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Abstract. Fusing multiple continuous expert annotations is a crucial
problem in machine learning and computer vision, particularly when
dealing with uncertain and subjective tasks related to affective behaviour.
Inspired by the concept of inferring shared and individual latent spaces
in probabilistic CCA (PCCA), we firstly propose a novel, generative
model which discovers temporal dependencies on the shared/individual
spaces (DPCCA). In order to accommodate for temporal lags which are
prominent amongst continuous annotations, we further introduce a la-
tent warping process. We show that the resulting model (DPCTW) (i)
can be used as a unifying framework for solving the problems of temporal
alignment and fusion of multiple annotations in time, and (ii) that by
incorporating dynamics, modelling annotation/sequence specific biases,
noise estimation and time warping, DPCTW outperforms state-of-the-
art methods for both the aggregation of multiple, yet imperfect expert
annotations as well as the alignment of affective behavior.

1 Introduction

Most supervised learning tasks in computer vision and machine learning assume
the existence of a reliable, objective label which corresponds to a given training
instance. Nevertheless, especially in problems related to human behaviour, the
annotation process (typically performed by multiple experts to reduce individual
bias) can lead to inaccurate, ambiguous and subjective labels which in turn
are used to train ill-generalisable models. Such problems arise not only due
to the subjectivity of human annotators but also due to the fuzziness of the
meaning associated with various labels related to human behaviour. The issue
becomes even more prominent when the task is temporal, as it renders the
labelling procedure vulnerable to temporal lags caused by varying response times
of annotators. Considering that in many of the aforementioned problems the
annotation is in a continuous real space (as opposed to discrete labels), the
subjectivity of the annotators becomes much more difficult to model and fuse
into a single “ground truth”.

http://ibug.doc.ic.ac.uk
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A recent emerging trend in affective computing is the adoption of real-valued,
continuous dimensional emotion descriptions for learning tasks [1]. The space
typically consists of two dimensions: valence (unpleasant to pleasant) and arousal
(relaxed to aroused). In this description, each emotional state is mapped to a
point in the valence/arousal space, thus overcoming the limitation of confin-
ing in a small set of discrete classes (such as the typically used six basic emo-
tion classes). In this way, the expressiveness of the description is extended to
non-basic emotions, typically manifested in everyday life (e.g., boredom). Nev-
ertheless, the annotation of such data, although performed by multiple trained
experts, results in labels which exhibit an amalgam of the aforementioned issues
([2], Fig. 1), leading researchers to adopt solutions based on simple averaging, re-
liance on a single annotator or quantising the continuous space and thus shifting
the problem to the discrete domain (c.f. [3,4]).

0 500 1000 1500

−1

−0.5

0

0.5

1 SPIKE NOISE

BIAS

LAGS

V
A

L
E

N
C

E

FRAMES

Fig. 1. Example valence annotations along with stills from the sequence.

A state-of-the-art approach in fusing multiple continuous annotations that
can be applied to emotion descriptions is presented by Raykar et al. [5]. In this
work, each noisy annotation is considered to be generated by a Gaussian dis-
tribution with the mean being the true label and the variance representing the
annotation noise.

A main drawback of [5] lies in the assumption that the temporal correspon-
dences of samples are known. One way to find such arbitrary temporal corre-
spondences is with time warping. A state-of-the-art approach for time warping,
Canonical Time Warping (CTW) [6], combines Dynamic Time Warping (DTW)
and CCA with the aim of aligning a pair of sequences of both different duration
and of different dimensionality. CTW accomplishes this by simultaneously find-
ing the most correlated features and samples among the two sequences, both in
feature space and time. This task is reminiscent of the goal of fusing annotations
of two experts. However, CTW alignment does not directly yield the prototyp-
ical sequence, which is considered as a common, denoised and fused version of
multiple experts’ annotations. As a consequence, this renders neither of the two
state-of-the-art methods applicable to our setting.

The latter observation precisely motivates our work; inspired by Probabilistic
Canonical Correlation Analysis (PCCA) [7], we initially present the first gener-
alisation of PCCA to learning temporal dependencies in the shared/individual
spaces (DPCCA). By further augmenting DPCCA with time warping, the re-
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sulting model (DPCTW) can be seen as a unifying framework, concisely applied
to both problems. The individual contributions of this work can be summarised
as follows:

• In comparison to state-of-the-art approaches in both fusion of multiple an-
notations and sequence alignment, our model has several advantages. We
assume that the “true” annotation/sequence lies in a shared latent space.
E.g., in the problem of fusing multiple emotion annotations, we know that
the experts have a common training in annotation. Nevertheless, each carries
a set of individual factors which can be assumed to be uninteresting (e.g.,
annotator/sequence specific bias). In the proposed model, individual factors
are accounted for within an annotator-specific latent space, thus effectively
preventing the contamination of the shared space by individual factors. Most
importantly, we introduce latent-space dynamics which model temporal de-
pendencies in both common and individual signals. Furthermore, due to the
probabilistic and dynamic nature of the model, each annotator/sequence’s
uncertainty can be estimated for each sample, rather than for each sequence.

• In contrast to current work on fusing multiple annotations, we propose a
novel framework able to handle temporal tasks. In addition to introducing
dynamics, we also employ temporal alignment in order to eliminate temporal
discrepancies amongst the annotations.

• Compared to state-of-the-art work on sequence alignment (e.g., CTW), we
generalise traditional pairwise alignment approaches such as CTW to a
multiple-sequence setting. We accomplish this by treating the problem in
a generative probabilistic setting, both in the static (multiset PCCA) and
dynamic case (Dynamic PCCA).

The rest of the paper is organised as follows: In Section 2, we describe PCCA
and present our extension to multiple sequences. In Section 3, we introduce our
Dynamic PCCA, which we subsequently extend with latent space time-warping
as described in Section 4. In Section 5, we present various experiments on both
synthetic (Sec. 5.1) and real (Sec. 5.2, 5.3) experimental data, emphasising the
advantages of the proposed methods on both the fusion of multiple annotations
and sequence alignment.

2 Multiset Probabilistic CCA

We consider the probabilistic interpretation of CCA, introduced by Bach &
Jordan [8] and generalised by Klami & Kaski [7]. In this section, we present an
extended version of PCCA (multiset PCCA1) [7] which is able to handle any arbi-
trary number of sets. We consider a collection of datasets D = {X1,X2, ...,XN},
with each Xi ∈ R

Di×T . By adopting the generative model for PCCA, the obser-
vation sample n of set Xi ∈ D is assumed to be generated as:

xi,n = f(zn|Wi) + g(zi,n|Bi) + ǫi, (1)

1 For simplicity, in the following sections we refer to multiset PCCA as PCCA.
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where Zi = [zi,1, . . . , zi,t] and Z = [z1, . . . , zt] are the independent latent vari-
ables that capture the set-specific individual characteristics and the shared signal
amongst all observation sets respectively. f(.) and g(.) are functions that trans-
form each of the latent signals Z and Zi into the observation space. They are
parametrised byWi andBi, while the noise for each set is represented by ǫi, with
ǫi⊥ǫj , i 6= j. Similarly to [7], zn, zi,n and ǫi are considered to be independent
(both over the set and the sequence) and normally distributed:

zn, zi,n ∼ N (0, I), ǫi ∼ N (0, σ2
nI). (2)

By considering f and g to be linear functions we have f = Wizn and g = Bizi,n,
transforming the model presented in Eq. 1, to:

xi,n = Wizn +Bizi,n + ǫi. (3)

Learning the multiset PCCA can be accomplished by generalising the EM algo-
rithm presented in [7], applied to two or more sets. Firstly, P (D|Z,Z1, . . . ,ZN )
is marginalised over set-specific factors Z1, . . . ,ZN and optimised on each Wi.
This leads to the generative model P (xi,n|zn) ∼ N (Wizn,Ψi), where Ψi =
BiB

T
i +σ2

i I. Subsequently, P (D|Z,Z1, . . . ,ZN ) is marginalised over the common
factor Z and then optimised on each Bi and σi. When generalising the algorithm
for more than two sets, we also have to consider how to (i) obtain the expectation
of the latent space and (ii) provide stable variance updates for all sets.

Two quantities are of interest regarding the latent space estimation. The
first is the common latent space given a set, Z|Xi. In the classical CCA this is
analogous to finding the canonical variables [7]. We estimate the posterior of the
shared latent variable Z as follows:

P (zn|xi,n) ∼ N (γixi,n, I− γiWi),γi = WT
i (WiW

T
i +Ψi)

−1. (4)

The latent space given the n-th sample from all sets in D, which provides a better
estimate of the shared signal manifested in all observation sets is estimated as

P (zn|x1:N,n) ∼ N (γX, I− γW),γ = WT (WWT +Ψ)−1, (5)

while the matrices W, Ψ and Xn are defined as W = [W1; . . . ;WN ], Ψ as the
block diagonal matrix of Ψi and Xn = [XT

i,n; . . . ;X
T
N,n]. Finally, the variance is

recovered on the full model, xi,n ∼ N (Wizn +Bizi,n, σ
2
i I), as

σ2
i = trace(S−XE[ZT |X]CT −CE[Z|X]XT −CE[ZZT |X]CT )i

T

Di

, (6)

where S is the sample covariance matrix, Di is the dimensionality of the samples
in set Xi, B is the block diagonal matrix of Bi=1:N and C = [W|B]. We denote
that the subscript i refers to the i-th block of the full covariance matrix.

3 Dynamic PCCA (DPCCA)

The PCCA model described in Section 2 exhibits several advantages when com-
pared to the classical formulation of CCA, mainly by providing a probabilistic
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estimation of a latent space shared by an arbitrary collection of datasets along
with explicit noise estimation. Nevertheless, static models are unable to learn
temporal dependencies which are very likely to exist when dealing with real-
life problems. In fact, dynamics are deemed essential for successfully performing
tasks such as emotion recognition, AU detection etc. [9].

Motivated by the former observation, we propose a dynamic generalisation
of the static PCCA model introduced in the previous section, where we now
treat each Xi as a temporal sequence. For simplicity of presentation, we in-
troduce a linear model2 where Markovian dependencies are learnt in the latent
spaces Z and Zi. In other words, the variable Z models the temporal, shared
signal amongst all observation sequences, while Zi captures the temporal, indi-
vidual characteristics of each sequence. It is easy to observe that such a model
fits perfectly with the problem of fusing of multiple annotators, as it does not
only capture the temporal shared signal of all annotators, but also models the
unwanted, annotator-specific factors over time.

Essentially, instead of directly applying the doubly independent priors to Z

as in Eq. 2, we now use the following:

p(zt|zt−1) ∼ N (Azzt−1,VZ)), (7)

p(zi,t|zi,t−1) ∼ N (Azizi,t−1,VZi
), n = 1, . . . , N, (8)

where the transition matrices Az and Azi model the latent space dynamics for
the shared and sequence-specific space respectively. Thus, idiosyncratic char-
acteristics of dynamic nature appearing in a single sequence can be accurately
estimated and prevented from contaminating the estimation of the shared signal.

The resulting model bears similarities with traditional Linear Dynamic Sys-
tem (LDS) models (e.g. [12]) and the so-called Factorial Dynamic Models, c.f.
[13]. Along with Eq. 7,8 and noting Eq. 3, the dynamic, generative model for
DPCCA3 can be described as

xi,t = Wi,tzt +Bizi,t + ǫi, ǫi ∼ N (0, σ2
i I), (9)

where xi,t, zi,t refer to the i-th observation sequence, timestep t.

3.1 Inference

To perform inference, we reduce the DPCCA model to a LDS. This can be
accomplished by defining a joint space Ẑ = [Z;Z1; . . . ;ZN ] with parameters

θ = {A,W,B,Vẑ, Σ̂}. Dynamics in this joint space are described as Xt =

2 A non-linear DPCCA model can be derived similarly to [10,11].
3 As can be easily seen, the model by Raykar et al. [5] can be considered as a special
case of DPCCA, by setting W = I, B = 0 and disregarding dynamics.
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[W|B]Ẑt + ǫ, Ẑt = AẐt−1 +u, where the noise processes ǫ and u are defined as

ǫ ∼ N
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The matrices used above are defined as X = [X1; . . . ;XN ], W = [W1; . . . ;WN ],
B as the block diagonal matrix of [B1, . . . ,BN ] and finally, A as the block di-
agonal matrix of [Az,Az1 , . . . ,AzN ]. Similarly to LDS, the joint log-likelihood
function of DPCCA is defined as

lnP (X,Z|θ) = lnP (ẑ1|µ, V ) +

T∑

t=2

lnP (ẑt|A,Vẑ) +
T∑

t=1

lnP (xt|ẑt,W,B, Σ̂).

(11)
In order estimate the latent spaces, we apply the Rauch-Tung-Striebel (RTS)
smoother. In this way, we obtain E[ẑt|X

T ], V [ẑt|X
T ] and V [ẑtẑt−1|X

T ]4.

3.2 Parameter Estimation

The parameter estimation of the M-step has to be derived specifically for this fac-
torised model. We consider the expectation of the joint model log-likelihood (Eq.
11) w.r.t. posterior and obtain the partial derivatives of each parameter for find-
ing the stationary points. Note theW andBmatrices appear in the likelihood as:

Eẑ[lnP (X, Ẑ)] = −
T

2
ln|Σ̂|−Eẑ

[
T∑

t=1

(xt − [W|B]ẑt)
T
Σ̂−1 (xt − [W|B]ẑt)

]

+. . . .

(12)
Since they are composed of individual Wi and Bi matrices (which are param-
eters for each sequence i), we calculate the partial derivatives ∂Wi and ∂Bi in
Eq. 12. Subsequently, by setting to zero and re-arranging, we obtain the update
equations for each W∗

i and B∗
i :

W∗
i =

(
T∑

t=1

xi,tE[zi,t]−B∗
iE[zi,tz

T
t ]

)(
T∑

t=1

E[ztz
T
t ]

)−1

(13)

B∗
i =

(
T∑

t=1

xi,tE[z
T
t ]−W∗

iE[ztz
T
i,t]

)(
T∑

t=1

E[zi,tz
T
i,t]

)−1

(14)

4 We denote that the complexity of RTS is cubic in the dimension of the state space.
Thus, when estimating large-dimensionality latent spaces, computational or numer-
ical (due to the inversion of large matrices) issues may arise. If any of the above is a
concern, the complexity of RTS can be reduced to quadratic [14], while the inference
can be performed more efficiently similarly to [13].
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Note that the weights are coupled and thus the optimal solution should be found
iteratively. As can be seen, in contrast to PCCA, in DPCCA the individual fac-
tors of each sequence are explicitly calculated instead of being marginalised out.
In a similar fashion, the transition weight updates for the individual factors Zi

are as follows:

A∗
z,i =

(
T∑

t=2

E[zi,tz
T
i,t−1]

)(
T∑

t=2

E[zi,t−1z
T
i,t−1]

)−1

(15)

where by removing the subscript i we obtain the updates for Az, corresponding
to the shared latent space Z. Finally, the noise updates V

Ẑ
and Σ̂ are estimated

similarly to LDS [12].

4 Dynamic Probabilistic CCA with Time Warping

Both PCCA and DPCCA exhibit several advantages in comparison to the clas-
sical formulation of CCA. Mainly, as we have shown, (D)PCCA can inherently
handle more than two sequences, building upon the multiset nature of PCCA.
This is in contrast to the classical formulation of CCA, which due to the pairwise
nature of the correlation operator is limited to two sequences5. This is crucial
for the problems at hand since both methods yield an accurate estimation of
the underlying signals of all observation sequences, free of individual factors and
noise. However, both PCCA and DPCCA carry the assumption that the tempo-
ral correspondences between samples of different sequences are known, i.e. that
the annotation of expert i at time t directly corresponds to the annotation of
expert j at the same time. Nevertheless, this assumption is often violated since
different experts exhibit different time lags in annotating the same process (e.g.,
Fig. 1, [15]). Motivated by the latter, we extend the DPCCA model to account
for this misalignment of data samples by introducing a latent warping process
into DPCCA, in a manner similar to [6]. In what follows, we firstly describe some
basic background on time-warping and subsequently proceed to define our model.

4.1 Time Warping

Dynamic Time Warping (DTW)[16] is an algorithm for optimally aligning two
sequences of possibly different lengths. Given sequences X ∈ R

d×Tx and Y ∈
R

d×Ty , DTW aligns the samples of each sequence by minimising the sum-of-
squares cost, i.e. ||X∆T

x −Y∆T
y ||

2
F , where ∆x and ∆y are binary selection ma-

trices, effectively re-mapping the samples of each sequence. Although the number
of possible alignments is exponential in TxTy, employing dynamic programming
can recover the optimal path in O(TxTy). Furthermore, the solution must satisfy
the boundary, continuity and monotonicity constraints.

An important limitation of DTW is the inability to align signals of different
dimensionality. Motivated by the former, CTW [6] combines CCA and DTW,

5 Extended CCA can handle multiple sequences but this involves pairwise averaging.
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thus alowing the alignment of signals of different dimensionality by project-
ing into a common space via CCA. The optimisation function now becomes
||VT

xX∆T
x −VT

y Y∆T
y ||

2
F , where X ∈ R

dx×Tx ,Y ∈ R
dy×Tx , and Vx,Vy are the

projection operators (matrices).

4.2 DPCTW Model

We define DPCTW based on the graphical model presented in Fig. 2. Given a
set D of N sequences, with each sequence Xi = [xi,1, . . . ,xi,Ti

], we postulate
the latent common Markov process Z = {z1, . . . , zt} . Firstly, Z is warped using
the warping operator ∆i, resulting in the warped latent sequence ζi. Subse-
quently, each ζi generates each observation sequence Xi, also considering the
annotator/sequence bias Zi and the observation noise σ2

i . We note that we do
not impose parametric models for warping processes. Inference in this general
model can be prohibitively expensive, in particular because of the need to han-
dle the unknown alignments. We instead propose to handle the inference in two
steps: (i) fix the alignments ∆i and find the latent Z and Zi’s, and (ii) given the
estimated Z,Zi find the optimal warpings ∆i. For this, we propose to optimise
the following objective function:

L(D)PCTW =

N∑

i

N∑

j,j 6=i

1

N(N − 1)
||E[Z|Xi]∆i − E[Z|Xj]∆j||

2
F (16)

where when using PCCA, E[Z|Xi] = WT
i (WiW

T
i + Ψi)

−1Xi (Eq. 4). For
DPCCA, E[Z|Xi] is inferred via RTS smoothing (Sec. 3). A summary of the
full algorithm is presented in Algorithm 1.

Guide Tree Progressive Alignment. We note that the optimal solution
for time warping can be found for any number of sequences. Nevertheless, the
complexity of the problem becomes exponential with the increase of the number
of sequences. Therefore, for more than 2 sequences, we adopt an approximation
based on a variation of Progressive Alignment using a guide tree, adjusted to
fit a continuous space. Similar algorithms are used in state-of-the-art sequence
alignment software in biology, e.g., Clustar.

5 Experiments

To evaluate the proposed models, in this section, we present a set of experiments
on both synthetic (Sec. 5.1) and real (Sec. 5.2 & 5.3) data.

5.1 Synthetic Data

For synthetic experiments, we employ a similar setting to [6]. A set of 2D spirals
are generated as Xi = UT

i Z̃M
T
i +N, where Z̃ ∈ R

2×T is the true latent signal
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Fig. 2. Graphical model of DPCTW. Shaded nodes represent the observations. By
ignoring the temporal dependencies, we obtain the PCTW model.

Algorithm 1: Dynamic Probabilistic CCA with Time Warpings

Data: X1, . . . ,XN

Result: P (Z|X1, . . .XN ), P (Z|Xi),∆i, σ
2

i where i = 1, . . . , N
begin

repeat

(∆1, . . . ,∆N )← time warping(E[ẑt|X
T
1 ], . . . ,E[ẑt|X

T

N ])∗

repeat

Estimate E[ẑt|X
T ], V [ẑt|X

T ] and V [ẑtẑt−1|X
T ] (RTS)

for i = 1, . . . , N do

repeat

Update W∗

i according to Eq. 13
Update B∗

i according to Eq. 14

until Wi, Bi converge

Update A∗

i according to Eq. 15

Update A∗,V∗

Ẑ
, Σ̂∗ according to Sec. 3.2

until DPCCA converges

for i = 1, . . . , N do

θi =

{[

Az 0
0 Ai

]

,Wi,Bi,

[

VZ 0
0 Vi

]

, σ2

i I

}

Estimate E[ẑt|X
T

i ], V [ẑt|X
T

i ] and V [ẑtẑt−1|X
T

i ] (RTS(θi))

until LDPCTW converges

∗ In the first iteration since E[ẑt|X
T

i ] is not known, use Xi instead
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which generates the Xi, while the Ui ∈ R
2×2 and Mi ∈ R

Ti×m matrices impose
random spatial and temporal warping. The signal is furthermore perturbed by
additive noise via the matrix N ∈ R

2×T . Each N(i, j) = e×b, where e ∼ N (0, 1)
and b follows a Bernoulli distribution with P (b = 1) = 1 for Gaussian and
P (b = 1) = 0.4 for spike noise.

This experiment can be interpreted as both of the problems we are examining.
Viewed as a sequence alignment problem the goal is to recover the alignment of
each noisy Xi, where in this case the true alignment is known. Considering the
problem of fusing multiple annotations, the latent signal Z̃ represents the true
annotation while the individual Xi form the set of noisy annotations containing
annotation-specific characteristics. The goal is to recover the true latent signal
(in DPCCA terms, E[Z|X1, . . . ,XN ]).

For qualitative evaluation, in Fig. 3, we present an example of applying
(D)PCTW on 5 sequences. As can be seen, DPCTW is able to recover the true,
de-noised, latent signal which generated the noisy observations (Fig. 3(e)), while
also aligning the noisy sequences (Fig. 3(c)). Due to the temporal modelling
of DPCTW, the recovered latent space is almost identical to the true signal Z̃
(Fig. 3(b)). PCTW on the other hand is unable to entirely remove the noise
(Fig. 3(d)). Fig. 4 shows further results comparing related methods. For two se-
quences, CTW outperforms DTW as expected. PCTW is better than CTW (but
marginally, in the case of spike noise). DPCTW provides much better alignment
than other methods.
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Fig. 3. Noisy synthetic data experiment. (a) Initial, noisy time series. (b) True la-
tent signal from which the noisy, transformed spirals where attained in (a). (c) The
alignment achieved by DPCTW. The latent space E[Z|X1, . . . ,XN ] (i.e., the recovered
shared latent signal) for (d) PCTW and (e) DPCTW. (f) Convergence of DPCTW in
terms of the objective (Obj) and error wrt. ground truth (PDGT).

5.2 Real Data I: Fusing Multiple Annotations

In order to evaluate (D)PCTW in case of real data, we employ the SEMAINE
database [15]. The database contains a set of audio-visual recordings of subjects
interacting with operators. Each operator assumes a certain personality - happy,
gloomy, angry and pragmatic - with a goal of inducing spontaneous emotions by
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Fig. 4. Synthetic experiment comparing the alignment attained by DTW, CTW,
PCTW and DPCTW on spirals with spiked and Gaussian noise.

the subject during a naturalistic conversation. We use a portion of the database
containing recordings of 6 different subjects. As the database was annotated in
terms of valence/arousal by a set of experts, no single ground truth is provided
along with the recordings. Thus, by considering X to be the set of annotations
in valence or arousal and applying (D)PCTW, we obtain E[Z] ∈ R

1×T given all
annotations, which represents the shared latent space with annotator-specific fac-
tors and noise removed. We assume that this expectation represents the ground
truth. An example of this procedure for (D)PCTW can be found in Fig. 5. As
can be seen, DPCTW provides a smooth, aligned estimate, eliminating temporal
discrepancies, spike-noise and annotator bias.

To obtain features for evaluating the ground truth, we track the facial expres-
sions of each subject by employing the Patras - Pantic particle filtering tracking
scheme [17]. The tracked points include the corners of the eyebrows (4 points),
the eyes (8 points), the nose (3 points), the mouth (4 points) and the chin (1
point), resulting in 20 2D points for each frame. For evaluation, we consider
a training sequence X, for which the set of annotations Ax = {a1, . . . ,aR} is
known. From this set Ax, we derive the ground truth GT X - for (D)PCTW,
GT X = E[Z|Ax]. Using the tracked points PX for the sequence, we train a re-
gressor to learn the function fx : PX → GT X. In (D)PCTW, Px is firstly aligned
with GT x as they are not necessarily of equal length. Subsequently given a test-
ing sequence Y with tracked points Py, using fx we predict the valence/arousal
(fx(Py)). The procedure for deriving the ground truth is then applied on the
annotations of sequence Y, and the resulting GT y is evaluated against fx(Py).
The correlation of the aligned GT y and fx(Py) is then used as the evaluation
metric for all compared methods.

The reasoning behind this experiment is that the “best” ground truth should
maximally correlate with the corresponding input features - thus enabling any
regressor to learn the mapping function more accurately. For regression, we em-
ploy RVM [18] with a Gaussian kernel. We perform both session-dependent ex-
periments, where the validation was performed on each session separately, and
session-independent experiments where different sessions where used for train-
ing/testing. In this way, we validate the derived ground truth generalisation
ability (i) when the set of annotators is the same and (ii) when the set of anno-
tators may differ. The obtained results are presented in Table 1. As can be seen,
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taking the average gives the worse results (as expected). The model of Raykar
et al. [5] provides better results, as it estimates the variance of each annotator.
Modelling annotator bias and noise with (D)PCCA further improves the results.
It is important to note that incorporating alignment appears to be significant for
deriving the ground truth; this is reasonable since when the annotations are mis-
aligned, shared information may be modelled as individual factors or vice-versa.
Finally, DPCTW provides the best results, confirming our assumption that com-
bining dynamics, temporal alignment, modelling noise and individual-annotator
bias leads to a more objective ground truth.

Table 1. Comparison of ground truth evaluation based on the correlation coefficient
(COR), on session dependent (SD) and session independent (SI) experiments.

DPCTW PCTW DPCCA PCCA Raykar [5] AVG

COR σ COR σ COR σ COR σ COR σ COR σ

SD
Valence 0.77 0.18 0.70 0.19 0.64 0.21 0.63 0.20 0.61 0.20 0.54 0.36

Arousal 0.75 0.22 0.64 0.22 0.63 0.23 0.63 0.26 0.60 0.25 0.42 0.41

SI
Valence 0.72 0.22 0.66 0.24 0.62 0.25 0.58 0.23 0.57 0.27 0.53 0.33

Arousal 0.71 0.20 0.61 0.23 0.59 0.23 0.52 0.28 0.50 0.29 0.33 0.40
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Fig. 5. Applying (D)PCTW to continuous emotion annotations. (a) Original valence
annotations from 5 experts. (b,c) Alignment obtained by PCTW and DPCTW respec-
tively, (d,e) Ground truth obtained by PCTW and DPCTW respectively.

5.3 Real Data II: Action Unit Alignment from Facial Expressions

In this experiment we aim to evaluate the performance of PCTW and DPCTW
for the temporal alignment of facial expressions. Such applications can be useful
for methods which require pre-aligned data, e.g. AAM. We used a portion of
the MMI database [19] consisting of 66 videos of 11 different subjects. In each of
these videos, a set of 3 Action Units (AUs) is activated. The videos are annotated
in terms of the temporal phases of each AU (neutral, onset, apex and offset),
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while the facial feature points of each subject were tracked in the same way as
explained in Sec. 5.2. Thus, given a set of videos where the same set of AUs
is activated by the subjects, the goal is to temporally align the phases of each
AU activation across all videos containing that AU using the facial points. In
the context of DPCTW, each Xi is the facial points of video i containing the
same AUs, while Z|Xi is now the common latent space given video i, the size of
which is determined by cross-validation. We note that since more than one AU
are activated in the same video, a perfect solution is not likely to exist, since
perfectly aligning e.g. AU x may consequently lead to the misalignment of AU y.

In Fig. 6 we present results based on the number of misaligned frames for
AU alignment. The facial features were perturbed with sparse spiked noise (sim-
ulating the misdetection of points with detection-based trackers) to evaluate
the robustness of the proposed techniques. Values were drawn from the normal
distribution N (0, 1) and added (uniformly) to 5% of the length of each video.
We gradually increased the number of features perturbed by noise from 0 to
4. As can be seen in Fig. 6, DPCTW and PCTW outperform other methods,
due to their specific noise modelling properties. The best performance is clearly
obtained by DPCTW. This can be attributed to the modelling of dynamics, not
only in the shared latent space of all facial point sequences but also in the do-
main of the individual characteristics of each sequence (in this case identifying
and removing the added temporal spiked noise).
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Fig. 6. Comparison of DTW, CTW, PCTW and DPCTW to the problem of action
unit alignment under spiked noise added to an increasing number of features.

6 Conclusions

In this work, we presented DPCCA, a novel, dynamic & probabilistic model
based on the multiset probabilistic interpretation of CCA. By integrating DPCCA
with time warping, we proposed DPCTW, which can be interpreted as a unifying
framework for solving the problems of (i) fusing multiple imperfect annotations
and (ii) aligning temporal sequences. Our experiments show that DPCTW fea-
tures such as temporal alignment, learning dynamics and identifying individual
annotator/sequence factors are critical for robust performance of fusion in chal-
lenging affective behaviour analysis tasks.
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