, S.E. (1998) Methods of Mathematical Finance. Springer.
KOLMANOVSKII, V.B. and SHAIKHET, L.E. (1996) Control of Systems with Aftereffect. Transla-

tions of Mathematical Monographs, vol. 157. Americal Mathematical Society.
LILIEN, G.L. and KOTLER, P. (1983) Marketing Decision Making. Harper & Row.
MERTON, R.C. (1971) Optimum Consumption and Portfolio Rules in a Continuous Time Model.

Journal of Economic Theory, 3, 373-413.



MERTON, R.C. (1990) Continuous-time Finance. Blackwell.
MURRAY, J.D. (2002) Mathematical Biology. Springer.
PENTIKÄINEN, T. (1986) Discussion of “Underwriting strategy in a competitive insurance envi-

ronment”. Insurance: Mathematics and Economics, 5, 81-83.
PRATT, J.W. (1964) Risk Aversion in the Small and in the Large. Econometrica, 32, 122-136.
SAMUELSON, P.A. (1969) Lifetime Portfolio Selection by Dynamic Stochastic Programming. Review

of Economics and Statistics, 51, 239-246.
SMITH, G.D. (1985) Numerical Solution of Partial Differential Equations: Finite Difference Methods.

Oxford University Press.
Taylor, G.C. (1986) Underwriting strategy in a competitive insurance environment. Insurance:

Mathematics and Economics, 5(1), 59-77.

PAUL EMMS

Faculty of Actuarial Science and Insurance
Cass Business School
City University, London

34 P. EMMS


