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ABSTRACT The fixed service charge pricing model adopted by traditional electric vehicle aggregators

(EVAs) is difficult to effectively guide the demand side resources to respond to the power market price signal.

At the same time, real-time pricing strategy can flexibly reflect the situation of market supply and demand,

shift the charging load of electric vehicles (EVs), reduce the negative impact of disorderly charging on the

stable operation of power systems, and fully tap the economic potential of EVA participating in the power

market. Based on the historical behavior data of EVs, this paper considers various market factors such as

peak-valley time-of-use tariff, demand-side response mode and deviation balance of spot market to formulate

the objective function of EVA comprehensive revenuemaximization and establishes a quarter-hourly vehicle-

to-grid (V2G) dynamic time-sharing pricing model based on deep deterministic policy gradient (DDPG)

reinforcement learning algorithm. The EVA yield difference between peak-valley time-of-use tariff and

hourly pricing strategy under the same algorithm is compared through the case studies. The results show

that the scheme with higher pricing frequency can guide the charging behavior of users more effectively, tap

the economic potential of power market to a greater extent, and calm the load fluctuation of power grid.

INDEX TERMS Electric vehicle aggregator, dynamic pricing, DDPG algorithm, charging behavior

guidance.

I. INTRODUCTION

With the development of electric vehicles (EVs), electric

vehicles have gradually become new transaction subject in

power market with the continuous expansion of its volume.

With the dual characteristics of power supply and load, elec-

tric vehicles can increase or decrease the charging power or

transfer the charging time according to the needs of the power

grid, or even send power back to the power grid through

V2G technology [1]–[3]. Compared with the traditional uni-

directional flexible load which is passively controlled, EVs

have more active control ability [4], [5], thus significantly

improving the cost efficiency of the power system [6], [7].

Since individual EVs do not have the ability to participate

independently in the power wholesale market, to realize their

flexibility potential, fragmented EVs need to be effectively

aggregated as a whole to participate in the power market.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanbo Chen .

The most promising mechanism to achieve this kind of mar-

ket integration is EV aggregation (EVA) [8]. EVA represents

a large number of EVs in the retail market and coordinates

its behavior characteristics according to the market situation

and the operation of EVs to maximize its overall profit.

Since it is difficult for demand-side resources to be directly

controlled by scheduling, the price-adjusted coordination

approach has recently attracted a lot of attention [9]. EVA

provides fixed prices for different periods through the analy-

sis of market information, and users independently determine

their optimal charge-discharge response through their own

value function, so as to solve the problem of their electricity

efficiency maximization.

At present, EVA in China mainly benefits from the charg-

ing price composed of grid benchmark electricity price and

charging service fee. The fixed charging service fee has been

unable to cope with the flexible power market environment.

In order to fully activate the flexibility of EVs and tap

the potential of the power market, the pricing strategy of
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aggregators needs to be dynamic pricing in periods. Numeri-

cal tests show that a real-time smart-charging method (N-RT)

that both considers currently connected EVs and future pre-

diction of the EVs plugged in highly improves valley-filling

and economic benefit under various levels of prediction

accuracy [10].

In order to achieve real-time pricing of EVA, dynamic

planning is the most commonly used decision-making

method [11], [12]. However, when faced with high-

dimensional and high-frequency refined pricing problems,

dynamic programmingmethod requires enormous computing

resources. At the same time, dynamic programming meth-

ods cannot cope with the impact of unstable environments

brought by users with highly flexible behaviors.

In this case, EVA needs to design an appropriate mech-

anism to design the pricing scheme to maximize its overall

profit while considering the user response mode.

In terms of EVA pricing strategy research, existing pric-

ing strategies can be classified into four categories: 1) cost

analysis [13]–[15], which takes the purchasing cost of EVA

power plus reasonable profit as the declared electricity price;

2) user behavior analysis [16]–[18], where EVA determines

the pricing according to the predicted user elasticity coef-

ficient of the price according to EV travel rules; 3) game

theory [19], [20], which mainly includes three steps, that is,

constructing a game model according to charging transac-

tions, searching for the equilibrium point of the model, and

determining the optimal bidding strategy of power genera-

tors; 4) intelligent optimization algorithms, such as compet-

itive co-evolution algorithm [21], [22], fuzzy self-adaptive

search algorithm [23] and reinforcement learning (RL)

method [24], [25], etc.

Among many pricing strategies, generation cost analysis is

the basis of EVA pricing. This method is simple and feasible,

but it does not take into account the price information of

the external environment, and it is difficult to maximize its

own profit [7]; after solving the constraints, user behavior

analysis usually gets the theoretically fixed user elasticity

coefficient or probability density curve, which cannot accu-

rately fit the daily dynamic travel demands of users. The game

theory method has a significant advantage in solving perfect

information game problem under fixed environment, but its

effect on imperfect information processing under variable

environment is not ideal [19], [20]. Due to its own limitations,

the traditional intelligent optimization algorithm has high

computational complexity to solve the optimization problem

under the real-time decision.

Reinforcement learning method is a data-driven intelli-

gent control method, which can provide the optimal control

strategy in real time according to the changes of system

environment through the mechanism of ‘‘action to reward’’.

its model-free characteristic can avoid the complex system

modeling process under certain conditions [26]. Traditional

reinforcement learning method based on value function

selects the action with the highest return as the strategy by

comparing the size of different environment-action pairs,

so it is necessary to discretize the control action. However,

the degree and method of discretization may have a great

influence on the final result, and the complexity of action

space will increase geometrically with the increase of actions,

which limits its use in complex decision problems. Deep

deterministic policy gradient(DDPG) algorithm based on

actor-critic system is another kind of reinforcement learning

algorithm, in which the agent learns the mapping function

between environment and action, and does not need to dis-

cretize the control action [25], so it has great application

potential in solving complex problems.

Therefore, aiming at the pricing problem of tracking

15-minute multi-market price information, this paper ana-

lyzes the user’s historical behavior data and uses DDPG

algorithm to build a quarter-hourly dynamic pricing model in

the real-time continuous strategy space, which overcomes the

defects of the traditional algorithm. Through the comparative

analysis of different pricing frequencies, the effectiveness of

the algorithm and the necessity of fine pricing are verified.

II. ANALYSIS OF MARKET TRADING PATTERNS

OF ELECTRIC VEHICLES

With the continuous development of China’s power market,

the variety of electricity trading is gradually enriched, and

demand-side response has gradually become an important

supplement to the stability of the total load of the system. The

variety of power trading leads to the difference and volatility

of power use value in different power periods.

Under the peak-valley time-of-use tariff, the average peak-

valley time-of-use tariff can reach about 3 times. Demand side

response transactions conducted at specific times can bring

additional benefits to EVAs. Meanwhile, the development of

China’s spot market in the future will eliminate the traditional

deviation assessment method, and the uncertainty of EV

users’ electricity consumption will make up for the forecast

deviation value with the dynamic price of the spot market.

The translatability of EVs has great economic potential and

also faces great challenges in the future power market.

The research of this paper includes three stakeholders:

power grid company, EVA and EV. The interaction frame-

work is illustrated in the Figure 1. The grid company guaran-

tees the power supply of EVA, provides price information and

scheduling demand at different periods, and encourages EVA

to optimize EVs power purchase behavior to reduce peak and

valley difference. EVA provides corresponding services for

the demand side of the power grid, such as peak shaving and

valley filling, and makes up for the extra power difference

in the spot market, which is brought by the demand-side

response.

At the same time, EV inputs the market price information

and users’ travel patterns into the DDPG algorithm, outputs

EV charging standards, and trades with power grid companies

and EV users. EVA’s revenue includes three parts. First,

EVA time-sharing purchases electricity from the grid com-

pany, and earns profits through charging service fee markup.

Second, EVA reduces the peak and valley difference of the

VOLUME 9, 2021 21557



D. Liu et al.: Dynamic Pricing Strategy of EVAs Based on DDPG Reinforcement Learning Algorithm

FIGURE 1. Interaction framework of power grid company, EVA and EV.

power grid by realizing orderly charging of EVs, so as to

obtain the benefits of the demand side response of the power

grid. Finally, EVA eliminates the electric quantity deviation

of its response in the spot market, so as to obtain the transac-

tion income of the shifted deviated electric quantity.

In order to develop a daily real-time dynamic pricing strat-

egy, in this paper, EVA builds an iterative DDPG algorithm

model with the objective of participating in the demand side

response market, the comprehensive revenue maximization

of spot market and electricity tariff revenue.

(1) Demand-side response market: The demand-side

response market conducts valley filling trade at 26 time

points from 0:45 to 7:00 every day; Peak trading starts at

14 hours between 12:45 and 16:00. EVA takes the difference

between the reference load curve and the actual load curve

confirmed by its own predicted electric energy characteris-

tics and adjustable capacity as the settlement basis, and the

calculation formula is as follows:

Ra =

28
∑

i=3

(

QAcutali − QBaselinei

)

pai t

+

64
∑

i=51

(

QBaselinei − QAcutali

)

pai t (1)

where, Ra is the demand side response market return, QAcutali

is the real load value at a certain point, QBaselinei is the bench-

mark load value at a certain point, pai is the demand side

response clearing price at a certain point, and t is charging

duration of each time point.

(2) Spot market: The deviation value between EVA’s esti-

mated load curve and the actual curve at each time point

according to user travel demand and contract information

needs to be eliminated in the spot market. The spot market

earnings are calculated as follows:

Rs =

96
∑

i=1

(

QPredicti − QActuali

)

psi t (2)

where, Rs is the spot market yield, QPredicti is the expected

load value at a certain point, and psi is the clearing price in the

spot market at a certain point.

(3) Electricity fee income: EVA electricity fee income is

divided into two parts: time-sharing power purchase cost

and charging service fee. The time period of time-of-use

electricity price is divided into: the peak time period is

12:00-21:00; The normal period is 7:00-12:00 and

21:00-24:00; The valley period is 0:00-7:00. The calculation

formula is as follows:

Rc =

28
∑

i=1

QActuali

(

pci + p
L
)

t

+

(

48
∑

i=28

QActuali +

96
∑

i=84

QActuali

)

(

pci + p
M
)

t

+

84
∑

i=48

QActuali

(

pci + p
H
)

t (3)

where, Rc is the electricity fee income, pci is the dynamic

service fee at a certain point, pHi is the electricity purchase
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FIGURE 2. Calculation step of DDPG.

price during the peak period, pMi is the electricity purchase

price during the normal period, and pLi is the electricity

purchase price during the valley period.

Since EV users have different travel patterns, EVA can

adjust the electricity price and other incentive measures

to enable EV users to adjust their electricity consumption

behavior autonomically, which bases on the user’s demand

elasticity, and indirectly complete the optimization of power

grid operation and its own benefits.

The loss function of reality network is as follows [27]:

J (ω) =
1

m

m
∑

j=1

(

yj − Q
(

φ
(

Sj
)

,Aj, ω
))2

(4)

In each iteration, m samples are sampled from the

experience playback set D. Calculate the current target

Q value:

yj =

{

Rj is_endj is true

Rj + γQ
(

φ
(

Sj+1
)

,Aj+1, ω
)

is_endj is false

(5)

where, m is the number of samples, Q
(

φ
(

Sj
)

,Aj, ω
)

is the

action Aj taken by the sample in the state, the action value is

calculated by the reality Critic network. And yj is the target

action value calculated by the target Critic. Rj is the reward

in the state of Sj taking action Aj, and γ is the discount

factor.

III. PRINCIPLE OF DDPG REINFORCEMENT

LEARNING ALGORITHM

reinforcement learning uses the reward and punishment infor-

mation obtained from the interaction between the agent and

the environment to guide the agent’s behavior. DDPG is an

actor-critic based algorithm in reinforcement learning [28].

Its core idea is to useActor network to generate the behavioral

strategy of agents. The Critic network can judge the quality

of actions and guide the updating direction of actions [26].

As shown in Figure 2, the DDPG structure contains an

Actor network with parameter θ and an Critic network with

parameter ω, which are brave to calculate deterministic strat-

egy π (s |θ ) and action value function Q (s, a |ω) respec-

tively. Because the single network learning process is unsta-

ble, it draws on the successful experience of DQNfixed target

network and subdivides Actor network and Critic network

into one reality network and one target network respectively.

The real network and the target network structure is the same,

the target network parameters to determine the frequency by

the real network parameters soft update.

The visual environment of each step of the DDPG algo-

rithm is the market price information obtained from EVA at

each time point, and the load change information obtained

from users. After feeding the environment information into

Actor Net, the model outputs the dynamically priced action

value of quarter-hourly.

EVA, based on price information in different markets, uses

the difference between the output dynamic pricing and fixed
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pricing income as the reward value, with which and environ-

mental information being imported into the critic network.

EVA will be used by the critic network as a measure of how

good the pricing strategy will be. The bigger the revenue,

the better the strategy, allowing actor networks to adjust net-

work weights based on the feedback from the critic network.

According to the output price change information and its

own value function, the user outputs the load change value

under the new price information, which, together with the

new round of market price information received by EVA,

becomes the environmental input value of the new step. Exe-

cute the steps until the end of the mock business round.

When the training reaches a certain number of rounds,

the parameters of Target Net will be updated on a sliding aver-

age based on the actual value of the real network parameters.

The loss function of reality network is as follows [27]:

J (ω) =
1

m

m
∑

j=1

(

yj − Q
(

φ
(

Sj
)

,Aj, ω
))2

(6)

In each iteration, m samples are sampled from the experi-

ence playback set D. The current target value is calculated as

follows:

yj =

{

Rj is_endj is true

Rj + γQ
(

φ
(

Sj+1
)

,Aj+1, ω
)

is_endj is false

(7)

where, m is the number of samples, Q
(

φ
(

Sj
)

,Aj, ω
)

is the

action taken by the sample in the state Sj, the action value

calculated by the reality Critic network; and yj is the target

action value calculated by the target Critic. Rj is the reward

obtained by the sample taking an action Aj in the state of Sj,

and γ is the discount factor.

The loss gradient for a real Actor Net is as follows:

∇J (θ) = −
1

m

m
∑

j=1

(∇aQ (si, ai, ω)) (8)

where, the gradient descent method is used to find the mini-

mum value of the loss function J (θ), which is equivalent to

the process of maximizing the action value Q
(

φ
(

Sj
)

,Aj, ω
)

.

At the end of each iteration, the Critic Target Net and Actor

Target Net parameters are updated in the following manner:

ω′ ← τω + (1− τ) ω′ (9)

θ ′ ← τθ + (1− τ) θ ′ (10)

If Sj is the termination state, the round is iterated out.

IV. DYNAMIC TIME-SHARING PRICING MODEL

FOR EV CHARGING

A. CHARGING PRICE ELASTICITY COEFFICIENT OF

USERS BASED ON VALUE FUNCTION

Under the dynamic adjustment of multi-period electricity

price, the charging behavior of users in the current period

will be comprehensively affected by the electricity price in

different time periods.

By summarizing charging information for all individual

user in different battery types, this paper focus on the rela-

tionship between the change of charging price and overall

charging load in different time period, then studies the rela-

tionship based on value function. We use users load data to

different price record from dynamic battery models to esti-

mate unknown parameters, and then calculate the elasticity

coefficient.

According to the Generalized Leontief value function [29],

the total cost of an electric car can be expressed in the follow-

ing equation with the charging price and charging demand in

different time periods:

C = g (qi)

96
∑

i=1

96
∑

j=1

ωij

√

(

pipj
)

(11)

where, i, j represents different time periods, C represents the

total charging cost of EV, g (qi) represents charging demand

of EV, pi and pj respectively represent charging price of EV

in time period i and time period j.

The ratio σi of fixed period expenses to total expenses can

be expressed as:

σi =

∑

j

ωij

√

(

pipj
)

96
∑

k=1

∑

j

ωkj

√

(

pkpj
)

(12)

Thus, the self-elastic coefficient εii and the mutual elastic

coefficient εij of the user’s charging behavior can be calcu-

lated as follows:

εii =
1

2







ωii
∑

ki

ωik

√

pi

pk
− 1






(13)

εij =
1

2







ωij
∑

ki

ωik

√

pj

pk






(14)

B. DYNAMIC TIME-SHARING PRICING MODEL BASED

ON DDPG REINFORCEMENT LEARNING

The purpose of electricity price guidance is to improve the

potential economic benefits of EV loaders, reduce the peak

and valley difference of the power grid, and calm the load

fluctuation of the power grid. The dynamic pricing model of

EV charging can be established by using the comprehensive

revenue of demand side response market, spot market and

charging price to reflect the income change, and at the same

time considering the economic efficiency and load change of

EV users. Select the maximum comprehensive income of the

calculation period as the objective function:

maxR =
∑

i

(

Ra + Rs + Rc
)

i = 1, 2, . . . , n (15)

In order to ensure the overall rationality of dynamic pricing

strategy and avoid the damage of excessive profit to users’
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interests under greedy algorithm, the pricing model should

meet the following constraints:

(1) The earnings of a single trading day under the dynamic

pricing strategy should not be lower than the earnings under

the fixed pricing strategy:

Ra
′

=

28
∑

i=3

(

QOi − Q
Baseline
i

)

pai t

+

64
∑

i=51

(

QOi − Q
Baseline
i

)

pai t (16)

Rs
′

=

96
∑

i=1

(

QPredicti − QOi

)

psi t (17)

Rc
′

=

28
∑

i=1

QOi

(

p0 + p
L
)

t

+

(

48
∑

i=28

QOi +

96
∑

i=84

QOi

)

(

p0 + p
M
)

t

+

84
∑

i=48

QOi

(

p0 + p
H
)

t (18)

Rai + R
s
i + R

c
i ≥ Ra

′

i + R
s′

i + R
c′

i i = 1, 2, . . . , n (19)

wherein, QOi refers to the load in the period before dynamic

electricity price is implemented, Ra
′

refers to the demand side

response market income before dynamic electricity price is

implemented, Rs
′

refers to the spot market income before

dynamic electricity price is implemented, Rc
′

refers to the

charging income before dynamic electricity price is imple-

mented, and p0 refers to the fixed service fee before dynamic

electricity price is implemented.

(2) After the implementation of dynamic electricity

price, the total electricity load of EV users should remain

unchanged:

∑

j

96
∑

i

QOi =
∑

j

96
∑

i

QActuali j = 1, 2, . . . , n (20)

(3) After the implementation of dynamic electricity price,

the user’s total charging cost should not be higher than the

charging cost under the fixed service fee:

∑

j

96
∑

i

QOi p
c
i t ≤

∑

j

96
∑

i

QActuali p0t j = 1, 2, . . . , n

(21)

(4) Considering the economic limitations on the user side

and the grid side, the charging service fee should be changed

within a certain range:

pi ∈ (pmin, pmax) (22)

V. SOLUTION OF DYNAMIC TIME-SHARING PRICING

MODEL BASED ON DDPG REINFORCEMENT LEARNING

Input: Actor Current Net, Actor Target Net, Critic Current

Net, Critic Target Net, parameters are θ, θ ′, ω, ω′, attenuation

factor γ , soft update coefficient τ , sample number of batch

gradient descent m, target Q network parameter update fre-

quency C , maximum number of iterations T , random noise

function N .

Output: the best Actor Current Net parameters θ , Critic

Current network parameters ω.

Implement the framework of DDPG, as shown in the

figure below:

1. Random initialization θ, ω, ω′ = ω, θ ′ = θ . Clear the

set of experience replays D,

2. Iterate from the first step of the first round,

A) Initialize as the first state S of the current state sequence

and get its eigenvector φ (S).

B) The current network in Actor A = πθ (φ (S))+ N gets

an action based on the stateS,

C) Perform actions A, get new status S ′, reward R, termi-

nate status or not,

D) Store the quintuple
{

φ (S) ,A,R, φ
(

S ′
)

, is_end
}

into

the experience playback set D,

E) S = S ′,

F) Sample m samples from the experience playback set D

and calculate the current target Q value yj:

yj =

{

Rj is_endj is true

Rj + γQ
(

φ
(

Sj+1
)

,Aj+1, ω
)

is_endj is false

(23)

G) Use the mean square error loss function

1
m

m
∑

j=1

(

yj − Q
(

φ
(

Sj
)

,Aj, ω
))2

, to update all parameters of

the current network through gradient back propagation of the

neural network,

H) Use J (θ) = − 1
m

m
∑

j=1

Q (si, ai, θ) to update all param-

eters of the Actor’s current network through gradient back

propagation of the neural network.

I) If T%C = 1, then update the target network and Actor

target network parameters:

ω′ ← τω + (1− τ) ω′ (24)

θ ′ ← τθ + (1− τ) θ ′ (25)

J) If Sj+1 is the termination state, the current round iteration

is completed, otherwise go to step B) [27].

The relevant parameters of the model are as table 1.

VI. CASE ANALYSIS

Based on the training data of 166-day actual charging of EV

in a certain region of northern Hebei Province, this paper

studies EVA profit growth under different pricing strategies.

The charging power is calculated according to 3 kW, and

the user’s demand response will shift the whole charging

behavior of the user. When the time-of-use electricity price

is implemented, the fixed charging service fee of EV in

this region is 0.5 yuan/(kW·h), and the pricing range of EV

service fee is set from 0 yuan/(kW·h) to 1 yuan/(kW·h). The

period price of charging electricity purchased from the grid is
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FIGURE 3. Implementation framework for DDPG.

TABLE 1. Main parameters table.

divided into three parts. the peak period is 12:00-21:00; The

normal period is 7: 00-12: 00 and 21: 00-24:00 and the valley

time is 0: 00-7: 00. The electricity price in the peak period is

1.29 yuan/(kW·h), the electricity price in the normal period

is 0.87 yuan/(kW·h), and the electricity price in the valley

period is 0.46 yuan/(kW·h). The trading frequency of spot

market and demand-side responsive market is 15 minutes,

and the developing time of demand-side responsive market

is 0:45-7:00 and 12:45-21:00.

In order to verify the effectiveness of the proposed method,

the DDPG algorithm is used to access the clean price for

demand side response market and spot market during the cor-

responding load data period for simulation. In the simulation

environment, taking 166 days as a training cycle, the daily EV

service fees within the training cycle are respectively priced

by peak-valley time-of-use tariff, hour pricing and quarter-

hourly pricing. the total revenue and load changes of EVA

after each training cycle are calculated for comparison.

The reinforcement learning model in the experiment is

implemented by Python Tensorflow 2.0. Constraints in for-

mulas (13) - (20) are calculated using the Python interface

in Xpress Optimizer. The experimental computer model is

a quad-core 2.60-ghz Intel Core I7-6700HQ processor with

16GB of memory.

The study compared the algorithm convergence of three

scenarios and the overall EVA revenue change in the case

of daily updating of the pricing strategy. The three scenarios

were respectively the overall operation situation of 166 days

under the quarter-hourly pricing strategy, peak-valley time-

of-use tariff and hourly pricing strategy. The convergence

of the algorithm and the revenue of the scenario are shown

in Figure 4.

FIGURE 4. Convergence of the algorithm and revenue of the scenario.

Under the setting of daily pricing update, the iterative

decision space of the algorithm is large, and the algorithm

has some oscillation in the process of convergence. However,

after adding the constraint that the return under the update

strategy should not be lower than the original return, the algo-

rithm avoided the disorderly iteration starting from negative

return. All the three strategies improved the overall return of

EVA from the initial round and rose steadily to be stable.

Due to the low output dimension of the algorithm, peak-

valley time-of-use tariff can obtain higher extra income from
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FIGURE 5. The distribution of the average daily service charge under the
quarter-hourly pricing of EVA.

FIGURE 6. Daily price fluctuation at typical time points of quarter-hourly.

the initial round and quickly converge after 500 iterations.

However, because the three-stage pricing strategy is rela-

tively simple, there is insufficient room for rise in subsequent

iterations. The output of the quarter-hourly pricing strategy

is relatively complex, and the additional revenue obtained

in the initial iteration is low, and it tends to converge after

1500 iterations. However, this strategy achieves the highest

additional revenue of the three pricing strategies (U2.31 mil-

lion RMB), which is 1.18 times of the hourly pricing strategy

and 1.31 times of the peak-valley time-of-use tariff.

Figure 5 shows the distribution of the average daily service

charge under the quarter-hourly pricing of EVA. The price

distribution and mean values of the three pricing strategies

are approximately similar under the constraint of no increase

in total electricity consumption. In the valley period and peak

period of demand side response trading, the pricing results

under the DDPG algorithm are all close to the extreme of

the lower and upper limit of the price. However, when there

is no demand side response transaction in normal period,

FIGURE 7. Load changes under dynamic pricing, such as EV charging load.

FIGURE 8. Trend change of average return at time point.

the average price of the price in the valley period under

the quarter-hourly pricing method is slightly lower, and the

volatility is relatively high.

Meanwhile, the daily price fluctuation at typical time

points of quarter-hourly is shown in Figure 6. It can be found

in Figure 6 that the trend of price volatility at the time point is

the same as that of the corresponding period. In peak period

and valley period, the price fluctuation range is lower and the

fluctuation trend is slower, while in ordinary period, the price

fluctuation range is larger and the fluctuation trend is steeper.

Table 2 shows the mean and standard deviation of quarter-

hourly pricing and other pricing strategies at different time

periods. In contrast, the higher the frequency of pricing,

the greater the price volatility. The volatility of the normal

period is significantly higher than that of other periods,

among which the volatility of the normal period under the

quarter-hourly pricing is about 3 times that of the rest periods.

At the same time, it can be found that under different pricing

frequencies, the average price of each period is roughly sim-

ilar, and the average price of the ordinary period increases

slightly with the increase of pricing frequency. Therefore, it
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FIGURE 9. Sources of incremental revenue.

TABLE 2. Mean and standard deviation of the three pricing strategies in
different time periods.

TABLE 3. Load variation range under dynamic pricing, such as EV
charging load.

can be concluded that the difference of pricing strategies in

ordinary period is the key to the overall income gap.

The advantage of the quarter-hourly pricing strategy is that

it can track the price signals of the power market under load

adjustment demand over a more continuous action space.

In order to verify the physical characteristics of the pricing

method under DDPG algorithm, load changes under dynamic

pricing are shown in Figure7 and Table 3 of EV charging load.

In the case that the total amount of charging load remains

unchanged, the load curves of EVs all change greatly in

the range of demand side response trading. Among them,

the peak load reduction under the quarter-hourly pricing

strategy is significantly higher than other pricing strategies,

and the overall charging load is reduced by 18% in the

peak load of the grid under the quarter-hourly pricing strat-

egy. Among the reduced loads, 34.28% of the loads were

divided into normal periods, while the corresponding hourly

pricing was 28.72% and the peak-valley time-of-use tariff

was 24.17%. The normal section price of the quarter-hourly

pricing strategy has high flexibility, which makes the normal

section better undertake and transfer the charging load in the

peak period and makes the load curve of EVA connected to

the power grid more friendly.

After the charging load changes at each time point,

the trend change of the average return at the corresponding

time point is shown in Figure 8. After the offset of demand

side response subsidy and spot market differential power

purchase, the income of peak-valley time-of-use tariff was

higher than that of fixed pricing, while the income of other

pricing methods was slightly lower than that of fixed pricing

methods. The revenue of the normal period is lower than the

fixed price, which is due to the transfer load of the peak period

and affected by the spotmarket. In these two periods, the yield

of the quarter-hourly pricing strategy was at the lowest. In the

peak period, the profit value of the three pricing methods is

much higher than that of the fixed pricing. The quarter-hourly

pricing strategy achieves the highest return in the peak period

and realizes the reversal of the comprehensive income.

Since the total load remains unchanged and the user energy

cost does not increase, the main sources of incremental rev-

enue are the spot market and the demand side response mar-

ket, as shown in Figure 9 and table 4 and Figure 9 (a) shows

the incremental value of the average EVA comprehensive

income at each time point, Figure 9 (b) shows the incremental

value of the average demand side response at each time point,

and Figure 9 (c) shows the incremental value of the average

spot market at each time point. Spot market earnings are

derived from the difference in spot market prices at the point

in time after load shifts. The amount of cash fluid is large,

which is about 2-3 times of the demand side response market.

However, since the total load of EV remains unchanged,

the net income realized accounts for less than 10% of the

total income. Incremental revenue is mainly contributed by
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TABLE 4. Sources of incremental revenue.

the demand side responsemarket. The yield in the peak period

was lower than that in the valley period, and the ratio of

the yield was about 1:2, and the yield gradually increased

with the increase of the pricing frequency. Finally, under

the optimal quarter-hourly pricing strategy, EVA’s overall

operating income increased by 10%.

VII. CONCLUSION

In order to make full use of the flexibility and regulation

ability of EV, this paper takes EVA’s participation in the trans-

action revenue maximization of the electric power market as

the goal, and solves the dynamic pricing strategy of EVA in

the demand response market and spot market. Aiming at the

discrete problem of traditional time-sharing pricing model

for EV, a quarter-hourly dynamic pricing strategy based on

DDPG reinforcement learning algorithm is proposed to fully

develop EV scheduling potential. Finally, taking the annual

actual travel data of EV in a certain region of North China

and the price data of the electric power trading market as

an example, the three scenarios of EVA revenue and load

changes under quarter-hourly pricing, hourly electricity price

and dynamic peak-valley time-of-use tariff are compared,

which verifies the superiority of this method.

The results show that the higher the daily pricing frequency

is, the more beneficial it is to guide the charging behavior of

EV users with high efficiency. Among them, the price of ordi-

nary period is an important factor that leads to the difference

of pricing results of different frequencies. The price of normal

period is an important factor that leads to the difference of

pricing results of different frequencies. In the case that the

pricing in both the valley period and the peak period tends to

the limit, under the quarter-hourly pricing strategy, the aver-

age price in the normal period has greater fluctuations, which

more effectively responds to the price signal in the demand-

side market by shifting 18.5% of the peak load to the average

period and the peak period, and the demand side response

market revenue reaches 82.2% of the incremental revenue.

At the same time, the flexible characteristics of EV also make

EVA earn extra income from the price difference of different

periods in the spot market in the process of load translation,

and finally, under the constraint of ensuring that the user’s

energy cost does not increase, the overall operation income of

EVA is increased by 10%. Under the quarter-hourly pricing

strategy, the revenue per hour pricing strategy increased by

18%, the peak-valley time-of-use tariff increased by 31%,

and the peak-load transfer value increased by 19%, and the

peak-valley pricing strategy increased by 47%, which more

effectively improved the comprehensive income of EVA and

translated the overall fluctuation of power grid load.
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