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SUMMARY

All market-leading processor vendors have started to pursue multicore proces-

sors as an alternative to high-frequency single-core processors for better energy

and power efficiency. This transition to multicore processors no longer provides

the free performance gain enabled by increased clock frequency for programmers.

Parallelization of existing serial programs has become the most powerful approach

to improving application performance. Not surprisingly, parallel programming is

still extremely difficult for many programmers mainly because programmers are

not taught well to think in parallel so far. However, we believe that software tools

based on advanced analyses can significantly reduce this parallelization burden.

Much active research and many tools exist for already parallelized programs

such as finding concurrency bugs and performance profilers for parallel and

multithreaded programs. Instead we focus on program analysis algorithms that

assist the actual parallelization steps: (1) finding parallelization candidates, (2)

understanding the parallelizability and profits of the candidates, and (3) writing

parallel code. A few commercial tools are recently introduced for these steps, and a

number of researchers have proposed various techniques to assist parallelization.

However, many weaknesses and limitations still exist.

In order to assist the parallelization steps more effectively and efficiently, this

dissertation proposes Prospector, which consists of several new and enhanced

program analysis algorithms.

First, an efficient loop profiling algorithm is implemented. Frequently executed

loop can be candidates for profitable parallelization targets. The detailed execution
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profiling for loops provides a guide for selecting initial parallelization targets.

Second, an efficient and rich data-dependence profiling algorithm is presented.

Data dependence is the most essential factor that determines parallelizability.

Thus, understanding dependences is critical in parallelization. Prospector exploits

dynamic data-dependence profiling, which is an alternative and complemen-

tary approach to traditional static-only analyses. However, even state-of-the-

art dynamic dependence analysis algorithms can only successfully profile a

program with a small memory footprint. Prospector introduces an efficient data-

dependence profiling algorithm to support large programs and inputs as well as

provides highly detailed profiling information.

Third, a new speedup prediction algorithm is proposed. Although the loop

profiling can give a qualitative estimate of the expected profit, obtaining accurate

speedup estimates needs more sophisticated analysis. Prospector introduces a new

dynamic emulation method to predict parallel speedups from annotated serial

code. Prospector also provides a memory performance model to predict speedup

saturation due to increased memory traffic. Compared to the latest related work,

Prospector significantly improves both prediction accuracy and coverage.

Finally, Prospector provides algorithms that extract hidden parallelism and

advice on writing parallel code. We present a number of case studies how

Prospector assists manual parallelization in particular cases including privatiza-

tion, reduction, and pipelining.
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CHAPTER I

INTRODUCTION

1.1 The Problem: Parallelizing Serial Code

”The free lunch is over,” a famous quote by Herb Sutter [137], succinctly summarizes

the perils of the software development we faced in the multicore era. When proces-

sors kept doubling their clock frequencies in every new generation, programmers

were able to enjoy the free lunch, that is, upgraded processors automatically

boosted the performance of the software. Since 2003, however, such steep increases

in frequency have been stalled mainly because of the power wall as well as several

critical challenges of modern computer architectures and limitations of instruction-

level parallelism. As of 2012, the number of transistors has been doubling every

two years, as predicted by Moore’s law [93], although a number of recent studies

project a decreased growth rate [58] and the utilization wall [146, 28]. Traditionally,

such transistors were used to increase caches and enhance out-of-order pipelines.

However, now all leading processor vendors started to pursue energy-efficient

multiprocessors as an alternative to high-frequency processors.

The transition to the multicore processor no longer provides free lunch to

programmers. The parallelization of existing serial programs has become the most

powerful approach to improving application performance by exploiting multicore

processors. The parallelization problem is becoming more urgent than ever as

multicore processors are ubiquitous in mainstream computing, from smart phones,

1



tablets, to high-end servers. However, concurrent and parallel1 programming

are still extremely challenging concepts for many programmers. This is not

surprising because we are not trained well to write an algorithm in parallel in

traditional computer science programs. Instead relying on only programmers’

efforts, we need advanced support from software and hardware that can make

parallel programming easier.

Perhaps compilers may be the ideal tools for exploiting parallelism, as they

can perform automatic parallelization. However, Chapter II presents a number

of results in which even state-of-the-art compilers miss many parallelization

opportunities in small C/C++ programs due to limitations of static pointer

analysis. Automatic parallelization, however, fundamentally has a limited

applicable domain because only data-dependence-free loops could be parallelized,

except for except some reduction variables.

Given such a situation, we believe that software tools powered by advanced

analyses targeting current multicore processors may significantly reduce the paral-

lelization burden from programmers. Tools for traditional software development

(i.e., serial programs) have been developed for decades. These tools, including

compilers, debuggers, profilers, and testing tools, are essential for successful large-

scale development and productivity. However, what about tools for parallel and

multithreaded programming?

Arguably, tools for finding multithreaded and concurrency bugs may be

the most researched domains [127, 122, 154, 107], and a number of tools have

been developed in this domain [53, 90, 130]. Many commercial profilers for

multithreaded programs, which provide detailed thread utilization information

1The differences between concurrent and parallel programming are clarified in [27]. A
concurrent program (and multithreaded programming) does not necessarily run in parallel
physically, but a parallel programming requires a physical multiprocessor. This dissertation takes
parallel programming as a representative model.
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to diagnose and debug poor parallel performance, also have been developed so

far, such as Microsoft Concurrency Visualizer [91], Rogue Wave’s ThreadSpotter

[121], and Intel Parallel Amplifier [52]. Although these tools are critical for the

successful development of parallel and multithreaded programs, they focus on

only post-parallelization, not before and during the parallelization process. As a

result, programmers are forced to manually parallelize applications. Tools and

analysis algorithms that assist the actual parallelization step are urgently needed.

Let us discuss a typical parallelization process from original serial code.2 This

process would include the following four steps:

• Step 1: Finding candidates for parallelization

– Which loops or functions would be good targets for parallelization?

• Step 2: Understanding the parallelizability and profits of the candidates

– Can this loop or function be parallelized? If so, what kind of parallelism

is available? What about synchronization for correctness? What would

be the projected speedup?

• Step 3: Transforming and parallelizing the targets

– How can I parallelize this code with a parallel programming paradigm

such as OpenMP [138], Thread Building Block (TBB) [56], Parallel

Pattern Library (PPL) [111], and Cilk Plus [11, 49]?

• Step 4: Verifying and optimizing the parallelized code

– Does my parallel code work correctly and efficiently?

The tools for concurrency bugs and performance debugging only support the

fourth step, that is, after writing parallel code. We argue that tools for the first three

2A programmer could write parallel code from the scratch. Even in such case, the programmer
mostly needs a serial program for verification. The assumption of the corresponding serial code in
parallelization is reasonable.
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steps, the actual parallelization steps, are crucial for programmers and advanced

compiler optimizations.

So far, a few commercial tools have been introduced to facilitate the subset

of the first three steps: Intel Parallel Advisor [51], CriticalBlue’s Prism [19], and

Vector Fabrics’ Pareon (previously vfAnalyst, vfThreaded-x86, and vfEmbedded)

[145]. A number of researchers also attempted to attack these steps: HPCToolkit

[88, 1], MAPS [14] Embla [30], DAT(Dynamic Analysis Tool) [123], Alchemist [156],

Tournavitis and Franke’s work [140], DProf [20], Kremlin [33], and Kismet [62].

However, these tools and algorithms currently have a number of weaknesses and

limitations, which are discussed in the later chapters.

Therefore, in order to assist the parallelization steps more effectively and

efficiently, this dissertation proposes Prospector, which consists of four components

that are built on several new and enhanced profilers and program analysis

algorithms [69].

1.2 The Solution and Contributions: Prospector

Prospector introduces several key algorithms toward an ideal tool that assists the

parallelization steps. In particular, Prospector addresses challenging problems of

Steps 1 to 3 by presenting the solutions and preliminary results:

• Chapter IV: An efficient loop profiling algorithm for Step 1;

• Chapter V: An efficient data-dependence profiling algorithm for Step 2;

• Chapter VI: A new speedup prediction algorithm for Step 1 and Step 2;

• Chapter VII: Providing advice on writing parallel code and extracting

parallelism for Step 2 and Step 3.
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An efficient loop profiling algorithm: Frequently executed loops, hot loops, are

likely to be profitable parallelization targets. The detailed execution profiling for

loops provides a quick guide for selecting initial parallelization targets. Popular

current profilers [51, 145] do not provide the details of loop execution. An

algorithm for loop profiling [94] incurs high overhead for Prospector. To address

such limitations, Prospector statically discovers loop and function structures either

in binary or source code and then instruments the minimal instructions to capture

loop and function executions efficiently, resulting in reduced overhead. The data-

dependence profiler of Prospector is built upon this loop profiler.

An efficient data-dependence profiling algorithm: Data dependence (data

dependency) is the most essential factor that will determine the parallelizability

of a given serial program. Although data dependence can be analyzed statically

by compilers, Prospector and related work [75, 51, 145, 156, 140, 20, 33] use dynamic

data-dependence profiling, which is an alternative and complementary approach

to traditional static analyses. However, even state-of-the-art dynamic dependence

analysis algorithms can successfully profile only a program with a small memory

footprint. This limitation in the scalability and overhead significantly reduces the

usefulness of data-dependence profiling. Prospector introduces a new efficient

data-dependence profiling algorithm to support large programs and inputs [70].

The key algorithms are exploiting (1) compressible memory streams to reduce

the space overhead and (2) parallelism in the data-dependence profiling itself

to minimize the time overhead. The data-dependence profiler provides highly

detailed information such as dependences in a loop nest.

A new speedup prediction algorithm: Although a serial code section is amenable

to parallelization, its speedup may not be compelling for a number of reasons:

primarily load imbalance, parallel overhead, and limited scalability of the memory
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performance. The loop profiling gives rough estimates of the expected profit,

but more sophisticated analysis is needed to obtain accurate parallel speedup

estimates. Recently, a couple of dynamic approaches to the practical speedup

prediction were proposed [51, 62]. Prospector basically takes a similar approach to

the Suitability analysis in Intel Parallel Advisor [51] but proposes two new analysis

algorithms [71] to overcome the current limitations. First, a new emulation

algorithm for speedup prediction is proposed to improve both prediction accuracy

and coverage by easily supporting more complex and broad parallel programming

patterns. Second, we propose a memory performance model to predict memory

bandwidth saturation, which is one of the major causes of saturated and degraded

parallel performance.

A post-analysis algorithm to guide parallelization: To complete the full picture

of Prospector, we finally introduce post-analysis algorithms that extract hidden

parallelism and provide advice on writing parallel code from the raw results of

the data-dependence profiler. The raw results are enumerations of discovered

dependence pairs, which give detailed information of data dependences in

serial code. However, these raw results do not directly expose potential

parallelism. Programmers must extract information on code transformation in

the parallelization steps. We attack this difficult problem by devising new and

advanced post-analysis algorithms. A couple of essential parallelism models,

including reduction and pipelining, are investigated. Based on the dependence

result and post-analysis algorithms, Prospector will provide direct advice on

writing parallel code. This information will be very informative for both manual

parallelization and compiler-assisted automatic parallelization. To summarize,

Prospector will provide integrated advice on the parallelization steps, from finding

profitable parallelization targets to providing advice on writing parallel code.
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1.3 Thesis Statement

Program analysis algorithms in Prospector can significantly reduce the burdens of

manual parallelization from serial code by providing detailed information of loop

execution, data dependences, speedup estimates, and parallelization advice.

1.4 Organization of This Proposal Document

This document is organized as follows: Chapter II presents the motivations and

overview of the proposed algorithms in Prospector. Chapter III summarizes the

related work. Chapter IV describes the details of Prospector’s efficient loop-

profiling mechanism. Chapter V discusses the algorithms and architecture of

Prospector’s new data-dependence profiler. Chapter VI elaborates the state-of-the-

art algorithm in predicting speedups and then presents a new speedup prediction

algorithm and our memory performance model. Finally, Chapter VII describes

how Prospector can guide manual parallelization and extract hidden parallelism.
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CHAPTER II

MOTIVATIONS AND OVERVIEW OF PROSPECTOR

This chapter discusses technical motivations for the algorithms in Prospector with

examples and then sketches the overview of Prospector.

2.1 Motivations for an Efficient Loop Profiler

As a rule of thumb, functions dominating the execution time, hot functions, are the

main targets of optimizations. The same can be said of parallelization, at least

for task parallelism (also known as function parallelism). Traditional profilers

for sequential programming, notably GNU gprof [34], OProfile [105], and Intel

VTune Amplifier [57], provide detailed information of hot functions, including

the percentage of the total execution time spent in a function, cumulative and

self-time, and call graphs. This profiling information is sufficient to select initial

parallelization targets for task parallelism.1

Exploiting data parallelism or loop-level parallelism may need more informa-

tion than traditional profiling data. This methodology parallelizes loop iterations.

Programmers would like not only to understand hot loops where the majority of

the execution time is spent, but also to have more information regarding the loop

execution, such as trip count and variance of iteration length.

A simple modification on traditional profilers would provide the hot loop

information easily. The start and termination of a loop are considered to be those of

a function. Then, a profiler may measure the aggregated execution time of a loop as

1Even if a profiler locates a hot function, this function may need heavy synchronization,
resulting in no profit. Although the hot function information is very important in finding
parallelization targets, this information gives only an initial hint.
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Figure 1: A simple loop profiling in Intel Parallel Advisor shows only the total

execution time of each loop This capture is the sudoku program in the example

programs of Parallel Advisor.

shown in Figure 1. For example, the profiler of Intel Parallel Advisor reports both

hot loops and functions. The traditional call stack is also combined with loops as

if a loop were a function.

However, this hot loop information is not enough to find good initial targets for

loop-level parallelism. Our experience shows that the following profiling data is

very helpful: (1) invocation count (how many times a loop is executed); (2) average

trip count per a loop invocation (the total iteration number of a loop divided by the

invocation count); and (3) statistics of iteration lengths (e.g., average, minimum,

maximum, and variance).

First, the invocation count for a loop gives a rough idea of synchronization

overhead for the parallel loop (e.g., the overhead of OpenMP’s #pragma omp

parallel for). In particular, this information is important when an inner

loop is to be parallelized. If an inner loop is invoked excessively while its

average loop length is small, a good speedup may not be expected due to high

spawn/join overhead. Second, average trip count is an effective indicator of

a good parallelization target. A hot loop with small trip count (e.g., less than

the number of cores) may not able to utilize all multiple execution units. A
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307 for(item = 0 ; item < group ->n_scheditems; item ++)

308 {

309 switch(group ->scheditems[group ->order[item ]]. type)

310 {

311 case sched_function:

312 ScheduleTraverseFunction (...);

...

321 break;

322 case sched_group:

323 ScheduleTraverseGroup (...);

...

335 break;

338 }

339 }

Figure 2: A hot loop of 436.cactusADM, ScheduleTraverse.c, has a trip count of

six and performs computation by the switch. However, the last iteration has an

actual computation while the other iterations do not perform any work.

sufficiently large trip count has more potential to achieve a decent speedup and

better scheduling opportunity. Third, basic statistics for iteration lengths can be

useful to predict workload imbalance. We present an example for this case.

Figure 2 shows one of the hottest loops of 436.cactusADM in SPEC CPU2006

[134]. For the train input, the trip count of the for is profiled as six, and the

invocation count is only one. This profiling information infers that parallelizing

this loop seems to be good. However, we soon discovered that only the last

iteration actually performed the computation. Simply parallelizing this loop (e.g.,

by omp parallel for) does not give any speedup. Although this is an extreme

case of the load imbalance in parallelization, understanding such deviations of the

lengths of loop iterations is highly informative to programmers.

The loop profiler can give such quick performance estimation, but this is

not for precise parallel speedup prediction. Prospector also provides a separate

speedup predictor, Parallel Prophet, which is presented in Chapter VI. Parallel

Prophet performs more sophisticated loop profiling per iteration granularity

(interval profiling, Section 6.2.2) and emulating the expected parallel execution.

This prediction mechanism may require significantly more space to store the
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profiling information. In contrast, the loop profiler in this chapter collects only

single-dimensional statistics for each loop with negligible memory overhead. The

purpose of the loop profiler is to provide factual execution profiling information

like gprof rather than predicting accurate speedups.

More important, the loop profiler is the platform of the data-dependence

profiler of Prospector, SD3. Note that the loop profiler is a degenerated form of

our data-dependence profiling: If a loop iteration does not have any memory load

and store (except for a loop induction variable), the dependence profiling on this

loop is identical to the loop profiling. In this sense, achieving optimal performance

on the loop profiling is particularly important. Furthermore, our dependence

profiler itself is parallelized to minimize the time overhead. Each parallel task

in the profiler performs its own loop profiling. Hence, an optimal loop profiler is

a prerequisite for the efficiency of the dependence profiler.

Parallel Advisor currently does not provide the loop execution information

such as average trip counts. Moseley et al. proposed LoopProf [94], which is

similar to our loop profiler, providing the details of loop execution. However,

on average, LoopProf is 22 times slower than the native execution of SPEC

CPU2000 benchmarks without any sampling. Such overhead is unacceptable for

our dependence profiler. We present an optimal loop profiler that minimizes the

instrumentation and runtime overhead. Our loop profiler has only a 6.2 times

slowdown on average. Chapter IV details the mechanism.

2.2 Motivations for Dynamic Data-Dependence Analysis

One of the key components in Prospector is dynamic data-dependence analysis, which

we call the data-dependence profiler. This section discusses why the data-dependence

profiler is needed to assist parallelization effectively.

Data dependence indicates whether two instructions (either statements or
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tasks) access the same memory location while at least one of them is a write

operation.2 Data dependence has three cases: (1) flow dependence (read-after-

write, RAW), (2) anti-dependence (write-after-read, WAR), and (3) output depen-

dence (write-after-write, WAW). Among them, flow dependence is considered true

dependence while the others are false dependences (or name dependences). False

dependence can be easily avoided using register-renaming-like techniques, but

most true dependence are the semantics of the program.

The implication of data dependence in parallelization is clear. Data-independent

instructions can be safely executed in parallel without the need for synchroniza-

tion. Dependent instructions, especially true dependence, should be correctly

handled by synchronization such as barriers, condition variables, and mutexes.

In a word, the existence and patterns of data dependences in serial code decide the

parallelizability of the code.3 Hence, understanding the dependence in serial code

is the most critical step toward developing tools to assist the parallelization step,

particularly for parallelism discovery and parallelization guidance.

Traditionally, data-dependence analysis has been done statically by compilers.

Algorithms such as the GCD test [97], Banerjee’s inequality test [73], and the I Test

[73] are used to analyze data dependences in array-based data accesses. These

static analyses may not be effective in languages that allow pointers and dynamic

allocation because array accesses would become general pointer arithmetics.

Pointer analysis is needed to determine dependences statically in such cases.

Theoretically, precise pointer analysis is known as undecidable for languages

(notably, C and C++), where arbitrary pointers and dynamic allocations are

allowed [15]. There is a large body of research related to pointer analysis and

2Data dependence across multiple threads is not considered in this work.
3Sometimes data dependence may be too conservative constraint to determine parallelizability.

There could be a number of dependences created by artifacts such as compiler-generated code [143].
Commutativity [119] and critical path analysis [33] could also be criteria to judge parallelizability.
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its approximations [45]. Notable earlier works are Andersen’s algorithm [7] and

Steensgaard’s algorithm [135], and some recent efforts can be found in [78, 40].

Because of the nature of such challenges in pointer analysis, static compiler-based

parallelism discovery and automatic parallelization are limited by their pointer

analysis. However, static compilers must be correct on optimizations. They

have to take a conservative approach. The correct dependences (either always

dependent or always independent) between two pointers are often unknown at

compile time. A static pointer analysis has to return a may dependence in this

case. Consequently, the opportunity for advanced optimizations such as automatic

parallelization could be significantly reduced.

Dynamic data-dependence analysis or data-dependence profiling is an alternative and

complementary approach to static-only dependence analysis, which checks data

dependences in the runtime using actual memory addresses [75, 108]. Because real

addresses are resolved in the runtime, dependence can be determined without a

may answer. Data-dependence profiling has been used in various parallelization

efforts, including hardware-based speculative parallelization [136, 81, 16, 25, 82,

151] and profiling-assisted parallelization studies [75, 10, 30, 123, 148, 156, 140, 20,

33]. It is also being deployed in commercial tools [51, 19, 145].

Despite the attractiveness of dependence profiling, two weaknesses exist: (1)

profiling overhead, which is detailed in the next section, and (2) the input-sensitivity

problem, where discovered data dependences by a profiler are only the results

of particular input sets. In turn, parallelism extracted from data-dependence

profiling is potential parallelism, not a proved one. However, this input-sensitivity

problem is inevitable for all dynamic program analysis techniques. For instance,

the majority of memory leaks and data-race detectors are implemented as dynamic

tools such as Valgrind [98] and Intel Parallel Inspector [53]. Fixing all discovered

memory leaks and races does not guarantee the safety of the program. This
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inherent limitation, however, cannot depreciate the value of such dynamic analysis

tools. These tools are critical for successful software development. Profile-based

data-dependence analysis of Prospector is also based on the same premise. Even

with this weakness, we argue that using data-dependence profiling is very helpful

for programmers and aggressive compiler optimizations, and it is worth exploring

as a research topic and a practical tool.

Our position is that parallelization is mostly done in frequently executed

code. In a hot section, important dependence patterns are highly unlikely to

be affected by different input sets. Our experiments presented in Chapter V

also support this intuition. Furthermore, when programmers are forced to do

manual parallelization because a compiler cannot do automatic parallelization,

programmers themselves must prove the safety of their parallelization. Because

such formal proof is almost impossible, programmers resort to extensive and

thorough testing. Data-dependence profiling can significantly mitigate this

painful manual parallelization by providing strong hints for data dependences.

Recent commercial tools [51, 19, 145] and research that use profiling to assist

parallelization [139, 140, 124, 33] also advocate this claim.

Finally, our data-dependence profiler is not a pure dynamic tool. We perform

static analysis for better performance and quality (See Section 5.5.3). One of

the future works is to investigate more opportunities in static analysis. A data-

dependence profiler would be eventually a hybrid form of both static and dynamic

analyses that can provide provable parallelism information.

2.2.1 Case Studies: Automatic Parallelization in C/C++ Compilers

This section presents case studies that demonstrate the weaknesses of automatic

parallelization and static analysis. Instead of using research parallelizing

compilers such as SUIF [150] and Polaris [9], two state-of-the-art compilers (as of
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2010) are used for practical reasons: Intel C/C++ compiler 12.0 (ICC) [50] and the

Portland C/C++ compiler 8.0 (PGC) [109]. These compilers are used to parallelize

the OmpSCR [103, 24] benchmarks, a set of small mathematical benchmarks that

are manually parallelized by programmers using OpenMP pragmas. Except for

a few reduction variables, the tested benchmarks are embarrassingly parallelized.

While these state-of-the-art compilers support automatic parallelization, they often

fail to parallelize C/C++ programs.

All available compiler options are calibrated to maximize parallelization

opportunities. For example, inter-procedural optimizations, inlining, and alias

analyses are enabled. Cost-benefit analysis is disabled (e.g., -par-threshold0 in

ICC) so that the compiler will parallelize loops whenever possible. PGC did

not have an option to disable the cost-benefit analysis when we performed the

experiment. Our goal is to see how many of the manually parallelized loops can

be automatically parallelized.

Table 1 summarizes the results of automatic parallelization with both compil-

ers. The second column shows the number of loops manually parallelized by the

programmer. The third and fifth columns show how many of these manually

parallelized loops are automatically parallelized by ICC and PGC, respectively.

Based on the diagnostic reports from the compilers, the reasons for failure are

estimated and briefly noted in the fourth and sixth columns. For example, ICC

provides detailed diagnostic reports if the reporting option is enabled. The last

column of Table 1 shows the number of loops that are discovered as parallelizable

loops by our dependence profiler, SD3.

Overall, ICC parallelizes four of the 13 manually parallelized loops, while PGC

parallelizes none of them. Recall that the cost-benefit analysis of PGC could not

be disabled. The PGC used in the experiment did not support a profiling-based

optimization for the automatic parallelization to overcome the weakness of the
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Table 1: OmpSCR Automatic Parallelization Results: How many loops parallelized

by the programmers can be automatically parallelized by the compilers? How many

loops can be found as parallelizable by a dependence profiler?

Benchmark Programmers ICC # Reason PGC # Reason SD3

FFT 2 1 Recursion 0 No benefit 3
FFT6 3 0 Pointers 0 No benefit 16
Jacobi 2 1 Pointers 0 Pointers 8

LUreduction 1 0 Pointers 0 Pointers 4
Mandelbrot 1 0 Reduction 0 Multi-exits 2

Md 2 1 Reduction 0 Pointers 10
Pi 1 1 N/A 0 No benefit 1

QuickSort 1 0 Recursion 0 No benefit 4

TOTAL 13 4 N/A 0 N/A 48

static-only cost-benefit analysis. The compilers also parallelize other loops that are

not parallelized by the programmers, but most of them are not profitable.

The numbers in SD3 are greater than the numbers in “Programmers” because

SD3 reports all parallelizable loops without considering benefit. However,

note that SD3 successfully identifies all parallelizable loops that were manually

parallelized by the programmers while the compilers were unable to do so. This

result clearly shows the effectiveness of dynamic dependence profiling. We now

detail the reasons why the compilers were not effective to find parallelism.

Pointer-based Accesses The most critical reason for the failures is the weakness

of the pointer analysis of the compilers. C99 [60], which is a new standard of C

language, supports the restrict keyword to minimize pointer overlapping. Even

if we manually inserted the restrict keyword whenever possible, the results were

the same.

LUreduction in Figure 3(a) is parallelizable at the second-level loop among

the three nested loops. The two two-dimensional double arrays, L and M,

are dynamically allocated, being accessed via double** pointers. ICC cannot
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1 // Allocate two 2D arrays.

2 double ** L = (double **) OSCR_calloc (...);

3 double ** M = (double **) OSCR_calloc (...);

4 for (int i = 0; i < N; i++) {

5 M[i] = (double *) OSCR_calloc(size , sizeof(double ));

6 L[i] = (double *) OSCR_calloc(size , sizeof(double ));

7 }

8

9 ... Initializations

10

11 for(int k = 0; k < N-1; k++) {

12 // This for loop is parallelizable.

13 for (int i = k + 1; i < N; i++) {

14 L[i][k] = M[i][k] / M[k][k];

15 for (int j = k + 1; j < N; j++)

16 M[i][j] = M[i][j] - L[i][k] * M[k][j];

17 }

18 }

(a) LUreduction

1 int gen_v_table(complex *v, int n) {

2 complex wn;

3 wn.re = cos(PI * 2.f / (n * n));

4 wn.im = -sin(PI * 2.f / (n * n));

5 // This loop is parallelizable.

6 for (int j = 0; j < n; ++j) {

7 for (int k = 0; k < n; ++k) {

8 v[j * n + k] = complex_pow(wn , j * k);

9 }

10 }

11 return 0;

12 }

(b) FFT6

Figure 3: LUReduction and FFT6 benchmarks in OmpSCR: State-of-the-art

C/C++ compilers may not able to parallelize these parallel loops.

parallelize the second-level loop due to potential flow dependences and anti-

dependences on M.

The code has two major challenges for successful pointer analysis: (1) a custom

memory allocator OSCR calloc and (2) the allocation style for two-dimensional

arrays (each row is separately allocated). To alleviate these two difficulties,

we modified the source code. First, a custom memory allocator OSCR calloc is
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replaced with the standard calloc to reduce the difficulty of considering context-

sensitive analysis. Notice that OSCR calloc is a simple wrapper of calloc. Second,

the structures of L and M, as well as other accessing code, are converted to one-

dimensional arrays. Without such transformation using one-dimensional arrays,

an advanced analysis such as shape analysis [126] is needed to detect the memory

access pattern on two-dimensional arrays. We speculated that a technique such

as heap cloning [78] would solve the pointer analysis problem of LUreduction

after the changes. Unfortunately, the compiler was still unable to find the

parallelism, reporting potential data dependences on M. Only after these two arrays

are statically allocated (e.g., double M[1024][1024]), does ICC parallelize the loop.

The compilers also failed to parallelize arrays whose bounds are unknown at

compile time. Figure 3(b) illustrates this case. ICC had to obey dependences

conservatively, resulting in output dependences on the array v. If the length of

the array, n, is set to a constant value, the loop is parallelized.

Pointer-linked data structures such as linked lists and tree structures pose an

even greater challenge to compilers. The tested benchmarks in OpenMP do not

have such data structures; thus some of the Olden benchmarks [120] are used for

this experimentation. No automatic parallelization was observed. ICC reported no

diagnostic message. We speculate that the compiler simply ignores parallelization

attempts once pointer-linked data structures are accessed in loops.

Complex Control Flows The compilers were unable to parallelize loops that

have irregular control flows such as branches, breaks, early returns, and function

calls. Mandelbrot and Md in OmpSCR were not parallelized for this reason.

Figure 4 shows Mandelbrot, in which the outer loop should be parallelizable

by realizing that outside is a reduction variable. However, the fact that outside is

conditionally updated at line 7 as well as the potential early exit at line 8 confuses
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1 // This loop is parallelizable with a reduction on outside.

2 for(i = 0; i < NPOINTS; i++) {

3 complex z = points[i];

4 for (j = 0; j < MAXITER; j++) {

5 z = z * z + points[i];

6 if (abs(z) > THRESOLD) {

7 outside ++;

8 break;

9 }

10 }

11 }

12 inside = NPOINTS - outside;

Figure 4: Mandelbrot in OmpSCR: The compilers used in our experimentation

were unable to detect these parallel loops due to control flow with a reduction.

the compiler. The outer loop is not automatically parallelized.

FFT shown in Figure 5 is parallelized by exploiting recursion. This pattern

is a typical “divide and conquer” in which the sub-tasks can be concurrently

processed. The loop at 12 is parallelizable without synchronization. Note that

the trip count of the loop is two, which means the task is divided into two.

However, the compilers fail to recognize that the data accessed by the two paths are

independent. As a result, the loop is not parallelized by the compilers. A similar

pattern is also found in Quicksort in OmpSCR. Quicksort spawns two concurrent

sub-tasks, but the compilers were unable to detect the parallelism.

Code that contains C++ virtual functions and indirect function calls (e.g.,

callbacks) was not often parallelizable. A loop is automatically parallelizable

if these function calls are inlined. We found this case in an image registration

function in ITK [46].

Insufficient Cost-Benefit Analysis The compilers statically analyze the cost and

benefit of parallelization. As seen in the results, PGC misjudged many hot loops.

PGC concludes that many hot loops provide no benefit. The cost-benefit analysis

of ICC also has weaknesses. When internal cost-benefit analysis was enabled, only

two loops were parallelized. A lack of dynamic execution information of loops is
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1 void FFT(Complex *A, Complex *a, Complex *W,

2 unsigned N, unsigned stride , Complex *D)

3 {

4 if (N == 1) {

5 A[0] = a[0];

6 }

7 else {

8 // Division stage without copying input data.

9 unsigned n = N / 2;

10

11 // This loop is parallelizable.

12 for (int i = 0; i <= 1; i++)

13 FFT(D + i*n, a + i*stride , W, n, stride << 1, A + i*n);

14

15 // This loop is parallelizable.

16 for (int i = 0; i <= n - 1; i++) {

17 Complex* pW = W + i * stride;

18 Complex Aux = pW * (D + n)[i];

19 A[i] = D[i] + Aux;

20 A[i + n] = D[i] - Aux;

21 }

22 }

23 }

Figure 5: FFT in OmpSCR: The compilers used in our experimentation were

unable to detect these parallel loops due to complex control flow: recursion.

also another major limitation of automatic parallelization. Tournavitis et al. [141]

proposed a profile-driven mechanism that may address this problem.

2.3 Motivations for An Efficient Data-Dependence Profiler

The previous section used a number of examples to emphasize why a data-

dependence profiler is an attractive alternative to static-only approaches. This

dynamic approach addresses the fundamental limitation of static pointer analysis

because all accessed addresses are known at the runtime. However, like other

dynamic analyses, significant time overhead is a major obstacle to adapt a

dependence profiler for practical usages. Worse, data-dependence profiling has

another severe problem: heavy memory consumption, which is often beyond a

typical computing resource. The current algorithms for data-dependence profiling

incur significant costs of time and memory overhead. Surprisingly, although
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Figure 6: Overhead of the current commercial data-dependence profilers: “Tool1”

and ”ToolA” are Intel Parallel Advisor, and ”ToolB” is vfAnalyst [145]. “Native” in

Figure (a) refers to the memory overhead without the profiler. SD3 is the new

efficient data-dependence profiler in Prospector, presented in Chapter V.

a number of research works have focused on using data-dependence profiling,

no work exists on addressing the performance and overhead issues in data-

dependence profilers.

As a concrete demonstration, Figure 6 shows the overhead of the dependence

profiling algorithms of the two commercial tools: Intel Parallel Advisor and Vector

Fabrics’ vfAnalyst [145].4 As of 2012, these tools still provide state-of-the-art

dependence profilers. Because no detailed profiling algorithms of the tools are

4The data in Figure 6 was obtained in May 2010. We used the first version of Intel Parallel
Advisor and Vector Fabrics’ vfAnalyst, the previous version of Vector Fabrics’ Pareon. In early
2012, we still cannot see that these tools improved the overhead problem.
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publicly available, we implement our own baseline algorithm calked the pairwise

method. We believe the pairwise method is very similar to the algorithms of

these commercialized tools. Figure 6(a) and 6(b) show the memory and time

overhead of a commercial data-dependence profiler, respectively, when profiling

17 SPEC CPU2006 C/C++ applications with the train inputs on a 12 GB machine.

Because of the limitation of the tool, the top 20 hottest loops and their children

loops were profiled. Among the 17 benchmarks, only four benchmarks were

successfully analyzed; the rest of the benchmarks failed because of insufficient

physical memory (consumed more than 10 GB memory). Simply doubling the

main memory would not be a solution. A couple of programs are profiled on a 24

GB machine, but the tool was still unable to profile them successfully.

Another example that clearly shows the memory overhead problem is a simple

matrix addition program that allocates three N × N matrices for the computation:

A = B+C. As shown in Figure 6(c), the current tools require significant additional

memory as the matrix size increases, while our new method, SD3 , the new efficient

data-dependence profiler in Prospector, needs only very small (less than 10 MB)

memory by compressing the memory references.

The runtime overhead is between an 80 times and a 270 times slowdown for the

four benchmarks that worked, shown in Figure 6(b). In fact, these numbers are not

significantly high. It is well known that many dynamic analyses or profiling tools

typically incur slowdowns of a hundred times or worse [125, 148, 107]. The Tool1

in Figure 6(b) does not fully calculate data dependences in loop nests; thus the

observed overhead is somewhat low. Our baseline profiler, the pairwise method

described in Section 5.2, suffers from a couple of hundred times slowdown because

all characteristics of data dependences, including nested loops, are computed. We

also solve this time overhead problem.

While both time and memory overhead are severe, the latter will stop further
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analysis. The culprit is the dynamic data-dependence profiling algorithm used in

these tools, which is very similar to the pairwise method. The pairwise method

needs to store all outstanding memory references in order to check dependences,

resulting in potentially large memory bloats.

Chapter V addresses these memory and time overhead problems by proposing

SD3, an efficient data-dependence profiling algorithm. For the memory overhead,

SD3 introduces a stride-based compression technique and a new dependence

calculation algorithm. To minimize the time overhead, SD3 itself is parallelized by

data-level parallelization and pipelining.

2.4 Motivations for Correct Data-Dependence Profiling

Regarding the overhead problem, one may consider sampling and other approxi-

mation techniques, which are practically proven methods to reduce the overhead

in many profiling problems. For example, a number of profilers such as gprof

[34], OProfile [105], and VTune [57] are statistical profilers that use sampling with

some instrumentation. Data-dependence profilers for speculative optimization,

notably Thread-Level Speculation (TLS) [136, 16, 82], typically employ samplings

and simplified data structures to minimize the profiling overhead [16]. Time

overhead is reduced by changing sampling rate. To reduce space consumption,

data dependences are tracked at coarse granularity such as cache line size.

However, these techniques are inadequate to guide parallelization that targets

conventional multiprocessors (i.e., non-speculative) for two reasons: (1) any

sampling technique may introduce incorrect results, and (2) a simple sampling

is not effective to solve the memory overhead problem. We first discuss why the

correctness of data-dependence profiling is important.

As mentioned in Section 2.2, a dynamic dependence profiler may not discover

all existing dependences in a program for all possible inputs. The correctness does
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not mean that a profiler should find all inherent dependences. Instead, we define

the correctness of a data-dependence profiler as follows:

• We first define the z/correctness of a profiling result from a dependence

profiler. Suppose a program P and all available inputs (could be infinite)

I . With an ideal and perfect dependence profiling, suppose D is the set of the

existing all data dependences in P with I :

D = {(s, t, d, f) | s ⊆ L, t ⊆ L, d ⊆ Z, f ⊆ N, andf > 0},

where s, t, d, and f are the source, sink, dependence distance, and frequency

of a dependence tuple, respectively; L is the set of all executed memory

locations in P with I .

For a given input Ii ⊆ I , suppose that the correct profiling result from the

same ideal and perfect profiler is Di:

Di = {(s, t, d, f) | s ⊆ Li, t ⊆ Li, d ⊆ Z, f ⊆ N, andf > 0},

where Li is the set of all executed memory locations in P with Ii. Because

Li ⊆ L, Di ⊆ D. This implies a single dynamic profiling result may not

discover all inherent dependences in a program.

• Now, suppose D̂i is a profiling result from an implemented dependence

profiler with P and Ii. We say that D̂i is strictly correct if and only if:

– For every dependence element d̂i in D̂, d̂i exists in D; and

– For every dependence element di in D, di exists in D̂.

However, for more flexible implementation and optimization opportunities,

we relax the conditions of the correctness by omitting the equivalence of the

dependence frequency. We say that D̂i is correct if and only if:
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– For every dependence element d̂i in D̂, d̂i exists in D, but f̂ of the d̂i does

not necessarily equal f of the corresponding d; (no false positive) and

– For every dependence element di in D, di exists in D̂, but f of the di does

not necessarily equal f̂ of the corresponding d̂ (no false negative).

• Finally, a dependence profiler is correct if and only if, for every possible input

Ii ⊆ I , this profiler must yield a correct or a strictly correct result for Ii.

In other words, as long as all profiling results preserve the existence and

distance of data dependences, we consider this profiler to be correct. The relaxation

of the frequency is needed for our optimization (PC-set optimization in Section

5.2.6) and compression (The definition of stride in Section 5.3.8).

We never compromise the existence of the dependences, which is particularly

critical to assist non-speculative parallelization. Incorrect data-dependence

profiling can lead to either a false negative or a false positive. In the worst case,

a dependence pair could be missed due to sampling or other approximation,

but this pair can prevent safe parallelization. In some usage models of data-

dependence profiling, parallelization based on an incorrect profiling result can be

tolerated. One such example is Thread-Level Speculation (TLS). TLS hardware

can recover a conflicted parallel execution via the rollback mechanism. This

thesis, however, does not assume a speculative parallelization, including TLS

and transactional memory. We target conventional multicore processors and non-

speculative parallel programming model.

A sophisticated and advanced sampling technique could be applied. In the case

of data-race detectors, early detectors did not use sampling [127, 122]. However,

‘intelligent filtering is applied to a data-race detector (Intel Thread Checker) [125]

without compromising accuracy. Although sacrificing accuracy a little bit, LiteRace

[87] further exploits an adaptive sampling method based on a novel observation:
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data races are likely to occur in a cold region. However, to the best of our

knowledge, for dependence profiling, no advanced sampling is devised to reduce

the overhead while maintaining the correctness.

2.4.1 Experimentation Results of Simple Sampling Techniques

We present experimental results that support the claim that simple sampling tech-

niques are not suitable for non-speculative parallelization. In this experimentation,

we apply three types of sampling policies to the pairwise method:

(1) Burst sampling: Dependence profiling is triggered every N instructions and

then lasts for M consecutive memory instructions. We fix N to be 5,000 and

M to be 1,000 in this evaluation.

(2) Early stopping: For any given loop, we profile up to N% of its total invocation

count and M% of its total iteration count. We use (100%, 10%), (10%, 100%),

and (10%, 10%) in this experimentation.

(3) Major-loops only: We perform dependence profiling only on major loops. A

loop is considered as a major loop if its execution time is at least 5% of the

total execution time.

Note that we do not consider a simple random sampling of memory accesses. We

discuss the accuracy and the overhead issues in these sampling techniques.

Issue with Profiling Accuracy Table 2 shows the numbers of incorrectly reported

loops in terms of their parallelizability for an input, among the hot loops in

OmpSCR benchmarks [103]. It is clear that the burst-sampling policy should be

avoided because of its high inaccuracy. Early-stop samplings are better, but still

are not close to 100% accuracy.
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Table 2: The numbers of incorrectly reported loops by simple sampling policies

(lower is better): For example, among six loops of Jacobi, the parallelizability of

four loops was incorrectly reported by burst sampling; the three early-stopping

policies also made mistakes.

Policies Burst 100%/10% 10%/100% 10%/10% Total Loops

LU 1 0 0 0 3
FFT 2 0 0 0 3
FFT6 6 0 0 0 11
Jacobi 4 2 2 2 6

md 1 0 1 1 5
qs 3 2 0 2 5

Mandel 1 0 0 0 3

TOTAL 18 4 3 5 36

Figure 7 illustrates how early-stop sampling could result in inaccurate depen-

dence profiling. The array v is read by lines 6 and 8 and can be written by lines

12 and 13, depending on the conditional branch at line 10. If the branch always

goes to one side before the sampling stops and to the other side afterward, the

dependence profile will be incorrect.

We also found another counter example of early-stop sampling in SPEC2006

436.cactusADM as shown in Figure 8. The loop at 307 is mistakenly reported by

early-stop sampling as parallelizable because only the last few iterations of the

loop exhibit loop-carried dependences.

Issue with Memory Overhead A sampling may reduce the time overhead, but

not necessarily the memory overhead. Figure 9 shows the memory overhead of

OmpSCR’s Jacobi when various profiling mechanisms are applied: (1) “Native”

indicates the native run without profiling; (2) “Baseline” corresponds to the

pairwise method without sampling; (3) “SD3” is our proposed memory-efficient

mechanism; (4) the rest are pairwise method with different sampling policies.

Jacobi’s main data structure is a matrix whose memory requirement increases

quadratically with respect to the input parameter (the matrix dimension size).
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1 void qs(int *v, int first , int last) {

2 int start [2], end [2];

3 start [1] = first , end [0] = last;

4 ...

5 while (start [1] <= end [0]) {

6 while (v[start [1]] < pivot) // Read v[..]

7 start [1]++;

8 while (pivot < v[end [0]]) // Read v[..]

9 end[0]--;

10 if (start [1] <= end [0]) {

11 int temp = v[start [1]];

12 v[start [1]] = v[end [0]]; // Write v[..]

13 v[end [0]] = temp; // Write v[..]

14 start [1]++ , end[0]--;

15 }

16 }

17 ...

18 }

Figure 7: The partitioning algorithm in Quicksort

307 for(item = 0 ; item < group ->n_scheditems; item ++)

308 {

309 switch(group ->scheditems[group ->order[item ]]. type)

310 {

311 case sched_function: // call work function

...

322 case sched_group: // call work function

...

338 }

339 }

Figure 8: From ScheduleTraverse.c in 436.cactusADM

When the matrix is 3000x3000, the pairwise method requires over 12 GB. Even

when sampling techniques are used, the memory overhead is still quite high: an

order of gigabytes of memory. When the matrix is 5000x5000, the best sampling

result (burst sampling) consumes nearly 4 GB. In contrast, SD3 requires only

600 MB, which is just 1.1 times the native memory consumption, by completely

compressing most of the memory references. In such a perfect compression

case, the memory overhead of SD3 is asymptotically close to the native memory

consumption. Simple sampling techniques do reduce memory burdens but may

require significant additional memory by an order of magnitude.
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Figure 9: Memory overhead of Jacobi in OmpSCR: Total memory consumptions

are measured with different profiling mechanisms and sampling policies.

2.5 Motivations for Dynamic Parallel Speedup Prediction

Prospector has a parallel speedup prediction component, Parallel Prophet, which

is based on dynamic profiling and emulations instead of on analytical or static-

only approaches. This section reviews the previous analytical approaches for

formulating parallel speedups and then claims that a dynamic approach is an

attractive solution.

Presumably, Amdahl’s law [6] is the first analytical model to estimate parallel

speedup. If a programmer knows f , the fraction of perfectly parallelizable sections

of a given serial program, then S, the ideal speedup on n processors, is formulated

as follows:

S =
1

(1− f) + f

n

. (1)

Amdahl’s law provides a fundamental insight for parallelization: The non-

parallelizable part of a program eventually limits the parallel speedup. However,

Amdahl’s law assumes two conditions:

• All threads execute an equal amount of work (i.e., homogeneous parallel

workload); and

• No synchronization among threads exists.
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Unfortunately, many parallel programs do not meet the above ideal assump-

tions. Amdahl’s law itself is not an effective method to predict the speedups

of realistic programs. There are many extensions of Amdahl’s law such as

Gustafson’s law [36], Karp and Flat metric [66], a model for multicore chips [152],

a model for asymmetric multiprocessors [44], and Eyerman and Eeckhout’s work

for modeling critical sections [29]. We discuss the last work.

Eyerman and Eeckhout recently proposed an extension of Amdahl’s law

by modeling critical sections with a simple probabilistic model [29]. They

approximate the total execution time on a parallel machine based on the following

assumptions:

• All threads execute for an equally long time;

• Each thread will execute an equal amount of critical section; and

• Critical sections are entered at random times and threads contend randomly

to enter these sections.

The critical section behavior is modeled with two scenarios: (1) On low-

lock contention, the total execution time would be the average of the per-thread

execution time; (2) on high-lock contention, the slowest thread will determine

the execution time. The final formula is shown as follows (the two parts in the

formula represent each case, respectively), where (a) fseq is the totally sequential

fraction, (b) fpar,ncs is the purely parallelizable fraction that does not need any

critical section, (c) fpar,cs is the parallelizable fraction, but executed inside critical

sections, (d) Pctn is the probability for two critical sections to contend, and (e) Pcs

is the probability for entering a critical section during parallel execution:

S =
1

fseq + max
(

fpar,csPcsPctn +
fpar,cs(1−PcsPctn)+fpar,ncs

n
; fpar,csPctn +

fpar,cs(1−Pctn)+fpar,ncs

2n

) .
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This model proves a common understanding of programmers and computer

architects: Parallel speedup is both limited by the sequential part and by synchronization.

However, the assumptions of this extension may still be too restrictive to model

realistic programs. The authors also clearly stated in their paper that the goal

of the model was not to present accurate quantitative performance numbers and

predictions [29].

Likewise, all simple analytical models with a few parameters are based

on ideal assumptions. However, these assumptions are often broken. Many

parallel programs do not have a homogeneous workload, and the length of

a critical section may vary. Speedups may be heavily affected by scheduling

policies and implementations of a specific parallel library, which cannot be

easily modeled analytically. Furthermore, obtaining the inputs to the models

is not straightforward. For example, the equation of Eyerman and Eeckhout’s

model requires challenging parameters such as Pcs and Pctn that mostly need

dynamic profiling. No doubt these concise models provide insight and a broader

understanding for programmers and architects. However, they are not powerful

to predict speedups from realistic serial programs.

As part of the continuous efforts to build a more powerful analytical model,

a number of researchers have proposed more sophisticated analytical models to

predict speedups practically including stochastic approaches (Refer to the related

work in [2]). Among them, Adve and Vernon’s work [2] is similar to one of our

prediction algorithms, the Fast-Forward method (Section 6.3.1). Given a task graph

(a sort of dependence graph), the task scheduling function (which defines how

parallel tasks will be executed on processors), and other inputs, their analytical

model performs a two-level analysis. The high-level analysis tracks the execution

states of processors by traversing the task graph and evaluating the scheduling

function. Although this two-level analysis itself is analytical, the model demands
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Figure 10: Comparison of the simple analytical models that need a few parameters

and our dynamic approach: our profiling and dynamic emulation model: (1)

unequal thread execution time (load imbalance), (2) differences in scheduling

policies, (3) multiple critical sections with arbitrary lengths and contentions, (4)

nested parallelism, and (5) parallel overhead and effects of caches and memory.

a task graph that mostly requires dynamic analysis. Unfortunately, because

obtaining the inputs to their model is a separate step and non-trivial, it is not easy

for programmers to use this approach practically.

To address the fundamental weaknesses of these analytical models, we use a

dynamic approach using low-overhead runtime profiling and emulations to predict

parallel speedup. Figure 10 summarizes the comparison of our dynamic approach

with the two static approaches. Our dynamic approach can model many realistic

parallel programming patterns and characteristics as follows:

1. Arbitrary workload imbalance;

2. Differences in scheduling policies (e.g., a simple static scheduling like omp

schedule(static,1) in OpenMP and an advanced dynamic scheduling such

as work-stealing [11]);

3. Complex parallel patterns such as nested and recursive parallelism;

4. The overhead of operating system-level scheduling and synchronizations;

5. The overhead and detailed semantics of a parallel library (e.g., TBB [56] and

Boost.Thread [12], MPI [35]) or parallel language extensions (e.g., OpenMP
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[138], Cilk Plus [49]; Task Parallel Library [80], OpenCL [67]; and

6. Predicting negative effects on parallel speedups due to increased traffic of

caches and memory.

Chapter IV introduces our dynamic approach for speedup prediction. Our

predictor currently requires manually inserted annotations on a serial program.

Annotations are used to specify potentially parallelizable and protected sections.

Note that this approach using annotation, profiling, and emulation is first used in

the Suitability analysis of Intel Parallel Advisor [51]. However, we contribute a

new speedup prediction algorithm and a memory performance model to enhance

the prediction ability. The following section discusses the motivation.

2.6 Motivations for A New Speedup Prediction Algorithm

A couple of recent works for the dynamic prediction of speedups were proposed:

Cilkview [42], the Suitability analysis in Intel Parallel Advisor (denoted by

Suitability) [51], and Kismet [62]. Among them, Suitability is the most closely

related to our work, as Parallel Prophet also takes the same basic steps: annotation,

profiling, and emulation. To the best of our knowledge, Suitability is the state-of-

the-art technique in predicting speedups in helping the parallelization steps. The

others focus on a different perspective, which is discussed in Chapter III.

As summarized in Figure 10 and the previous section, a dynamic approach

resolves many problems in realistic speedup prediction. First, both our algorithm

and Suitability predict well the basic patterns of Figure 11, which illustrates a

single top-level parallel loop, arbitrary workload lengths, and a single lock5 with

arbitrary lengths and contentions.

5Current Suitability supports only a single global lock while Parallel Prophet supports multiple
locks. We do not speculate that supporting multiple locks requires significant efforts.
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1 for (int i = 0; i < N; ++i) { // To be parallelize.

2 Compute (...); // Computation length varies.

3 if (do_lock1) //

4 Compute (...); // To be protected by a mutex.

5 Compute (...); //

6 }

Figure 11: Easy-to-predict parallel programming patterns by dynamic analysis: A

single top-level parallel loop + workload imbalance + a single lock.

However, Suitability currently (as of 2012) is not effective in capturing other

complex characteristics of programming patterns, various parallel overhead, and

differences in parallel programming paradigms. After surveying OmpSCR [103,

24] and NPB [64], we present the cases that provide the motivation for our new

prediction algorithm:

• Scheduling policies: In Figure 12(a), the amount of work for each iteration of

the for-i varies. Scheduling policies can affect speedups significantly in

this case. A good example is also shown in Figure 67, where speedups on

two cores can be different by more than 20% due to OpenMP’s scheduling

policies. Speedup prediction should consider such policies. Section 2.7.1

summarizes three representative scheduling policies of OpenMP.

• Inner loop parallelism: Parallelizing an outer loop yields better speedups

by minimizing spawning and joining overhead.6 However, as shown in

Figure 12(a), programmers are often forced to parallelize inner loops when

an outer loop is not parallelizable. Predicting the cost and benefit of inner

loop parallelism would be very informative to the programmer. Thus, precise

modeling and estimation of the parallel overhead is necessary.

• Nested and recursive parallelism: Speedups of nested or recursive parallel

6In general, a parallel library or extension does not create physical threads on every parallel
loops. Instead, it pre-creates threads and parks them. However, there are still overhead of
dispatching logical tasks, deallocating the tasks, and the final implicit barrier.
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1 for (k = 0; k < size - 1; k++) {

2 #pragma omp parallel for schedule(static ,1)

3 for (i = k + 1; i < size; i++) {

4 L[i][k] = M[i][k] / M[k][k];

5 for (j = k + 1; j < size; j++)

6 M[i][j] = M[i][j] - L[i][k]*M[k][j];

7 }

8 }

(a) Workload imbalance and inner loop parallelism in LUreduction: The trip count of inner loops

varies. Scheduling policies such as (static,1) affect the speedup.

1 void FFT (...)

2 {

3 ...

4 // Divide the task and run in parallel and recursively.

5 cilk_spawn FFT(D, a, W, n, strd/2, A);

6 FFT(D+n, a+strd , W, n, strd/2, A+n);

7 cilk_sync;

8

9 cilk_for (i = 0; i <= n - 1; i++) {

10 ...

11 }

12 }

(b) Recursive and nested parallelism in FFT : For efficient implementation of recursion, the original

OpenMP-based (version 2.0) implementation is replaced by Cilk Plus [49].

Figure 12: Hard-to-predict parallel programming patterns in OmpSCR.

programs are not easy to predict because their runtime behavior heavily

depends on a parallel library implementation. Figure 12(b) shows the

recursive parallelism, which is also a form of nested parallelism. We verified

that a naive implementation by OpenMP’s (version 2.0) nested parallelism

yields poor speedups. An experimental result is presented in Section 2.7.2.

TBB, Cilk Plus, and OpenMP 3.0’s task are much more effective in recursive

parallelism. The differences in the implementations of parallel libraries

should be modeled to predict speedup precisely.

• Memory-limited Behavior: Figure 13 (see “Real”) shows an example in which

the parallel performance of NPB FT does not scale. Our detailed profiling

verifies that the increased memory traffic in parallel execution caused the
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Figure 13: FT in NPB. Input set is ‘B’ of 850 MB memory footprint. Suitability

overestimates speedups. Speedups on this machine are saturated due to

increased memory traffic.

saturated speedups. On a higher memory bandwidth computer, the degree

of speedup saturation was decreased compared to Figure 13. However,

current speedup predictors, such as Suitability and Kismet, cannot model

this kind of memory effects. The “Pred” in Figure 13, the prediction results of

Suitability, is obviously overestimated. This experiment reveals that current

Suitability lacks the ability of predicting parallel memory performance. This

motivates us to build a model that predicts such speedup saturation.

From the above observations and motivations, Parallel Prophet proposes two

new algorithms: (1) the program synthesis-based emulation algorithm (denoted by

the synthesizer) to predict a more diverse and complex parallel programming

pattern considering the effects of scheduling (both operating systems and parallel

libraries), parallel overhead, and differences in parallel libraries; (2) a memory

performance model to predict saturated speedups based on an analytical model that

trained by our microbenchmarks. Chapter VI presents Parallel Prophet.

2.7 Background on Scheduling Policies of OpenMP and Cilk Plus

This section provides brief background knowledge on scheduling policies of

OpenMP and Cilk Plus, which is needed to develop Parallel Prophet.
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Table 3: Scheduling policies in OpenMP parallel-for construct

Schedule kind Description

static Iterations are divided into chunks of a size of chunk size.
The chunks are statically assigned to threads in a round-robin
fashion. When no chunk size is specified, the iteration space is
divided into chunks that are approximately equal in size.

dynamic Iterations are divided into chunks of a size of chunk size. Each
chunk is assigned to a thread that is waiting for an assignment.
The thread executes the chunk of iterations and then waits for
its next assignment, until no chunks remain to be assigned.

1 #pragma omp parallel for schedule(kind , chunk_size)

2 for (int i = 0; i < N; i += step) {

3 work (...);

4 }

Figure 14: OpenMP parallel for with schedule clause.

2.7.1 Scheduling Policies in OpenMP

We recap the scheduling policies of OpenMP for which we evaluate in Chapter

VI. Although four kinds of scheduling are defined in OpenMP’s schedule clause

(static, dynamic, runtime, and guided), we focus on static and dynamic with

different chunk size. Figure 14 is a typical OpenMP’s parallel-for code snippet

with an explicit schedule clause that takes kind and an optional chunk size.

Table 3 summarizes the description of the OpenMP clause and parameters [104].

In this thesis, we evaluate three kinds of scheduling: (1) schedule(static,1),

(2) schedule(static), and (3) schedule(dynamic,1). We may omit schedule for

simplicity.

2.7.2 Recursive and Nested Parallelism in OpenMP and Cilk Plus

One of the motivation of the synthesizer is to support a complex nested parallelism

pattern as shown in Figure 12(b). We demonstrate why this pattern is important in

parallel programming with a simple QuickSort program.
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1 #include <cilk/cilk.h>

2 #include <algorithm >

3 #include <functional >

4

5 void qsort_cilk(int* begin , int* end)

6 {

7 if (begin != end) {

8 // The last item is the pivot.

9 --end;

10 // Do partitioning.

11 int* middle = std:: partition(begin , end ,

12 std:: bind2nd(std::less <int >(), *end ));

13 // Pivot is in the middle.

14 std::swap(*end , *middle );

15

16 // Recursively sort two sub arrays divided by the pivot.

17 cilk_spawn qsort(begin , middle );

18 qsort (++ middle , ++end);

19

20 cilk_sync;

21 }

22 }

23

24 // Assumes that the array A and N are given.

25 qsort_cilk(A, A + N);

(a) A parallelized QuickSort by OpenMP’s nested parallelism

1 void qsort_omp_recursive(int* begin , int* end)

2 {

3 if (begin != end) {

4 ...

5 if (get_total_thread_num () > THRESHOLD) {

6 // If the number of threads is greater than a threshold

7 // (e.g., physical core number), stop the parallel execution.

8 qsort_omp_recursive(begin , middle );

9 qsort_omp_recursive (++ middle , ++end);

10 } else {

11 #pragma omp parallel sections /* nowait */

12 {

13 #pragma omp section

14 qsort_omp_recursive(begin , middle );

15 #pragma omp section

16 qsort_omp_recursive (++ middle , ++end);

17 }

18 }

19 }

20 }

(b) A parallelized QuickSort by Cilk Plus

Figure 15: Parallelized QuickSort by Cilk Plus and OpenMP: (a) cilk spawn and

cilk sync are the Cilk Plus’ keywords. If these keywords are deleted, the code is a

valid serial QuickSort program. Using OpenMP 3.0’s task is similar to this version.

(b) Notice a throttling code to control the number of threads. omp set nested(1)

must be called to enable nested parallelism.
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Figure 15 contains two parallel implementations of QuickSort using Cilk Plus

[49] and OpenMP [138]. Note that the serial code of QuickSort can be obtained

by removing Cilk Plus keywords (cilk spawn and cilk sync), which is also known

as serial elision [31]. The Cilk Plus implementation simply inserts cilk spawn at

the point of the parallelism. This keyword overrides a function call statement to

tell the runtime system that the function may run in parallel with the caller [49].

The main thread continues to call line 18 at Figure 15(a), but a logical parallel task

performs line 17. The runtime decides whether both calls at line 17 ad line 18 can

run in parallel. When qsort cilk is recursively called, the number of logical task

can be exponentially increased. However, the runtime, which implements a work-

stealing dynamic scheduler [11], efficiently maps the spawned tasks to cores.

An implementation using traditional OpenMP may not be as efficient as

Cilk Plus. Figure 15(b) uses OpenMP’s nested parallelism. Most OpenMP

implementations disable nested parallelism by default. One must enable by either

calling omp set nested(1) or setting OMP NESTED environmental variable. However,

OpenMP’s parallel construct physically creates multiple threads specified by

omp num threads() and OMP NUM THREADS. This behavior could easily bloat the

number of threads, resulting in slowdown. The code at Figure 15(b) contains a

throttling code to limit the number of total physical threads. However, OpenMP

3.0 introduces a new task construct, which is similar to cilk spawn. Both

OpenMP’s new task and cilk spawn are ideal to parallelize irregular problems

including recursive algorithms and unbounded loops.

Figure 16 shows an experimental result of four different implementations: (1)

a Cilk Plus version as shown in Figure 15(a), (2) an OpenMP’s nested parallel

version as shown in Figure 15(b), (3) an OpenMP 3.0’s task version, and (4) a

parallelized version of an iterative QuickSort algorithm using traditional OpenMP.

39



0

1

2

3

4

5

6

2 4 6 8 10 12

S
p

e
e

d
u

p
s 

Number of Cores (Threads) 

Cilk Plus

OMP-Recur

OMP-Task

OMP-Iter

Figure 16: Speedups of various parallelization versions of QuickSort: A simple

quick sort program is parallelized by (1) Cilk Plus, (2) OpenMP with recursive

parallelism, (3) OpenMP 3.0 with task parallelism, and (4) OpenMP with an

iterative algorithm.

The difference of the speedups are quite significant: while “Cilk Plus” and “OMP-

Task” show scalability, the performance of the other implementations decrease as

the core number increases.

2.8 Motivations for Post-Analyzer of Dependence Profiler

A profiling result of SD3, Prospector’s loop and dependence profiler, is a list of

discovered data-dependence pairs in either a loop or a function. This raw result

does not directly give hints on parallelism and code transformation. Programmers

manually have to parse a raw result, which is sometimes impossible.

A result of an embarrassingly parallelizable loop may be straightforward: no

data-dependence pair would be reported. However, even for this case, the raw

result could have data dependences from (1) loop induction variables (although

they could be easily filtered at the instrumentation or static analysis phases) and

(2) static and global variables that need appropriate privatization. Programmers

need to parse such dependences to write a parallel program.

Figure 17 shows an example of a raw result of the MPEG2 decoder in
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====================================================================================
Loop name: slice :168@1
Location: MyMediabench\mpeg2\src\mpeg2dec/getpic.cpp(1 minjang68)
Parent loop: <invalid >, Parent func: slice
Insts = 7865588 AvgInst = 327732 Coverage = 93.71%
Invocs = 24 TotTrip = 192 (Min: 8, Max: 8)

# of conflicted pairs: 1044
+-------+---------------------------------+---------------------------------+------+
| Type | Source | Sink | Freq |
+-------+---------------------------------+---------------------------------+------+
| liRAW | (R, ld, 142, 2, Flush_Buffer) | (W, ld, 194, 3, slice) | 8309 |
| lcRAW | (R, ld, 142, 2, Flush_Buffer) | (W, ld, 142, 2, Flush_Buffer) | 168 |
| ... | ... | ... | .. |
| lcWAW | (W, tab , 464, 4, Decode_MPE ..) | (W, tab , 464, 4, Decode_MPE ..) | 26 |
| ... | ... | ... | .. |
| lcWAW | (W, PMV , 1163, 3, decode_mac ..) | (W, PMV , 1174, 3, decode_mac ..) | 5 |
| ... | ... | ... | .. |
+-------+---------------------------------+---------------------------------+------+

Figure 17: An example of a raw result of SD3: The MPEG2 decoder in Media-

Bench [79]: This raw result also includes the result of loop profiling. All discovered

pairs of data dependences are reported. Legend: (1) li{RAW|WAW|WAR}: loop-

independent dependences, (2) lc{RAW|WAW|WAR}: loop-carried dependences,

(3) Source/Sink: (RW, variable name, line, column, function).

MediaBench [79]. The results include details of found dependences (data-

dependence distances are not shown) and loop profiling. This MPEG2 is known

to be parallelizable by pipelining [139, 140, 124]. However, the number of the

reported dependence pairs are more than a thousand.7 It is almost impossible

for programmers to extract the hidden pipeline parallelism by hand. Prospector

should provide a post-analysis algorithm to extract parallelism from the raw

results, which in turn gives hints on code transformation. Specifically speaking,

this post-analysis algorithm provides a way to avoid the discovered dependences

for parallelization.

In particular, we investigate the following important techniques to avoid a

data-dependence pattern: (1) privatization, (2) reduction, (3) a simple mutex,

(4) barriers, and (5) pipelining. For example, if discovered dependences are

only output or anti-dependences from non-auto variables, privatization would be

enough to avoid these dependences. The other patterns require more studies to

7The current instrumentation logic conservatively instruments loads and stores. The result may
have unimportant dependences that do not prevent parallelization.
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understand the correct patterns and behaviors. When such hidden parallelism is

exposed, the next step is to provide hints on code transformation, which can be

highly informative for both programmers and potential compiler optimizations.

This post-analysis finally enables the integration of Parallel Prophet and SD3.

Parallel Prophet requires annotations that are manually inserted by programmers.

However, the post-analyzer algorithm can provide an assisted annotation process.

The post-analyzer completes Prospector so that holistic advice for the paralleliza-

tion steps will significantly reduce the burdens of the parallelization.

2.9 Overview of Prospector

Figure 18 sketches an overview of Prospector: (1) an efficient loop profiler, (2) data-

dependence profiler, (3) speedup predictor, and (4) post-analyzer.

Prospector takes a serial program to be parallelized, in either binary or source

code and performs instrumentations with some static analysis. For executables,

Source Binary 

Static Analysis + 
Instrumentation 

Optional 

• Programmers: Advice on parallelization model 
and code modification 
• Compilers: Aggressive optimizations and 

automatic parallelization 

Loop Profiling + 
Data-Dependence Profiling 

Input 

Post-Analyzer 

Speedup Prediction 

Annotated 
Source 

Recompiling 

Interaction with programmers 

Figure 18: Overview of Prospector.
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Prospector uses Pin [85] for the instrumentation. LLVM [77] is used for source-

level instrumentation and static analysis. Except for the overhead experiments of

SD3 in Chapter V, we use LLVM-based Prospector for the other studies.

The SD3 component efficiently performs loop profiling and data-dependence

profiling together. Recall that the dependence profiler is built upon the loop

profiler. Efficient loop profiling is achieved by static loop-structure discovery and

minimal instrumentation. In order to minimize the overhead of data-dependence

profiling, SD3 performs compression and parallelization.

The post-analyzer processes raw results of SD3. The focus of this step is to find

feasible ways to avoid discovered data dependences that prevent parallelization.

Because there is no feasible solution to avoid an arbitrary data-dependence pair,

we attack this problem by its patterns such as reductions and pipelining.

Parallel Prophet, the speedup predictor of Prospector, profiles an annotated se-

rial program in very low overhead and emulates the expected parallel behavior for

a given parallel programming paradigm, the number of threads, and a particular

scheduling policy. Parallel Prophet also employs a memory performance model to

predict saturated speedup for a certain case.

The final assorted results will help both programmers and potential compiler

optimizations. In this thesis, we focus on the former: supporting programmers in

writing parallel code. Our suggested parallelization steps, introduced in Section

1.1, will be much easier than an approach without tools and advanced analyses.
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CHAPTER III

RELATED WORK

This chapter summarizes the related researches to the components of Prospector:

loop profiling, data-dependence profiling, dynamic speedup prediction, and post-

analysis algorithm. Finally, an example of state-of-the-art software support is

presented and compared to Prospector.

3.1 Related Research on Loop Profiling

Intel Parallel Advisor [51] provides some loop-level profiling, but a profiling result

is a simple extension of traditional function-level profiling. A loop is simply

considered as a function. Execution time in a loop is the only reported information.

As argued in Section 2.1, detailed loop profiling is informative, such as average

trip count, invocation count, and statistics of iteration lengths. Moseley et al. [94]

proposed LoopProf for this need. LoopProf, which is implemented on Pin [85],

takes an x86 binary. First, LoopProf instruments the beginning of basic blocks to

capture the execution of basic blocks. During the runtime, executed basic blocks

are stored in a stack. If a duplicated basic block is detected in the stack, LoopProf

concludes that a loop has been detected and started. Although this approach is

simple to implement and robust to many exceptional cases in x86 binary, its time

overhead is fairly high on average 24 times slowdown. Because the loop profiler

becomes the platform of the data-dependence profiler of Prospector, the overhead

should be minimized.
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3.2 Related Research on Data-Dependence Profiling

One of the early works that used dynamic data-dependence analysis is Petersen

and Padua’s work [108]. They used dynamic dependence analysis to evaluate

the effectiveness of static dependence tests. Blume et al. used a dynamic test

called PD test to detect dependence dynamically in a compiler [10]. Similarly,

Rauchwerger and Padua used a runtime data-dependence analysis in their LRPD

test. These three works, however, did not provide detailed algorithms and

overhead data. Larus proposed a parallelism analyzer pp [75] with detailed

descriptions. pp dynamically detects loop-carried dependences in a program.

Larus analyzed six programs and showed that two different groups, numeric and

symbolic programs, had different dependence behaviors. The profiling algorithm

dynamically computes loop-carried dependences in loop nest, which is very close

to our pairwise method. pp had severe memory and time overhead, but reducing

the overhead was not in the scope of the work. To avoid excessive overhead, pp

only records a single read of a location. As a result, pp cannot detect all kinds of

anti-dependences.

Tournavitis et al. [141] proposed a dependence profiling mechanism to

overcome the limitations of automatic parallelization. Similarly to pp, their

dependence profiling algorithm is similar to our pairwise method, and they did

not discuss the overhead problem. Zhang et al. [156] proposed a data-dependence-

distance profiler called Alchemist. Their tool is specifically designed for the future

language constructor that represents the result of an asynchronous computation

[32]. Although they claimed there was no memory limitation in their algorithm,

they evaluated very small benchmarks. The number of executed instructions of a

typical SPEC 2006 reference run is on the order of 1012, while that of the evaluated

programs in Alchemist is less than 108. von Praun et al. [148] proposed a notion

of dependence density: the probability of existing memory-level dependencies
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among any two randomly chosen tasks from the same program phase. They also

implemented a dependence profiler by using Pin. The author informed us that the

runtime overhead was similar to our pairwise method.

The above works used the data-dependence profiling, but no work explicitly

handles the overhead of the data-dependence profiling. To the best of our

knowledge, we have presented the first efficient algorithm in the data-dependence

profiling domain. Ramaseshan briefly sketched this overhead problem in his

master’s thesis [115], but did not provide a concrete solution.

After our SD3 work, Yu and Li recently have proposed an algorithm, multi-

slicing [153], which attacks the overhead problem. One of the key ideas of multi-

slicing shares the same insight with our DAS-ID optimization presented in Section

5.3.5. DAS-ID optimization is to reduce dependence checking space by comparing

only memory references from the same dynamic-allocation site. Similarly, multi-

slicing partitions a program into many independent slices. The partitioning can be

done in various granularity via compiler-time analysis and runtime techniques.

For example, they divide a program into disjointed alias classes by a compiler’s

interprocedural pointer analysis. Because each slice accesses a disjointed memory

space, different slices can be profiled in parallel. The idea is novel, and we

believe SD3 can also employ the algorithm of multi-slicing. The performance

improvement is also impressive, but their baseline implementation is too slow.

From our experience in building the pairwise method, our first implementation

sometimes showed a 5,000+ times slowdown. However, after applying important

implementation techniques, notably PC-set optimization (Section 5.2.6) and other

programming techniques (Section 5.5.2), the overhead was significantly reduced

as low as a couple of hundreds slowdown.
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3.2.1 Data-Dependence Profiling for Speculative Parallelization

The concept of dependence profiling already has been used for speculative hard-

ware based optimizations. TLS (thread-level speculation) compilers speculatively

parallelize code sections that do not have many data dependences. Several

methods have been proposed [136, 16, 25, 82, 151], and many of them employ

sampling or allow aliasing to reduce overhead. All of these approaches do not have

to give correct results like SD3 since speculative hardware would solve violations

in memory accesses.

Among these works, the dependence profiler by Chen et al. [16] is close to

our baseline pairwise method. To save space and time, they use a shadow table.

On a memory access, they map this reference to the corresponding entry of the

shadow table via a simple hash function. Although the overhead is lower than our

profiling, it suffers from false positives. The mechanism also employs an advanced

sampling technique other than a random sampling, but this sampling costs the

accuracy of the profiling.

3.2.2 Reducing Time Overhead of Dynamic Analysis

Other than sampling techniques, a number of previous works exploit parallelism

in dynamic analyses to reduce time overhead. Shadow Profiling [95], SuperPin

[149], PiPA [157], Speck [101], and Ha et al. [39] employed parallelization to

reduce the time overhead of instrumentation-based dynamic analyses. Since all

of them focus on a generalized framework, they exploit only task-level parallelism

by separating instrumentation and dynamic analysis. The parallelization of SD3

is a specialized approach in that it should save the time overhead at the same

time. However, there are many design and implementation challenges for the

effective parallelization. First, our memory-efficient profiling needed to be revised

for parallelization as presented in Section 5.4.4. Second, data-level and pipeline
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parallelism are exploited, but we should address additional design issues to

achieve higher speedups, which is discussed in Section 5.4.5.

3.2.3 Limitations of Previous Compression Techniques

A number of techniques to decrease dynamic profiling memory overhead have

been proposed. The root cause of the memory overhead in dynamic profiling is the

amount of dynamic execution history, or dynamic trace. Figure 55 demonstrates

an example of extremely large dynamic trace size at an order of the terabyte.

Many previous works such as Whole Program Paths [76], Whole Execution

Traces [155], METRIC [86], and ParaMeter [113], addressed the space overhead

problem. Their common approach is using specialized data structures and

compression algorithms for instructions and memory accesses of specific patterns.

Larus used SEQUITUR [99] algorithm to compress path trace in whole program

path profiling [76]. METRIC [86], a tool to find cache bottlenecks, introduces PRSD

(power regular section descriptors) compression technique to efficiently capture

regular memory streams, which is comparable to our stride-based compression.

However, these compression techniques aim on only compressing dynamic

execution traces itself. With such techniques, we have to uncompress traces to

calculate data dependences. For example, METRIC decompresses traces before

sending the offline internal analyzer. If we were use this approach, most of

profiling time would have been spent on compressing and decompressing traces.

SD3 is fundamentally different from the previous compression techniques; SD3

computes data dependence directly with the compressed stream.

3.3 Related Research on Dynamic Speedup Prediction

We compare compares Parallel Prophet to three recent dynamic speedup predic-

tion tools: Kismet, Suitability, and Cilkview, in Table 4.
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Table 4: Comparison of the recent dynamic speedup prediction tools. ©: Predicts

well for the experimentation in this chapter; △: Predictions are limited; ×: Not

explicitly modeled; Legend for patterns: (1) P1: Simple loops/locks; (2) P2:

Workload imbalance; (3) P3: Inner-loop parallelism; (4) P4: Recursive parallelism;

and (5) P5: Memory limited behavior.

Name Input to the Profiler
Parallel Program Patterns

Overhead
P1 P2 P3 P4 P5

Cilkview [42] Parallelized code © © © © × Moderate

Kismet [62] Unmodified serial code © △ △ △ △ (Only superlinear) Large

Suitability [51] Annotated serial code © △ △ △ × Small

Parallel Prophet Annotated serial code © © © © △ (Only BW contention) Small

Kismet [62] is a profiler that provides estimated speedups for a given

unmodified serial program. Kismet is different from Parallel Prophet in that

no annotation is needed. Kismet performs an extended version of hierarchical

critical path analysis [33] that calculates self-parallelism for each dynamic region

and then finally reports estimated overall speedups by summarizing all region

profiles. However, the overhead of Kismet typically shows 100+ slowdowns

because memory instructions are instrumented to perform a heavy analysis.

The Suitability analysis in Intel Parallel Advisor [51] estimates speedups of

a program for a couple of threading paradigms and CPU numbers. An input

program must be serial code, but requires annotation to specify parallel and

protected sections. Suitability then collects timing information in the runtime to

build a model of the program’s dynamic parallel-region tree. Speedup estimation

is done by emulating expected parallel behaviors. The emulation of the model is

done by an interpreter that uses a priority queue to fast forward a pseudo-clock

to the next event. The emulation includes some details specific to a threading

paradigm - for example, how long it takes to acquire a lock including contention -

but does not consider memory interactions or exact choices of task to run.

Cilkview [42] is different from Kismet, Suitability, and Parallel Prophet, because

an input program should be already parallelized by Cilk Plus [49]. The purpose of
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Cilkview is not to predict speedups from a serial code. Rather, Cilkview is a tool

that visualizes the scalability of a parallelized program by Cilk Plus.

Suitability is the closest approach to ours and shares the basic methodology.

However, our experimentation reveals that Suitability is currently limited to

support various parallelism models and predict memory behavior.

3.4 Related Research on Post Analysis of Dependence Profiling

3.4.1 Parallelism Discovery Using Dynamic Analyses

Thies et al. proposed a method that verifies the correctness of a given pipeline

configuration [139]. Programmers manually insert annotations to specify the

potential pipeline stages. The annotated serial code is then dynamically profiled to

verify the data dependences between the pipeline stages. Although the annotation

step is a programmers’ responsibility, this work motivates the adaption of the

data-dependence profiler to facilitate such parallelism discovery process. Several

researchers extended this work to assist the manual annotation step using data-

dependence profiling: Tournavitis et al. [140], Paralax [144], and Rul et al.

[124]. These work have a lot of similarity in the approaches. First, a data-

dependence graph or program dependence graph is built, then a graph algorithm

finds potential pipeline stages. Finally, parallelized code is generated.

Alchemist [156] finds concurrency in a serial C program by profiling types and

distances of data dependences. Alchemist is, however, a more specialized tool to

discover program sections that can be called by an asynchronous construct such as

future in Java [32].

Kremlin [33] measures the optimistic potential parallelism in serial code using

an extended critical path analysis (CPA), called hierarchical CPA. The hierarchical

CAP provides parallelism quantity for a specific program region such as a loop

nest. Based on this profiling result, Kremlin creates a parallelization plan to select
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best regions for a target parallel machine considering constraints. An example of

OpenMP using DOALL and DOACROSS are presented. The approach of Kremlin

is complement to our data-dependence-based approach because it can provide

more optimistic and upper bound of the inherent parallelism. However, in order to

provide more sophisticated code transformation information such as privatization

and pipelining, we believe that dependence information should be needed.

ALTER [143] proposed a system to relax some dependences while mostly pre-

serving the original semantics of a program. Based on programmer annotations,

ALTER is based on an observation that some dependences accidental artifacts of

the implementation that will not prevent real parallelization. In particular, the

system allows reordering of iterations or stale reads to expose hidden parallelism.

Knobe and Sarkar proposed a SSA (static single assignment) form for arrays

to expose more parallelism opportunity [72]. Although this is a static compiler

analysis, the idea can be applicable to our dynamic analysis. For example,

dependences from an array can be further analyzed in element granularity. Some

sections of an array then can be renamed to expose more parallelism.

3.4.2 Code Transformation to Avoid Dependences

The essential part of the post-analyzer is providing valuable information to modify

code to avoid and remove dependences for parallelization. This problem can be

seen as a bug-fixing problem if a data dependence is considered as a problem. Our

data-dependence profiling is then a bug-finding problem. In general, devising a

solution for an automated bug fix is much harder than finding bugs.

To the best of our knowledge, we have not found a research work or a

commercial product that provide generalized solutions on writing or patching

code to avoid data dependences for the parallelization purpose, especially for

true dependences. All of the previous works are specialized for a particular
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type of dependences. For example, many researchers addressed the problems

of privatization and reduction for parallelization including Tu and Padua’s work

[142] and the LRPD test [117]. Recently, Privateer [65] is proposed for more

efficient automatic privatization with speculative memory separation. Pipelining

is also practically an important domain. Tournavitis et al. [140] and Rul et al.

[124] implemented algorithms to generate pipelined parallel code automatically

in IR (intermediate representation) level. Their works focused on coarse-grained

pipeline parallelism in popular streaming applications such as bzip and mpeg.

Decoupled Software Pipelining (DSWP) is a novel technique that exploits fine-

grained pipeline parallelism in general-purpose applications [116]. An automatic

algorithm that extracts DSWP is also introduced [106]. The idea is tested on a

cycle-accurate simulator that implemented the synchronization array, a set of low-

latency queues in hardware. All mentioned efforts are related to our post-analyzer

in that their approaches eventually avoid certain types of data dependences.

Behavior Oriented Parallelization (BOP) is a software-based speculative par-

allelization technique [23]. A parallelism analyzer (based on instrumentation)

profiles based on value-based checking (rather than data dependence) the program

execution and identifies potentially parallel regions (PPR). These PPRs are

executed in parallel with a virtual-memory-protection based software speculation.

This approach allows an incremental parallelizing by removing dependences one

by one during the runtime profiling. This thesis, however, does not assume such

speculation techniques.

3.4.3 Bug-Fixing Algorithms in Concurrent Programming

We present two recent bug-fixing algorithms in concurrent programming. Concur-

rency bugs (e.g., data races and atomicity violation) share a similar aspect to data

dependences in that both of them are from interactions of two (or more) tasks.
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Hence, ideas in bug-fixing algorithms for concurrent bugs could be valuable in

finding solutions to avoid data dependences in our post-analyzer.

AFix [63] is an interesting work that suggests a fixing solution for atomicity

violations [83]. Atomicity violations are one of the concurrency bugs along with

deadlock, data races, and ordering violation. Suppose two or more tasks should

be executed as if they are atomic. However, for example, if a lock is omitted or

the scope of the lock is wrong, the intended atomicity by a programmer will be

broken. This work proposes an automated solution to fix such atomicity violations.

Because their work is for already parallelized program, their work is not directly

applicable to the domain of assisting parallelization. However, a set of flow data

dependences whose computation order does not matter can be avoided by a mutex

or a reduction. The idea of AFix could be extended to suggest a parallelization

advice on a particular pattern of data dependences.

Volos et al. [147] showed that software transactional memory (STM) was able to

fix 43 of the 60 concurrency bugs they experimented. This thesis does not consider

TM as a fixing solution, remaining as a future work. The work of Volos et al.

implies that Prospector could provide hints on code transformation using TM to

avoid data dependences toward parallelization.

3.4.4 Parallelism Visualization

Visualizing data dependences is an effective tool that gives a summarized view

of a given serial program. ParaMeter [113] visualized data dependences from

a serial program to show potential data dependences. To visualize, ParaMeter

uses DINxRDY [110], which plots parallel structures and exposes potential thread-

level parallelism (TLP). DIN and RDY stand for Dynamic Instruction Number

and Ready-time, respectively. A particular pattern in a plot may suggest a

different type of parallelism. For example, diagonal lines that have overlapping
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x-extents imply code sections that may have TLP. This plot visualizes the dynamic

information; thus the size of the plot could be extremely large that requires an

additional compression technique.

3.5 Tools for Assisting Parallelization

We first present two to assist parallelization from academia. We then survey the

latest commercial tools to assist parallelization: Intel Parallel Studio [54], Vector

Fabrics’ Pareon [145], and Rogue Waves ThreadSpotter [121].

MAPS [14] is an integrated framework for application parallelization targeting

multiprocessor system-on-chip (MPSoC) and a parallel model called tightly-

coupled thread (TCT) model. MAPS takes a sequential C code and a specification

of MPSoc as inputs, and then performs both static and dynamic analyses that

produce weighted statement control data flow graphs (WSCDFGs). Instead of

using basic block, MAPS exploits WSCDFGs to easily capture coarse-grained

parallelism. The MAPS partitioning tools then extract task parallelism and

generate parallelized C code for the TCT platform.

HPCTOOLKIT [1] is a set of tools that perform profiling, analysis, and presenta-

tion of performance of serial and parallel applications to provide information such

as scalability bottleneck and resource contention. HPCTOOLKIT takes optimized

binaries for language independence and uses statistical profiling and hardware

performance counters for low overhead. This suite also provides interactive tools

such as ‘hpcviewer’ and ‘hpctraceviewer’ to visualize program performance and

pinpoint problematic spots. This suite focuses on the parallel performance analysis

that can even diagnose the scalability problem for a 1024-core Cray system. This

tool is, however, more close to a tool for post-parallelization steps.
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3.5.1 Intel Parallel Advisor

Intel released Parallel Studio Suite [54] in 2010 for C/C++ developers. Parallel

Studio is composed of several components such as Parallel Amplifier, Parallel

Inspector, and Parallel Compose. Among these components, we focus on Parallel

Advisor, a tool to guide manual parallel programming. We summarize its approach

with the example in Figure 19.

Suppose a programmer wants to parallelize a ‘sudoku’ program that generates

a hundred sets of Sudoku puzzle and its solution. First, the programmer finds that

the for-loop at line 128 is the hottest spot by the profiler. Second, the programmer

analyzes data dependences of the loop. Parallel Advisor requires annotations - like

the suitability analysis - by programmers. A programmer manually inserts macros

(ANNOTATE SITE *) to specify where Parallel Advisor will perform data dependence

analysis. SITE defines a container where parallel tasks are running in parallel and

an implicit barrier at the end. Another set of macros (ANNOTE TASK *) are used

to indicate the boundary of a parallel task in the parent SITE. For example, an

132: int main() 

133: { 

134:   Grid::initialize(); 

135:   ANNOTATE_SITE_BEGIN 

136:   for (int i = 0; i != 4; ++i) { 

137:     ANNOTATE_TASK_BEGIN 

138:     generate(METHOD_BOX_LINE); 

139:     ANNOTATE_TASK_END 

140:   } 

141:   ANNOTATE_SITE_END 

142:   return 0; 

143: } 

125: int main() 

126: { 

127:   Grid::initialize(); 

128:   for (int i = 0; i != 100; ++i) { 

129:    generate(METHOD_BOX_LINE); 

130:   } 

131:   return 0; 

132: } 

(a) Original Source Code (b) Annotated and modified source code for checking 

21: Random::Random()  

22: { 

23:   if (!initialized) { 

24:     std::srand(time(0)); 

25:     initialized = true; 

26:   } 

27: } 

... 

34: bool Random::initialized = false; 

Problem: Data communication 

 Read:  random.cxx:23 

 Write: random.cxx:25  #pragma omp critical 

(c) Dynamic analysis result 

(d) Correcting the code 

Figure 19: Overview of Intel Parallel Advisor’s approach: This figure shows how a

simple program is instrumented, analyzed, and finally corrected.
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iteration of a loop will be a task, and a site encloses the loop, as shown in Figure

19(b). The third step is a dynamic analysis based on the annotations. We obtain

results as shown in Figure 19(c). The programmer sees a data communication (i.e.,

read-after-write and write-after-read dependences) on lines 23 and 25 at Random

function. To avoid this dependence, for example, the programmer now uses a

critical section of OpenMP.1 Finally, as a separate step, Suitability predicts an

expected speedup. Parallel Advisor does not give advice on how to avoid found

dependences. Programmers may repeat the second and third steps to correct

dependences.

The approach of Parallel Advisor shares many aspect of Prospector. However,

Prospector enhances key algorithms and introduces new analysis techniques.

Loop profiling in Parallel Advisor only shows the total execution time, not detailed

loop execution. Data-dependence profiling is limited for only small programs and

inputs. Dependence distances and loop-carried information cannot be obtained as

illustrated in Figure 31. Suitability currently cannot predict well on patterns shown

in Figure 12 and Figure 13. No post-analysis is currently available in Parallel

Advisor that Prospector provides.

3.5.2 Vector Fabrics’ Pareon

Pareon [145] is a tool that assist parallelization steps from serial code. The basic

approaches are also similar to Prospector and Parallel Advisor. However, several

distinctions can be found in Pareon.

Figure 21 is a screen capture of Pareon that shows an interactive graphical

user interface to visualize profiling information. For example, loop-carried

dependences are visualized to make it more readable to programmers. Parallel

Advisor is based on Pin, working directly on an x86 or x86-64 binaries. Pareon’s

1In practice, the data dependence in random can be avoided by using a thread-safe random
number generator.
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Figure 20: Vector Fabrics Pareon (formerly vfThreaded x86): A graphical user

interface to show loop-carried dependences.

methodology is intriguing: a programmer uploads to a server where Pareon is

deployed. Pareon then compiles and instruments the program and performs

several analyses including speedup prediction. For dependence profiling, their

approach is similar to our pairwise method (Section 5.2). An engineer from Vector

Fabrics provided us some profiling overhead as shown in Figure 6(c). The tool is

not on a client computer; thus investigating this tool in depth is quite limited.

We currently cannot speculate the mechanism of the speedup prediction. The

contrasts over Parallel Advisor is that they consider both ARM and x86 platforms

and provides a limited form of post analysis such as streaming pattern and

compute dependency.
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3.5.3 Rogue Wave’s ThreadSpotter

Rogue Wave’s ThreadSpotter [121] focuses on memory and cache performance

for scalable parallel performance. This profiler provides memory bandwidth and

latency, data locality, and thread communication and interaction (e.g., to diagnose

false sharing). This tool also employs cache performance prediction, which is one

of our future work for Parallel Prophet’s memory performance model. However,

this is not a speedup prediction tool like Parallel Prophet.

Figure 21: A screen capture of Rogue Wave’s ThreadSpotter (formerly Acumem):

The left figure shows an interface to launch the tool, and the right figure is an

example of the memory latency issues.
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CHAPTER IV

AN EFFICIENT LOOP PROFILER

4.1 Introduction

This chapter introduces an efficient loop profiler that will be the platform of the

data-dependence profiler of Prospector. We implement both binary-level and

source-level loop profilers and discuss the challenges and our experiences.

An example of our binary-level loop profiling result is shown in Figure 22.

Loop profiling collects details of the loop execution including (1) the number

of invocation; (2) the number of total trip counts with some statistics such as

minimum, maximum, and average; (3) execution time and total instruction counts;

and (4) loop hierarchy. Due to binary-level approach, some hex addresses are

exposed at raw level. Debugging information enables mapping to the source code

unless the code is aggressively optimized.

Our goal is to build a low-overhead and robust loop profiler while providing

------------------------------------------------------------------------------------------
main :331 <1400014dd>, main <140001220 > , spec.c, Parent: N/A
Insts = 131 ,229 ,865 ,696 AvgInst = 131 ,229 ,865 ,696 Cover = 100%
Invocs = 1 TotTrip = 3 (Min: 3, Max: 3)
------------------------------------------------------------------------------------------
compressStream :462 <140005e40 >, compressStream <140005da0 >, bzip2.c, Parent: N/A
Insts = 104 ,280 ,265 ,821 AvgInst = 34 ,760 ,088 ,607 Cover = 79%
Invocs = 3 TotTrip = 50,334 (Min: 16778, Max: 16778)
------------------------------------------------------------------------------------------
mainSort :944 <140003015 > , mainSort <1400029b0>, blocksort.c, Parent: mainSort :934 <140002f16 >
Insts = 51 ,570 ,828 ,455 AvgInst = 46,762 Cover = 39%
Invocs = 1,102,818 TotTrip = 19 ,517 ,066 (Min: 0, Max: 13562)
------------------------------------------------------------------------------------------

Figure 22: An example of binary-level loop profiling of 401.bzip in SPEC

CPU2006: For example, “main:311<1400014dd>” reads “a loop at line 311 of

function main (source file: spec.c), and the loop header is at 0x1400014dd”. “Insts”

is the number of executed instruction in this loop throughout the execution. “Cover”

is the ratio of the total time spent in this loop (and their children loops, if any) to the

whole execution time.
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precise results. We discuss the algorithm and challenges. A significant

performance improvement is achieved: from 24 times slowdown [94] for SPEC

CPU2000 to 4 times slowdown for SPEC CPU2006.

4.2 An Efficient Loop-Profiling Algorithm

We mainly focus on the implementation of a binary-level loop profiler. Moseley et

al. proposed LoopProf, a loop profiler for x86 binaries [94] based on Pin [85]. The

key algorithm of LoopProf is the dynamic loop detection. First, all basic blocks

are instrumented to track the beginning of a basic block. In the runtime, an

encountered basic block is pushed on a stack. If a basic block is already in the

stack, a loop has been detected; this basic block becomes the header of this loop.

The benefit of this algorithm is the simplicity and robustness because no static-

time analysis such as loop structure discovery is needed in binary. It is well

known that analyzing x86 and x86-64 binaries is a hard task because of many

idiosyncrasies of x86 and binary itself. As we will discuss, recovering loop

structures and instrumenting from an x86 has several implementation challenges.

However, the time overhead of LoopProf is significant because all basic blocks

are instrumented, and a stack operation and a duplication check are needed. The

overhead of LoopProf for SPEC CPU2000 is more than a 20 times slowdown on

average. In our data-dependence profiler, SD3, the overhead is ultimately limited

by the loop profiler.1 Achieving the optimal performance in loop profiling is

critical. LoopProf provides a sampling technique to reduce the overhead, but we

do not take a sampling technique as claimed in Section 2.4.

To solve this overhead issue, we statically discover the loop structures and

minimally instrument instructions to capture loop beginning, iteration, and

1Strictly speaking, the ideal performance of dependence profiling is the overhead of loop
profiling and the overhead of tracing memory instructions. Because many memory instructions
are instrumented, nearly all basic blocks are instrumented and captured in the runtime.
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termination in x86 binary. For binary-level approach, we first recover CFG and

extract loop structures by using the well-known dominator-based loop-detection

algorithm. Next, basic blocks that contain pre-headers, back edges, and exit

edges are appropriately instrumented. This approach guarantees the optimal

performance because the minimum instructions are instrumented. We solve a

number of technical problems for this approach.

Interestingly, the motivation of LoopProf’s dynamic loop discovery is to avoid

such difficulties in handling x86 binaries. We demonstrate that a robust and fast

binary-level loop profiler can be implemented.

4.2.1 Reconstructing CFGs and Loop Structures from Binary

Forming a control flow graph from a program is the very first step in any compiler-

based analyses, and its algorithm can be easily found in a compiler textbook [3].

Detecting loop structures is also a classic problem, where a complete solution

exists. We use the concept of dominators: A node X dominates a node Y if every

path from the start node to Y includes X. A natural loop is formed by finding a

loop header and a back edge. A pre-header and an exit edge of a loop are also easily

defined. An exit edge connects a basic block inside of a loop and a basic block

outside of the loop. The theory is clear, but implementation in an x86 binary faces

many challenges and corner cases.

Recovering a correct CFG from a sole x86 binary has many obstacles. Function

boundaries are even unknown in static time unless the binary is executed without

heuristics. At least, debugging information, such as DWARF for Linux/ELF [26]

and PDB for Windows [128, 92], is needed to analyze an x86 binary. Unless a binary

is highly optimized, we may find function boundaries and source code mapping

from debugging information.

However, there are still many challenging corner cases. A notable case is
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an indirect branch, where determining outgoing edges from an indirect branch

node is difficult. For an arbitrary dynamic dispatch (e.g., callback), obtaining

target addresses could be impossible in static time. In some cases, however, we

can reconstruct target addresses of an indirect branch such as trampolines and

jump tables. We discuss the later case. A naive translation of a switch-case

statement would be a chain of if-else statements with direct jumps. However,

many compilers optimize with an indirect jump whose targets are stored in an

array called jump table. Each compiler has its own style to generate jump table

code. Once understanding a pattern, we can recover the targets of a jump table,

and a precise CFG can be built in static time. A problem regarding this jump table

is discussed in Case 2 of Section 4.3.

4.2.2 Instrumenting Loop-Behavior Instructions

The critical part of the optimal loop profiling is to minimize instrumented

instructions. We instrument only the following basic blocks: (1) pre-headers, (2)

back-edge blocks, and (3) exit blocks of a loop.2 However, working in binary brings

many challenges. The most critical reason is that we cannot modify basic blocks

during dynamic binary-level instrumentation. In turn, we cannot simplify and

normalize loop structures. In a compiler-based approach, for example, a single

loop pre-header can be created by either introducing a new block or modifying

other blocks. In contrast, multiple pre-headers may exist for a loop in a binary-

level approach.

Figure 23 illustrates how we minimally instrument a loop to capture beginning,

iteration, and termination. As the figure shows, we observe that even a simple loop

is translated differently by major production compilers. Perhaps Figure 23(a) is the

most straightforward style. We instrument the fall-through path of the pre-header

2Back-edge blocks and exit blocks are the basic blocks that contain the sources of back edges and
exiting edges, respectively. These blocks have either a branch or fall-through to the destination.
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(c)

OnLoopStart 

OnLoopIterate 

OnLoopExit 

P Pre-header 

H Header 

E Exit block 

B Back-edge block 

Figure 23: x86-64 loop-code-generation styles of three major compilers (gcc, Intel

C/C++ compiler, and Microsoft C/C++ compiler) and instrumentation points. No

optimization was applied.

(P) with OnLoopStart. The loop header (H) and the exit block (E) are co-located in

a single basic block (denoted by H/E) with a conditional branch. On the taken-

branch of this node, we insert OnLoopExit. Finally, the unconditional jump at the

back-edge block (B) is instrumented with OnLoopIterate. Similarly, the case of

Figure 23(b) is handled. However, Figure 23(c) is an exceptional case. If the trip

count of the loop is zero, this code simply jumps to the outside of the loop. If

the same instrumentation strategy of the cases of (a) and (b) were applied, we

cannot detect an invocation in case of the zero iteration, resulting in a different

profiling result by compilers. To make a consistent result regardless of compilers,

we instrument the taken branch of a pre-header with OnLoopStart immediately

followed by OnLoopExit. Our implementation considers all these cases.

Another subtle issue is the instrumentation position. For example, OnLoopStart

for Figure 23(a) can be inserted either after the last instruction of the P node,

or before the first instruction of the H/E node. We chose the first approach.

OnLoopIterate and OnLoopExit are instrumented in the same way.
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4.3 Challenges: Case Studies and Solutions

The important issues in our binary-level loop profiler are discussed so far. This

section elaborates more complex cases that should be resolved to make a robust

binary-level loop profiler.

P1 

H1 

B1/E1/P2 

H2 

TAKEN_BRANCH bb3 

Loop1 

Loop2 

  

Figure 24: A complex case of binary-level loop instrumentation: A single basic

block can be a back-edge block (B), an exit block (E) and a pre-header (P) at the

same time. The basic block, bb3, is a back-edge block and an exit block of the

Loop1. Simultaneously, bb3 is a pre-header of Loop2.

Case 1 Beside the cases of Figure 23, we further discovered a more complex case

illustrated in Figure 24, where Loop2 immediately follows Loop1. For the basic

block ‘bb3’, not only a back-edge block and an exit block but also a pre-header of

Loop2 are located in this single basic block. We must insert OnLoopStart for Loop2

after inserting OnLoopExit for Loop1. This difficulty is because we cannot create

and edit basic blocks in an easy way with Pin. In a compiler-based approach, the

pre-header of Loop2 will be located in a separate basic block.

Case 2 The problem of indirect branch with switch-case is demonstrated in

Figure 25, which is found a benchmark of SPEC CPU2006. This switch has three

cases, but each case statement contains a loop, although this is unusual. The switch

is optimized to an indirect branch with a jump table. The node “jmp eax” is the
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    Loop1 
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0x200 0x100 

H2 

  Loop2 

H3 

  Loop3 

?? ?? 

Figure 25: A case of an indirect-branch with a jump table: The “jmp eax” node,

which is a switch-case, shares several pre-headers of loops. Unless identifying

targets of the indirect branch (dotted lines), OnLoopStart cannot be instrumented.

node where branch occurs by the loaded address (one of 0x100, 0x200, 0x300)

in register eax. The problem is that OnLoopStart for Loop1 and Loop2 cannot

be instrumented unless the CFG has edges between the “jmp eax” node and the

headers of these loops. If so, the profiler may not able to detect the beginning

of Loop1 and Loop2, but the back-edge blocks are properly instrumented. Our

heuristic to recover jump table, described in Section 4.2.1, solves this problem.

Case 3 An interesting case regarding loop detection is sketched in Figure 26. The

code does not seem to have any loop, but our loop detection algorithm identifies

this combination as a natural loop. Programmers may be confused with such a

false loop. This case can be, however, safely profiled if the switch-case is applied,

as shown in Figure 25. A compiler-based instrumentation does not consider this

combination as a loop. We do not write an explicit routine to handle this case.

1 RETRY:

2 switch (condition) {

3 case A:

4 if (foo() == false)

5 goto RETRY;

6 else

7 break;

8 ...

Figure 26: A combination of switch-case and goto (line 5 to line 1) can be identified

as a loop in x86 binary.
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Case 4 One of the most suffering cases is loop-stack overflow. When a loop is

started, we push an instance of this loop into loop stack. These data structures are

needed to detect recursive loops via recursive function calls. On a loop exit, we

pop the stack. Section 5.2.5 presents the details of the data structures.

The problem is that sometimes we cannot properly detect the beginning

or termination of a loop during the runtime, mostly due to binary-level loop

reconstruction. Figure 25 demonstrated a potential case where a loop start could

be missed. Similarly, a loop exit may not be detected. This unfinished loop stays

on the loop stack, and this loop is called again and again. Then, the loop stack

will be overflow. We observed such cases in several functions of SPEC CPU2006,

especially for functions that parse an input file. The best solution is to instrument

correctly, but we also implement a couple of safety net. We applied the following

heuristics to make the loop profiler more robust:

• We dynamically ignore ill-behaved loops. When beginning, iteration, and

termination of a loop do not match, we first try to correct the behavior. For

example, when a loop is detected as iterated while this loop has not been

in the loop stack, which means the loop start was not detected, we enforce

to perform OnLoopStart for this loop. However, if such mismatch continues

(reaching a threshold value), we stop profiling this loop.

• On a loop-stack overflow, we examine the stack and ignore the most

frequently executed loops. These loops will not be profiled anymore (both

loop and dependence profiling). The stack is flushed all, and then the profiler

resumes the profiling. Note that the size of loop stack is fixed to 256. Section

4.5 discusses the related results with Table 5.

• We provide a black list of loops that should not be profiled. This approach is

a kind of annotation.
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Using a compiler-based approach would an ultimate solution to all the issues

we discussed with the sacrifice of the benefits of a binary-level approach. We

also implement an LLVM-based loop profiler [77]. Clang, a front-end for LLVM,

automatically provides a rich and clean IR (intermediate representation) that

has various data structures (e.g., Function, LoopInfo, and BasicBlock in LLVM).

Pinpointing instructions to be instrumented is also trivial. For example, the loop

start is simply instrumenting the last instruction of the unique pre-header of a given

loop. Some careful considerations are needed to handle early exits in a loop nest

and a complex control flow, but the implementation is much easier. The four

cases of this section are correctly handled by the LLVM-based profiler without

any particular effort. This is because we instrument on an IR that has not been

translated to hard-to-decode indirect branches with jump tables.

4.4 Implementation

We implement both Pin-based and LLVM-based loop profilers, which will be the

base platform for SD3. The basic architecture is based on a producer and consumer

structure where they communicate via inter-process communication. We use a

shared memory object synchronized by semaphores. The producer is either a Pin-

based or an LLVM-based tracer, which reconstructs CFGs and loop structures from

an x86 binary and do instrumentation. In the runtime the tracer transfers events

to the analyzer. An event is to inform (1) the beginning, (2) the iteration, and (3)

the termination of a loop with a loop identifier. The analyzer waits for the shared

queue to be filled by the tracer. Once the queue is full, the analyzer fetches events

and performs loop profiling. Figure 27 summarizes the architecture.
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Pin-based Tracer 

Program 

LLVM-based Tracer 

• CFG and loop   
reconstruction 

• Instrumentation 
Shared Queue 

Program • Compile 
• Instrumentation 

Loop profiling 
Dependence profiling 

Analyzer 
Instrumented 

Program 

Input 

Instrumented 
Program 

Figure 27: Overview of the loop profiler of Prospector: This framework is also

shared by SD3.

4.5 Experimental Results

We present the performance of our loop profiler and compare to LoopProf [94].

We implement the algorithm of LoopProf, the dynamic loop detection. Figure 28

contrasts our profiler and LoopProf when SPEC CPU2006 [134] is profiled with

trained input. The geometric mean of the slowdowns is only 3.95 times while

LoopProf suffers from a 11.3 times slowdown. Note that benchmarks are not

optimized to have correct debugging information and easily interpretable results.

This data clearly shows the effectiveness of our approach. The overhead of the

LLVM-based profiler are also close to this result.

We analyze the robustness of our binary-level loop profiler to tolerate many

corner cases in x86 binaries. We conduct this experiment with the highly optimized

binaries by -O3 of Intel compilers. Table 5 summarizes the results. The first

column shows the number of identified loops from the binaries. Because of the

aggressive optimization, we observed that more loops were identified due to

inlining. The second column indicates the maximum depth of the loop stack.

Except for 445.gobmk, the maximums are less than 30. We encountered a loop-

stack overflow in 445.gobmk. However, our safety net dynamically fixes the stack

and ignores suspicious loops. The third column shows the final depth of the

loop stack, which should be zero unless a program terminates abnormally (e.g.,
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Figure 28: Time overhead comparison of Prospector’s loop profiler and LoopProf

with SPEC CPU2006 and the train inputs: Benchmarks from 473.astr to

483.xalancbmk are INT, and the others are FP. The benchmarks are compiled

without optimizations. Slowdowns are against the native execution.

segmentation fault or exit()). Five INT and two FP benchmarks were terminated

with the non-empty stack. The final column has the numbers of dynamically

ignored loops whose behavior are not correctly captured. Without this ignoring

heuristic, the loop-stack overflow occurs more frequently.

4.6 Summary of This Chapter

This chapter presented the loop profiler of Prospector. We implemented a low-

overhead and robust loop profiler using both Pin and LLVM. In particular, many

x86-binary related challenges were discussed and resolved. The performance of

the loop profiler is minimal: only a 3.95 times slowdown by average against the

native execution in SPEC CPU2006.
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Table 5: Robustness of our binary-level loop profiler for SPEC CPU2006 with the

train inputs: Loop stack overflow occurred once on 445.gobmk. See the maximum

depth of the loop stack was 187. Some programs were not terminated with an

empty loop stack. 403.gcc was not able to be instrumented successfully. This

experimentation was done with optimized binaries.

Name # of loops Max depth Final depth # of ignored

473.astar 139 6 0 0
401.bzip2 205 10 0 0
445.gobmk 1295 187* 12 33
464.h264ref 1921 15 0 0
456.hmmer 885 5 0 0
462.libquantum 118 5 0 0
429.mcf 73 4 0 1
471.omnetpp 549 7 2 6
400.perlbench 1073 15 8 12
458.sjeng 277 8 1 0
483.xalancbmk 3654 20 13 15
436.cactusADM 1304 11 0 3
454.calculix 4350 11 2 4
447.dealII 6538 22 0 0
416.gamess 18897 14 0 0
459.GemsFDTD 1120 5 0 0
435.gromacs 2197 9 0 0
470.lbm 48 3 0 0
437.leslie3d 372 6 0 0
433.milc 462 12 1 0
444.namd 620 4 0 0
453.povray 1395 29 0 15
450.soplex 783 16 0 0
482.sphinx3 625 8 0 0
465.tonto 11465 13 0 0
481.wrf 8071 9 0 0
434.zeusmp 616 6 0 0
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CHAPTER V

AN EFFICIENT DYNAMIC DATA-DEPENDENCE PROFILER

5.1 Introduction

The data-dependence profiler in Prospector, SD3 takes a program and profiles with

a representative input. A raw result from the profiler is list of discovered data-

dependence pairs, as shown in Table 6. The raw results will be further analyzed

by the post-analyzer. All or some of the following information is provided by SD3:

• Sources and sinks of data dependences in source code lines, columns,

variable names if possible, otherwise in program counters1;

• Types of data dependences: Flow (Read-After-Write, RAW), Anti (WAR), and

Output (WAW) dependences;

• Frequencies and distances of data dependences;

• Whether a dependence is loop-carried or loop-independent, and data

dependences carried by a particular loop in nested loops; and

• Data-dependence graphs in functions and loops.

However, Section 2.8 that showed the scalability problem of the current data-

dependence profiling algorithms motivates an efficient mechanism. This chapter

addresses the memory and time overhead problems by proposing an efficient data-

dependence profiling algorithm called SD3. Our algorithm has two components.

First, we propose a new data-dependence profiling technique using a compressed

data format to reduce the memory overhead. Second, we propose the use of

1Data dependences from registers can be analyzed at compile time.
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parallelization to accelerate the data-dependence profiling process. More precisely,

this work makes the following contributions to the topic of data-dependence

profiling:

1. Reducing memory overhead by stride detection and compression along with new

data-dependence calculation algorithm: We demonstrate that SD3 significantly

reduces the memory consumption of data-dependence profiling. SD3 is not a

simple compression technique; we should address several issues to achieve

the profiling to be memory efficient. The failed benchmarks in Figure 6(a) are

successfully profiled by SD3 on a 12 GB memory machine.

2. Reducing runtime overhead with parallelization: We show that our memory-

efficient data-dependence profiling itself can be effectively parallelized. We

observe an average speedup of 4.1× on profiling SPEC 2006 using eight cores.

For certain applications, the speedup can be as high as 16× with 32 cores.

Recall that SD3 is built on our loop profiler. In addition, SD3 is an extension

of the baseline profiling algorithm, the pairwise method. Although some previous

profiling algorithms [75, 81] are similar to the pairwise method, neither of them

precisely and fully developed algorithms for our purpose. Therefore, we first

present the details of the pairwise method and then propose SD3.

5.2 The Baseline Algorithm: The Pairwise Method

This section describes our baseline algorithm, the pairwise method, which is still

the state-of-the-art algorithm for existing tools. SD3 is implemented on top of the

pairwise method. At the end of this section, we summarize the problems of the

pairwise method. We begin our descriptions of the algorithm by focusing on data

dependences within loop nests because loops are major parallelization targets.
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Table 6: Memory traces and discovered dependences of Figure 29.

j = 1 j = 2

i = 1
A[1][1] = A[1][0] + 1; A[1][2] = A[1][1] + 1;

B[1][1] = B[2][1] + 1; B[1][2] = B[2][2] + 1;

i = 2
A[2][1] = A[2][0] + 1; A[2][2] = A[2][1] + 1;

B[2][1] = B[3][1] + 1; B[2][2] = B[3][2] + 1;

(a) Memory traces (Boldface means conflicting accesses)

Loop Var Source/Sink (R/W, Line#, Col#) Dependence (Type, Freq)
For-i B[] (R,5,15)→(W,5, 5) Loop-carried WAR, 2
For-j A[] (W,4, 5)→(R,4,15) Loop-carried RAW, 2

(b) Discovered dependences (Inductions i and j are ignored.)

However, our algorithm is easily extended to find data dependences in

arbitrary program structures, for example, dependences among function calls and

loops across function boundary and recursion. These issues are presented in

Section 5.2.3.

5.2.1 Checking Data Dependences in a Loop Nest

In the big picture, in order to calculate data dependences in a loop, we find conflicts

between the memory references of the current loop iteration and the previous

iterations that have been executed so far.

Our pairwise method temporarily buffers all memory references during the

current iteration of a loop. We call these references pending references. When an

iteration ends, we compute data dependences by checking pending references

1 // A, B are dynamically allocated integer arrays

2 for (int i = 1; i <= 2; ++i) { // For -i

3 for (int j = 1; j <= 2; ++j) { // For -j

4 A[i][j] = A[ i ][j-1] + 1;

5 B[i][j] = B[i+1][ j ] + 1;

6 }

7 }

Figure 29: A simple example of data-dependence profiling.
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For-j: Pending 

A[1][0] R 

A[1][1] W 

B[2][1] R 

B[1][1] W 

For-j: History 

i = 1, j = 1, PC@6 

For-i: Pending 

A[1][0] R 

A[1][1] RW 

B[1][2] W 

B[1][1] W 

B[1][2] W 

B[2][1] R 

B[2][2] R 

1 

i = 1, PC@7 

For-i: History 

3 

i = 1, j = 2, PC@6 2 

For-j: Pending 

A[1][1] R 

A[1][2] W 

B[2][2] R 

B[1][2] W 

For-j: History 

A[1][0] R 

A[1][1] W 

B[2][1] R 

B[1][1] W 

For-j: Pending 

A[2][0] R 

A[2][1] W 

B[3][1] R 

B[2][1] W 

For-j: History 

i = 2, j = 1, PC@6 

For-i: Pending 

A[2][0] R 

A[2][1] RW 

B[2][2] W 

B[2][1] W 

B[2][2] W 

B[3][1] R 

B[3][2] R 

4 

i = 2, PC@7 

For-i: History 

A[1][0] R 

A[1][1] RW 

B[1][2] W 

B[1][1] W 

B[1][2] W 

B[2][1] R 

B[2][2] R 

6 

i = 2, j = 2, PC@6 5 

For-j: Pending 

A[2][1] R 

A[2][2] W 

B[3][2] R 

B[2][2] W 

For-j: History 

A[2][0] R 

A[2][1] W 

B[3][1] R 

B[2][1] W 

Loop-carried WARs on A[][] in For-i 

Loop-carried RAW on A[][] in For-j 

Loop-carried RAW on A[][] in For-j 

Figure 30: Snapshots of the pending and history tables of each iteration when

the pairwise method profiles Figure 29. Each snapshot was taken at the end of an

iteration. ’PC@6’ (PC is at line 6) and ’PC@7’ mean the end of an iteration of For-j

and For-i, respectively. Notice that the tables actually have absolute addresses,

not a symbolic format like A[i][j], which is only for the illustration purpose.

The table entry only shows R/W, but also remembers the occurrence count and

the timestamp (trip count) of the memory address to calculate frequencies and

distances of dependences, respectively.

74



against the history references, which are the memory references that appeared from

the first iteration to the previous loop iteration. These two types of references are

stored in the pending table and the history table, respectively. Each loop has its own

pending and history tables instead of having the tables globally. This is needed to

compute data dependences correctly and efficiently while considering (1) nested

loops and (2) loop-carried/independent dependences.

We explain the pairwise algorithm with a simple loop nest example in Figure 29

and Figure 30. We intentionally use a simple example. This code may be easily

analyzed by compilers, but the analysis could be difficult if (1) dynamically

allocated arrays are passed through deep and complex procedure call chains, (2)

the bounds of loops are unknown at compile time, or (3) control flow inside of a

loop is complex. We detail how the pairwise algorithm works with Figure 30:

• ❶: During the first iteration of For-j (i = 1, j = 1), four pending memory

references are stored in the pending table of For-j. After finishing the current

iteration, we check the pending table against the history table. For the first

iteration, the history table is empty. Before proceeding to the next iteration,

the pending references are propagated to the history. This propagation is done

by merging the pending table with the history table (i.e., an entry of a table is

simply copied if not existed, or merged if existed). This merge operation in

the pairwise method is further discussed in Section 5.2.6, and will be more

complex in SD3.

• ❷: After the second iteration (i = 1, j = 2), we now see a loop-carried RAW

on A[1][1] in For-j by checking the two tables. Meanwhile, For-j terminates

its first invocation.

• ❸: At the same time, observe that the first iteration of the outer loop, For-i,

is also finished. In order to handle data dependences across loop, we treat an
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inner loop as if it were completely unrolled to its upper loop. This is done by

propagating the history table of For-j to the pending table of For-i. Hence,

the entire history of For-j is now at the pending table of For-i. Meanwhile,

any dependence between the history table of For-j and the pending table

of For-i are checked now. (These dependences will be loop-independent

dependences. See more details in the following section.)

• ❹ and ❺: For-j executes its second invocation.

• ❻: Similar to ❸, the history of the second invocation of For-j is again

propagated to For-i. Data dependences are checked, and we discover two

loop-carried WARs on B[][] with respect to For-i.

In this example code, programmers can parallelize the outer loop after

removing the WARs by duplicating B[]. The inner loop is not lucrative for

parallelization due to the short-distant loop-carried RAWs on A[].

5.2.2 Handling Loop-independent Dependences

When reporting data dependences inside a loop, we must distinguish whether

a dependence is loop-independent (i.e., dependences within the same iteration) or

loop-carried because its implication is very different on judging parallelizability of

a loop. While loop-independent dependences do not prevent parallelizing a loop

by DOALL, loop-carried flow dependences generally prohibit parallelization except

for DOACROSS or pipelining.

Consider the code in SPEC 179.art, shown Figure 31. The loop in scan recognize

at line 4 calls match(). The code communicates a result via a global variable,

pass flag. This variable is always initialized on every iteration at line 6 before any

uses, and may be updated at line 18 and finally consumed at line 8. Therefore, a

loop-independent flow dependence exists on pass flag. Because the dependence
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1 void scan_recognize (...)

2 {

3 for (j = starty; j < endy; j += stride) {

4 for (i = startx; i < endx; i += stride) {

5 ...

6 pass_flag = 0;

7 match ();

8 if (pass_flag == 1)

9 do_something ();

10 ...

11 }

12 }

13 }

14

15 void match () {

16 ...

17 if (condition)

18 pass_flag = 1;

19 ...

20 }

Figure 31: Loop-independent flow dependences on pass flag in 179.art.

is loop-independent, this dependence does not prevent parallelization of the

loop.2 If we do not differentiate loop-carried and loop-independent dependences,

programmers might think the reported dependences could stop parallelizing the

loop.

To handle such loop-independent flow dependences, we introduce a killed

address, which is very similar to the kill set in data-flow analysis [3]. We mark

an address as killed once the memory address is written in an iteration. Then,

subsequent accesses within the same iteration to the killed address are no longer

stored in the pending table and reported as loop-independent flow dependences.

Killed information is cleared on every iteration.

In this example, once pass flag is written at line 5, its address is marked as

killed. Any following accesses on pass flag are reported as loop-independent flow

dependences and not stored in the pending table. However, the write operation at

2A global variable pass flag may make loop-carried output dependences, but this dependence
can be removed easily by privatizing the variable.
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1 for (int i = 0; i < N; ++i) {

2 var1 = ...;

3 ... = var2;

4 for (int j = 0; j < M; ++j) {

5 ... = var1;

6 var1 = ...;

7 var2 = ...;

8 }

9 ...

10 }

Figure 32: Three kinds of loop-independent dependences in a loop nest.

line 5 is the first access within an iteration. Therefore, pass flag does not make

loop-carried flow dependences.

Figure 32 illustrates a case of loop-independent dependences involved in a loop

nest. Suppose a program is at the line 9: we have the history table of For-j and

the pending table of For-i is alive. As described previously, the history table

becomes a part of the pending table of the parent. At this moment, we need to

check potential loop-independent dependences because the accesses on var1 and

var2 in lines 5 to 7 are now exposed to the For-i. First, var1 has been killed at

line 2, so the access on 5 is reported as loop-independent flow dependence. The

access on var1 at line 6 may be reported as loop-independent output dependence.

However, this dependence can be disregarded because the closest dependence of

the access at line 6 is the loop-independent anti-dependence with the access at line

5. Regarding var2, notice that there is an entry for var2 in the pending table of

For-i from line 2. Hence, when merging the tables, we see that the access at line

7 makes loop-independent anti-dependence. After merging the entry of var2, we

make this address as killed because the latest access on this address is a write.

5.2.3 Dependences in Functions and Handling Function Calls

We focused on finding data dependences in loops so far, but may want to see data

dependences between function or within a function, not necessarily bounded to
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1 T foo (...)

2 {

3 T ret;

4 do {

5 ret = function_body (...);

6 } while (0);

7 return ret;

8 }

Figure 33: Finding dependences among functions and loops: We treat as if an

imaginary loop (do-while loop), which encompasses the whole function body with

the zero trip count, has been started.

any loop. The pairwise algorithm as well as SD3 easily captures data dependences

between any functions and loops by a simple extension as depicted in Figure 33.

The profiler consider that an imaginary loop, which encloses the entire function

body, is inserted to the function to be profiled. Dependences between functions are

the same with the loop-independent dependences of imaginary loops.

The pairwise method and SD3 handle loop nests with function calls and

recursions without any difficulty with the data structures: LoopInstance and

LoopStack, which are presented in Section 5.2.5.

5.2.4 Computing Data-Dependence Distance

Data-dependence distance [114] is useful in advanced compiler optimizations.

Dependence distance in a loop nest is defined as the difference of two iteration

vectors of the source and sink of a dependence. However, this work does not

compute such distance vectors although we can compute them easily. This is

because we do not just keep an iteration vector for a loop; we simply maintain

a trip count of a loop. However, a loop can easily build an iteration vector by

fetching the ancestor loops’ iteration information from the loop stack. Hence,

distance vectors can be computed without any technical challenges.

In this work, we report only the scalar dependence distance between the source

and the sink of a dependence only within a loop. This information is easily
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obtained by storing the last access iteration number to a memory reference data

structure such as POINT (Section 5.2.5) and STRIDE (Section 5.3.4). Zero of the

distance indicates a loop-independent dependence, and the sign of the dependence

distance indicates the direction of the dependences.

5.2.5 Summary of the Pairwise Method

The pairwise algorithm is summarized in Algorithm 1 with the following data

structures, also sketched in Figure 34:

Address 

... 

... 

POINT 

Pending Table 

Address 

... 

... <PC, RW, count, last_iter#, ... > 

POINT POINT 

History Table 

Dependence 
Checking 

Figure 34: Data structures in the Pairwise method: History and pending tables are

hash tables that associate an address with a list of POINT. All accessing PCs for a

particular memory address are stored to report PC-wise dependence results.

• POINT: This represents a memory access on a particular single memory

address from a PC. This structure has the following fields: (1) the PC

address (or the location identifier of the memory instruction3); (2) the number

of total accesses from this PC; (3) the pointer to the next POINT (if any),

which is needed a memory address can be touched by multiple PCs); and

(4) miscellaneous information including the read/write mode and the last

accessed iteration number to calculate dependence distance.

• Loop: This represents and keeps the information of a static loop such as

loop name, loop location, parent loop, and children loops (if any). This

also maintains the statistics throughout the program execution including the

3In a Pin-based (binary-level) implementation, using program counter addresses is natural. In
contrast, an LLVM-based implementation cannot directly see PC addresses because instrumen-
tation is performed on LLVM IR (intermediate representation). Instead we use an identifer of a
memory instruction represented by an integer (location ID). In this thesis, PC denotes both cases.

80



total invocation count, the average/minimum/maximum trip count per each

invocation, and the average execution time per each invocation.

• LoopInstance: This represents a dynamic execution status of a loop by

storing all runtime information including the number of invocation, current

trip count, observed memory reference information, and discovered depen-

dences. We separate LoopInstance from Loop to handle recursive invocation

of a loop. Each loop instance has important tables for the data-dependence

profiling, named the pending and the history tables.

• PendingTable: This table stores memory accesses in the current iteration of a

loop. The table is implemented as a hash table keyed by memory address for

fast conflict detection.4

• HistoryTable: The history table remembers memory accesses in all executed

iterations of a loop so far. The structure is mostly identical to the pending

table except for the killed bits.

• ConflictTable: All data dependences found throughout the program

execution are stored in this table.

• LoopStack: This stack keeps the history of loop execution like the callstack

for function calls. A LoopInstance is pushed or popped as the corresponding

loop is executed and terminated. We need this loop stack to calculate data

dependences across loop nests.

4A hash table is unordered and slow for enumeration. To address these shortcomings, we have
an auxiliary vector of pointers to POINT, which does not necessarily increase memory consumption
too much. When doing dependence checking and merging tables, we iterate this auxiliary array so
that dependences are reported as they appear, and the enumeration is cheaper.
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Algorithm 1 THE PAIRWISE ALGORITHM

1: When a loop, L, starts, LoopInstance of L is pushed on LoopStack.

2: On a memory access, R, of L’s i-th iteration, check the killed bit of R. If
killed, report a loop-independent dependence, and halt the following steps.
Otherwise, store R in PendingTable. Finally, if R is a write, set its killed bit.

3: At the end of the iteration, check data dependences between the pending table
and the history table. Report any found data dependences.

4: After Step 3, the pending table is propagated to the history table. Propagation is
done by merging the two tables. The pending table is flushed.

5: When L terminates, flush the history table, and pop LoopStack.

6: To handle data dependences in a loop nest, we propagate the history table of
L to the pending table of the parent of L (if exist). Data dependences of the
parent loop will be recursively checked by Step 3.

7: When performing propagation (i.e., element-wise merging), loop-independent
dependences (in the parent loop of L) are also checked and reported if any. In
case of flow and output dependences, the conflicting entry of the history table
of L is not propagated. If an access in the history table is a write, mark as killed.

5.2.6 Optimizing the Merge Operation: PC-set Optimization

We discuss an important issue on the merge operation in Algorithm 1. The merge

operation is merging a history table and a pending table, shown in Figure 34.

Because both history and pending tables are hash tables, merging two hash tables

seems to be straightforward to implement: (1) enumerating each item from the

smaller hash table; (2) checking whether the current key exists in the larger

hash table; and (3) performing content-specific merge operation. At a glance,

the merge operation seems to take linear time, proportional to the size of the

smaller table. However, the content of the hash table is a vector of POINT. This list

structure is needed because (1) a memory address may be accessed by multiple PC

locations, and (2) we report PC-wise sources and sinks of discovered dependences.

Computing an union of two vectors in element-wise requires O(n·m), where n and

m are the lengths of the two vectors, respectively. Maintaining such list structure

not only increases the memory space, but also consumes more processing time.
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Figure 35: Hit ratio of the union-computation of SPEC 2006 (train) during the

merge operation. Some benchmarks are duplicated because of multiple inputs.

In our data from SPEC 2006, the geometry average of the maximum length

of POINT vectors is approximately 20. However, we observed as high as 217 in

483.xalancbmk . To reduce both time and space overhead in the pairwise method,

we introduce PC-set optimization. This is important because SD3 still uses the

pairwise method when memory accesses cannot be compressed.

This optimization is based on the facts that the number of distinct POINT-list

instances for SPEC 2006 was not large: the geometric mean is only 6,242 distinct

instances. Note that we considered only PC and RW mode to distinguish a distinct

POINT-list instance. We also learned that most of the union computation during the

merge operation was repeated. Figure 35 shows that the average hit ratio of the

union-computation cache is approximately 95%.

We employ two structures: (1) a global PC-set table that remembers all observed

distinct lists and (2) a cache for the union computation. Figure 36 depicts this

optimization. The point table has only a single PC-set ID instead of a list structure.

The union computation is a simple table lookup of the union-computation cache.

Only on a cache miss, we compute a union of the two POINT lists. The dependence

checking code is simplified because there is no need to have list-list merge code.

This PC-set optimization, however, is a lossy compression. Introducing a PC

set loses the precise occurrence count per each PC; the total occurrence count

for a single PC set is only saved. Hence, when reporting a data dependence
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Point Table 

100 

Address 

... 

PC_a, W, 4 PC_b, R, 2 

<PC, R/W, occurrence> 

Point Table with PC-set 

Set_3, RW, 6 100 

Address 

... 

<PC-set ID, RW, total_occurrence> 

Set_1 

Set_2 

Set_3 

PC-set Table 

PC_a, W 

PC_b, R 

PC_a, W PC_b, R 

Set_1 ∪ Set_2  =  Set_3 

… 

Union-Computation Cache 

Without PC-set optimization 

PC-set optimization 

Figure 36: PC-set optimization for the fast POINT-list merging. A POINT list can

be represented as a single PC-set ID, resulting in saving the memory. The union

computation of POINT lists is accelerated by the union-computation cache. This

optimization, however, is a lossy compression. A precise occurrence count per PC

is lost. There could be an error in reporting data-dependence frequency.

frequency, the pairwise method may have an error. However, we still make

no error on judging the existence of dependences. From our definitions of the

correctness in data-dependence profiling introduced in Section 2.4, the pairwise

method implements a correct profiler although a strictly correct profiler will not

be implemented. This compression should not hurt the usefulness of dynamic

dependence analysis.

5.2.7 Problems of the Pairwise Method

The pairwise method stores all distinct memory references within a loop invo-

cation. The memory requirement per loop is increased as the memory footprint

of a loop is increased. The memory requirement could be even worse because

of nested loops. As explained in Section 5.2.1, history references of inner loops

propagate to their upper loops. Only when the topmost loop finishes can all the

history references within the loop nest be flushed. Many programs have fairly
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deep loop nest. For example, the geometric mean of the maximum loop depth in

SPEC 2006 FP is 12. Furthermore, most of the execution time is spent in loops.

Hence, the whole distinct memory references often need to be stored (along with

PC addresses and other information) throughout the program execution. In the

following section, we solve this problem by compression and several algorithms.

Profiling time overhead is also critical since extremely many memory loads

and stores could be traced. We attack this overhead by parallelizing the data-

dependence profiling itself. We present our solution in Section 5.4.

5.3 A Memory-Efficient Algorithm in SD3

5.3.1 Overview of the Algorithm

The basic idea of solving the memory overhead problem is to store memory

references as a compressed format. Since many memory references show stride

patterns5, our profiler can also compress memory references with a stride format:

A[a*i + b], where i is an induction variable of a loop, a and b are constant.

However, a simple compression technique is not enough to build an efficient

data-dependence profiler. We tried to compress memory streams and decompress

them on dependence checking by using gzip. This naive way simply does not

work because compression and decompression time just dominate the execution

time. Therefore, we must directly check data dependences without explicit

decompression. Then, the following problems should be addressed:

• How to detect stride patterns dynamically (Section 5.3.2),

• How to perform data-dependence checking with the compressed format

without decompression (Section 5.3.3),

5This is also the motivation of hardware stride prefetchers.
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• How to check dependences efficiently with both stride and non-stride

patterns (Section 5.3.5), and

• How to handle loop nests and loop-independent dependence with the

compressed format (Sections 5.3.6 and 5.3.7).

The above problems are now discussed in following sections.

5.3.2 Dynamic Detection of Strides

We define an address stream as a stride as long as the stream can be expressed

as base + stride distance · n. SD3 dynamically discovers strides and directly checks

data dependences with strides and non-stride references. In order to detect strides,

when observing a memory access, the profiler trains a stride detector for each PC

and decides whether or not the access is part of a stride. Because the sources and

sinks of dependences should be reported, we have a stride detector per PC. An

address that cannot be represented as part of a stride is called a point in this thesis.

Weak 
Stride 

Strong 
Stride 

Start 
First 

Observed 
Stride 

Learned 

1 1 1 

2 2 2 

Figure 37: A finite state machine for stride detection: The current state is updated

on every memory access with the following additional conditions: ❶ The address

can be represented with the learned stride (stride); ❷ The address cannot be

represented with the current stride (point).

Figure 37 illustrates that the state transitions in our stride detector. After

watching two memory addresses for a given PC, a stride distance is learned. When

a newly observed memory address can be expressed by the learned stride, FSM

advances the state until it reaches the StrongStride state. The StrongStride state

can tolerate a small number of stride-breaking behavior. For memory accesses

like A[i][j], when the program traverses in the same row, we will see a stride.

86



When a row changes, however, there could be an irregular jump in the memory

address, breaking the learned stride. Having the WeakStride and StrongStride

states tolerates a few non-stride accesses so that exceptional point references are

minimized.

We separately handle fixed-location memory accesses (zero stride distance) for

stride profiling and future uses. If a newly observed memory access cannot be

represented with the learned stride, it goes back to the FirstObserved state with

the hope of seeing another stride behavior. We do not further attempt to combine

multiple strides from a PC into a single stride even if these strides are generated

by two- (or more) dimensional accesses and compressible.

1 // Stride -compression -unfriendly allocation: nD style.

2 int** data2 = new int*[N];

3 for (int i = 0; i < N; ++i)

4 data2[i] = new int[N];

5

6 // Stride -compression -friendly allocation: 1D style.

7 int** data1 = new int*[N];

8 int* raw1 = new int[N * N];

9 for (int i = 0; i < N; ++i)

10 data1[i] = raw1 + i * N;

11

12 // Using the arrays

13 for (int i = 0; i < N; ++i) {

14 for (int j = 0; j < N; ++j) {

15 ... = data1[i][j];

16 ... = data2[i][j];

17 }

18 }

Figure 38: Two different dynamic allocation styles for 2D array: The two styles are

semantically identical. The former enables perfect stride compression.

We observed that the stride compression behavior on a two- (or higher)

dimensional array is dependent on the allocation style. Consider the two allocation

styles for a 2D array shown in Figure 38. The first style, which is more popular

among programmers, allocates each row separately. This style virtually has no

stride compression opportunity over the rows (data[k][0], 0 ≤ k < N). As a result,

the reading on data1 at line 15 will create N separate strides.
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Now notice that the second style allocates an 2D array in a contiguous 1D

array while providing the exactly same access semantics with the first style. In

this case, the accesses on data2 at line 16 will be completely compressed into a

single stride. The example of the matrix addition in Figure 6(c) shows the case

of the perfect compression. Changing the allocation style from the first to the

second style must not affect any program semantics and correctness. We strongly

recommend the compression-friendly allocation style.6 Nonetheless, even if such

perfect compression is not possible, we still gain much better memory efficiency

over the pairwise method.

Finally, our stride detector does not always require strictly increasing or

decreasing patterns. For example, a stream [10, 14, 18, 14, 18, 22, 18, 22, 26] is

considered as a stride 10 + 4 · n (0 ≤ n ≤ 4). Note that such non-strict strides may

cause slight errors when calculating the occurrence count of data dependences. We

discuss this issue in Section 5.3.8.

5.3.3 Stride-Based Dependence Checking Algorithm

Checking dependences is trivial in the pairwise method. We exploit a hash table

keyed by memory addresses, which enables fast searching whether or not a given

memory address is dependent. Unfortunately, the stride-based algorithm cannot

use such simple dependence checking because a stride represents an interval. This

section first introduces algorithms to find conflicts within two strides (or a stride

and a point, which is superseded to the case of two strides). We will then discuss

how to find efficiently dependence among both strides and points in Section 5.3.5.

The key point in the new stride-based dependence checking algorithm is to

find conflicts of two strides. We attack the problem through two steps: (1) finding

overlapped strides and points, and (2) performing a new data-dependence test,

6Statically allocated arrays on stack or data segment (i.e., global variables) are contiguous. They
are perfectly compressible to a single stride.
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[100,200] 

[92,192] 

[96,196] [80,80] 

[180,210] 

Query: [86, 96] 

Overlapped 

Figure 39: Interval tree (based on a Red-Black Tree) for fast overlapping

point/stride searching. Numbers are memory addresses. Black and white nodes

represent Red-Black properties.

DYNAMIC-GCD, to calculate the exact conflicts.

For the first step, the overlapping test, we employ an interval tree, which is

based on the Red-Black Tree [18]. The test finds all overlapping strides and points

in a tree for a given input. Figure 39 shows an example of an interval tree. Each

node represents either a stride or point. Through a query, a stride of [86, 96]

overlaps with [92, 192] and [96, 196].

This interval-tree based searching imposes a challenge. Finding an intersecting

interval for a given interval is performed in O(log n). On the other hand, this

problem needs to find all interesting intervals. In the worst case, where all the

nodes of an interval tree intersect an input, linear time is required. Nonetheless,

we found that using an interval tree is still better. On a unit test with randomly

generated intervals, we observed that an amortized search time of interval tree

is 30-40% faster than a simple linear search. To avoid excessive interval-based

searching, we further employ an optimization that is presented in Section 5.3.5.

The next step is an actual data-dependence test between two overlapping

strides. We extend the well-known GCD (Greatest Common Divisor) test to

DYNAMIC-GCD test in two directions: (1) we dynamically construct affined

descriptors from address streams to use the GCD test, and (2) we count the exact

number of dependence occurrences (many static dependence test algorithms give

a may answer along with dependent and independent).

To illustrate the algorithm, consider the contrived program in Figure 40. We
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1 for (int n = 0; n <= 6; ++n) {

2 A[2*n + 10] = ...; // Stride 1 (Write)

3 ... = A[3*n + 11]; // Stride 2 (Read)

4 }

Figure 40: A simple example for DYNAMIC-GCD.

consider only the read at line 2 and the write at line 3, but ignore the memory

accesses omitted in “...”. We assume that array A is a type of char[] and begins

at address 10. Two strides will be created:

(1) Stride 1 from line 2: [20, 32] with the distance of 2; and

(2) Stride 2 from line 3: [21, 39] with the distance of 3.

DYNAMIC-GCD returns the exact number of conflicting addresses in the two

strides. The problem is reduced to solving a Diophantine equation:

2x+ 20 = 3y + 21 (0 ≤ x, y ≤ 6). (2)

A Diophantine equation is an indeterminate polynomial equation in which

only integer solutions are allowed. In our problem, we solve a linear Diophantine

equation such as ax + by = 1. DYNAMIC-GCD, described in Algorithm 2, solves

this equation. We detail the computation steps using Figure 41:

 

  delta 

  Stride1:  20 21 22 23 24 25 26 27 28 29 30 

  Stride2: 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

low 
offset 

 

high 

length 

low1 = 20, dist1= 2
 

low2 = 21, dist2= 3
 

Figure 41: Two strides in Figure 40. Lightly shaded boxes indicate accessed

locations, and black boxes are conflicting locations. The terms (length, delta, low,

high, and offset) are explained in the following paragraphs.
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Algorithm 2 DYNAMIC-GCD

Inputs: Two stride: (low1 , high1 , dist1 ), (low2 , high2 , dist2 )
Output: Return the number of dependences of the two strides.

Require: low1 ≤ low2 ; otherwise swap the strides.
1: Calculate low , high, and length as shown in Figure 41.
2: delta ← (dist1 − ((low − low1 ) mod dist1 )) mod dist1
3: gcd ← The greatest common divisor of dist1 and dist2
4: if (delta mod gcd) 6= 0 then
5: return 0
6: end if
7: x, y ← EXTENDED-EUCLID(−dist1 , dist2 )
8: lcm ← The least common multiple of dist1 and dist2
9: offset ← ((dist2 · y · delta/gcd) + lcm) mod lcm

10: result ← (length − (offset + 1) + lcm)/lcm
11: return max(0, result)

1. Sort and obtain the overlapped bounds and lengths: Let low1 ≤ low2 ;

otherwise swap the strides. In Figure 41, the bounds are low = 21, high = 30,

and length = 10.

2. Check the existence of the dependence by the GCD test without considering

the bounds: We only have the runtime stride information. In order to use the

GCD test, we transform the strides as if we have the common array base such

as A[dist1 · x + delta] and A[dist2 · y], where delta is the distance between low

and the immediately following accessed address in Stride1. Then, we can use

the GCD test. In Figure 41, delta is 1; the GCD of 2 and 3 is 1, which divides

delta. Therefore, the strides may be dependent.

3. Count the exact dependences within the bound: To do so, we first compute

the smallest conflicting point in the bound (24 in Figure 41) by using

EXTENDED-EUCLID [18], which returns x and y in ax+ by = gcd(a, b), where

a is −dist1 , and b is dist2 . offset is then defined as the distance between low

and this smallest conflicting point, which is 3 in Figure 41. Observe that

the difference between two adjacent conflicting points is the least common
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multiple of dist1 and dist2 (6 in Figure 41). Then, we can count the exact

number of dependences: two addresses (24 and 30) are conflicting. The

strides are dependent.

Clarification of Equation (2) and Figure 40 We discussed DYNAMIC-GCD with

the code of Figure 40. However, this code does not actually create the two strides

as shown in Figure 41 and Equation (2). Because the loop is single-level, the code

will only check dependences between two pending points (the write at line 2 and

the read at line 3) against the history strides as the loop iterates. On i-th iteration

(assuming zero-based index), the two points, 2i+20 (the write at line 2) and 3i+21

(the read at line 3), are being checked with the two history strides, 2k+20 and 3k+

21, (0 ≤ k < i).7 Therefore, there is no moment when Equation (2) is performed.

We intentionally used an incorrect code to explain DYNAMIC-GCD easier.

1 for (int i = 0; i <= 7; ++i) {

2 A[2*i + 10] = ...; // Stride 1 (Write)

3 for (int j = 0; j <= 6; ++j) {

4 ... = A[3*j + 11]; // Stride 2 (Read)

5 }

6 }

Figure 42: A correct program that will shows Figure 41 and Equation (2).

Figure 42 contains the correct code that will exactly show the case of Figure 41

and Equation (2). When i is 7 and the inner loop just finishes, the history stride

table of for-j is now propagated (i.e., merged) to the pending stride table of for-i.

After the propagation, when the current iteration (i = 7) finishes, we will finally

see the dependence checking depicted in Figure 41 and Equation (2).

7In our implementation, the very first few points until learning a stride still exist in the point
table. Hence, strictly speaking, there are a few history points. However, we can safely assume that
no such transient point exists to explain the DYNAMIC-GCD.
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History Stride Table 

History Point Table 

DAS-ID 1 
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4 

< PC, RW, count, last_iter#, … > 

Figure 43: Structures of the point and stride tables and four cases of the

dependence checking: This figure shows the moment when the current iteration

finishes. A stride table has an associated interval tree. The tables support DAS-ID

(dynamic allocation-site ID) to minimize the checking space. Our implementation

uses an additional hash table, where the key is DAS-ID and the value is either point

or stride sub-table that only contains memory references from the same DAS-ID.

5.3.4 Overview of the Memory-Efficient SD3 Algorithm

The first part of SD3, a memory-efficient algorithm, is presented in Algorithm

3. The algorithm augments the pairwise algorithm and will be parallelized

to decrease time overhead. Section 5.2.5 described key data structures for the

pairwise method, and now we update and extend the data structures as follows:

• POINT: This structure now only represents a non-stride, or point memory

access, from a single PC. The member fields remain the same.

• STRIDE: This represents a compressed stream of memory addresses from a

PC. This structure has (1) the lowest and highest addresses; (2) the stride

distance; (3) the number of total accesses in this stride; and (4) the pointer

to the next STRIDE because a PC can create multiple strides that cannot be

combined. Notice that the miscellaneous fields such as RW mode and the

last accessed iteration number are stored along with the PC because these

fields are common per PC.

• PendingPointTable and PendingStrideTable: These tables replace the PendingTable

93



in the pairwise. PendingPointTable is a hash table that associates POINT

with memory address to enable fast conflict checking. PendingStrideTable

associates STRIDE with the originating PC address. The stride table has

an auxiliary interval tree. Both pending tables store killed bits to handle

loop-independent dependences. The tables also support DAS-ID (dynamic

allocation-site ID) to accelerate the dependence checking by minimizing the

search space. Figure 43 and Section 5.3.5 further discuss this optimization

and the necessary change in the hash tables.

• HistoryPointTable and HistoryStrideTable: This holds memory accesses in

all executed iterations of a loop so far. The structure equals the pending tables

except for killed bits.

Although the big picture of the algorithm is described, the stride-based

algorithm needs to address several challenges. The following four subsections

elaborate these issues.

5.3.5 Optimizing Stride-Based Dependence Checking

Figure 43 summarizes the table structures and stride-based dependence-checking

algorithm. When the current iteration finishes, the two pending tables are checked

against the two history tables. Because it has both point and stride tables, the

dependence checking now requires four sub-steps for every pair of the tables,

shown as four large arrows in the figure.

Arrow ❶ is the case of the pairwise method. Arrows ❷ and ❸ show the case of

checking a stride table and a point table. We take every address in the point table

and check the conflict against the stride table using the associated interval tree.

Arrow ❹ is the most complex step. Every stride in the pending stride table needs

to be enumerated and checked against the history stride table. This enumerating

and checking could take a long time, especially for a deep nested loop. Therefore,
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Algorithm 3 THE MEMORY-EFFICIENT ALGORITHM

Note: New steps added on top of the pairwise method are underlined.

1: When a loop, L, starts, LoopInstance of L is pushed on LoopStack.

2: On a memory reference, R, of L’s i-th iteration, check the killed bit of R. If
killed, report a loop-independent dependence, and halt the following steps.
Otherwise, store R in either PendingPointTable or PendingStrideTable based
on the result of the stride detection (Section 5.3.2). If R is a write, set its killed
bit.

3: At the end of the iteration, do the stride-based dependence checking (Sections
5.3.3 and 5.3.5). Report any found dependences.

4: After Step 3, merge the pending and history point tables. Also, merge the
stride tables (Section 5.3.6). Finally, the pending tables, including killed bits,
are flushed.

5: When L terminates, flush the history tables, and pop the LoopStack. To handle
loop nests, we propagate the history tables of L to the parent of L, if they exist.
Propagation is done by merging the history tables of L with the pending tables
of the parent of L.
Meanwhile, to find loop-independent dependences, do the stride-based
dependence checking. Consider a special case of a stride kill (Section 5.3.7).

in order to reduce this enumeration and potentially vast search space, we introduce

dynamic allocation-site optimization.

This optimization is based on the fact that a memory access on a variable or a

structure must have its associated allocation site. Memory accesses from different

allocation sites will never collide in a correct program. Once allocation sites are

known, we need to check only dependences among memory accesses within the

same allocation site, which can reduce search space significantly.

In particular, we focus on heap accesses, other than local and global accesses,

because they are the main target of the analysis. To obtain allocation site IDs on

heap accesses effectively, we dynamically track allocated heap regions and issue an

ID on each heap region, which we call dynamic allocation-site ID, or DAS-ID.

We illustrate how DAS-ID works with Figure 44. Two Node are created at line

6 and 7 by CreateNode. It is obvious the accesses at line 8 and 9 never make

dependences each other because their allocation sites are different. Here is the
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1 Node* CreateNode (...) {

2 return new Node (...);

3 }

4

5 void foo() {

6 Node* a = CreateNode (...);

7 Node* b = CreateNode (...);

8 ... = a->data;

9 b->counter = ...;

10 }

Figure 44: A simple example of DAS-ID: The memory accesses at line 8 and 9

have different DAS-IDs. No need to check dependences between them.

optimization opportunity: we do not need to check dependences between memory

accesses at line 8 and line 9.

We now discuss how we implement this optimization using Figure 44. One

might think of using static allocation site information. This approach is not useful

because both a and b have the same static allocation site at line 2. There will be no

reduction in searching and checking space. Instead we obtain dynamic allocation

site information that differentiate different call path (i.e., context sensitive). Our

solution is exploiting dynamically allocated heap memory regions as a key.

First, heap allocation and deallocation functions and operators, such as new

operator at line 2, are instrumented. In the runtime, when CreateNode is called

at line 6, we capture the allocated memory region. Say the allocated range is

[100, 200]. We then assign an ID, say 1, to this memory range. This is the dynamic

allocation-site ID, or DAS-ID. We keep the pair of <[100, 200], 1> into a global table,

which is implemented as an interval tree. Similarly, suppose that a memory range

of [208, 308] is allocated at line 7, and 2 is then assigned as DAS-ID. <[208, 308], 2>

is also stored in the global table.

On memory access at line 8, we retrieve the corresponding DAS-ID of the

access. Say that the address of a->data is 104. Because the allocated ranges are

stored in an interval tree, retrieving the DAS-ID is extremely fast. The query result
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is either a unique DAS-ID or no DAS-ID. The latter implies the given access is

either from a local or a global variable. We obtain 1 as the DAS-ID of the access on

a->data. This memory access is now stored in a table that is reserved for memory

accesses only from DAS-ID of 1. Likewise, the write on b->counter whose DAS-

ID is 2 is stored in a separate table. Hence, no tables from different DAS-ID are

checked. We summarize how DAS-ID is implemented:

1. Instrument heap allocation and deallocation functions and operators (e.g.,

malloc, new, free, and delete).

2. On heap allocation, retrieve the allocated memory range, and issue a DAS-

ID by an simply increasing counter. Store this pair of the allocated range and

the DAS-ID into a global table. The table is an interval tree that allows a fast

query of the associated DAS-ID for a given memory access.

3. On heap deallocation, delete the corresponding node.

4. On load and store, fetch the effective address, and query the tree to obtain the

corresponding DAS-ID of the access. Because of an interval tree, finding an

interval that includes the given point is done O(log n). If no matching range

is found, the access is either a local or a global access because we currently

do no track allocation sites of local and global variables. Store the memory

reference to either a point or stride table reserved for this DAS-ID only.

We also need to revise the point and stride table structure. The change is briefly

sketched in Figure 45 using C++ STL syntax. The original tables are renamed as sub

typedef hash_map <uint64_t /* Address */, POINT*> SubPointTable;

typedef hash_map <uint64_t /*PC address */, STRIDE*> SubStrideTable;

typedef hash_map <uint64_t /* DAS_ID */, SubPointTable*> PointTable;

typedef hash_map <uint64_t /* DAS_ID */, SubStrideTable*> StrideTable;

Figure 45: Pseudo code for the table structure supporting DAS-ID optimization.
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tables. We introduce an additional hash table layer, where the key type is DAS-ID

and the value is either a point or a stride table. The valued sub-point and sub-stride

tables now contain memory references from the same DAS-ID only.

5.3.6 Merging Stride Tables for Loop Nests

In the pairwise method, we propagate the histories of inner loops to its upper loops

to compute dependences in loop nests. Introducing strides makes this propagation

difficult. Steps 4 and 5 in Algorithm 3 require a merge operation of a history

table and a pending table. Without strides (i.e., only points), this step is relatively

straightforward to implement: we simply compute the union set of the two point

hash tables.

However, merging two stride tables is not trivial. A naive solution is just

concatenating two stride lists. If this is done, the number of strides could be

bloated, resulting in potentially significant memory consumption. Hence, we

perform stride-level merging rather than a simple stride-list concatenation. The

example is demonstrated in Figure 46.

+ 

= PC [10, 130] +10 36 

PC [10, 100] +10 24 PC [30, 130] +10 12 

Figure 46: Two stride lists from the same PC are about to be merged. The stride

([10, 100], +10, 24) means a stride of (10, 20, ..., 100) and total of 24 accesses

in the stride. These two strides have the same stride distance. Thus, they can be

merged, and the number of accesses is summed.

Naive stride-level merging requires quadratic time complexity. Here, we again

exploit the interval tree for fast overlapping testing. Nonetheless, we observed

that tree-based searching still could take a long time if there is no possibility of

stride-level merging. To minimize such waste, the profiler caches the result of the

merging test in history counters per PC. If a PC shows very little chance of having

stride merges, SD3 skips the merging test and simply concatenates the lists.
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5.3.7 Handling Killed Addresses in Strides

We showed that maintaining killed addresses is important to distinguish loop-

carried and independent dependences. As discussed in Section 5.2.2, the pairwise

method prevented killed addresses from being propagated to further steps.

However, this step becomes complicated with strides because strides could be

killed by the parent loop’s strides or points.

1 for (int i = 0; i < N; ++i) { // Loop_1

2 A[rand() % N] = 10; // Random kill on A[]

3 for (int j = i; j >= 0; --j) // Loop_3

4 A[j] = i; // A write -stride

5 for (int k = 0; k < N; ++k) // Loop_5

6 sum += A[k]; // A read -stride

7 }

Figure 47: The stride from line 6 can be killed by either a point at line 2 or the

stride at line 4.

Figure 47 illustrates this case. A stride is generated from the instruction at line

6 when Loop 5 is being profiled. After finishing Loop 5, its HistoryStrideTable is

merged into Loop 1’s PendingStrideTable. At this point, Loop 1 knows the killed

addresses from lines 2 and 4. Thus, the stride at line 6 can be killed by either (1)

a random point write at line 2 or (2) a write stride at line 4. We detect such killed

cases when the history strides are propagated to the outer loop. Detecting killed

addresses is essentially identical to finding conflicts between strides and points.

We use the same dependence-checking algorithm.

Interestingly, after processing killed addresses, a stride could be one of three

cases: (1) a shrunk stride (the range of stride addresses is reduced), (2) two separate

strides, or (3) complete elimination. For instance, a stride [4, 8, 12, 16] can be

shortened by killed address 16. If a killed address is 8, the stride is divided.
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5.3.8 Lossy Compression in Strides

Our stride-based algorithm essentially uses compression, which can be either lossy

or lossless. If we only consider a strictly increasing or decreasing stride, SD3

guarantees the perfect correctness of data-dependence profiling, which means SD3

results are identical to the pairwise method results.

However, as discussed in Section 5.3.2, a stride like [10, 14, 18, 14, 18, 22, 18,

22, 26] is also considered a stride in our implementation. In this case, our stride

format cannot perfectly record the original characteristic of the stream. We only

remember two facts: (1) a stride of 10+4 ·n, (0 ≤ n ≤ 4) and (2) the total number of

memory accesses in this stride is 9. The stride format cannot precisely remember

the occurrence count of each memory address. Such lossy compression may cause

slight errors when DYNAMIC-GCD calculates.

Suppose that this stride has a conflict at address 26. Address 26 is accessed

only one time, but this information has been lost. For the compensation, we add a

correction on the result of DYNAMIC-GCD by taking the average occurrence count

of each reference: ⌈9/5⌉ = 2, the total accesses in the stride divided by the number

of distinct addresses in the stride.

Nonetheless, such error does not noticeably affect the usefulness of our

approach because we still guarantee the correctness of the existence and distance of

data dependences. The error can only be observed in occurrence counts. From our

definitions of the correctness in data-dependence profiling introduced in Section

2.4, our memory efficient algorithm implements a correct profiler although a

strictly correct profiler will not be possible.
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5.4 Reducing Time Overhead by Parallelization

5.4.1 Overview of the Algorithm

Figure 6 demonstrates that the runtime overhead of data-dependence profiling is

extremely high. This is not surprising result as majority of the entire memory

accesses are instrumented and complex dependence checking is performed on

loop execution events. A typical method to reduce this time overhead would be

to use sampling and approximation techniques [81]. However, we argued that

such techniques are not suitable to assist parallelization based on a non-speculative

parallel programming model. We need a correct data-dependence profiler.

We found that the memory efficient SD3 could be effectively parallelized. We

minimize the time overhead by parallelizing data-dependence profiling itself. In

particular, we need to solve the following problems:

• Which parallelization model is most efficient?

• How do the stride algorithms work with parallelization?

5.4.2 A Hybrid Parallelization Model of SD3

We first survey potential parallelization models of the profiler that implements

Algorithm 3. Before the discussion, we need to explain the structure of our profiler

although the details can be found in Section 5.5. Our profiler has two components:

a tracer that instruments a program to be profiled and an analyzer that performs

SD3. Before parallelization, our profiler is composed of the following three steps:

1. Fetching events from a tracer (i.e., an instrumented program): An event is a

unit of information that is transferred from a tracer to an analyzer. Events

include (1) memory events: memory reference information such as effective

address and PC, and (2) loop events: beginning/iteration/termination of a

loop, which is essential to implement Algorithm 3.
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2. Loop execution profiling and stride detection: An SD3 analyzer collects

statistics of loop execution (e.g., trip count), and train the stride detector on

every memory instruction.

3. Data-dependence profiling: An analyzer runs Algorithm 3.

Our goal is to design an efficient parallelization model for the above steps.

Three parallelization strategies would be candidates: (1) task-parallel, (2) pipeline,

and (3) data-parallel. We survey these strategies:

• With the task-parallel strategy, several approaches could be possible. For

instance, the profiler may spawn concurrent tasks for each loop. During a

profile run, before a loop is executed, the profiler forks a task that profiles the

loop. This is similar to the shadow profiler [95]. This approach is not easily

applicable to the data-dependence profiling algorithm because it requires

severe synchronization between tasks due to nested loops. Therefore, we

do not take this approach.

Note that a recent work called multi-slicing [153] takes a task-parallel

strategy to accelerate the dependence profiling. Each task performs only

memory accesses from the same allocation site, which is very similar to DAS-

ID optimization. Because no dependences exist among these tasks, tasks run

in parallel with minimal synchronization.

• Pipelining enables each step to be executed on a different core in parallel.

We have three steps, but the third step, the data-dependence profiling, is the

most time-consuming step. Although the third step determines the overall

speedup, we still can hide computation latencies of the first (event fetch) and

the second (stride detection) steps from pipelining. We use pipelining.
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• Regarding the data-parallel method, first notice that SD3 itself is embarrass-

ingly parallel. Checking data dependences for a particular address requires

only information on this address; no information from the other addresses

is needed. We take a SPMD (Single Program Multiple Data) style to exploit

this data-level parallelism. A set of task perform Algorithm 3 concurrently,

but each task only processes a subset of the entire input. This data-parallel

method is the most scalable one and does not require any synchronization

except for the trivial final result reduction step. We also use this model.

From this survey, our solution is a hybrid model: we basically exploit

pipelining, but the dependence profiling step, which is the longest, is further

parallelized by a SPMD style. Figure 48 summarizes the parallelization model of

SD3. To obtain even higher speedup, we may exploit multiple machines (See details

in Section 5.5.2). However, there are several issues for an efficient parallelization,

which is now discussed.

Event 
Fetching 

Event 
Distribution 

Loop 
Profiling 

Dependence 
Profiling 

Task 

Task 

Task 

Pipeline Stage 1 Pipeline Stage 2 

Step 1 Step 1* Step 2 Step 3 

Figure 48: SD3 exploits both pipelining (2-stage) and data-level parallelism. Step

1* is augmented for the data-level parallelization.

5.4.3 Event Distribution for Parallel Processing

Note that the event distribution step is introduced in the stage 1. Because of a SPMD-

style parallelization at the pipeline stage 2, we need to prepare inputs for each

task. Here, an input is a stream of events extracted from an instrumented program,

which is transmitted by a tracer and will be consumed by an analyzer. However,

the distribution is not simple partitioning of the entire events. Figure 49 illustrates
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the process of the event distribution. First, memory events are distributed by

some policies (we will discuss shortly later). By contrast, loop events are not

distributed, instead must be duplicated for the correctness of the data-dependence

profiling because the steps of Algorithm 3 are triggered on a loop event. Note that

the correctness in this context means that results from a parallelized SD3 must be

the same with the results from the serial SD3.

L L L 

Task0 

L L L 

Task1 

L L L 

Task2 

L L L 

Loop events L Memory events for       Task0        Task1        Task2 

Figure 49: An example of the event distribution step with 3 tasks: Loop events

are duplicated for all tasks while memory events are divided depending on the

address-range size and the formula of Figure 51.

We discuss the issue of the distribution of the memory events. A simple and

naive approach would be dividing the entire address space into N pieces, where

N is the number of the parallel tasks, as shown in Figure 50.

Task0 Task1 Task2 Task3 

0 230 2230 3230 4230 

Address Space: 

Figure 50: A naive address space division scheme in a 32-bit address space:

Memory accesses are likely to be highly localized, which causes load imbalance

and poor parallel speedup.

However, we soon discover this approach is not effective as the memory

addresses are often localized, resulting in a poor parallel speedup. Instead, we

divide the address space in an interleaved fashion for better speedup, as depicted

in Figure 51. The entire address space is divided by every 2k bytes, and each subset

is mapped to M tasks in an interleaved way. Each task analyzes only the memory

references from its own range. A thread scheduler then executes M tasks on N

cores. Section 5.4.5 presents more details on choosing k and N .
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Task0 Task1 Task2 … TaskM-1 Task0 Task1 … 

0 12k 22k … (M-1)2k M2k (M+1)2k … 
Address 

Space: 

task_id = (Memory_Address >> k) % M 

Scheduler 

Task0 

Task1 
... 

TaskM-1 

Core0 

Core1 
... 

CoreN-1 

Figure 51: Data-parallel model of SD3 with the address-range size of 2k, M tasks,

and N cores: Address space is divided in an interleaved way. The above formula

is used to determine the corresponding task id for a memory address. In our

experimentation, the address-range size is 128-byte (k = 7), and the number of

tasks is the same as the number of cores (M = N ).

5.4.4 Strides in Parallelized SD3

Our stride-detection algorithm and Dynamic-GCD also need to be revised in

parallelized SD3 for the following reason. Stride patterns are detected by observing

a stream of memory addresses. However, in the parallelized SD3, each task

can only observe memory addresses in its own address range. The problem is

illustrated in Figure 52.

Address Space 

Stride A: 

Not observed by Task0 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Task0 Task1 ... Task2 Task0 ... 

Figure 52: A single stride can be broken by interleaved address ranges. Stride

A will be seen as two separate strides in Task0 with the original stride-detection

algorithm.

Here, the address space is divided for three tasks with a range size of 4 bytes.

Suppose a stride A with the range of [10, 24] and the stride distance of 2. However,

Task0 can only see addresses in the ranges of [10, 14) and [22, 26). Therefore, Task0

will conclude that there are two different strides at [10, 12] and [22, 24] instead of

only one stride. These broken strides dramatically bloat the number of strides.
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To solve this problem, the stride detector of a task assumes that any memory

access pattern is possible in out-of-my-region so that broken strides can be

combined into a single stride. In this example, the stride detector of Task0 assumes

that the following memory addresses are accessed: 14, 16, 18, and 20. Then, the

detector will create a single stride. Even if the assumption is wrong, the correctness

is not affected. To preserve the correctness, when performing Dynamic-GCD, SD3

excludes the number of conflicts in out-of-my-region.

5.4.5 Details of the Data-Parallel Model

This chapter discusses two important design issues in our data-parallel model.

Choosing a good address-range size A key point in designing the data-parallel

model is to obtain higher speedup via good load balancing. However, the division

of the address space inherently makes a load unbalancing problem as memory

accesses often show non-uniform locality. Obviously, having too small or too large

address-rage size would worsen this problem. We use an interleaved division as

discussed and then need to find a reasonably balanced address-range size.
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Figure 53: Deviations of total number of memory accesses of eight tasks by the

address-rage sizes (in bytes). Lower is better.

According to our experiment, shown in Figure 53, as long as the range size

is not too small or too large, address-range sizes from 64 to 256 bytes yield well-

balanced workload distribution. In our implementation, we choose 128 bytes.
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Choosing an optimal number of tasks Even when taking the interleaved

approach, we cannot avoid the load unbalancing problem. To address this

problem, we attempt to create sufficient tasks and employ the work-stealing

scheduler [11], that is, exploiting fine-granularity task parallelism. At a glance,

this approach would yield better speedup, but our data negated our hypothesis,

as shown in Fig 54. We observed that no speedup was gained by this approach.
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Figure 54: Having more tasks than the number of cores (on a eight-core machine)

exhibits slowdowns in our hybrid parallelization model.

There are two reasons: (1) First, even if the quantity of the memory events is

reduced, the number of stride may not be proportionally reduced. In Figure 52,

despite the revised stride-detection algorithm, the total number of stride for all

tasks is three; on a serial version of SD3, the number of stride would have been

one. Hence, having more tasks may increase the overhead of storing and handling

strides, eventually resulting in poor speedup. (2) Second, the overhead of the event

distribution would be significant as the number of tasks increase. Recall again that

loop events are duplicated while memory events are distributed. This restriction

makes the event distribution a complex and memory-intensive operation. On

average, for SPEC 2006 with the train inputs, the ratio of the total size of loop

events to the total size of memory events is 8%. Although the time overhead of

processing a loop event is much lighter than that of a memory event, the overhead

of transferring loop events could be serious as the number of tasks is increased.

Therefore, we let the number of tasks be identical to the number of cores.
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Although the data-dependence profiling is embarrassingly parallel, the mentioned

challenges, handling strides and distributing events, hinder an optimal workload

distribution and an ideal speedup.

5.5 Implementation

Building a profiler that implements SD3 has many implementation challenges.

We discuss important issues in this section. We believe the discussion would be

informative to the implementation of other program analysis tools that exploit

instrumentation. We implement SD3 on both Pin [85], a dynamic binary-level

instrumentation toolkit, and LLVM [77], an open-source compiler framework. The

SD3 algorithm itself is orthogonal to the choice of instrumentation mechanisms.

We first discuss the common issues regardless of Pin and LLVM. At the end of this

section, we elaborate on issues specific to each instrumentation method.

5.5.1 Basic Architecture

Our profiler consists of a tracer and an analyzer, which is a typical producer

and consumer architecture. We implement these two modules as two separate

processes for several practical development conveniences. Section 4.4 presented

the overview of this architecture. We briefly summarize again:

• Tracer: This instruments a program, captures runtime execution traces (i.e.,

memory events and loop events), and transfers the traces to the analyzer via

shared memory. A tracer is built on either Pin or LLVM.

• Analyzer: This takes events from the tracer and performs the SD3 algorithm,

which is theoretically orthogonal to tracers.

Our profiler must be an online tool. Because the majority of loads and stores

could be instrumented, generated traces could be extremely large, such as an order
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Figure 55: Total trace size for SPEC 2006 with the train inputs: The graph is in log

scale. The geometric mean is 520 GB. xalancbmk and tonto show around 4.5 TB

total trace size (train), which is far beyond a typical storage capacity.

0.0

1.0

2.0

3.0

   
  a

st
ar

   
  b

z
ip

2

   
  g

o
b

m
k

   
h

26
4

re
f

   
  h

m
m

er

li
b

q
u

a
n

tu
m

   
   

 m
cf

   
o

m
n

et
p

p

 p
er

lb
en

ch

   
  s

je
n

g

x
a

la
n

cb
m

k

 c
a

ct
u

sA
D

M

  c
al

cu
li

x

   
 d

ea
lI

I

   
 g

am
es

s

  G
em

sF
D

T
D

   
g

ro
m

ac
s

   
   

 l
b

m

  l
es

li
e3

d

   
   

m
il

c

   
   

n
am

d

   
 p

o
v

ra
y

   
 s

o
p

le
x

   
 s

p
h

in
x

   
  t

o
n

to

   
   

 w
rf

   
 z

eu
sm

p

G
E

O
M

E
A

N

A
v

g
. T

ra
ce

 R
a

te
 (

G
B

/s
) 

Figure 56: Average trace transfer rate between a tracer and an analyzer: The

geometric mean for all benchmark is approximately 1.79 GB per second.

of 10 TB, especially when a reference input is profiled. Figure 55 demonstrates well

the total size of the trace. Even with the train inputs, a tera bytes trace could be

generated. We cannot simply use an offline approach. An example of such an

offline approach would be storing and compressing events (e.g., using bzip) and

then decompressing and analyzing the events. This approach is not effective at all

because compressing/decompressing traces take a significant amount of time.

One concern of this online approach would be the overhead of inter-process

communication. We observed that the average amount of event transfer rate

between the two processes was up to 3 GB per second, as shown in Figure 56,

which can be sufficiently handled by modern computers. The size of the execution

event is 12 bytes, and events are transferred as uncompressed.

This separation of tracer and analyzer results in two significant benefits. First,

the pipeline parallelism, explained in Section 5.4.2, is easily achieved. Second, we
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can design the analyzer to be reused by different tracers. We separately implement

tracers based on instrumentation mechanisms. We also define an abstracted

communication layer between the single analyzer and multiple tracers, regardless

of the choice of instrumentation tools. Finally, such separation eases debugging of

the SD3 algorithm.

5.5.2 Implementation of Analyzer

The analyzer first implements the data structures described in Section 5.3.4

and Algorithm 3, and we then parallelize using Intel Threading Building Block

(TBB) [56]. To obtain even better parallelism, we extend our profiler to work on

multiple machines, based on a MPI-like execution model [35]. The same tracer,

analyzer, and application are running in parallel on multiple machines, but each

machine has equally divided workload. This is a simple extension of our data-

parallel model, but applies across different machines. Our profiler also profiles

multithreaded applications and provides per-thread profiling results.

Importance of programming techniques Many programming techniques are

extremely essential to improve the performance of the pairwise and SD3 signif-

icantly, other than the key algorithms. Specialized data structures should be

implemented rather than using general data structures in C++ STL. Customized

memory allocation is also critical because the memory reference structures (POINT

and STRIDE) are frequently allocated and removed.

False Positive and False Negative Issues We discuss the false positive (reported

as having a dependence, but it was a false alarm) and false negative (no depen-

dence reported, but it has a dependence) issues in data-dependence profiling.

First, false negatives can occur when not all code can be executed with a specific

input. Section 5.6.4 discusses this problem. False positives can also occur if we take
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a larger granularity in the memory instruction instrumentation, such as 8-byte or

cache-line granularity rather than a byte granularity. Data-dependence profiling

in the speculative multithreading domain can use a large granularity to minimize

overhead, but this approach suffers from more false positive dependences [16].

In our implementation, the stride-based approach does not suffer from false

positives. We correctly handle the size of the memory access (e.g., whether char,

int, or double) in the stride-based data structures and DYNAMIC-GCD.

For the pairwise method in which hash tables are keyed by addresses, we

always use 1-byte granularity. No false positives exist. However, it may have

false negatives in a very unusual case, shown in Figure 57.

1 void* raw = malloc (1024);

2 double* data1 = (double *)raw;

3 char* data2 = (char* )raw;

4 data1 [0] = 1.0; // Writing 8 bytes

5 char t = data2 [2]; // Reading only part of data1 [0]

Figure 57: A false negative case with 1-byte granularity: both data1 and data2 are

the alias of raw, but their access types are different.

Even if there is an 8-byte write at line 4, the 1-byte granularity policy records

only the first byte of the access. The read from line 5 results in a missing data

dependence. We believe such a case is very unlikely to occur in well-written code.

This problem can be resolved by our DAS-ID optimization. The heap accesses at

line 4 and 5 both have the same dynamic-allocation site at line 1. We can easily

detect aliased accesses by the different access types.

5.5.3 Implementation of Tracers

We first implemented SD3 on Pin in our previous work [70]. We discuss challenges

for Pin-based SD3 and the motivations for LLVM-based SD3.
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Issues in a Pin-based Tracer A Pin-based tracer enables dependence profiling

at the dynamic and binary levels. This approach broadens the applicability of

the tool compared to a compiler and source-code-level approach. A dynamic

instrumentation does not require a recompilation of a profile. This is a great benefit

if the application does not have full source code that requires different and complex

tool chains.

The downside of the Pin-based approach is that additional binary-level static

analysis is needed to recover control flow graphs and loop structures, which is

generally difficult to implement. For example, recovering indirect branches (e.g.,

jump tables for switch-case) and pinpointing the correct locations of loop entries

and exits are challenges in binary-level analysis.

Regarding the instrumentation of loads and stores, an x86 binary executable

typically has a lot of artifacts from push/pop in stacks and system function

calls. Without eliminating such redundant loads and stores, results of a Pin-based

profiler would have a lot of dependences that are not useful for the parallelization

hints. Some loads and stores also do not need to be instrumented if their

dependences can be identified at compile time, notably inductions and reductions.

However, filtering such loads and stores selectively is also difficult with binary.

These challenges motivate the use of an LLVM-based SD3. Note that an alternative

to direct binary-level static analysis would be using a x86 binary translator to

LLVM IR and then exploiting the LLVM framework [74].

Issues in an LLVM-based Tracer Using compiler-based instrumentation such

as LLVM may address the issues in the Pin-based tracer. LLVM also allows

dynamic compilation and instrumentation, but we use LLVM as a static and

source-level instrumentation toolkit. LLVM provides a very rich static-analysis

infrastructure, including correct control flows and loop structures. Furthermore,
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LLVM solves many challenges in binary-level instrumentation. For example,

skipping inductions and reductions is relatively easy to implement since all the

data-flow information is retained, unlike with binaries. Further static analysis

may be performed before the dynamic profiling to decrease the profiling overhead

[20]. For example, all memory loads and stores whose data dependences can

be identified at compile time could be excluded as profiling candidates. Our

implementation in this dissertation skips induction and reduction variables (both

basic and derived ones) and some read-only accesses.

However, the greatest downside of using an LLVM-based tracer is that

it requires recompilation. Recompiling an application with instrumentation

code is not always easy. It sometimes requires modifications in compiler tool

chains and compiler driver code. The analyzer needs some information from

the instrumentation phase, such as a list of instrumented loops and memory

instructions. As the instrumentation phase is separated from the runtime profiling,

such information should be transferred via a persistent medium like a file.

5.6 Experimentation Results

This section presents experiment results that show the space and memory

efficiency of the SD3 profiler, followed by supplementary results regarding the

input-sensitivity problem of the profiling and stride compression opportunities.

5.6.1 Experimentation Methodology

We use 22 (out of 29) SPEC CPU2006 benchmarks [134] to report runtime overhead

by running the entire execution of benchmarks with the reference input. Seven

SPEC benchmarks were not profiled successfully due to several implementation

issues. Among the successfully profiled 22 benchmarks, we observed that a few

loops from functions that parse input files caused runtime errors due to incorrect

binary-level loop instrumentation. We excluded such erroneous loops.
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We should note that we intentionally used highly optimized binaries (-O3 of Intel

compilers) in the experimentation to reduce excessive profiling time overhead. It

is true that a result from a highly optimized binary is virtually useless when we

want to map the result to the source code by using debugging information. In

practice, one should profile an unoptimized binary to obtain a human-readable

result. However, the difference of native execution time between unoptimized and

optimized binaries could be 10 times. The difference in memory overhead is not

worse as the time overhead because memory accesses to local stacks are mostly

optimized. The purpose of the experimentation is to measure the overhead, not to

see actual dependence profiling results. Note that the profiling results in Chapter

VII are from unoptimized binaries or source code, but with the reduced input sets

such as train or test sets.

We instrument all memory loads and stores except for certain types of stack

operations and corner cases. Our profiler collects details of data-dependence

information as enumerated in Section 5.1. We profile the 20 hottest loops (based

on the number of executed instructions) and their inner loops. For comparing the

overhead, we use the pairwise method. We also use seven OmpSCR benchmarks

[103] for the input-sensitivity problem.

Our experimental results were obtained on machines with 8-core (two sock-

ets of quad-core processors) with Intel Hyper-Threading Technology (total 16

threads), and 16 GB main memory. The operating system is 64-bit Windows 7.

Memory overhead is measured in terms of the peak physical memory footprint

(similar to rss). For results of multiple machines, our profiler runs in parallel

on multiple machines but only profiles distributed workloads. We then take the

slowest time for calculating speedup. We experiment the pairwise method, a serial

version of SD3, parallelized SD3 with 128-byte of the address-range size and (8-task

on 8-core) and (32-task on 32-core).
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(b) Profiling memory overhead of SPEC CPU2006 FP

Figure 58: Absolute memory overhead for SPEC 2006 with optimized (-O3)

binaries and the reference inputs: 21 out of 22 benchmarks (✕ mark) need more

than 12 GB in the pairwise method. The benchmarks natively consume 158 MB

memory on average.

Currently, the LLVM implementation cannot instrument Fortran programs.

The results in this thesis are from the Pin-based profiler, but the LLVM-based

profiler shows a similar performance for programs written C/C++.

5.6.2 Memory Overhead of SD3

Figure 58 shows the absolute memory overhead of SPEC 2006 with the reference in-

puts. The memory overhead includes everything: (1) native memory consumption

of a benchmark, (2) instrumentation overhead, and (3) profiling overhead. Among

the 22 benchmarks, 21 benchmarks cannot be profiled with the pairwise method

on a 16 GB memory budget. Sixteen out of 22 benchmarks consumed more than
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Figure 59: Memory overhead of the pairwise for four SPEC 2006 benchmarks.

12 GB even with the train inputs.

Figure 59 shows the memory consumption of the pairwise method in every

second for 433.milc, 434.zeusmp, 435.lbm and 436.cactusADM. Within 500

seconds, these four benchmarks reached 10 GB memory consumption. We do not

even know how much memory would be needed to complete the profiling with

the pairwise method. We also tested 436.cactus and 470.lbm on a 24 GB machine,

but still failed. Simply doubling memory size could not solve this problem.

However, SD3 successfully profiled all the benchmarks on our 16 GB machine.

For example, while both 416.gamess and 436.cactusADM demand 12+ GB in the

pairwise method, SD3 requires only 1.06 GB (just 1.26× of the native overhead)

and 1.02 GB (1.58× overhead), respectively. The geometric mean of the memory

consumption of SD3 (1-task) is 2113 MB while the overhead of native programs is

158 MB. Although 483.xalancbmk needed more than 7 GB, we can conclude that

the stride-based compression is very effective.

Parallelized SD3 naturally consumes more memory than the serial version of

SD3, 2814 MB (8-task) compared to 2113 MB (1-task) on average. The main reason

is that each task needs to maintain a copy of the information of the entire loops

to remove synchronization. Furthermore, the number of total strides is generally

increased compared to the serial version since each task maintains its own strides.
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(b) Profiling overhead (slowdowns) of SPEC CPU2006 FP

Figure 60: Slowdowns (against the native run) for SPEC 2006 with optimized (-O3)

binaries and the reference inputs: From left to right, (1)SD3 (one-task on one-core),

(2) SD3 (eight-task on eight-core), (3) SD3 (32-task on 32-core), and (4) estimated

slowdowns of infinite CPUs. The address-range size is 128 bytes. The geometric

mean of native runtime is 488 seconds on Intel Core i7 3.0 GHz.

Despite of such negative effect of strides, SD3 still reduces memory consumption

significantly against the pairwise method.

5.6.3 Time Overhead of SD3

The time overhead results of SD3 are presented in Figure 60. For the speedup

comparison, since only a few benchmarks can be profiled by the pairwise method

successfully, we report speedups of parallelized SD3 over the serial version of

SD3. The time overhead includes both instrumentation-time analysis and runtime

profiling overhead. The instrumentation-time overhead, such as recovering loops,
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Figure 61: Speedups of SD3 in SPEC 2006 benchmarks: We also calculate the

ideal speedup when SD3 is parallelized on infinite cores.

is quite small. For SPEC 2006, this overhead is only 1.3 seconds on average.

The slowdowns are measured against the execution time of native programs. As

discussed in Section 5.4.5, the number of tasks is the same as the number of cores

in the experimentations.8

As shown in Figure 60, serial SD3 shows a 289× slowdown on average, which

is not surprising given the quantity of computations on every memory access and

loop execution. We do an exhaustive profiling for the 20 hottest loops and their

nested loops. The overhead could be improved by implementing better static

analysis that allows us to skip instrumenting loads and stores that have proved

not to make any data dependences.

When using eight tasks on eight cores, parallelized SD3 shows a 70× slowdown

on average, 29× and 181× in the best and worst cases, respectively. We also

measure the speedup with four eight-core machines (total 32 cores). On 32 tasks

with 32 cores, the average slowdown is 29×, and the best and worst cases are 13×

and 64×, respectively, compared to the native execution time.

Calculating the speedups over the serial SD3, we achieve 4.1× and 9.7×

8In fact, “running 8-task on 8-core” means that only the data-parallel part uses 8-task and 8-
core. SD3 requires one more thread for the event fetch, distribution, and stride profiling as shown
in Figure 48. However, because most of time is consumed by the data-parallel stage, the overhead
of having one additional thread than the number of physical core would not be problematic.
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speedups on eight and 32 cores, respectively, shown in Figure 61. Although

the data-dependence profiling stage is embarrassingly parallel, our speedup is

lower than the ideal speedup. The first reason is that we have an inherent load

unbalancing problem. The number of tasks is equal to the number of cores to

minimize redundant loop handling and event distribution overhead. The address

space is statically divided for each task, and there is no simple way to change this

mapping dynamically. Second, with the stride-based approach, processing time

for handling strides is not necessarily decreased in the parallelized SD3.

We also estimate slowdowns with infinite CPUs. In such case, each CPU

only observes conflicts from a single memory address, which is extremely light.

Therefore, the ideal speedup is identical to the runtime overhead without the

data-dependence profiling, which is the overhead of loop profiling plus tracing

memory instructions. The ideal overhead is slightly greater than the overhead

of loop profiling shown in Figure 28. Some benchmarks, like 483.xalancbmk and

454.calculix, show 17× and 14× slowdowns even without the data-dependence

profiling. The large overhead of the loop profiling mainly comes from frequent

loop invocation and deeply nested loops.

5.6.4 Input Sensitivity of Data-Dependence Profiling

One of the concerns of using a data-dependence profiler as a programming-

assistance tool would be the input-sensitivity problem. In Section 2.2, we already

have argued qualitatively the usefulness of dependence profiling even with this

inherent weakness of dynamic analysis. To support this claim, we quantitatively

measure the similarity of data-dependence profiling results from different inputs.

A profiling result has a list of discovered dependence pairs (source and sink).

We compare the discovered dependence pairs from a set of different inputs. We
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compare only the top 20 hottest loops and ignore the frequency of the data-

dependence pairs. We define similarity as follows, where Ri is the i-th result (

a set of data-dependence pair):

Similarity = 1−
∑N

i=1

|Ri−
⋂N

k=1
Rk|

|Ri|

A similarity of 1 means all sets of results are exactly the same (no differences

in the existence of discovered data-dependence pairs, but not frequencies). We

first tested eight benchmarks in the OmpSCR [103] suite. All of them are small

numerical programs, including FFT, LUReduction, and Mandelbrot. We tested

them with three different input sets by changing the input data size or iteration

count, but the input sets are sufficiently long enough to execute the majority of

the source code. Our result shows that the data-dependence profiling results

of OmpSCR were not changed by different input sets (i.e., Similarity is 1). The

parallelizability prediction of OmpSCR by SD3 has not been changed by the input

sets we gave.
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Figure 62: Similarity of the results from different inputs: 1.00 means all results

were identical (not the frequencies of dependence pairs).

Figure 62 shows the similarity results of SPEC 2006, which are obtained from

the reference and train input sets. Our data show that there are very high

similarities (0.98 on average) in discovered dependence pairs. Recall that we

compare the similarity for only frequently executed loops. Some benchmarks show

a few differences (as low as 0.95), but we found that the differences were highly
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correlated with the executed code coverage. In this comparison, we minimize x86-

64-specific artifacts such as stack operations of prologue/epilogue of a function.

A related work also showed a similar result. Thies et al. used a dynamic

analysis tool to find pipeline parallelism in streaming applications with annotated

code [139]. Their results claimed that memory dependences between pipeline

stages are highly stable and predictable over different inputs.

5.6.5 Opportunities for Stride Compression

We would like to see how many opportunities exist for stride compression. We

easily expect that a regular and numerical program has a higher chance of stride

compression than an integer and control-intensive program.
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Figure 63: Classification of stride detection for SPEC 2006 benchmarks with

the train inputs: (1) point: memory references with non-stride behavior, (2)

fixed: memory references whose stride distance is zero, and (3) stride: memory

references that can be expressed in an affined descriptor.

Figure 63 shows the distributions of the results from the stride detector when

SD3 profiles the entire memory accesses of SPEC 2006 with the train inputs.

Whenever observing a memory access, our stride detector classifies the access as

one of the three categories: (1) a part of a stride, (2) a fixed-location access, or (3) a

point (i.e., non-stride). Clearly, SPEC FP benchmarks have a higher chance of stride

compression than INT benchmarks: 59% versus 28%. Overall, 46% of the memory

accesses are classified as strides. Some benchmarks have similar distributions of
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stride and non-stride accesses such as 444.namd: 46% and 35%. Such fact supports

why efficiently handling stride and point accesses simultaneously is important.

One should not translate the data in Figure 22 to the compression rates. We

tried to obtain the actual compression rate by stride compaction, but the metric

was not obvious and implementation was also challenging.

5.7 Summary of This Chapter

This chapter proposed a new efficient data-dependence profiling technique called

SD3. Although data-dependence profiling is an important technique for helping

parallel programming, large memory and time overhead are the biggest challenge.

SD3 is the first solution that attacks both memory and time overhead at the

same time. For the memory overhead, SD3 not only reduces the overhead by

compressing memory references that show stride behaviors, but also provides

a new data-dependence checking algorithm with the stride format. SD3 also

presents several algorithms on handling the stride data structures. For the time

overhead, SD3 parallelizes the data-dependence profiling itself while keeping the

effectiveness of the stride compression. SD3 successfully profiles 22 SPEC CPU2006

benchmarks on a 16 GB machine.
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CHAPTER VI

AN EFFECTIVE SPEEDUP PREDICTOR FROM SERIAL CODE

6.1 Introduction

In Sections 2.5 and 2.6, we thoroughly discussed why a dynamic-analysis-based

speedup prediction tool is desirable to help the parallelization steps. This chapter

presents Parallel Prophet , the speedup predictor of Prospector. Parallel Prophet

predicts potential speedups over serial code while considering a specific parallel

programming paradigm and memory bandwidth requirement in parallel code.

Serial 
program 

Annotated 
program 

Inserting annotations 
and re-compiling 

Parallel Speedup 
Prediction 

Input Memory Performance Model 

Interval Profiling 

Memory Profiling 

Fast-Forward Emulation 

Synthesis-based Emulation 

Figure 64: Work flow of Parallel Prophet.

An overview of Parallel Prophet is sketched in Figure 64. Parallel Prophet

uses a serial program (or a serial portion of a multithreaded program) for the

prediction. A programmer inserts annotations on the serial program. Annotations

specify potentially parallel and protected regions. The annotation can be done by

either a programmer’s guess, or the post-analyzer of Prospector can assist. The

annotated source code is recompiled and then profiled with an input. We perform

two lightweight profiling: interval profiling and memory profiling. Interval profiling

measures the elapsed time between a pair of annotations and then builds a program

tree. Memory profiling uses a lightweight hardware performance counters to

collect the cache miss ratio of the last-level cache and the number of executed

instructions. Performance counter values are processed by the memory performance
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model to compute burden factors that emulate performance degradation due to

limited memory scalability. Burden factors are augmented on the program tree.

The program tree is consumed by the emulators. Parallel Prophet provides

two emulation algorithms: (1) fast-forwarding emulation (the FF) and (2) program

synthesis-based emulation (the synthesizer). Both emulation methods imitate the

parallelized behavior of a given serial program from profiled data and annotations,

thereby projecting potential speedups. Finally, speedups are reported for different

parallelization knobs such as scheduling policies (e.g., dynamic and static), parallel

programming paradigms (e.g., OpenMP and TBB), and core numbers.

Although Parallel Prophet shares the basic approach with Suitability1, the syn-

thesizer and the memory performance model are particularly new contributions

comparing to the previous mechanisms. Section 2.6 presented several motivations

why a new emulation algorithm and memory performance model are needed. The

contributions of Parallel Prophet are summarized as follows:

1. We implement a baseline dynamic speedup predictor framework using

annotation, interval profiling, and the fast-forward emulation algorithm.

This framework not only enables the development of the synthesizer and

memory performance model, but also serves a platform for future extensions

such as supporting GPGPU-based programming models.

2. We propose a new dynamic emulation method, the program synthesis-based

emulation. The synthesizer precisely and easily models broader parallel

program patterns shown in Figures 11 and 12: (1) workload imbalance and

arbitrary locking; (2) nested and recursive parallelism; (3) detailed semantics

of a parallel programming paradigm (e.g., different scheduling policies in

1The basic approach of Parallel Prophet (annotation, interval profiling, and fast-forward) is
loosely based on Suitability [51]. However, the implementation is totally separate and independent
because Suitability is a proprietary product. We have built Parallel Prophet from the scratch. The
details of Suitability have not been yet published.
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Cilk Plus); and (4) effects due to intervention of operating systems in parallel

execution, which is detailed in Section 6.3.2. The synthesizer uses real

parallel constructs and measures an actual execution time on a real machine.

Note that the FF supports only (1) and some limited patterns of (3). See the

full comparisons of the prediction coverage in Table 4.

3. We introduce a memory performance model to predict the degradation of

the parallel performance due to increased memory traffic based on analytical

models with empirical coefficients from a specially crafted microbenchmark.

The NPB-FT benchmark [64] in Figure 13 shows this case. Burden factors are

introduced to connect our emulators and the memory performance model.

6.2 The Front-end of Parallel Prophet: Annotation and Profiling

This section presents the front-end of Parallel Prophet that consists of the

annotation interface and the profiling phase. The outcome of the front-end

is a program tree that records the execution history based on annotations and

hardware performance counters.

6.2.1 Annotating Serial Code

Parallel Prophet takes a serial portion of a program. Because predicting speedups

from serial code, Parallel Prophet does not profile multithreaded or parallelized

code. In order to be profiled, an input serial program needs annotations.

Table 7 enumerates our annotations. This annotation interface allows program-

mers to specify potentially parallel and protected regions, which is similar to those

of Suitability. A pair of PAR TASK * defines a parallel task that may be executed in

parallel. A pair of PAR SEC * defines a parallel section, a container in which parallel

tasks within the section are executed in parallel. A parallel section defines an
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Table 7: Annotations in Parallel Prophet.

Interface and argument Description

PAR TASK BEGIN(string task name) This task may be run in parallel.
PAR TASK END() The end of a task.

PAR SEC BEGIN(string sec name) This parallel section begins.
PAR SEC END(bool nowait = true) The end of the current section.

LOCK BEGIN(int lock id) Try to acquire the given lock.
LOCK END(int lock id) Release the owned lock.

implicit barrier at the end, but this barrier can be omitted via nowait parameter

like OpenMP’s nowait. LOCK * annotations describe multiple critical sections. The

parallel programming patterns in Figure 12 as well as loop-level parallelism can

be represented by our annotation interface. Figure 65 is an example of annotated

code. Suitability, as of 2012, does not support multiple locks and the nowait option.

6.2.2 Interval Profiling to Build a Program Tree

Parallel Prophet performs low-overhead interval profiling and memory profiling on

an annotated program. The outcome of the profiling is a program tree that records

program execution information directed by annotations. We explain how interval

profiling builds a program tree with the example of Figure 65. This figure has a

critical section and a nested parallel loop. The inner parallel loop may be executed

on the condition of the parameter, p3. The inner loop has four iterations, and the

length of each iteration is either 40 or 50 cycles.

The purpose of interval profiling is to collect lengths of all pairs of annotations.

A length of an annotation pair is defined as either (1) the elapsed time or (2) the

number of dynamically executed instructions, between a pair of annotations. In

this implementation, we use the elapsed time (or cycles) as the unit of the interval

profiling. The pros and cons of these two units are discussed in Section 6.5.2.
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 1: PAR_SEC_BEGIN(“loop1”); 
 2: for (i = 0; i < N; ++i) {       // parallel 

 3:   PAR_TASK_BEGIN(“t1”); 
 4:   Compute(p1); 

 5:   LOCK_BEGIN(1 /*lock id*/); 

 6:   Compute(p2);                  // mutex 

 7:   LOCK_END(1); 

 8:   if (p3) { 

 9:     PAR_SEC_BEGIN(“loop2”); 
10:     for (j = 0; j < M; ++j) {   // parallel 

11:       PAR_TASK_BEGIN(“t2”); 
12:       Compute(p4); 

13:       PAR_TASK_END(); 

14:     } 

15:     PAR_SEC_END(true /*implicit barrier*/); 

16:   } 

17:   Compute(p5); 

18:   PAR_TASK_END(); 

19: } 

20: PAR_SEC_END(true); 

U 
10 

U 
50 

Task 
50 

U 
50 

Task 
50 

U 
50 

Task 
50 

U 
40 

Task 
40 

L 
25 

U 
20 

L 
20 

U 
10 

Task 
50 

Sec 
300 

Task 
250 

Sec 
190 

U 
25 

Computation 
without lock 

Computation 
within lock 

Parallel section 

Figure 65: An example of an annotated program and the corresponding program

tree: The numbers in the nodes are the elapsed cycles (time). U (unlocked) and

L (locked) nodes represent computation without or within a lock, respectively. The

root node is omitted. No memory profiling (burden factors) is shown in here.

While collecting lengths, Parallel Prophet concurrently builds a program tree

that is a reflection of the intended parallel execution conveyed via annotations.

The kinds of nodes in program trees are (1) section, (2) task, (3) L, (4) U, and

(5) root. The first four nodes are corresponding to parallel section, parallel task,

computation in a lock (locked), and computation without a lock (unlocked). These

nodes are self-explanatory. The root node has a list of top-level parallel sections

and U nodes representing serial sections.

The example shows that PAR TASK * annotations are placed at the loop iteration

granularity. Each iteration of the parallel loops is recorded as a separate Task node.

Therefore, the size of the tree could be extremely large when the trip count of a

loop is large and deeply nested parallel loops exist. We solve this space overhead

by compression, which is discussed in Section 6.5.3.
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6.2.3 Memory Profiling: Burden Factors

In order to predict parallel performance degradation illustrated in Figure 13, we

implement a memory performance model. The memory profiling collects information

that will be consumed by the memory model. While interval profiling is being

performed, we also do memory profiling.2 Memory profiling uses hardware

performance counter provided by processors because one of the important goals

is to achieve low overhead such as a 2× slowdown in a typical case. In this thesis,

we avoid heavy instruction-level instrumentation.

We collect the following three counters to predict expected memory bandwidth

requirement when the program is parallelized: (1) the number of executed

instructions, (2) the number of total accesses to the last-level cache (LLC), and

(3) the number of LLC misses. Section 6.4 explains why these counter values are

needed. Memory profiling may be performed for each loop iterations, or even each

annotation pairs to achieve higher accuracy. However, such fine granularity does

not necessarily bring higher accuracy because speedup predictions become more

sensitive to small fluctuations. We collect profiling data per a dynamic instance

of a top-level parallel section. If a parallel section is invoked multiple times, we

profile per each invocation.

Once profiling data is collected, we immediately compute burden factors, βt,

from our memory performance model. We have a burden factor for a particular

thread number (t). For example, β2 is the factor for two cores. The computation

of a single burden factor is trivially done in a constant time. Section 6.4 presents

the definition of burden factor and the details of the memory performance model.

This section we focus on how burden factors are used in a program tree.

2Due to implementation issues, we currently cannot perform interval and memory profiling
simultaneously. Memory profiling is done in a separate phase. We believe simultaneous profiling
is implementable with the probe mode of Pin [85].
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Figure 66: A program tree without and with burden factors: A burden factor is

multiplied to all U nodes. L nodes are excluded by our assumption. β2 stands

for a burden factor for two cores. 1.2 implies 20% penalty is predicted when this

program is parallelized and executed on two cores.

An example of burden factors is visualized in Figure 66. This figure assumes

that the top-level parallel section has a burden factor of 1.2 for two cores, β2 = 1.2.

This burden factor indicates that our memory performance model predicts that if

the code would be parallelized on two cores, the durations of the nodes in this

parallel section would be penalized by 20% due to increased memory traffic.

Burden factors provide an intuitive interface to connect the memory model and

a program tree. To apply a burden factor to a program tree, we first multiply all U

nodes in the section (including nested parallel loops, if any) with the factor. The

parent Task and Sec nodes are then updated accordingly, as depicted in Figure 66

(b). We do not apply burden factors to L nodes based on the following assumption:

when the computation of L node is performed, the other threads are either in

blocked (due to the lock) or running without making significant memory traffic.

Finally, when the emulators process a program tree, these burdened nodes will

simulate the degraded parallel performance.
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6.2.4 Summary of the Profiling

The procedure of the interval and memory profiling is as follows:

1. When an * BEGIN annotation is observed, the current timestamp (or cycle

stamp) and the annotation type are pushed on a stack.

If the observed annotation is the beginning of a top-level section, we start to

collect hardware performance counters.

2. On an * END annotation, we check the kind of the current END (section, task,

or lock) against the top of the stack. If they do not match, an error is reported.

If they match, the elapsed time (or cycles) between the two annotations are

calculated by subtracting the top of the stack from the current cycle stamp.

If a top-level section finishes, the memory profiling is halted. Burden factors

are computed by the memory performance model for a target machine.

The stack is finally popped.

We must exclude the profiling overhead itself (other than real computation,

such as annotations and instrumentation) when calculating the elapsed time in the

step 2. This issue is further discussed in Section 6.5.2.

6.3 The Backend of Parallel Prophet: The Emulators

The final step of Parallel Prophet is the emulation, which literally emulates

parallel execution to compute the projected speedup. Parallel Prophet provides

two complementary emulators: (1) the fast-forward emulation (the FF) and (2)

the program-synthesis-based emulation (the synthesizer). The basic idea of both

emulations is to emulate parallel behavior by traversing a program tree. The FF

emulates in an analytical form that does not require actual time measurement on

a real multicore machine, except for some overhead coefficients. In contrast, the
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synthesizer measures the actual speedup of an automatically generated parallel

program on a real machine.

Once built the emulation logics, the overall speedup for a given number of

threads, nt, is calculated as follows:

Snt =

∑N

i Length(seci) +
∑M

i Length(Ui)
∑N

i EmulTopLevelParSec(seci, nt) +
∑M

i Length(Ui)
, (3)

where seci is a top-level parallel section node, Ui is a top-level serial computation

node, N is the total number of top-level parallel sections, and M is the

total number of top-level serial nodes. Length returns the length of a node.

EmulTopLevelParSec is an emulation logic that returns the estimated ticks (either

time or cycles) for a given top-level parallel section and the thread number. Each

emulation algorithm for a specific model implements this method.

We first discuss the FF and its challenges and then introduce the synthesizer.

6.3.1 Fast-Forwarding Emulation Algorithm

The FF traverses a program tree and calculates the expected elapsed time for

each processor of an ideal parallel machine while considering several constraints

and characteristics, such as the number of cores, scheduling policies, parallel

programming paradigms, and parallel overhead. The FF predicts speedups for an

arbitrary number of cores. Regarding scheduling policies, three static and dynamic

schedulings of OpenMP are modeled. This thesis only considers OpenMP in the

FF. Several overhead factors for parallel constructs are also modeled, such as omp

parallel for and omp critical. Instead of writing a complex algorithm directly,

we give two illustrations how the FF works in Figures 67 and 68. We explain

important data structures as well.
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 Case 1: schedule(static,1)  Speedup = 1500 / (1150 + ε) ≅ 1.30 

Core0: 
(I0, I2) 

150 250 450 50 150 50 50 
I00 wait I01 I02 I20 I21 I22 

Core1: 
(I1) 

100 300 200 
I10 I11 I12 

 Case 2: schedule(static)  Speedup = 1500 / (1250 + ε) ≅ 1.20 

Core0: 
(I0, I1) 

150 450 50 100 300 200 
I00 I01 I02 I10 I11 I12 

Core1: 
(I2) 

150 450 50 50 
I20 wait I21 I22 

 Case 3: schedule(dynamic,1)  Speedup = 1500 / (950 + ε) ≅ 1.58 

Core0: 
(I0) 

150 250 450 50 
I00 wait I01 I02 

Core1: 
(I1, I2) 

100 300 200 150 100 50 50 
I10 I11 I12 I20 wait I21 I22 

(scheduling overhead) (dynamic scheduling overhead) (locking overhead) 

I0 : 650 I1 : 600 I2 : 250 

150 450 (Lock) 50 100 300 (Lock) 200 150 50 50 

I00 I01 I02 I10 I11 I12 I20 I21 I22 

Figure 67: An example of the fast-forwarding method, where a loop with three

unequal iterations and a lock is to be parallelized on a dual-core with OpenMP. The

numbers above the boxes are the elapsed cycles. ǫ is the parallel overhead.

A simple parallel loop with a lock Figure 67 sketches how the FF computes the

estimated parallel execution time on two cores while considering (1) workload

imbalance; (2) a critical section; and (3) three scheduling policies of OpenMP:

(static,1), (static), and (dynamic,1). I0, I1, and I2 are the first, second, and

third iteration of the loop, respectively, and these are parallel tasks. C0 and C1

denote the first and second cores, respectively.

The FF allocates a ready-to-run work to an available core based on a scheduling

policy and lock contention. A work represents either a U node, a L node, or a

parallel-construct overhead. In Figure 67, I
nk

denotes k-th work of n-th task. A

core represents a logical machine state of a compute unit of an abstracted parallel
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machine3, including the state (idle, busy, waiting) and the elapsed time. Along

with work and core, FF also has important data structures: a scheduling context to

handle the semantics of a particular scheduling policy; a lock to maintain the status

of a lock; and the work queue to manage running and waiting works.

We detail key steps when the FF emulates Figure 67:

(1) For the very first time, all works are ready and all cores are idle. The FF

assigns the first work of the first task, I00, to the first core, C0. However, the

first work for C1 depends on the scheduling policy. Schedulings with the

chunk size of one, (static,1) and (dynamic,1), assign I10 to C1. However,

(static) statically maps {I0, I1} and {I2} to C0 and C1, respectively. C1

fetches I20 from the program tree. A scheduling context is responsible to

decide the next task to run.

(2) The FF maintains the work queue, a global priority queue that holds running

and waiting works. The queue is implemented as a minheap whose key is

the completion time of a work. After the first step, two works, {<I00, 0, 150,

C0>, <I10, 0, 100, C1>} or {<I00, 0, 150, C0>, <I20, 0, 150, C1>}, will be in the

queue depending on scheduling policies. A work is a tuple of <ID, start time,

completion time, assigned core>.

(3) Now, all cores are busy. We then fast-forward to the next event. We fetch

the work that will be finished in the earliest time from the work queue (i.e.,

deleting the minimum element in the minheap). We then set the fetched

work as finished. Its completion time becomes the elapsed CPU time of the

corresponding core. The fetched work can be deleted. When fetching the

minimum element, two works may tie in the queue if the completion times

are the same. We break the tie by the following priorities:

3The FF is based on simulation like an cycle-accurate architectural simulator.
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• A running work has a precedence over a waiting (for a lock) work.

• If tied works are all busy, an older work (i.e., a work started earlier) has

a precedence over the older one. As shown in the tuple format, we write

the timestamp when a work is placed on the queue.

(4) Handling locks is also straightforward as the above steps. Consider the case

of (static,1). When C1 completes I10, the scheduling context returns I11 as

the next work. I11 is inserted in the work queue. However, I11 is a L node.

We update the corresponding lock data structure as owned by C1. All cores

are running, so do fast-forward. I00 is removed from the work queue and

finished. Next, I01 is about to run. However, I01 needs a lock that is now

owned by C1. We simulate this block by inserting a work (a fake U node in

Figure 69) whose completion time is the lock release time. When I11 finishes

and releases the lock. We then continue the emulation as usual.

By this algorithm, the FF can precisely predict the differences in speedup

due to scheduling policies: 1.20 with the default static scheduling, but 1.58 with

(dynamic,1). This example shows that precise modeling of scheduling policies is

important for accurate prediction.

We also model the overhead of the OpenMP’s parallel constructs. We use the

benchmarks [13] and [22] to obtain the overhead factors. We then add the factors in

the FF emulator when (1) a parallel loop is started and terminated, (2) an iteration

is started, and (3) a critical section is acquired and released. The overhead is shown

as thin shaded rectangles in Figure 67.

A case of nested loops Figure 68 is provided to illustrate a more complex case:

handling nested parallel loops in the FF.

The parent loop (Loop1) has three iterations, and two iterations invoke a nested

loop (LoopA and LoopB). All loops are to be parallelized. The order of the tree
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Figure 68: An example of nested parallel loops in the FF: Loop1, LoopA, and

LoopB are parallel loops (parallel sections), while LoopA and LoopB are nested

parallel loops. In are the parallel tasks of Loop1. Jn and Knare the parallel tasks

of the nested LoopA and LoopB, respectively. Black circles and arrows indicate an

order of the tree traverse, assuming two cores and (static,1). The same numbers

in the black circles (see the gray arrows) mean parallel executions.

traverse is depicted as black circles in this figure. Although the exact total order of

the traversing can be determined by the lengths of the all U and L nodes (works),

we explain important steps:

(1) For the very first time, the scheduling context of (static,1) assigns I0 and I1

to C0 and C1, respectively. This means that the first and second iterations are

executed in parallel (parallel execution denoted by the gray). The execution

order of the U and L nodes of I0 and I1 are determined by their lengths as in

Figure 67. We do not care the exact order in this example. After finishing I0,

(static,1) assigns I2 (❹→ ❺) on C0.

(2) For a nested loop, one would think calling the emulation algorithm

recursively with a separate scheduling policy may work, while the work

queue, locks, and cores should be shared. However, this guess does not work.

For example, if the algorithm routine is called recursively to handle LoopA,

there is no way to handle LoopB that can be run in parallel with LoopA.

Although nested or recursive structure, we still need to process iteratively.
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Function EmulateTopParLoop(section) Function Emulate the program 

foreach core number and scheduling context 

 estimated_par_tick ← 0 

 foreach  node (top-level) in the program tree 

  if node is U node then 

   estimated_par_tick += node.interval 

  else if node is Loop node then 

   estimated_par_tick +=  

    EmulateTopParLoop(node) 

  end if 

return estimated_par_tick; 

Initialize the machine state and create a scheduling context. 

Assign initial parallel work of the top loop to CPUs. 

 

while the work queue is not empty do 

 Fetch the earliest work to be finished from the queue. 

 Update the machine state: core tick and lock (if necessary). 

 next_work ← Find next work from the scheduler of the work. 

 if next_work is nil then 

  if the finished work is from the top level loop then 

   Set the core of this work as Idle. 

  else 

   Join to the spawning core. 

  end if 

 else 

  if next_work is U node then 

   Queue this work on the same core of the finished work. 

  else if next_work is L node then 

   if the lock is held then 

    Queue a fake U node at the next lock releasing time. 

   else 

    Take the lock and queue this work. 

    end if 

  else if next_work is Loop node then 

   Create a new scheduling context for this nested loop. 

   Assign initial parallel work of the nested loop to cores. 

  end if 

 end if 

 

return the longest core time. 

Machine State 

 Work queue: works on the fly. 

 Elapsed ticks of cores.  

 Next ready ticks of cores. 

 States of cores: Busy, Waiting, and Idle. 

 Owners of locks, and releasing ticks of locks. 

 

Work 

 Owner scheduling context. 

 Assigned core Id. 

 Started ticks and ticks to be finished. 

 Time stamp when this work is queued. 

 

Scheduling Context 

 Nesting level. 

 Upper level scheduling context. 

 Arrays of next available task for each core. 

Data Structures 

Figure 69: Simplified emulation code and data structures of the FF.

(3) To solve the nested and recursive loops, we create a separate scheduling

context for each parallel loop. This context remembers the parent context.

Now, a work has the pointer to the scheduling context who dispatched.

For example, when J0 is inserted in the work queue, we associate the new

scheduling context for LoopA. When J0 finishes, we know that the current

context. This context will return J2. After J2 finishes, there is no more work

for LoopA. We switch to the parent context for Loop1.

We summarize the data structures and algorithm of the FF in Figure 69. The

following section discusses the challenges and limitations.
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6.3.2 Challenges and Limitations in Fast-Forwarding Method

The FF shows highly accurate prediction ability in many cases, but we have

observed cases where the FF produces significant errors. First, if the parallel

overhead is too high, such as frequent lock contention or frequent fork/join, the

predictions could show low accuracy. Second, the FF does not model complex

thread scheduling intervention and overhead by the operating system. This

simplification may often lead to incorrect predictions for nested and recursive

parallelism. Recall the examples of Figures 67 and 68. We did not model any

preemptive scheduling and oversubscription (the number of worker thread is

greater than the number of cores). We also did not model the concept of logical

parallel tasks what many parallel programming paradigms have, which is an

effective approach to handle nested and recursive parallelism as shown in Figures

15 and 16. We simply have a fixed 1:1 mapping between tasks and cores.

Figure 70 shows a counterexample of the FF. A simplified program tree of

a 2-level nested parallel loop is shown. If the code is parallelized on a dual-

core, the real speedup is 2 (=30/15). However, our initial FF implementation as

well as Suitability give a speedup of 1.5 (=30/20). This is because both of them

do not explicitly model the details of OS thread scheduling such as preemptive

scheduling and oversubscription.

Core0 Core1 

Par 
LoopA 

10 

5 

Par 
LoopB 

5 

10 

1 

3 

Par 
Loop1 

1 

3 

1 

3 

Core0 Core1 

Sreal = 2  Spred = 1.5  
2 

1 1 

2 

2 
1 

Figure 70: A two-level nested parallel loops where the FF and Suitability cannot

predict precisely. The numbers in circles are the scheduling order. The numbers

of the nodes are computation lengths. The predictions were 1.5, while the real

speedup is 2.
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We detail the reason of such inaccuracy in Figure 70. After finishing ①, the FF

needs to assign ② (the second parallel task of ParLoopB) to a core. However, the

FF simply maps ② to Core0 in a round-robin fashion. Furthermore, the work is

assigned to a core in a non-preemptive way: A whole U (or L) node is assigned to a

logical processor.

Of course, we can modify this behavior, but a simple ad-hoc modification

cannot solve the problem entirely. We must model the thread scheduling of the

operating system as well, which is very hard to implement and also takes a long

time to emulate. Furthermore, both the FF and Suitability cannot predict the

recursive or deeply nested parallelism, shown in Figure 12(b). To support these

complex behaviors, we also need a sophisticated emulator that implements a task

concept and work-stealing scheduler, as in Cilk Plus and TBB.

To address these challenges in the FF and Suitability, we provide an alternative

and complementary way to emulate the parallel behavior, program synthesis-

based emulation, or the synthesizer.

6.3.3 Program-Synthesis-Based Emulation Algorithm: Basic Idea

The synthesizer predicts speedups by measuring the actual speedups of automati-

cally generated parallel code on a real machine. This synthesized parallel code does

not contain any real computation what the original code has, but contains intended

parallel behaviors, task lengths, and synchronizations. The original computation

is replaced by a simple loop that spins for the duration of the computation.

The biggest difference from the FF is that the synthesizer exploits real parallel

constructs and real computers to estimate speedups.

Figure 71 illustrates the concept of the synthesizer. The program tree on the

left is transformed to the right parallel code (using OpenMP) by the synthesizer. A

real OpenMP parallel construct (omp parallel for) and a real lock are used. The
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const int64_t p2[2]    = {25, 20}; 

const bool    p3[2]    = {true, false}; 

const int64_t p4[2][4] = {{50, 50, 50, 40}, 

                          { 0,  0,  0,  0}}; 

const int64_t p5[2]    = {25, 20}; 

 

#pragma omp parallel for 

for (int i = 0; i < 2; ++i) { 

  Delay(10); 

  mutex.lock(); 

  Delay(p2[i]); 

  mutex.unlock(); 

  if (p3[i]) { 

    #pragma omp parallel for 

    for (int j = 0; j < 4; ++j) 

      Delay(p4[i][j]); 

  } 

  Delay(p5[i]); 

} 

Figure 71: Conceptually, the synthesizer generates a real parallel code from the

program tree. However, such direct generation is difficult when a program has a lot

of iterations and diverse task lengths. Hence, a general approach is needed.

lengths of works and branch predicates are represented as static const arrays. The

original computation cannot be reproduced simply because we did not capture

during the profiling phase, and running them in parallel does not guarantee

any safe execution. Hence, we only emulate the computation durations by

Delay(tick). After synthesizing this artificial parallel code, we measure its actual

running time on a target parallel machine.

This approach obviously solves the difficulties of the FF. Because we actually

use a real parallel construct, unlike the FF, all the details of schedulings, complex

parallel programming models, and parallel overhead are automatically and

silently modeled. For example, we do not need to consider the order of traversing

parallel tasks; the parallel library and operating system will automatically handle

them. Hence, the counterexample in Figure 70 is perfectly emulated by the

synthesizer. Note that the computation cannot be simply skipped like the FF.

Doing so may repeat the same mistake of Figure 70.

Supporting other parallel programming paradigms can be done easily. For

example, if one would like to emulate the behavior the dynamic scheduling of

139



Thread Building Block (TBB) [56], we just need to replace omp parallel for with

TBB’s parallel for construct. In contrast, the FF must implement a precise

emulation logic to model such scheduling behavior. Supporting beyond loop-level

parallelism and mutex is also relatively easy. Pipelining, barrier, and condition

variables could be simply modeled by the synthesizer.

The benefits of the synthesizer are clear, but we must address several challenges

to make the synthesizer more practical.

6.3.4 Challenges in the Synthesizer

The example in Figure 71 is a small program where all the different work lengths

are trivially declared as constant static arrays. However, when a program has large

number of iterations, diverged branches, recursively parallel loops, and highly

deviated work lengths, such simple code generation strategy will not work. Hence,

we need a general synthesis algorithm that directly translates a program tree to a

real parallel construct.

Figure 72 shows a synthesizer code for Cilk Plus. The code first sets the number

of threads to be estimated by a Cilk Plus runtime function at line 22. Then, we start

to measure the elapsed cycle by using rdtsc() (or other variants) for a given top-

level parallel section, which is implemented in EmulWorkerCilk.

Recall the program tree in Figure 65: a parallel section (loop) has a list of

children-parallel tasks (iteration). Each task then has a set of works. These children

tasks are to be run concurrently in the parent section. To run the children tasks

concurrently, we apply a parallel construct, cilk for, on a section node (Line 3).

For each concurrently running task, we now iterate all computation nodes (Line

4). The computations in U and L nodes are emulated by Delay in which a simple

busy loop spins for a given time without affecting any caches and memory. The

computation length is adjusted by the burden factor (Line 7), which is given by
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1 void EmulWorkerCilk(NodeSec& sec , reducer& overhead)

2 {

3 cilk_for (int i = 0; i < sec.trip_count; ++i) /* actual */

4 foreach (Node node in sec.par_tasks[i]) { /* overhead */

5 overhead += OVERHEAD_ACCESS_NODE; /* overhead */

6 if (node.kind == NODE_U) /* overhead */

7 Delay(node.length * sec.burden_factor ); /* actual */

8 else if (node.kind == NODE_L) { /* overhead */

9 locks[node.lock_id]->lock (); /* actual */

10 Delay(node.length ); /* actual */

11 locks[node.lock_id]->unlock (); /* actual */

12 } else if (node.kind == NODE_SEC) { /* overhead */

13 overhead += OVERHEAD_RECURSIVE_CALL; /* overhead */

14 EmulWorkerCilk(node , overhead ); /* overhead */

15 }

16 }

17 }

18 }

19

20 int64_t EmulTopLevelParSec(NodeParSec& sec , int nt)

21 {

22 __cilkrts_set_param("nworkers", nt);

23 reducer_opadd <int64_t > overhead;

24 int64_t gross_time = rdtsc ();

25 EmulWorkerCilk(sec , overhead );

26 gross_time = rdtsc () - gross_time;

27 return gross_time - GetLongestLocalSum(overhead );

28 }

29

30 void Delay(int64_t delay_ticks)

31 {

32 int64_t end = rdtsc () + delay_ticks;

33 volatile int64_t t;

34 while (rdtsc () < end) ++t;

35 }

Figure 72: A general synthesizer for Cilk Plus: Pseudo code is shown. The

comments /* overhead */ indicate the tree-traverse overhead.

the memory performance model. For a L node, a real mutex is acquired and

released, thereby emulating precise behavior and overhead of lock contention

(Line 9 and 11). For a Sec node - nested and recursive parallelism that was

extremely hard to emulate in the FF - is supported by a simple recursive call (Line

14). This recursive call is the exact same way that nested and recursive parallelism

is actually executed.

Implementing a precise synthesizer has one another challenge: tree-traversing

overhead must be subtracted. If the number of nodes is small, the traversing
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overhead is negligible. However, a program tree could be very large (an order

of GB), for example, if nested loops are parallelized and its nested loops are

frequently invoked. In this case, the traversing overhead itself takes considerable

time, resulting in significantly deviated estimations. To attack this problem, we

measure two unit overhead of the tree traversing via a simple profiling on a given

real machine: OVERHEAD ACCESS NODE and OVERHEAD RECURSIVE CALL, as shown in

Figure 72. This approach is based on the observation that the unit overhead tends

to be stable across various program trees. For example, we carefully measured the

two unit overhead on our machine and obtained approximately 50 cycles for both

unit overhead. We count the traversing overhead per each work thread (Line 5 and

13), and take the longest one as the final tree-traversing overhead (Line 27). Note

that we used Cilk Plus’ parallel reducer reducer opadd because overhead has data

races when counting the overhead.

However, we remain a future work for handling tree-traversing overhead. Our

measurement of the unit overhead was only for single and two-level parallel loops.

We noticed that the overhead was not stable when deeply nested (or recursive)

parallel loops were profiled. One of the possible way is to use helper thread [84] to

prefetch program tree’s nodes in advance.

6.3.5 Summary of the Emulations

We do not claim that the synthesizer always outperforms the FF. There are several

cases where the FF can be more useful. Table 8 compares these two approaches.

The synthesizer obviously requires a real machine, which may be a weak point.

Programmers should run Parallel Prophet where they want to run the parallelized

code in the future. The synthesizer does not predict speedups on arbitrary core

numbers. The FF is a better choice if a programmer wants to see inherent scalability

and diagnose the parallel performance. We believe that the FF mechanism can
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Table 8: Comparison of the FF and the synthesizer.

Emulation Method The Fast-Forward Algorithm Program-Synthesis Algorithm

Characteristic Analytical model Experimental method
Time overhead Mostly 1.1-3× slowdown Mostly 1.1-3× slowdown

In worst case, could be 30+× slowdown (Discussed more in Section 6.6.6)
Memory overhead Moderate (by compression) Moderate (by compression)
Accuracy Accurate, except for some cases Highly accurate
Target machine An abstracted parallel machine A real parallel machine
Supported models Limited (hard to implement) Easy to support a new model

Ideal for To see inherent scalability and diagnose To see more realistic predictions;
bottleneck; For a small program tree For a large program tree and
and 1-level parallel loops. nested and recursive parallel loops.

be easily transformed to a tool that identifies reasons of poor speedups. The

biggest strength of the synthesizer is that it can easily extend to other parallel

programming models and machines. One of the our future work is to investigate

the synthesizer for GPGPU programming models, such as NVIDIA CUDA [100],

OpenCL [67], Many Integrated Core (MIC) derived from Intel Larrabee [129] and

Microsoft’s C++ AMP [89].

Memory overhead for both emulations is the same as the same program tree

is used. Regarding time overhead, there are a number of issues to be addressed.

More discussion can be found in Section 6.6.6.

6.4 Lightweight Memory Performance Model

This chapter presents the memory performance model (MPM) of Parallel Prophet.

Figure 13 showed the saturated speedups of the NPB-FT benchmark for which

current Suitability and vanilla Parallel Prophet cannot predict. We design a MPM

to predict such parallel performance saturation and degradation while achieving

low overhead. From memory profiling results, MPM computes burden factors.

Burden factors are then applied to a program node so that the emulators simulate

slowdowns comparing to the serial computation time.

MPM is built on analytical models with coefficients that are measured on a
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Table 9: Expected speedup classifications based on memory behavior. This thesis

only considers the second row cases (✔) for lightweight predictions.

Variation of Observed memory traffic from serial code
LLC miss/instruction Low Moderate Heavy

Par≫ Serial Likely scalable Slowdown+ Slowdown++
✔ Par ∼= Serial Scalable Slowdown Slowdown++

Par≪ Serial Scalable or super-linear - -

parallel machine where the speedup prediction will be made. As discussed in

the memory profiling, we use hardware performance counters as Parallel Prophet

particularly focuses on low overhead.

6.4.1 Assumptions

To build low-overhead MPM, we need a number of assumptions. We discuss and

justify the assumptions.

• Assumption 1: We can separate the execution time of a program into two

disjoint parts: (a) computation cost and (b) memory cost. Our model only predicts

additional overhead on the memory cost due to parallelization. Assumption 2

discusses the computation cost.

• Assumption 2: We assume that the work is ideally divided among threads,

similar to an SPMD (Single Program Multiple Data) style. Consequently, we

assume that each thread has n-th of the total parallelizable work, where n is

the number of threads. We also assume that no significant differences exist in

branches, caches, and computations among threads. The tested subset of NPB

benchmarks satisfies this assumption.

• Assumption 3: A simplified memory system is assumed: (a) We consider only

the last-level cache(LLC) and the miss rate of LLC; (b) the latencies of memory read

and write are the same; (c) SMT or hardware multi-threading is not considered;

and (d) hardware prefetchers are disabled from the BIOS of our computers.

•Assumption 4: We consider only the case of when the LLC misses per instruction
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(a kind of MPKI) does not significantly vary from serial to parallel. Table 9

shows the classifications of applications based on the trend of the LLC misses per

instruction from serial to parallel: (1) increases, (2) does not vary significantly, and

(3) decreases. However, in order to estimate LLC changes, an expensive memory

profiling or cache simulation is necessary. The main goal of this thesis is to provide

a lightweight profiling tool. The cases of the first and third rows in Table 9 will be

investigated in our future work. Section 6.6.5 provides supporting profiling data.

• Assumption 5: The super-linear case is not considered. When LLC misses per

instruction is less than 0.00l for a given top-level parallel section, the burden factor

is 1, which is the minimum value in our model.

6.4.2 The Performance Model

Based on these assumptions, the execution time (in cycles) of an application may

be represented as follows:

T = CPI ·N = CPI$ ·N + ω ·D, (4)

where N is the number of all instructions, D is the number of memory (DRAM)

accesses, CPI$ is the average cycles per instruction assuming no off-chip memory

accesses (i.e., all data are fit into the CPU caches), and ω is the average CPU stall

cycles for one memory access throughout the program execution. For example,

suppose that throughout program execution, the total stalled cycles is 100 cycles,

and 10 memory requests were observed. Then, ω is 10. CPI$ and ω represent

Table 10: Parameters in the performance model shown in Equation (4).

Name Meaning How to obtained

T Total execution cycles Memory profiling
N Number of instructions Memory profiling
D Number of memory accesses Memory profiling
ω Average stall cycles for a memory access Prediction

CPI$ Average cycles per instruction with perfect LLC Equation (4)
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the disjointed computation cost and memory cost, respectively, as in the first

assumption. A similar usage of the CPI$ concept can be found in CPIexe of [38].

6.4.3 The Definition of the Burden Factor

Although the application of burden factors was explained with a program tree, we

did not yet provide the precise definition of the burden factor. The burden factor

for a given thread number t, βt, represents the performance degradation only due

to the memory contention when a program is parallelized. We define βt to be the

ratio of Tt and T i
t , where Tt is the execution time of a parallelized program on a

real target machine with t cores4, and T i
t is the execution time on an ideal machine

where the memory system is perfectly scalable:

βt =
Tt

T i
t

=
CPIt ·Nt

CPI it ·N
i
t

=
CPI$,t ·Nt + ωt ·Dt

CPI i$,t ·N
i
t + ωi

t ·D
i
t

. (5)

The subscript t to a number indicates that the number is obtained from one

thread when a program is parallelized on t cores. We have assume that profiling

values from different threads will not vary significantly. For simplicity, the

subscript t can be omitted if t is one or the number is from a serial program.

Equation (5) can be further simplified by our assumptions:

• Nt, the number of instructions in parallel code for a thread, is obviously the

same as N i
t .

• In our SPMD parallelization assumption, we may safely consider that

N/Nt ≃ t and D/Dt ≃ t.

• Recall assumption 4: the LLC misses per instruction do not vary from serial

to parallel. Hence, MPI (or D/N , LLC misses per instruction from a serial

program) will be identical to MPIt and MPI it .

4We interchangeably use thread and core because we use 1:1 thread to core mapping.
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Table 11: Parameters in the burden factor shown in Equations (5) and (6).

Name Meaning How to obtained

MPI LLC misses per instruction (serial) Memory Profiling (D/N )

ωt
Average stall cycles for a memory access

Prediction
from a thread of the parallelized program

βt Burden factor for t threads Equation (6)

• We assumed that the computation cost, CPI$ will not change in parallel code.

Hence, CPI$, CPI$,t, and CPI i$,t are all identical.

• Finally, the memory access penalty on a perfectly scalable parallel machine

equals the penalty on a single core. Hence, ωi
t and ω (= ω1) is be identical.

As a result, the burden factor is finally expressed as:

βt =
CPI$ +MPIt · ωt

CPI$ +MPI it · ω
=

CPI$ +MPI · ωt

CPI$ +MPI · ω
. (6)

Our goal is to calculate βt by analyzing only an annotated serial program.

We obtain the T , N , D, and MPI profiling of a serial program with hardware

performance counters. The remaining terms are now ω, ωt, and CPI$. However,

once we predict ω, Equation (4) computes CPI$. Therefore, the calculation of the

burden factor is reduced to the estimation of ω and ωt, which equals predicting ωt.

6.4.4 Memory Access Overhead, wt Prediction

Recall that ωt is the additional cycles purely due to memory accesses, and we

predict ωt using only T , N , and D. Our assumption for the prediction is that ωt

would depend on memory access traffic. Hence, the prediction of ωt can be done

by two steps: (1) predict the total memory access traffic of t threads if a given

program would be parallelized and would run on a target machine and (2) predict

ωt under this predicted memory traffic. This step is formulated as follows:

δt = ∆ (δ), (7)

ωt = Ω (δt), (8)
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where δ is a measured memory traffic from a given serial program, δt is an estimated

memory traffic of a single thread if the serial program would be parallelized and

would run on t cores. The total expected memory traffic for a parallelized program

is then t · δt. We obtain δ via the memory profiling:

δ =
1

220
·
D · S$L

T · f
(MB/s), (9)

where S$L is LLC line size (typically 64 bytes) and f is the CPU frequency (MHz).

Based on the modelings at Equations (7) and (8), we find two empirical formulas,

∆ and Ω from a specially designed microbenchmark.

Although the microbenchmark is detailed in the following section, we outline

now. The microbenchmark can generate a spectrum of memory traffic by changing

LLC hit ratio. This also controls the number of threads to measure the total

memory traffic of multiple threads.

To determine ∆, we first measure the single-thread traffic from the microbench-

mark. Then, we measure the total traffic when multiple threads are running

together. We would observe both scalable and saturated cases depending on

the traffic. We obtain ∆ per each thread number on our machine. The machine

specification is described in Section 6.6.1. We ignore small traffic less than 2 GB/s.

For example, the obtained formula on our machine is (δ ≥ 2000 MB/s):

δ2 = (1.35 · δ + 1758) / 2,

δ4 = (5756 · ln(δ)− 38805) / 4,

δ8 = (6143 · ln(δ)− 39657) / 8,

δ12 = (6314 · ln(δ)− 39621) /12.

(10)

Ω returns an expected memory access overhead for a given memory traffic. To

find the relationship, we also use the same microbenchmark. We first measure

total execution cycles by only changing LLC misses while L1 and L2 cache misses

are fixed. We discuss the reason in the next section. However, we must subtract
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Figure 73: Examples of the coefficients of MPM: Equation (10) and Equation (11).

the computation cycles from the total execution cycles to expose the memory

overhead, which is ω. This is done by measuring the total cycles when there are no

LLC misses; however, again, L1 and L2 misses must be the same. We then compute

the pure overhead due to memory accesses under an arbitrary memory traffic:

wt = 101481 · (δt)
−0.964, (δt ≥ 2000 MB/s). (11)

Figure 73 visualizes these examples of ∆ and Ω. Ω may return nonsensical

numbers when δt is small. Recall assumption 5. In such a small δ range where the

LLC misses per instruction is very small, βt will be 1. In this implementation, we

set the cutoff 2000 MB/s.

6.4.5 Details of the Microbenchmark for wt Prediction

This section elaborates the details of the microbenchmark to obtain ∆ and Ω on a

particular machine. The design of the microbenchmark is particularly important

in our memory model. We summarize the goals for the benchmark:

1. This generates a wide range of memory traffic, from small (less than 1000

MB/s) to large traffic (enough to saturate the memory controller);
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2. This can measure not only the total execution cycles but also must subtract

the memory access overhead from the total cycles to compute ω.

Controlling memory traffic For the first goal, we exploit two techniques: (1) tight

pointer-chasing code to maximize the traffic and (2) changing the shape of linked-

list chains to control LLC miss ratio.

1 void kernel(int64_t trip_count , CACHE_TEST* tester)

2 {

3 CELL* cur = tester ->head

4 while (--trip_count)

5 cur = cur ->next;

6 }

Figure 74: The kernel loop of the microbenchmark.

The main kernel loop has only linked-list traverse code as shown in Figure 74.

This loop will be compiled (with optimization) to only three x86-64 instructions:

(1) loop decrement, (2) pointer chasing (mov (%rax), %rax), and (3) a branch. CELL

is a size of void* where only a single pointer can be placed. Each CELL is allocated

on separate cache line. If CELL is linked to the next CELL, the loop will generate

one memory request for every loop iteration (three instructions). Because there is

a single memory instruction per the iteration, full LLC misses (cold miss) will be

observed, resulting in maximized memory traffic. However, we soon discovered

that the measured traffic was far below our expectation such as only 900 MB/s. The

reason is because the throughput of the pointer-chasing code is limited by loop-

carried flow dependences. No memory-level parallelism is exploited. To address

this problem, we let independent linked-list chains together in the kernel loop. We

also run the kernel in multiple threads. Figure 75 shows the improved kernel loop

with the independent chains.

Notice that we used 14 independent chains. x86-64 has 16 general purpose

registers. Except for the stack pointer (rsp) and a register to hold the trip count,
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1 void kernel(int64_t trip_count , CACHE_TEST* tester)

2 {

3 CELL* cur [14];

4 for (int i = 0; i < 14; ++i)

5 cur[i] = tester ->heads[i];

6 while (--trip_count) {

7 cur[ 0] = cur[ 1]->next;

8 cur[ 1] = cur[ 2]->next;

9 ...

10 cur [13] = cur[13]->next;

11 }

12 }

Figure 75: The improved kernel loop of the microbenchmark: 14 independent CELL

chains are traversed to maximize the memory traffic without register spill.

up to 14 registers can be used in the kernel loop to hold cur[k]. When using

more than 14 independent chains, register spill occurs that will decrease the traffic

volume. We verified that 14 independent chains created the maximum traffic.

The idea to control LLC miss ratio is sketched in Figure 76. We deliberately

manipulate the shape of the pointer chains so that a portion of memory accesses

are cache hits. LINE is a set of CELL to fit a single cache line. In a x86-64 machine,

the sizes of CELL and LINE are 8 and 64 bytes, respectively. We also define REGION,

a set of LINE that fits in the size of LLC.

Figure 76 shows the case of creating 50% cache miss ratio. First, until reaching

the boundary of the LLC size, the accesses to CELL, ❶, ❷, and ❸, will be cache

misses. We then rewind to the first LINE, but the second CELL. This CELL is still in

    

REGION (L3 cache size) 

    

1 2 3 

4 

5 6 7 

 

8 

LINE 

(Cache line size) 

CELL 

(sizeof void*) 

Figure 76: The microbenchmark controls LLC cache miss ratio by manipulating

pointer chains. A set of 8-byte (sizeof void*) cells are linked with the repetition

count of 1 so that 50% LLC miss ratio is created in the memory traffic. ✓ and ✗

indicates L3 cache hit and miss, respectively.
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1 double miss = 0;

2 double hit = 0;

3 // Initial repetition count

4 int repeat = max(1, min (100 / target_miss_ratio , kNumCellInLine ));

5 for (char* region = lb; region < ub; region += kRegionSize)

6 {

7 for (int i = 0; i < num_independent_chains; ++i)

8 BuildLinksInRegion(region + i*kCacheLineSize , repeat );

9

10 miss += kNumSegment;

11 hit += kNumSegment * (repeat - 1);

12

13 // Adjust the repetition count based on current ratio.

14 double cur_miss_ratio = (miss * 100.) / (miss + hit);

15 if (cur_miss_ratio < target_miss_ratio)

16 repeat = max(1, repeat - 1);

17 else if (cur_miss_ratio > target_miss_ratio)

18 repeat = min(kNumCellInLine , repeat + 1);

19 }

Figure 77: Self-adjusting code to create an arbitrary cache miss ratio

LLC so that the access ❹ will be a cache hit. In turn, the accesses ❺, ❻, and ❼ will

be also hits. When reaching the boundary again, now exit this region and move

to the next LINE, as shown in ❽. We say that the repetition count is 1 in this case.

The same pattern is then repeated. Finally, we can achieve 50% LLC miss ratio and

control the memory traffic volume.

With the repetition count of 2, we can easily see 1/3 = 33.3% miss ratio would

be created. The maximum repetition count in x86-64 is 7, thereby 1/8 = 12.5%

is the minimum miss ratio that can be created by this technique. However, miss

ratio under 10% provides only small memory traffic volume, which we do not

care. Creating an arbitrary LLC miss ratio from 0.125 to 1.0 is straightforward.

We allocate sufficient number of REGION and set different repetition count for each

REGION by simple adjusting code shown in Figure 77.

Extracting the memory access overhead So far, we discussed several techniques

to create controlled memory traffics so that we can obtain many sample point to

build ∆, such as the example shown in Figure 73(a). However, building Ω imposes
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one more challenge. We can easily measure the total cycles for a given arbitrary

memory traffic, but ωt is the average cycles (per instruction) only due to memory

accesses. From our performance model in Equation (4), we can compute ω once

we know CPI$, which is the execution time when all memory accesses are served

by LLC. Hence, we measure the execution cycles by making all memory accesses

to be LLC hits. We call this case as the reference point

One may think that the reference point can be obtained simply by a single

CELL that points itself, making it perfect cache hits. However, this approach is not

correct because L1 and L2 caches become hits. Observe that in Figure 76, regardless

whether or not L3 hit, all memory accesses on CELL make L1 and L2 cache misses.

On a L3 miss, it is obvious that L2 and L3 are also cache misses. However, even

on a L3 hit due to the repetition, L1 and L2 still make cache misses because the

size of REGION is sufficiently larger than L2 cache size. A hitting LINE in LLC is

already evicted from L2 cache by capacity miss. Hence, to obtain the reference

point correctly, we need to make 100% L3 hits, but full L1 and L2 misses. The

naive approach using a single CELL will not account the cost of L1 and L2 accesses.

  

L2 cache size 

  

1 2 3 

4 

5 6 … 
L0 L1 L2 L3 

    

Figure 78: The shape of links to compute CPI$, the reference point: All accesses

to L3 are cache hits (except the very first cold misses), but L1 and L2 always make

cache misses. ✓ and ✖ indicates a L3 hit and a L2 miss, respectively.

Figure 78 has the correct shape of the linked list to obtain the reference point,

i.e., to compute CPI$. After access ❸, all LINEs are in the L3 cache, but L2 has L2

and L3 while L0 and L1 are evicted. Hence, all accesses in the figure make L2 cache

misses. We finally then can compute the pure memory access overhead, ω, for an

arbitrary memory traffic, which yields Ω, for example, Figure 73(b).
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Figure 79: Verifications of the microbenchmark.

Figure 79(a) verifies that our microbenchmark makes full L2 cache misses

while L3 cache misses are varied from 12.5% to 100%. Figure 79(b) shows an

example of various memory traffics by L3 cache miss ratio and the number of

threads. We observe linearly increasing memory traffic on two threads, but soon

memory traffics are saturated due to limited memory bandwidth. The machine

of Figure 79(b) has only a single DRAM channel. The maximum bandwidth of the

machine is approximately 10 GB/s while a dual DRAM channel provides 16 GB/s.

6.4.6 Summary of the Memory Performance Model

We summarize how to compute a burden factor for a particular thread number via

the memory profiling and the presented memory performance model:

1. For a target parallel machine, run the microbenchmark to obtain ∆ and Ω.

2. For a given serial program, perform the memory profiling per each dynamic

instance of a top-level section. N , T , D, and MPI are collected. The memory

traffic of the serial program, δ, is also computed by Equation (9).

3. Equation (7) estimates δt, which is followed by Equation (8) that estimates ωt.

4. Finally, Equation (6) yields the burden factor.
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6.5 Implementation

We implement Parallel Prophet as producer-consumer architecture similar to SD3:

(1) a tracer that performs instrumentation and profiling and (2) an analyzer

that builds a program tree and emulates. Two processes communicate via

shared memory. The tracer is based on Pin [85] and Intel Performance Counter

Monitor [55]. The PAPI [47, 96] library can be used instead to retrieve hardware

performance counters.

6.5.1 Implementation of Annotation System

Our annotations are implemented as C macros calling corresponding stub

functions, which is detected by Pin. The approach is sketched in Figure 80.

A program to be profiled is compiled with the annotation interface file,

1 /* The singleton that holds pointers to stub functions */

2 static struct __HOOK_FUNC_TABLE {

3 __hook_lock_begin_t pf_lock_begin;

4 __hook_lock_end_t pf_lock_end;

5 } __func_table;

6

7 static void __init_func_table () {

8 /* Load DLL and fill __func_table */

9 ...

10 }

11

12 define PAR_LOCK_BEGIN(int lock_id) __func_table.pf_lock_begin (\

13 lock_id , "Lock@" __FILE__ "(" #__LINE__ ")")

14 define PAR_LOCK_END(int lock_id) __func_table.pf_lock_end (\

15 lock_id)

(a) An excerpt from annotate.h: At the runtime, func table is first initialized.

1 void __cdecl __hook_lock_begin(const char* name , int lock_id)

2 { /* No operation */ }

3

4 void __cdecl __hook_lock_end(int lock_id)

5 { /* No operation */ }

(b) An excerpt from annotate.c, which is built as annotate.dll (.so): When building the DLL, we do

not perform link-level optimization to prevent from collapsing separate stub functions.

Figure 80: An example of the annotation system.
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annotate.h. The stub function, such as hook lock begin, is provided by the

hook, annotate hook.dll (or .so). When an annotated program starts to run, a

singleton declared from the annotation header file initializes the function pointer

table, func table, by dynamically loading the hook DLL. In the runtime, when a

stub function is called, Pin detects this moment and captures the arguments if any.

The Pin tracer transfers the annotation name and arguments to the analyzer. The

analyzer will then build a program tree.

We tried to use Pin’s probe mode5 that patches a binary on the loading time and

executes natively. This mode is desirable because the overhead is minimized, and

the interval and memory profiling can be performed simultaneously. However,

due to some implementation difficulties, we currently use Pin’s JIT mode.

6.5.2 Implementation of Interval Profiling

This section discusses several implementation issues for the interval profiling.

Using instruction count as the length unit Section 6.2.2 mentioned that the unit

of the length in the interval profiling can be either (1) the number of dynamically

executed instructions, or (2) the elapsed time, between a pair of annotation.

We initially attempted to use instruction numbers as the length. This approach

provides a couple of strengths. First, we can precisely count the instruction count

while excluding any profiling overhead, including annotation and instrumentation

overhead. Second, the number of instructions is not affected by system fluctuation,

which provides stable profiling and inherent characteristics of the program.

However, we must correctly consider the latencies of different instructions

including cache and memory latencies. Such latencies of x86 processors are not

5Regarding the probe and JIT mode of Pin, please refer to the Pin manual: http://software.

intel.com/sites/landingpage/pintool/docs/49306/Pin/html
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typically provided by the vendors although unofficial information can be found.6

We collected instruction mix and applied the best-known latencies information for

instruction, cache, and memory. However, prediction results were not accurate

as expected, especially for a program with diverse instruction mix and a lot of

cache misses. Another downside of using instruction count is the time overhead.

Collecting the instruction count requires at least basic-block-level instrumentation.

Using time as the length unit We alternatively use time (or cycles) as the unit in

this work. Time-based length information automatically captures the latencies of

all kinds of executed instructions inside annotations. However, two important

challenges must be addressed in this approach: (1) obtaining precise timing

information and (2) building a program tree while excluding profiling overhead.

First, to collect the length as precise as possible, we use rdtsc() that reads

a processor’s time stamp counter, which is the highest resolution. However, a

couple of problems in using rdtsc() are known on modern multicore processors.

To minimize the negative effects on time stamp counter, (1) we override the

thread and processor affinity so that a thread is pinned on a specific processor; (2)

dynamic frequency scaling such as Intel SpeedStep and Intel TurboBoost should

be disabled. In Windows platform, we can use QueryPerformanceCounter() that

hides these hardware complexity.

Second, building a program tree with the time unit requires a caution. When

measuring the elapsed time, overhead due to annotations and profiling itself

can be included. We should exclude such overhead to build a precise program

tree, especially for a frequently annotated program. An example is shown in

Figure 81. In the parallel task from line 3 to 18, there are annotation overhead

of the lock and the nested loop. We can also observe profiling overhead due to the

6Torbjörn Granlund, ”Instruction latencies and throughput for AMD and Intel x86 processors,”
http://gmplib.org/˜tege/x86-timing.pdf, 2012-02-13.
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 1: PAR_SEC_BEGIN(“loop1”); 
 2: for (i = 0; i < N; ++i) { 

 3:   PAR_TASK_BEGIN(“t1”); 
 4:   Compute(p1); 

 5:   LOCK_BEGIN(1 /*lock id*/); 

 6:   Compute(p2); 

 7:   LOCK_END(1); 

 

 

 8:   if (p3) { 

 9:     PAR_SEC_BEGIN(“loop2”); 
10:     for (j = 0; j < M; ++j) { 

11:       PAR_TASK_BEGIN(“t2”); 
12:       Compute(p4); 

13:       PAR_TASK_END(); 

14:     } 

15:     PAR_SEC_END(true); 

16:   } 

17:   Compute(p5); 

18:   PAR_TASK_END(); 

19: } 

20: PAR_SEC_END(true); 

blocked by the analyzer 

Figure 81: We must exclude overhead due to annotation and profiling. This figure

shows such overhead between PAR TASK BEGIN and PAR TASK END at line 3 and

18, respectively. (1) Annotation overhead: between the task, there are lock and

nested-loop annotations (lightly shared boxes). (2) Profiling overhead: due to the

separate tracer and analyzer architecture, there could be a blocked time. The

tracer attempted to transfer the event after LOCK END, but the shared queue is still

full because the analyzer is busy.

implementation of the tracer and analyzer. We track such annotation and inter-

process communication overhead and subtract them from the gross time, which

gives the net execution time.

6.5.3 Compression of the Program Tree

A program tree may consume large memory because all lengths of loop iterations

are recorded. Many benchmarks in our experiments use moderate memory

consumption (less than 500 MB). However, for example, IS in the NPB benchmark

consumes approximately 10 GB to build a program tree. To solve this memory

overhead problem, we apply compression techniques as depicted in Figure 82.

When lengths of loop iterations do not vary significantly, we perform lossless

compression using a simple RLE(Run-length encoding) method with a simple

dictionary-based algorithm. This simple lossless compression is quite effective for
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Figure 82: Two compression schemes for the memory overhead of program tree:

Losess compression allows a small tolerance for easily fluctuating time-based

lengths. Lossy compression’s example shows 100 nodes are compressed to a

single node whose length is the average of the compressed nodes.

many cases. The program tree of CG in NPB (with ‘B’ input) can be compressed

into 950 MB from 13.5 GB (a 93% reduction). In our implementation, we allow 5 to

10% of variation to be considered as the same length. Recall that the unit of length

is high-resolution cycle that tends to fluctuate.

Simple compressions may not feasible if iteration lengths are extremely hard

to compress in a loseless way. As a last resort, we may use lossy compression.

Fortunately, lossy compression was not needed in our experimentations. With

lossless compression, 3 GB of memory is sufficient for all evaluated benchmarks

in this thesis. We do not evaluate this scheme in this dissertation.

6.6 Experimentation Results

This section presents experimental results of Parallel Prophet. We present

the results of the model verification. We then discuss the results of real

benchmarks with our memory performance model (MPM). We also provide

several experimental profiling results to support the assumptions of MPM. Finally,

discussions regarding the time overhead and the limitations follows.

159



6.6.1 Experimentation Methodologies

The machine configuration we used for the experiments is summarized in Table

12. Disabling hardware prefetchers is critical for the evaluation of MPM. We do

not currently model the effects of prefetchers. SpeedStep (DVFS) and TurboBoost

(automatic overclocking) are also disabled to obtain stable single-thread results.

We evaluate eight benchmarks in OmpSCR [103] and NPB [64]. When running

a multithreaded benchmark, we manually set process or thread affinity as shown

in Table 13, which maximally utilizes two separate LLCs. The affinity can be

set by either APIs such as pthread setaffinity np or environment variable of an

OpenMP runtime such as KMP AFFINITY in Intel’s OpenMP.

6.6.2 Validation of the Prediction Model

We first conduct validation experiments to verify the prediction accuracy of

Parallel Prophet without considering memory and caches. This step is important

to quantify the correctness and diagnose the problems of Parallel Prophet before

predicting realistic programs with our memory performance model.

We use randomly generated samples from two serial program patterns: Test1

and Test2, shown in Figure 83. Test1 exhibits (1) load imbalance, (2) critical

Table 12: System configuration.

CPU model Intel Xeon E5645 @ 2.4 GHz
Architecture Westmere (32nm)
L3 cache size Shared 12 MB per socket

Cores/Threads 6/6 per socket (Hyper-threading is disabled)
Number of sockets 2 (Total 12 cores and 12 threads)

Main memory 2 × 4 GB per socket (Total 16 GB)
Memory channel Dual-channel per socket

Memory configuration SMP mode (No NUMA)
HW features HW prefetchers, TurboBoost, SpeedStep are all disabled

Operating System Windows 7 64-bit
Compilers Intel C/C++ Compiler 12.0
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Table 13: CPU affinity configurations for the experimentations on two six-core

processors: # means an idle core, and  indicates a thread is pinned.

Thread number Socket 1 Socket 2
1  ##### ######

2  #####  #####

4   ####   ####

8     ##     ##

12             

sections whose contentions and lengths are arbitrary, and (3) a high parallel

overhead case: high lock contention. Test2 additionally shows (1) a high parallel

overhead case: frequent inner loop parallelism and (2) nested parallelism, as well

as all the characteristics of Test1. The function ComputeOverhead in the code

generates various workload patterns, from a randomly distributed workload to

a regular form of workload, or a mix of several cases.

We generate 300 samples per each test case by randomly selecting the

parameters. These randomly generated programs are annotated and predicted by

Parallel Prophet. Predicted parallel model is a program parallelized by OpenMP

running on 2, 4, 6, 8, 10, and 12 cores. Three OpenMP’s scheduling policies are

predicted: (static,1), (static), and (dynamic,1). To verify the correctness, we

parallelize the tester programs by OpenMP and measure real speedups. We finally

plot the predicted speedups versus the real speedups to visualize the accuracy. The

more dots closer to y = x, the more accurate result. Some of the results for 8 and

12 cores are shown in Figure 84.

The fast-forwarding emulation achieved high accuracy for Test1, shown in

Figure 84 (a) and (b); the average error ratio is less than 4% and the maximum

error ratio is 23% for a case of predicting 12-core.

Figure 84 (c) and (d) show the results of Test2 with the FF. The average

error ratio is 7% and the maximum was 68%, which are significantly higher

than the results of Test1. Among the three schedulings, (static) shows more
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1 // To be parallelize by OpenMP.

2 for (int64_t i = 0; i < i_max; ++i) {

3 overhead = ComputeOverhead(i, i_max , M, m, s);

4 FakeDelay(overhead * ratio_delay_1 );

5 if (do_lock1) {

6 // To be protected.

7 FakeDelay(overhead * ratio_delay_lock_1 );

8 }

9 FakeDelay(overhead * ratio_delay_2 );

10 if (do_lock2) {

11 // To be protected.

12 FakeDelay(overhead * ratio_delay_lock_2 );

13 }

14 FakeDelay(overhead * ratio_delay_3 );

15 }

(a) Test1: workload imbalance + locks + high lock contention.

1 // To be parallelize by OpenMP.

2 for (int64_t k = 0; k < k_max; ++i) {

3 overhead = ComputeOverhead(k, k_max , M, m, s);

4 FakeDelay(overhead * ratio_delay_A );

5 if (do_nested_parallelism)

6 Test1(k, k_max );

7 FakeDelay(overhead * ratio_delay_B );

8 }

(b) Test2: Test1 + inner-loop parallelism + nested parallelism.

Figure 83: Validation testers: Test1 and Test2.

severe errors. Our investigation for such errors concludes that operating system-

level thread scheduling can affect the speedups, which the FF currently does

not precisely model. An example was discussed in Figure 70. We also discover

that the overhead of OpenMP is not always constant, unlike the results from the

previous work [13, 22]. The previous work claims that the overhead of OpenMP

constructs can be measured as constant delays. However, our experimentation

results defied the previous result: the overhead was also dependent on the trip

count of a parallelized loop and the degree of workload imbalance. To address

such difficulties, we have introduced the synthesizer. The synthesizer provides

more accurate predictions for Test2, showing a 3% average error ratio and 19% at

the maximum, shown in Figure 84(e). Note that such a 20% deviation in speedups
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(c) Test2, 8-core, FF.
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(d) Test2, 12-core, FF.
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(e) Test2, 12-core, Synthesizer.
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(f) Test2, 4-core, Suitability.

Figure 84: Prediction accuracy results of Test1 and Test2, targeting 8 and 12

cores, and OpenMP, with the FF and synthesizer: X-axis is the measured real

speedups, and Y-axis is the predicted real speedups. Sub-figure (e) shows that

the synthesizer outperforms the FF when the core numbers are large. Suitability

does not provide accurate results because the emulator of Suitability does not

explicitly model OpenMP’s scheduling policies.
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Figure 85: Inaccurate prediction of Test2 without considering specific scheduling

policies: Real speedups were measured using (static) and (static, 1), but the

predictions were based on (dynamic, 1).

are often observed in multiple socket machines; thus we consider a 20% error as a

boundary for reasonably precise results.

We also conduct validation tests with Intel Parallel Advisor’s Suitability

analysis. Due to constraints of the out-of-the-box tool, we are only able to predict

Test1 and Test2, up to a quad-core. The results of Test1 (not shown in the thesis)

are as accurate as ours. However, Figure 84(f) shows that it does not predict well

for the cases of Test2. Suitability does not currently provide speedup predictions

for a specific scheduling, but the emulator of Suitability is known to be close to

the OpenMP’s (dynamic,1). We speculate the reasons for such inaccuracy would

be (1) the limitations of the emulator discussed in Section 6.3.2, and (2) the lack of

precise modeling of OpenMP’s scheduling policies. This result says that explicit

modeling scheduling policies is important. Figure 85 also supports this claim.

We intentionally mismatched predicted and measured speedups. We plot

the real speedups of Test2 with (static) and (static, 1) versus the predicted

speedups with (dynamic, 1). The figure clearly shows the prediction is not

accurate. There are many points in the region of y > x, showing poor prediction

because a dynamic scheduling generally achieves higher speedups. We argue that
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an emulation must explicitly model detailed scheduling policies.

6.6.3 Prediction Results with Memory Performance Model

We present the prediction results on four OmpSCR (MD, LU, FFT, QSort) and four

NPB benchmarks (EP, FT, MG, CG) in Figure 86. Each benchmark is estimated

by (1) the synthesizer without the memory performance model (‘Pred’), (2) the

synthesizer with the memory performance model (‘PredM’), and (3) Suitability

(‘Suit’). We also measure the real speedups: OMP-QSort and OMP-FFT are

parallelized by Cilk Plus to support efficient recursive parallelism; and the others

are parallelized by OpenMP. The sub-captions of the figure identify corresponding

the inputs and the maximum physical memory footprint sizes.

Four benchmarks, OMP-MD, OMP-LU, NPB-EP, and OMP-QSort-Cilk , show

highly accurate prediction results, even without considering memory effects. They

do not show large memory traffic, so our memory performance model (MPM)

predicts burden factors of 1 in most cases. However, we slightly underestimate the

speedups of OMP-MD and OMP-LU on 6, 8, 10, 12 cores. This may be explained

by the increased effective L1 and L2 cache sizes. Our MPM does not currently

consider such an optimistic but computes the burden factors of 1, meaning these

benchmarks are not limited by memory bandwidth limitation. The result of

Suitability for OMP-LU was poor. One of the reasons would be the fact that LU

has a frequent parallelized inner loop.

We discuss the cases of NPB-FT, NPB-CG, and NPB-MG. We observe that the

parallel performance of these three benchmarks are saturated and degraded on

higher core numbers due to increased memory traffic. The memory footprints are

fairly large, over 400 MB. Our additional experiment, which is presented in the

next section, confirms that these benchmarks exhibit significant memory traffic in

some phases. Hence, without the MPM, Parallel Prophet overestimates for these
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Figure 86: Predictions of OmpSCR and NPB benchmarks: ‘Pred’ and ‘PredM’ are

the results without/with the memory performance model, respectively. ‘Suit’ is the

results of Suitability. Suitability does not have a memory performance model and

only provides speedups for 2N CPU numbers. The predictions of Suitability for

6/10/12 cores are interpolated. The captions show the input set and its maximum

memory footprint.
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three benchmarks. The estimations in “Pred” show that the programs run scalably

in higher core numbers.

However, the results of “PredM”, the predictions with our MPM, are clearly

more accurate than “Pred” and “Suit”. The MPM computes burden factors for

parallel sections with the memory profiling. For these three benchmarks, there are

a number of sections whose burden factors are greater than 1. For example, the

burden factors of NPB-FT show the range of 1.0 to 1.45 for two to 12 cores. Some

burden factors (e.g., NPB-FT and NPB-MG) tend to be predicted conservatively.

However, we claim that the results show the outstanding prediction ability.

Finally, two recursive parallelism patterns are demonstrated in OMP-QSort-

Cilk and OMP-FFT-Cilk, which cannot be efficiently implemented by OpenMP

2.0. They are parallelized by Cilk Plus and predicted. As our synthesizer can

easily model a different threading model, the results are also quite close to the

actual speedups. For the case of OMP-FFT-Cilk, Suitability was unable to provide

meaningful predictions.

6.6.4 A Simple Verification for the Memory Performance Model

We do a simple verification for the MPM with the microbenchmark used to derive

∆ and Ω. The result is presented in Figure 87. We first measure the actual speedups

of the benchmark when the parallelized version is running under various memory

traffic and different thread numbers (3, 4, and 5 threads). Because the benchmark

creates heavy memory traffic, the speedups are often saturated. We cannot observe

a speedup greater than 3. Note that this experimentation was done on a single-

channel DRAM to show the saturation easily, while the results in Figure 86 were

obtained on dual-channel DRAMs. We then predict speedups by our MPM. As

Figure 87 shows, most of the predictions are within 33% error bounds.

167



1

2

3

4

1 2 3 4

P
re

d
ic

te
d

 S
p

e
e

d
u

p
s 

b
y

 M
P

M
 

Measured Speedups 

33% 

Figure 87: A simple verification test for memory performance model: We used our

microbenchmark (Section 6.4.5) to test the MPM. Most of the predictions are within

33% error bounds. The experimentation was done for only 3, 4, and 5 threads.

Different colors indicate different numbers of the independent chains (Figure 75).

6.6.5 Detailed Cache and Memory Behaviors of the Benchmarks

Section 6.4.1 detailed the assumptions of the MPM. One of the important

assumptions is that the miss ratio of LLC does not significantly vary from a

serial version to a parallel version. This section presents a number of supporting

profiling results for the NPB-FT benchmark.

Figure 88 shows the overall bandwidth behavior of NPB-FT running on 1, 2,

4, and 8 threads, measured by Intel VTune [57]. The peak traffics do not increase

even if the number of threads increased because the memory bandwidth is already

saturated by single-thread traffic. From this observation, we can easily guess that

the speedup would be saturated.

The bandwidth varies by functions. The periodic peaks shown in Figure 88

are from evlove function of NPB-FT while the following flat is from cftts1 and

the small hill before the peak is from cftts2 and cftts3. Figure 89 presents the

memory traffic behaviors of these three main routines of NPB-FT. This profiling

data demonstrates well that the main bottleneck of the saturated speedups is

because of evlove function.
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(a) Single thread. (b) Two threads.

(c) Four threads. (d) Eight threads.

Figure 88: Memory traffic of NPB-FT measured by Intel VTune: X-axis is the

elapsed seconds, and Y-axis is the bandwidth. The peak bandwidth are generated

from evolve function of NPB-FT, followed by a low traffic from cffts1 and a bit

more traffic from cftts2 and cftts3.

We verify the variation of LLC misses (MPKI) of NPB-FT’s evlove function. We

measure MPKIs from single and parallel versions of NPB-FT. MPKIs of the single

thread are the block dots of Figure 90(a). For the parallel versions, we measured

per-thread MPKIs on 2, 4, and 6 cores and plot each thread data. Except for a few

outliers, the figure shows that the trends of the MPKI numbers well coincide. The

geometric average of the maximum differences is MPKI of 2.12. Recall that evolve

is the most memory consuming function. Figure 90(b) shows the results of cffts2,
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Figure 89: Memory traffics (shown in log scale) from the major routines of NPB-FT

by the invocation count: evlove function generates peak bandwidth.
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Figure 90: LLC misses as MPKI of NPB-FT’s evlove and cftts2 in serial and

parallel versions. The black dots and line are the numbers from the serial program.

We obtained these MPKIs from the parallelized version running 2, 4, and 6 cores.

Each thin line indicates MPKIs from a thread running in the parallelized program.

which demands the memory moderately as shown in Figure 89. In this function,

the MPKIs of the serial version remain in constant: 0.31 of MPKI. The parallel

versions’ MPKIs, however, exhibit variations. Unlike the case of evolve, a common

trend is not observed in the numbers; rather we can see a random fluctuation.

Nevertheless, the MPKIs are mostly within the range of 0.25 to 0.35. The average

of the maximum differences is only 0.067 by average: 22% of the serial MPKI.

This data supports our assumption of the steady LLC miss ratio in the evaluated

benchmarks.
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6.6.6 The overhead of Parallel Prophet

The worst memory overhead in all experimentations in the thesis is 3 GB when

only the loseless compression is used. However, some benchmark, such as FT

in NPB only requires 5 MB for storing its program tree. The time overhead is

mostly 1.1× to 3.5× slowdown per each estimate, except for the predictions of

FFT and IS with the FF emulator. It shows more than 30× slowdown for these

cases. Note that Suitability shows 200× slowdowns for FFT. Such high overhead

comes from significant overhead of tree traversing and intensive computation

using the priority heap in the FF emulator. Note that this time overhead represents

a slowdown against the execution time of an unannotated serial program. The

synthesizer only shows approximately 3.5× slowdowns for FFT and IS.

Note that quantifying the time overhead is somewhat complicated. The total

time overhead is actually dependent on how many estimates programmers want.

The more estimates desired, the more time is needed. In addition, the synthesizer

actually runs a parallelized program, hence its time overhead per estimate is

dependent on its estimated speedup. If an estimated speedup is 2.5, then the

overhead would be at least 1.4× slowdown (=1+1/2.5). The total time of the

synthesizer can be expressed:

Tsyn total = Tprofiling +
K
∑

i=1

(Ttraverse + Tserial/Si), (12)

where Tserial is the execution time of the serial version, Tprofiling is the overhead of

the interval profiling, Ttraverse is the overhead of tree-traversing in the emulator, K

is the number of estimates to obtain, S is the measured speedup. Note that Tprofiling

and Ttraverse are heavily dependent on the frequency of annotations.
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6.6.7 Limitations of Parallel Prophet

Although we expanded the prediction coverage by employing the synthesizer and

a memory performance model, Parallel Prophet has the following limitations:

• The speedup prediction is based on runtime profiling. The profiling result is

dependent on an input like SD3. Programmers should give a representative

input to obtain faithful speedup predictions.

• We assume no I/O (file, disk, or network) operations in annotated regions.

• Current annotations only support task-level parallelism and mutex. How-

ever, we believe that supporting other types of synchronization and par-

allelism patterns is not challenging. For example, pipelining can be easily

supported by extending annotations [139] and emulation algorithm.

• We already discussed the assumptions of the MPM. The assumptions become

the current limitations of the MPM. For example, we do not model super-

linear effects, data sharing, and changed cache behavior in LLC.

• We found two potential dimensions in the formula of Ω. During the

experimentation using the microbenchmark, there were cases where the

number of thread and the degree of the independent load (Figure 75) in

the microbenchmark affected the shape of the correlations between ω and

the bandwidth. In this thesis, we excluded low numbers of thread and

independent load to obtain the formulas in Equations (10) and (11).

• The experimentation results for the MPM in Figure 86 required a fine tuning

for NPB-MG and NPB-CG. They have many very short-period sites, so the

obtained profiling data were highly fluctuated. We computed an averaged

burden factor for a set of short-period sites.
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6.7 Summary of This Chapter

This chapter presented Parallel Prophet, which predicts potential speedup of a

parallel program by dynamically profiling and emulating from a serial program.

It takes input as annotated serial programs and annotations describe parallel

loops and critical sections. We provided detailed descriptions of two emulation

algorithms: the fast-forwarding emulation and the synthesizer. In particular,

the synthesizer is a novel method to model various parallel patterns easily and

precisely. We also proposed a simple memory model to predict the slowdown in

parallel applications resulting from memory resource contention.

We evaluated Parallel Prophet with a series of micro-benchmarks that show

highly accurate prediction results (less than 5% errors in most cases). We also

demonstrate how Parallel Prophet executes the prediction with low overhead.

Finally, we evaluated Parallel Prophet with a subset of the OmpSCR benchmarks

and the NPB benchmarks. We presented good accuracy against these benchmarks

as well. Our memory model can predict performance degradations after

parallelization and proved its effectiveness.
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CHAPTER VII

ALGORITHMS TO EXTRACT PARALLELISM AND

TRANSFORMATION ADVICE

This chapter presents the post-analyzer, a set of algorithms that further analyzes

the raw dependence results, and thereby programmers easily understand the

parallelism of their serial code and obtain hints for writing parallel code. The post-

analyzer can be used to assist the manual annotation of Parallel Prophet.

7.1 Assumptions for the Post-Analyzer

First, we judge the parallelizability of a given serial program by the patterns

and existence of the data dependence. The post-analyzer recommends a code

transformation for a set of dependences if the dependence pattern can be handled

in our algorithms: for example, for this kind of dependences, a reduction can

remove the dependences. Sometimes dependences could be a conservative

criterion to find parallelism. For example, implementation artifacts such as a

memory allocator can create dependences while such dependences can be ignored

easily. A study shows that some dependences may be ignored under certain

limited conditions [143]. However, for our purpose in which code modification

for parallelization is needed, we claim that data dependences are still the most

critical factor. Parallelizability can also be defined by other criteria such as the

commutativity of operations [119, 4, 112, 68] and the critical path [33].

Second, we assume that a transformation to avoid dependences is orthogonal

to other transformations. In other words, we report a transformation advice per

a particular set of dependences, but do not consider their relative ordering in the
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whole transformations. We further discuss this issue in Section 7.2.5

Finally, we assume that there is no significant pre-modification in serial code.

We aim to write an initial version of parallel code from the original serial code. It is

true that programmers often perform pre-modification on serial code - other than

parallelization - so that the parallelization is easily to be achieved. An example

is fluidanimate in the PARSEC suite [8]. The programmer substantially modified

the structure of the original serial code to write parallel code easily. One of the

future work is to investigate common such pre-modification for more amenable

parallelization.

7.2 Overview of the Post-Analyzer

Given a loop and dependence profiling raw result, we devise algorithms and

heuristics that automatically and systematically extract parallelism and advice on

writing parallel code. Ideally, we would like to give such hints: ”You can parallelize

the loop of the function foo if you insert a mutex on this operation”.

We think that finding a generalized solution to avoid an arbitrary pair of

data dependences is infeasible. Instead the post-analyzer attacks important data-

dependence patterns that can be solved by well-known parallelization techniques,

such as privatization, reductions and mutexes, barriers and condition variables,

and pipelining. Table 14 summarizes the classification of data dependences and

solutions to avoid them.

In the following sections, we detail each pattern and associated parallelization

techniques. We finally present several case studies of the post analyzer, covering

privatization, reduction, a simple mutex case, and pipelining. Condition variables,

barriers, and mutexes are the future work.
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Table 14: Classification of data dependences and its potential solutions for

parallelization. We provide case studies for the patterns with ✔.

Kind Loop-carried? Implications for code modifications

Anti Don’t care Using a separate variable/array; Privatization ✔

Ouput Independent Using a separate variable/array ✔

Ouput Carried Privatization ✔

Flow Carried

Reductions for commutative/associative operators ✔

Mutexes when computation order does not matter ✔

Barrier when computation order matters
Condition variables when computation order matters

Flow Independent Pipelining (DOACROSS) for certain types ✔

7.2.1 False Dependences and Privatization

We first discuss false dependences (anti- and output dependences), which do

not require significant changes as the dependences themselves are artifacts due

to reuse of variables and arrays. Anti-dependences can be avoided by separate

data structures. Loop-independent output dependences are also the same case.

Although these kinds of dependences are easy to fix, optimizing redundant

structures could be an issue for performance.

Loop-carried output dependences can be avoided for parallelization by the

technique called privatization, which allocates a private copy of an object for each

thread. The post-analyzer recommends that a set of dependences on an object

(either a scalar variable, a structure, or an array) can be avoided by privatization if

and only if:

• An object has only loop-carried output dependences followed by loop-

independent flow dependences.

This criteria implies that the very first memory access on this object for an

iteration of a loop is a write access. This definition can be also found in [117].

A simple example of privatization is illustrated in Figure 91. The dimension of

the original global variables are increased by one. However, this simple code may
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1 // Global variables

2 int g_data;

3 int* g_vector = new int [100];

(a) Before privatization.

1 // Global variables

2 int g_data[nthreads ];

3 int* g_vector[nthreads ];

4

5 for (int i = 0; i < nthreads; ++i)

6 g_vector[i] = new int [100];

(b) After privatization.

Figure 91: A naive example of privatization for output dependences: This code

suffers from false sharing.

suffer from false sharing. Avoiding false sharing in this case is also simple by

allocating per-thread data on cache line boundary.

Privatization may seem to be an easy case, but this is practically important.

Legacy serial C code tends to use a lot of static and global variables. Class member

variables in C++ can be considered as global variables with limited scope. If

a programmer who is parallelizing is not the original author of the serial code,

modifying all such variables correctly may be tedious and requires efforts to

verify the correctness, particularly for large-scale software. Therefore, providing

information on privatization is important. Prospector’s results are informative in

that such variables will be reported to have output dependences.

Many parallel programming languages and libraries have a specialized

support for privatization. For example, OpenMP supports handy private and

threadprivate pragmas, and Cilk Plus provides a holder. Some compilers do not

currently support non-POD (plain old types) structures and classes in OpenMP’s

threadprivate. Even in such case, programmers can write a simple thread-local

storage while avoiding false sharing.

7.2.2 Reductions and Mutexes

We discussed the issues of false dependences, but the real challenges are handling

flow dependences, also known as true dependences. An extreme solution
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for an arbitrary pair of true dependence would be enforcing the order of the

computations by using a condition variable, event, and phaser [131]. However,

such strict solution should be the last resort only for a particular case. Many other

techniques could solve flow dependences while providing lucrative speedups.

Reductions and mutexes (or critical sections) are such cases.

A reduction is suitable for the computations whose operations are commutative

and associative, such as totaling all elements and finding the minimum element. In

general, the definition of a reduction would include both scalar variables and class

instances with general computations beyond primitive operators. However, the

current post-analyzer, we only consider scalar variables and simple operations.

The post-analyzer report a scalar variable as a potential reduction variable if

the dependence patterns meet the following conditions (a similar definition of

reduction can be found in [117]):

1. All three kinds of loop-carried dependences are observed on the variable;

2. Modifications on the variable must be the same for all control flows except

for the case where an operation needs a branch, such as finding maximum or

minimum;

3. The operation on the variable is one of reducible operations (i.e., an

associative and commutative operation).

Sections 7.3.1 and 7.3.2 illustrate reductions. Resolving a reduction can be

done by either manual transformation or a support from parallel programming

paradigms. OpenMP’s reduction clause and Cilk Plus’s reducer are the examples.

OpenMP currently supports only a scalar reduction. Extracting a reduction on

a complex data structure whose commutative operations are implemented as a

function will be a great challenge, which is a future work.
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A mutex is a generalized reduction solution when a data structure (including

non-POD types) has loop-carried dependences of all three kinds, and the oper-

ations on the structure can be executed in any order while atomicity must be

preserved. An example would be a storage for items where the order of insertion

and removal is not important. In this case, the insertion and removal operations

will make data dependences on the internal data structures. However, a further

analysis such as commutativity analysis [119, 4] could reveal the commutativity

property. We found this case in Dijkstra benchmark of MiBench [37] and present

in Section 7.3.3. A mutex or critical section solves this case. For a certain case

where a scalar variable is modified, atomic operations should be preferred for the

performance, such as std::atomic<> in C++11 [61] and InterlockedIncrement()

in Win32 APIs.

7.2.3 Supporting condition variables and barriers

As discussed right before, loop-carried flow dependences involved in a commuta-

tive operation can be resolved by a reduction or a mutex. When the computation

order matters, programmers must enforce the correct ordering of the computations

to guarantee the correctness. Solutions for these patterns would be a traditional

condition variable and barrier, and an advanced synchronization objects such

as phaser in Hanabero [131] and std::future<> in C++11 [61]. The distance

information of data dependences may be important as demonstrated in a related

work [156]. SD3 also provides the distance information. However, we remain this

work as a future work with open questions: (1) How to differentiate the condition

variable and barrier cases from the reduction and mutex cases; (2) How to further

classify the condition variables and barriers; and (3) Predicting potential speedups

by extending Parallel Prophet.

179



7.2.4 Pipelining

The final pattern that the post-analyzer presents is pipeline parallelism. Many

streaming applications including transcoding audio and video, image processing,

and vision algorithms can be parallelized by pipelining [139, 140]. A typical case

of pipeline is shown in Figure 92.

1 while (cond)

2 {

3 A(...);

4 B(...);

5 C(...);

6 }

A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

Time 

Loop-carried dependency 
Loop-independent dependency 

Figure 92: A loop that can be parallelized by pipelining: The dependences are

shown in the right figure. Note that the function B does not have loop-carried

dependences on itself, allowing a parallel execution.

For the simplicity, assume that each function forms a pipeline stage. In order

to do pipelining this loop, the dependence pattern must satisfy some conditions.

Figure 92 shows a case how loop-independent flow dependences define a pipeline

configuration. Further, function B does not have loop-carried dependences on

itself. This fact allows to exploit parallel execution on B. 256.bzip2 in SPEC 2000 is

an illustration of the case of Figure 92, and we present in Section 7.3.4.

7.2.5 Ordering of Transformations

We assumed that transformations are orthogonal to other transformations. For

example, consider Table 16 in the following section. In order to parallelize 179.art,

we need to perform reduction, privatization, and some other minor modifications

to remove data dependences. Notice that we do not provide the ordering of

transformations; the transformations may be done in an arbitrary order. For all
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case studies in Section 7.3, transformation ordering does not affect, at least, the

correctness of the parallelization.

Such ordering, however, can be critical to guarantee the correct parallelization

when the transformations involve synchronization. Suppose a program has

several sets of dependences where each set is avoided by mutex, condition

variable, and barrier, respectively. Here are open questions: What is the right

ordering of these transformation? Do these transformations have linearity or

composability? The linearity and composability in this context mean as follows:

Suppose F is a function that takes a set of dependences and returns a solution

to avoid them. In general, we speculate that F (a + b) 6= F (a) + F (b) and

F (a)+F (b) 6= F (b)+F (a), when dependence sets a and b require synchronization.

Some combination of transformations may lead a dead lock because locking is

not composable unlike transactional memory. However, we believe that there

are linearity and composability in transformations to remove false dependences

although performance could be an issue. This thesis assumes the linearity and

composability in transformations.

Although no formal proof is provided, we suggest a heuristic for the ordering

of transformations as follows:

(1) Any transformation to avoid false dependences such as privatization;

(2) Any transformation to avoid true dependences related to reduction;

(3) Any transformation to avoid true dependences related to mutex;

(4) Finally, apply an appropriate parallelism (e.g., parallel-for or pipelining).

Recall that this thesis does not consider the case of other synchronization

primitives such as condition variables and barriers. The ordering including such

synchronization is not known.
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7.3 Case Studies of Prospector

We present several case studies with Prospector’s post-analyzer to demonstrate

the discussed dependence patterns and parallelization techniques. Table 15 shows

six benchmarks we parallelize. The benchmarks are selected from MiBench [37],

an embedded benchmarks suite, and SPEC CPU2000 [133] are used. We use the

LLVM-based Prospector in this experimentation because we need more detailed

information of source code and some static analysis code.

Table 15: Parallelized benchmarks with Prospector’s post-analyzer.

Benchmark Parallelism model Synchronizations

179.art (SPEC 2000) Data parallel Reduction, Privatization
Susan (MiBench) Data parallel No, except for output writing
Dijkstra (MiBench) Data parallel Mutex
256.bzip2 (SPEC 2000) Pipelining + Data parallel Pipelining
BasicMath (MiBench) Data parallel No
StringSearch (MiBench) Data parallel No

7.3.1 179.art in SPEC CPU2000

179.art in SPEC CPU2000 may be considered an easy case with a TLS technique,

but production compilers cannot automatically parallelize the main loop. A

programmer who does not know the algorithm of 179.art (1,300 lines) could take a

couple of days to parallelize.1 Prospector can help this process significantly.

We profile 179.art by SD3 with the train input. The post-analyzer parses the raw

input and makes summarization. Table 16 summarizes the processed result. We

present how we interpret this result, which is also illustrated in Figure 93.

• Prospector finds that the loop scan recognize:5 in Figure 93 is the hottest loop

with 79% execution coverage, only one invocation, and 20 iterations. Every

1A graduate student who did not know the details spent more than two days to parallelize
179.art only with a gprof-like profiler.
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Table 16: Post-analyzed result of the loop, scan recognize:5, in 179.art.

Loop
79% execution coverage;
1 invocation and 20 iterations;

Profiling Standard deviation of iteration lengths: 3.5%

Dependence

Loop-carried WAWs on f1 layer

...
Temporary variables on i, k, m, n

Profiling Induction variable on j at line 5
Reduction variable on highest confidence

No Loop-carried RAWs: may be parallelizable

iteration has almost an equal number of executed instructions (implying good

balance). The loop could be a good parallelization candidate.

• Regarding dependence profiling, the loop has no loop-carried flow dependences

except a reduction variable and an induction variable (i.e., loop counter

variables). We apply the same classification algorithm of reduction to find an

induction variable.

• scan recognize:5 has many loop-carried output dependences on global vari-

ables such as f1 layer and Y. See also reset nodes() in Figure 93. These vari-

ables are not automatically privatized to threads, so we perform privatization,

explicitly allocating thread-local private copies of these global variables (not

shown in the figure).

• Temporary variables in the scope of the loop at line 5 are found such as i at

line 6. It is true that this is because old-fashioned variable declaration in C.

We insert i and other variables (k, m, and n) to OpenMP’s private list. (Or, in

C99 and C++, we can simply declare i within the scope of for. We classify a

set of dependences as a temporary variable if the very first time access in a loop

iteration is a write (initialization) and then is followed by loop-independent flow

dependences (uses).
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 1: void scan_recognize(startx, starty, endx, endy, stride) 

 2: { 

 3:   ... 

 4:   #pragma omp for private (i,k,m,n) 

 5:   for (j = starty; j < endy; j += stride) 

 6:     for (i = startx; i < endx; i += stride){ 

 7:       ... 

 8:       pass_flag = 0;                           

 9:       match();              

10:       if (pass_flag == 1) { 

11:         if (set_high[tid][0] == TRUE) { 

12:           highx[tid][0] = i, highy[tid][0] = j;  

13:           set_high[tid][0] = FALSE; 

14:         } 

15:         if (set_high[tid][1] == TRUE) { 

16:           ... 

18:     }  // End of for-i 

... 

30: void match() 

31: { 

32:   reset_nodes(); 

34:   while (!matched) {  

35:     ... 

48:     int match_cnfd = simtest2(); 

41:     if ((match_cnfd) > rho) { 

43:       pass_flag = 1; 

44:       if (match_cnfd > highest_confidence[tid][winner]){ 

45:         highest_confidence[tid][winner] = match_cnfd; 

46:         set_high[tid][winner] = TRUE; 

47:       } 

48:     ... 

70: void reset_nodes() 

71: { 

72:   for (i = 0;i < numf1s; i++) { 

73:     f1_layer[tid][i].W = 0.0; 

74:     Y[tid][i].y = 0.0; 

... 

Need parallel reduction 

Figure 93: Simplified parallelization steps of 179.art by Prospector’s result: (1)

Privatize global variables; (2) Insert OpenMP pragmas; (3) Add a reduction code

(not shown here).

• A potential reduction variable of the loop at line 5, highest confidence, is

identified. The dependences on this variable have all three kinds of loop-carried

dependences, which is easy to verify. However, identifying the operation on

this variable is harder because it requires comparison rather than an arithmetic

operation. We check whether a write immediately follows a read that is involved

in a branch operation. Then, we can conclude that the variable is intended to

calculate the maximum and this operation is a commutative operation. OpenMP

does not support in this operation. We manually modify the code to obtain local

results and compute the final answer.
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Programmers do not need to know the very details of 179.art. By interpreting

Prospector’s results, programmers can easily understand and finally parallelize.

It is true that Prospector cannot prove the parallelizability. However, when

compilers cannot automatically parallelize the loop, programmers must prove its

correctness by hand or verify it empirically using exhaustive tests. In such cases,

Prospector’s assistant can save programmers’ efforts.

7.3.2 Susan in MiBench

In this case study, we expose raw results to show how the post-analyzer works in

detail. Susan is a simple image processing program in MiBench. Susan performs

smoothening, edge, corner detection algorithms. The code is approximately 2,200

lines, and the loop profiling result from Prospector shows that nested loops at

susan smoothing consume almost 100% of the entire execution time.

; Hot loops

; 1: susan_smoothing :724@1 , 100%

; 2: susan_smoothing :729@2 , 100%

; 3: susan_smoothing :737@3 , 99.36%

; 4: susan_smoothing :739@4 , 97.63%

; 5: enlarge :645@1 , 0.002493%

Figure 94: Hot loop information of Susan in MiBench: @n denotes that this loop

is n-level in its loop nest.

It is reasonable to investigate the parallelizability of the top-level loop at line

724, susan smoothing:724@1. The detailed loop profiling (not shown in here)

revealed that there is a single invocation of this loop, and the total trip count is

1,490, which is sufficiently large iterations to be parallelized.

Figure 95 shows an excerpt from the raw data-dependence result. Regarding

the dependences of susan smoothing:724@1, the variable out shows all loop-

carried dependency kinds (RAW, WAR, WAW), but the other variables show

only loop-carried output dependences (WAW). The post-analyzer classifies these
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+(R, out , 752, 6, susan_smoothing) after (W, out , 750, 6, susan_smoothing) x737
+(W, out , 752, 6, susan_smoothing) after (R, out , 750, 6, susan_smoothing) x737
+(W, out , 752, 6, susan_smoothing) after (W, out , 750, 6, susan_smoothing) x737
...

+(W, tmp , 616, 5, median ) after (W, tmp , 616, 5, median ) x17
+(W, area , 731, 5, susan_smoothing) after (W, area , 731, 5, susan_smoothing) x1489
+(W, total , 732, 5, susan_smoothing) after (W, total , 732, 5, susan_smoothing) x1489
+(W, dpt , 733, 5, susan_smoothing) after (W, dpt , 733, 5, susan_smoothing) x1489
...

Figure 95: Data-Dependence profiling of Susan in MiBench. ‘+’ indicates loop-

carried dependences while ‘-’ is for independent ones. Legends: (W/R, variable

name, line#, column#, function name) x frequency.

dependences as temporary variables and suggests privatization. The variables

such as tmp and area must be privatized for the correct parallelization. We declare

these variables into the OpenMP’s private clause. The code in Figure 96 is inserted

to parallelize the top-level loop, susan smoothing:724@1.

# pragma omp parallel default (none) \

private (i, j, x, y)\

private (area , total , centre , cp , brightness , tmp , dpt , ip)

Figure 96: Privatization for the variables that have output dependences (some

anti-dependences may exist).

The only remaining problem for parallelizing this loop is the dependences on

out. All three kinds of loop-carried dependence types are observed on out, and

there is only a single modification for all control flows. Figure 97 shows the code

how out is used. The post-analyzer concludes that out is potentially a reduction.

We attempted our first parallelization of susan smoothing:724@1 based on the

if (tmp ==0)

*out ++= median(in ,i,j,x_size );

else

*out ++=(( total -( centre *10000))/ tmp);

Figure 97: The variable out in Susan: Notice that out is dereferenced for the

additional writing operation. We mistakenly identified as a reduction.
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1 #pragma omp parallel default(none) private (...) shared (...)

2 firstprivate(out)

3 {

4 // Adjust out so that the final outcome are written correctly.

5 out += (trip_count_i*trip_count_j) / omp_get_num_threads () *

6 omp_get_thread_num ();

7

8 #pragma omp for

9 for (i = 0; i < trip_count_i; i++) {

10 for (j = 0; j < trip_count_j; j++) {

11 ...

12 if (tmp ==0)

13 *out ++= median(in ,i,j,x_size );

14 else

15 *out ++=(( total -( centre *10000))/ tmp);

16 }

17 }

18 }

(a) A parallelized code.

Memory region Memory region 

out 

(for thread 1) 

out 

(for thread 2) 

(b) A visualization how to avoid dependences on out.

Figure 98: A parallelized version of Susan assisted by Prospector: Each thread

has a separate version of out that points to a disjointed memory region.

information: (1) private lists and (2) a reduction on out. However, we soon found

that the results from the parallelization were not correct, and data races were

observed.

The reason of the failure is that the variable out is not a simple reduction

variable. Observe that the type of out is a pointer type, which means out is used as

a pointer to some memory region. Furthermore, this memory region is sequentially

modified. Such sequential accesses to a specific memory region do not make any

data dependence. This code is actually writing the final result sequentially. The

post-analyzer did not consider such case. Notice that Intel Parallel Advisor simply

ignored this case.

We suggest a following solution: if a reduction pattern is observed on a pointer

variable and its access pattern is sequential, we suggest the programmer to divide
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the memory accesses in multiple chunks based on (1) the number of threads, (2)

the trip counts of the loops, and (3) the scheduling policy of the parallel loop.

Although making a generalized solution would require more efforts (e.g., in case

of a dynamic scheduling), Figure 98 illustrates a simple solution for the default

OpenMP static scheduling. We make a separate and private pointer variable out

and adjust them so that the original sequential semantic must be observed. This

code returns a correct result.
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Figure 99: Speedups of parallelized Susan in MiBench on an Android and a

desktop: (1) Prospector: parallelized solely based on Prospector’s advice; (2)

Programmer: manually parallelized version in ParMiBench [59].

We finally report measured speedups of Susan in Figure 99. “Prospector”

indicates the speedups achieved solely based on Prospector’s results while the

speedups in “Programmer” are from a manually parallelized version found in

ParMiBench [59]. We observe that our speedups slightly outperform those of the

ParMiBench version. The ParMiBench version is written in the past using pthread.

The code is much complex than our OpenMP-based implementation assisted by

Prospector. Due to the problem of the variable out, we use the default static

scheduling in OpenMP. We also measure speedups on an Android machine: a

dual-core Nvidia Tegra 2 development platform [102]. As of the experimentation,

we were unable to use OpenMP on this Android platform. We manually wrote a

parallel implementation using pthread.
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7.3.3 Dijkstra in MiBench

Dijkstra in MiBench is an implementation of the famous Dijkstra’s shortest-path

algorithm. The code is approximately 200 lines, and there are two hot loops as

shown in the following result from LLVM-Prospector:

The topmost loop at line 118, dijkstra:118@1, spent 80% of all execution time

followed by its inner loop, dijkstra:122@2. We should look into this loop nest to

find parallelization opportunity. Unfortunately, but not surprisingly, the loops of

the Dijkstra algorithm have loop-carried flow dependences.

Attempt to parallelize the top-level loop Figure 101 visualizes only loop-

carried flow dependences of dijkstra:118@1. Showing dependences in function

granularity can be easily done by grouping dependences based on variable and

function names. Note that there are false dependences from iPrev, iCost, and

iNode. However, they are local variables allocated inside the loop, so do not require

any modification for parallelization. The critical dependences that determine the

parallelizability are loop-carried RAWs between dequeue and enqueue operations,

as shown in Figure 101. In addition, enqueue and dequeue have their own loop-

carried RAWs within themselves.

Based on these facts, an initial parallelization would be inserting a critical

section that spans from line 121 to line 134, which is the entire iteration of the

loop. Hence, there is no benefit of parallelization.

; Hot loops

; 1: dijkstra :118@1 , 80.49%

; 2: dijkstra :122@2 , 80.42%

; 3: enqueue :68@1 , 24.44%

; 4: main :157@1 , 19.49%

; 5: main :158@2 , 19.49%

Figure 100: Loop profiling for Dijkstra in MiBench.
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118: while (qcount() > 0) 
119: { 
120:   int iPrev, iCost, iDist, iNode; 
121:   dequeue (&iNode, &iDist, &iPrev); 
122:   for (i = 0; i < NUM_NODES; i++) 
123:   { 
124:     if ((iCost = AdjMatrix[iNode][i]) != NONE) 
125:     { 
126:       if ((NONE == rgnNodes[i].iDist) ||  
127:         (rgnNodes[i].iDist > (iCost + iDist))) 
128:       { 
129:         rgnNodes[i].iDist = iDist + iCost; 
130:         rgnNodes[i].iPrev = iNode; 
131:         enqueue (i, iDist + iCost, iNode); 
132:       } 
133:     } 
134:   } 
135: } 

R 

W 
Loop-carried RAWs 

Figure 101: Data dependences of the top-level loop (at line 118) of Dijkstra in

MiBench are shown in function granularity.

Parallelizing the inner loop Alternatively, we attempt to parallelize the inner

loop, dijkstra:122@2. The discovered dependences for this loop are the same with

dijkstra:118@1, but the interpretation can differ due to the different nesting level.

We summarize the dependences in dijkstra:122@2:

• Loop-carried false dependences on iPrev, iDist, iNode, and iCost, including

output dependences.

• Loop-carried dependences in enqueue, including flow dependences.

First, regarding the false dependences, the post-analyzer suggests privati-

zation. However, in this case, these variables may be initialized before the

loop. Hence, OpenMP’s firstprivate should be used for them. Second, in

order to avoid loop-carried flow dependences, we must check whether the

computation order of enqueue is important or not. As discussed in Section 7.2.2, a

commutative operation can be parallelized by mutex. Otherwise, we must enforce

the computation order, for example, by condition variable. However, checking the
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...

#pragma omp parallel for firstprivate(iPrev , iDist , iNode , iCost)

122: for (i = 0; i < NUM_NODES; i++)

...

#pragma omp critical

140 enqueue(i, iDist + iCost , iNode );

...

Figure 102: Parallelizing Dijkstra in MiBench based on the post-analyzer.

commutativity is the future work. In this thesis, we assume that this computation

order does not matter. We try to use a critical section to avoid flow dependences.

Figure 102 shows the parallelized Dijkstra solely based on the advice from the

post-analyzer. We verify this parallelized code by comparing by results from the

serial code. Fortunately, our assumption was correct; this parallelization works.

Assisted annotation for Parallel Prophet The code transformation information

from the post-analyzer can also assist the manual annotation process of Parallel

Prophet. Since the inner loop is going to be parallelized, estimating speedup

would be informative. We first check the loop profiling data: This inner

loop invoked 12,796 times and each invocation has 2,000 iterations. Although

the invocation count is pretty high, 2,000 iterations may give some profitable

parallelization. We then guess the expected speedup based on the serial time from

loop profiling. The loop profiling result shows that 24% of the execution time has

been spent in enqueue, which is a serial section. Amdahl’s law gives a 1.61 speedup

for two cores. However, the observed speedup was only 1.04.

We now use Parallel Prophet with the Synthesizer on a quad-core machine

with hyper-threading (8 threads). The inner loop is annotated as a parallel loop

while enqueue is protected. The estimated speedup from Parallel Prophet using

the synthesizer is 1.3 on two cores, which is much closer to the observed speedup.

The difference can be explained by the poor implementation of the queue, where
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Figure 103: Speedups of parallelized Dijkstra in MiBench: (1) Predicted: Predicted

speedups by Parallel Prophet using the Synthesizer; (2) FirstVersion: an OpenMP

and critical-section based implementation based on Prospector’s advice; (3)

Improved: a TBB and concurrent-queue based implementation; (4) ParMiBench:

The parallel version from ParMiBench [59].

false sharing occurs in the parallel code. Parallel Prophet does not model cache

contention such as false sharing. The predicted speedups are shown in Figure 103.

Improving parallel performance In order to improve the speedup, we use a

concurrent queue, a lock-free data structure provided by TBB [56], instead of using

a naive a lock-based queue. It is well known that a lock-free data structure often

provides better speedups. After the modification, a speedup of 1.86 is obtained

on a dual-core, as shown in Figure 103. However, we still cannot obtain scalable

speedups due to the contention on the shared queue. We can speculate that more

speedup would be achievable if the contention of the shared queue is minimized,

for example, using per-thread queue. This approach can be found in a parallelized

version of Dijkstra by programmers can be also found in ParMiBench [59]. The

programmer of ParMiBench attempts to minimize the contention on the queue.

We show the speedup results in Figure 103 from these three parallelized

versions and the predictions: (1) Predictions from Parallel Prophet, (2) an OpenMP

implementation by Prospector, (3) an improved version using concurrent queue in

TBB, and (4) the manually parallelized version in ParMiBench. We perform this

experimentation on a desktop machine with a quad-core with hyper-threading.

The speedups of (2) and (3), which are assisted by Prospector, yield up to a
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1 void compressStream(int stream , int zStream)

2 {

3 ...

4 beSetStream (...)

5 ...

6 while (true) {

7 ...

8 initialiseCRC ();

9 loadAndRLEsource (...);

10 getFinalCRC (...);

11 ...

12 doReversibleTransformation (...);

13 ...

14 moveToFrontCodeAndSend (...)

15 ...

16 }

17 ...

18 }

Figure 104: The structure of 256.bzip2’s compressStream.

1.86 speedup. The result of ParMiBench on two threads shows a super-linear

result: a 6.04 speedup. This is because the code has been significantly changed

by the programmers. The original naive queue implementation is replaced

with a better approach where each thread can access its local queue. However,

this implementation also does not provide good scalability because of inherent

contention on the queue. This Dijkstra example illustrates how Prospector can

give advice on a program that requires critical sections to be parallelized.

7.3.4 256.bzip2 in SPEC CPU2000

256.bzip2 is a compression and decompression algorithm in SPEC 2000, and

the most complex source example in this chapter, around 4,300 lines. We do

not have any prior information regarding the parallelizability of the algorithms.

We parallelize 256.bzip2’s compression logic with pipelining and data-level

parallelism. 256.bzip2 will be parallelized by a 3-stage pipeline and the second

stage permits further parallel execution as shown in Figure 92.
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loadAndRLEsource 

doReversibleTransformation 

moveToFrontCodeAndSend 

Figure 105: An excerpt of the data-dependence graph of compressStream in

256.bzip2: The dependences in the rectangles determine the pipeline stages.

Extracting parallelism Similarly to the previous studies, the loop profiling result

gives an initial hint on the parallelization target. Since we are parallelizing the

compression logic, the function compressStream is the target to parallelize. Because

compressStream calls several sub-routines, we briefly show the overall structure of

the function in Figure 104. loadAndRLEsource, doReversibleTransformation, and

moveToFrontCodeAndSend also call other sub-routines.

The next step is analyzing the data dependences in this function. However, this

case is challenging because there are hundreds dependence pairs including sub-the

routines. Instead, we draw a data-dependence graph. This graph can be drawn by

writing a script (Python) that parses the raw results from SD3. In graph generation,

clustering data dependences in function granularity is critical to understand the

overall dependence flows. We also removed and collapsed dependence nodes

based on variable names to have a more concise graph.

Figure 105 shows a part of the total data-dependence graph of the loop of

compressStream. This figure shows only flow dependences including both loop-

carried and loop-independent ones. We make a group data-dependence pairs from

the same variable to make the graph more succinct. As explained in Figure 92,

there are loop-independent flow dependences between potential pipeline stages.

Hence, we search such patterns in this dependence graph. We highlight important
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data dependences that determine the pipeline stages in the (red) rectangles. We

can discover two types of parallelism:

• Three-stage pipelining: loadAndRLEsource()→

doReversibleTransformation()→ loadAndRLEsource(); and

• Data-level parallelism in the second stage: We find that there are no loop-

carried flow dependences on doReversibleTransformation().

Writing parallel code We use TBBs pipeline template [56], tbb::pipeline, for the

parallelization. Since 256.bzip2 is written in C with many global variables, we also

need appropriate privatization for them. We describe the steps as follows:

• Create a struct CompressStreamData, which holds all required global vari-

ables in the original source code. This structure is used to transfer data

among pipeline stages. Declaring the global variables in this structure

automatically solves the privatization problem in TBB.

• Create three pipeline stages, which are represented as a filter, tbb::filter.

We further detail how to create these pipeline stages. First, we simply copy

and paste the corresponding sub-routines into each pipeline stage class.

However, because all global variables are now in CompressStreamData, the

code accessing the variables is modified. The first tbb:filter object creates

CompressStreamData, and the following two filters obtain this structure as a

parameter.

• We are ready. Add these three filters to the runtime, and run the pipeline.

We were able to obtain the correct result by this pipelining. However, we soon

observe that the speedup was very low, only 1.1 on a dual-core. This is because the
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getFinalCRC() 

getRLSpair() 

sortIt() 

moveToFrontCodeAndSend() generateMTFValues() 
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Figure 106: The three-stage pipeline in compressStream, where the second stage

can be run in parallel.

pipeline is not well balanced: the first and third stages take a little time than the

second stage. Balancing pipeline stages is the future work.

However, recall that the second stage does not exhibit any loop-carried flow

dependences on itself. Exploiting data-level parallelism for the second stage is

simply done by modifying a filter property instead of explicit parallelization.

A TBB filter supports three operation modes: (1) parallel (multiple items are

processed in parallel), (2) serial in order (only a single item is processed in the

same order), and (3) serial out of order (processes items one at a time, but in no

particular order). We use the parallel mode in the second stage. We can also say

that the second stage is stateless while the others are stateful stages.

Figure 106 illustrates the final pipeline and data-level parallelism in 256.bzip2s

compression. Multiple blocks in the second stage means that data-level parallelism

is exploited in this step.
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Measuring speedup We measure the speedups of compressStream on a 12-core

machine as shown in Figure 107. The speedups are only the improvement over

compressStream, not the entire program. The speedups show almost the perfect

scalability. It is true the most of speedup is from the data-level parallelism in the

second stage. However, the parallel execution of the second stage requires the

output of the first stage. Without pipelining, we cannot achieve the data-level

parallelism because the second stage must await the next item from the first stage.
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Figure 107: Speedups of compressStream in 256.bzip.
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CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

8.1 Conclusions

The need for parallelization is ever increasing as almost all computing devices

have multicore processors. However, writing parallel code is still challenging

for many programmers. Among a lot of efforts that reduce the burden of

parallel programming, we particularly focus on support from software tools. This

thesis proposed Prospector, a programming tool suite that includes four new

and enhanced components to assist parallelization. These four components, (1)

loop profiler, (2) data-dependence profiler, (3) parallel speedup predictor, (4) post-

analyzer, are built on several new program analysis algorithms.

• Chapter IV implemented an efficient and robust loop profiler that takes

either a binary or source code. Understanding loop behavior is useful in

parallelization because loops are main parallelization target. To achieve the

optimal performance, our loop profiler minimally instruments instructions to

capture loop behavior. However, such optimal instrumentation faced a number

of challenges for a binary-level approach. We illustrated problems and propose

solutions and heuristics. The performance of the loop profiler was outstanding:

less than 4 times slowdown by average against the native execution.

• Chapter V introduced SD3, an efficient and rich data-dependence profiler. Data

dependences are the essential information to judge parallelizability. Data-

dependence profiling has become an important component for parallelization-

assistant tools and related research. However, we showed that the overhead is

too high to be employed. We also showed that using simple sampling techniques
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is not adequate because the correctness of the profiling could be lost. To address

this overhead problem, SD3 introduced two algorithms.

First, an algorithm that compresses a stream of memory addresses into a stride

is proposed. The algorithm includes DYNAMIC-GDC that directly computes

dependences with the stride format. Further, a number of data structures

and other handling algorithms are needed to the stride-based algorithm works

smoothly, such as the dynamic-allocation site optimization, an effective stride-

merge technique, and handling killed strides to compute loop-independent

dependences correctly.

For the time overhead, SD3 parallelizes the stride-based algorithm itself. A

hybrid approach using both pipelining and data-level parallelism is used.

A couple of important design issues including revised stride detection are

discussed. Finally, SD3 successfully profiled 22 SPEC CPU2006 benchmarks on

a 16 GB machine.

• Chapter VI presented Parallel Prophet, a parallel speedup predictor. Parallel

Prophet is based on a dynamic algorithm to predict speedups from serial code,

which overcomes previous analytical approaches. Parallel Prophet takes an

annotated serial program, where annotations specify parallel and protected

sections. Parallel Prophet performs the interval profiling to obtain the lengths

of all annotation pairs and the memory profiling to collect specific hardware

performance counters related to the bandwidth. The profiling results are

recorded in a program tree that is the reflection of program execution.

The emulators process this program tree to compute the expected parallel

execution time. Two emulators are provided. The fast-forwarding method

computes the estimated time per each core in a way similar to a simulator.
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We explicitly implemented OpenMP’s three scheduling policies in the fast-

forwarding emulator. However, supporting complex and advanced parallel

programming patterns, including nested and recursive parallelism, is infeasible

in the FF. Hence, a new emulator called the synthesizer is introduced. This

method automatically generates a corresponding real program code from a

program tree, and measure an actual speedup on a real machine.

Parallel Prophet finally introduced a memory performance model to estimate

the degradation of parallel performance due to increase memory traffic. The

memory performance model was built upon an analytical model to estimate

the impact of the increased memory traffic in a parallelized program. The

coefficients of the model were trained by a special microbenchmark on a target

machine.

• Chapter VII provided the post-analyzer of SD3. Raw results from SD3 are

an enumeration of all discovered dependences, which is sometimes hard to

interpret to obtain code transformation advice. The post-analyzer performs

additional processing to extract several important dependence patterns that

can be avoided without significant code modification. The patterns of interest

include reductions, privatization, mutex, and pipelining. Four case studies were

illustrated to show how post-analyzer works to assist parallelization. Parallel

Prophet can also be assisted in the manual annotation step by the post-analyzer.

8.2 Future Research Directions

A number of potential future works based on Prospector concludes this thesis.

8.2.1 Future work for SD3

One obvious approach to enhance the current SD3 is to employ more static

analysis in the instrumentation time. In particular, the LLVM-based SD3 has many
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potentials. Currently, we perform a basic static analysis to filter instrumentations

for certain kinds of variables. For example, trivial induction variables and some

function parameters are safe to be skipped for instrumentation. We believe that

the idea of multi-slicing [153] can be applied in the static time to complement and

enhance the DAS-ID optimization that is based on dynamic tracking.

SD3 discovers dependences at instruction level, and then the post-analyzer

can group them into coarse granularity such as function. However, SD3 could

directly control such granularity to further reduce the overhead. For example, if a

programmer only wants to see dependences at function granularity, we may have

an optimized table structure. SD3 can be used to find vectorization opportunity,

which can be seen a microscopic parallelism for a loop. In this case, we can do

specialization for a quick and low-overhead profiling algorithm.

8.2.2 Future work for Parallel Prophet

Parallel Prophet can be used to diagnose the reasons of poor speedups. When

Parallel Prophet performs the FF to estimate speedups, we may infer potential

causes for speedups, such as large serial section, load unbalancing, and saturated

memory performance.

Parallel Prophet has a potential to be extended to support GPGPU program-

ming model. Suppose a CUDA-like parallelization model, where a loop iteration

of a parallel loop forms a CUDA thread or a lane of a SIMD thread, but an input

program is a legacy serial loop-based code. Our current annotation system may

work, but could require revisions. In the current GPGPU architecture, divergent

branches are performance penalties. We may need to record branch behaviors of

each parallel task in a program tree.

We can extend the annotation system and emulators to broaden parallel

programming models. For example, pipelining can be modeled and predicted:
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(1) We introduce new annotations to specify pipeline stages; (2) Writing a simple

synthesized emulator. A related work to emulate pipeline performance can be

found in [5]. Barriers and condition variables can be modeled in this way.

8.2.3 Future work for the Post-Analyzer

The post-analyzer has many future research directions. We mentioned that

the post-analyzer currently does not handle (1) the commutativity test, (2) a

generalized case for mutex-based solution, and (3) patterns for barriers and

condition variables. Besides these directions, we further discuss new ideas.

Enhancing supports for pipelining We illustrated how the post-analyzer can

extract pipeline parallelism with 256.bzip2. However, there are many ways to

improve the pipelining, comparing to the previous work [140, 124]. Currently, we

assume that a pipeline stage consists of one or more functions. However, legacy

code without good refactoring may not be handled by the post-analyzer due to this

limitation. We would need a refinement algorithm to suggest potential pipeline

stages by forming instructions into a function that can be a candidate for pipeline

stage. We also do not explicitly consider the performance issue in the pipelining.

One simple solution can be found in [140]. The proposed solution is replicating a

pipeline stage. However, this is feasible only when a particular stage is replicable

or parallelizable itself, as shown in the function B in Figure 92. The post-analyzer

can investigate other options: (1) suggesting rebalancing the pipeline stages by

combining or splitting the stages, and (2) some computation pipeline stages may

be suitable for GPGPU. The post-analyzer will analyze the cost-benefit of such

offloading a stage to devices.

Extracting pipeline stages requires a data dependence graph, which is also

provided by SD3. Unfortunately, such graphs are often so large that programmers

may unable to understand them. Because many pipeline configurations should be
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easy to understand, we believe that an insightful visualization is feasible. We may

provide a visualization algorithm such as summarizing a large dependence graph

and plotting dependences to show potential pipeline stages.

The previous work only assumes that a compiler consumes the pipeline

information, and the pipelined code is generated automatically. For example,

vague basic block numbers are used to express pipeline [124]. Programmers could

hardly understand such information, especially for when the code is optimized

and analyzed. No doubt an automatic code generation is an attractive solution,

but we believe that many programmers would like to see how their serial code

is changed for the case of pipelining. Programmers then can apply their own

optimizations on a parallelized program and have better understanding of the

problem. No previous work explicitly considers this case.

Integration with Parallel Prophet The post-analyzer can combine Parallel

Prophet with the dependence profiler by assisting the annotation process. We

presented a case in the Dijkstra case study.

Providing parallelization advice for transactional memory Transactional mem-

ory (TM) [43] and thread-level speculation (TLS) [132] are well-known alternatives

to conventional parallel programming. This dissertation does not assume

speculative-based approaches because most programs will be running on con-

ventional multiprocessors in the near future. However, we believe that the post-

analyzer can exploit the features of the new hardware and software support to

provide more useful parallelization advice, such as Sun’s ROCK processor [21],

IBM Blue Gene/Q [41], Intel Haswell [118], AMD Advanced Synchronization

Facility [17], and Intel C++ STM compiler [48].
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