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Dynamic programming algorithms for 
restriction map comparison 

Xiaoqiu Huang and Michael S. Waterman' 

Abstract 

For most sequence comparison problems there is a 
corresponding map comparison algorithm. While map data may 
appear to be incompatible with dynarmc programming, we show 
in this paper that the rigor and eficiency of dynamic 
programming algorithms carry over to the map comparison 
algorithms. We present algorithms for restriction map 
comparison that deal with two types of map errors: (i) closely 
spaced sites for different enzymes can be ordered incorrectly, 
and (ii) closely spaced sites for the same enzyme can be mapped 
as a single site. i%e new algorithms are a natural extension 
of a previous map Comparison model. Dynamic programming 
algorithms for computing optimal global and local alignments 
under the new model are described. i%e new algorithms take 
about the same order of time as previous map comparison 
algorithms. Programs implementing some of the new algorithms 
are used to Jnd similar regions within the Escherichia coli 
restriction map of Kohara et al. 

Introduction 

It is often the case that a physical map is constructed prior to 
genomic sequencing projects, as in the pioneering work of 
Coulson et al. (1986) on nematode and of Olson et al. (1986) 
on yeast. Kohara et al. (1987) published a physical map of the 
entire Escherichia coli chromosome showing the approximate 
locations of the restriction sites for eight restriction enzymes. 
Many projects are underway to physically map a variety of 
genomes. Clearly physical maps will often be complete long 
before the complete sequence information is available. For a 
variety of reasons it is important to have appropriate analytical 
tools to study these data. In Waterman et al. (1984) the model 
problem was to study the evolution between homologous genes 
from closely related organisms. The goal is to align all of each 
map-the so-called global alignment problem. Later Rudd et al. 
(1990) posed the problem of locating sequenced DNA from 
E. coli on the Kohara map. Here a small and highly precise map 
is to be aligned somewhere along a very long map. Obviously 
many other variants exist; essentially there is a map alignment 
problem of interest for every sequence alignment problem. 
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Finding the best local map alignments, for example, corresponds 
to the best local sequence alignment problem of Smith and 
Waterman (1981). Finding the best overlap between two 
mapped clones is relevant to construction of the genomic 
physical map itself and finding the best overlap between two 
sequence fragments is relevant to construction of the sequence 
itself. One of the major points of this paper is that the rigor 
and efficiency of dynamic programming algorithms can be 
retained even when the data appear incompatible with dynamic 
programming. 

Restriction maps give a sequence of restriction sites with 
distances between the sites. If intersite distances were ignored, 
then dynamic programming algorithms for sequence comparison 
could be immediately applied to compare two restriction maps. 
Waterman et al. (1984) developed an alogrithm that handles 
the distances between sites as well as the linear sequence of 
sites. It is necessary, however, to examine restriction maps more 
carefully. Restriction map data often contain two types of errors: 
(i) the order of closely spaced sites for different enzymes is 
incorrect, and (ii) closely spaced sites for the same enzyme are 
merged as a single site. Map comparison methods that properly 
address the two types of map errors are likely to discover map 
similarities that are missed by methods that only deal with the 
insertions/deletions (indels) of sites and distance discrepancies. 

Waterman et al. (1984) first defined a notion of map 
alignment and gave an algorithm for computing an optimal 
alignment of two maps. The alignment allowd for site indels 
as well as differences in distance between sites. This notion 
of alignment and scoring method do not handle the two types 
of map errors listed above. A simple modification to the 
algorithm handles the second type of errors, but not the first 
type (Waterman and Raymond, 1987). Myers and Huang (1992) 
improved the time efficiency of the algorithm of Waterman 
et al. (1984). Miller et al. (1990) introduced a notion of 
alignment that treats both types of map errors and designed a 
simple algorithm for computing an optimal alignment. A recent 
improvement of the Miller et al. algorithm permits the search 
of a long map of m sites for best matches to a short map of 
n sites to be done in O ( m  log n) time (Miller et al., 1991), 
which is about the time requirement of a faster version of a 
variant of the algorithm presented in this paper. The alogrithms 
of Miller et al. (1990, 1991) are used to align a sequence to 
a restriction map (Rudd et al . ,  1990, 1991). However, the 
scoring scheme employed by Miller et al. (1990, 1991) can 
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cause a single map error to be penalized many times. Also it 
is not clear how to generalize the algorithm to find best local 
map alignments efficiently. The notion of alignment and 
objective scoring function described in this paper address both 
types of errors and allow nearly all varients of map comparison 
problems to be solved efficiently. This is done through the 
generalization of the dynamic programming model of Waterman 
et al. (1984) by introducing the concept of a ‘segment’, which 
is a short region of the map where both types of errors may 
occur. 

Next we present the map comparison model and the algorithm 
of Waterman et al. (1984). A map of m restriction sites is 
represented by a sequence of enzyme-position pairs <al,ql > 
<a2,q2> . . . <am,qm>. Here ai denotes the enzyme 
recognizing site i and qi gives the position of site i in base pairs 
relative to some origin. Assume that the pairs are ordered 
according to their positions, i.e. qi I qi+ 1 I ;< m. Let 
A = <al ,q l>  <a2,q2> . . . <am,qm> and B = <bl , r l>  
<b2,r2> . . . <b,,,r,> be two maps of m and n sites 
respectively. A[i] denotes site i of A, and A[s,t]  denotes sites 
s through t of A, s I t. 

An alignment ll of A and B is a sequence of ordered matching 
pairs of sites (iljl) (i2j2) . . . (idjd), where ail = bit, it < it+l 
and j, < j , + ,  for each t. Let u ,  X and p be non-negative 
numbers. Then the score of the global alignment II is defined 
to be 

In this scoring scheme, each matching pair is given a reward 
of u.  The discrepancy in distance between adjacent aligned pairs 
(it - ,j, - and (if&) is penalized by a factor of p,  as are the 
discrepancies to the leftmost and rightmost aligned pairs. Also 
each unaligned site is penalized by X. 

Assume throughout this paper that the maximum over the 
empty set is - 00, i.e. max 0 = - 00. In practice, a proper 
substitute for -00 can be -p(qm + r,) - X(m + n), the 
score of the alignment of no matching pairs. For a pair (ij’) 
with ai = bj, let X(ij’) be the score of the largest scoring 
alignment with the rightmost aligned pair ( i j ’ ) ,  not including 
the term pl(q,,, - qi) - (r,, - rj)l. Then we have the 
following recurrences for computing the matrix X. 

Here u - X(m + n - 2)  - plqi - rjl is the score of the 
alignment consisting only of the pair (ij’), and Y(ij’) + u + 2X 
is the score of the largest scoring alignment with at least one 
matching pair to the left of (ij’). Both X(ij’) and Y(ij’) exclude 
the end penalty pl(qm - 4;) - (r,, - rj)l. The score of an 
optimal alignment is therefore 

rnax(X(ij3 - pl(qm - 4;) - (r,, - r,)l : 1 I i I m, 
1 I j 5 n and ai = bj) 

A simple dynamic programming algorithm as shown in Figure 
1 computes the maximum score in o(m2n2) time. 

A simple way to speed up the computation is to limit the 
number of X-values examined in computing Y(ij’) to at most 
6’ for some integer 6. The two nested for loops indexed by 
g and h in Figure 1 become 

for g - max(1, i - 6) to i - 1 do 
for h - max(1, j - 6) to j - 1 do 

This gives an O(6’rnn) approximate algorithm. Myers and 
Huang (1992) showed that the maximum alignment score of 
two maps can be computed in O(mn(log m + log n)) time. 

If we change the definition of alignment so that a site of one 
map is allowed to match several closely spaced sites of the other 
map for the same enzyme, then a simple modification to the 
algorithm of Waterman et al. (1984) can compute an optimal 
alignment under this new model. Specifically, let the score of 
aligning A[i] with B[t,j] for the same enzyme be 
u - p(rj - rt) = u - p[(rt + 1 - rt) + . . . +(q - 5 - I)]. 
In Figure 1, insert the following statement immediately after 
the assignment statement with X(iJ on the left-hand side 

X(i,j’) - max(X(i,j’), X + max(X(i,j - 1) - p(rj  - 5-l), 
X(i - 1J’) - P(q; - qi-1))) 

where X(s,t) = - 00 if a, # bt. In the expression on the right- 
hand side, the term X + X(i,j- 1) - p(5 - rj - I)  is the score 
of an optimal alignment with A[i] aligned with B[t,j] for some 
t < j .  During the computation, no special care is needed to 
avoid meaningless alignments such as one where A[i - 11 is 
aligned with B[ j - 1, j ] ,  and B[j] with A[i - 1 $1. The reason 
is that this alignment cannot be optimal. This modification first 
appeared in Waterman and Raymond (1987). 

score t - p(qm + r, ) - k(m + n ) 
for i t 1 to rn do 

for j t 1 to n do 
if ai = bj then 

( Y + -p(qm+rn)-k(m + n )  
forg t 1 toi-1 do 

for h t 1 to j - 1  do 
if ag = bh then 

Y t max(y. X ( g , h ) - d ( q ,  - q g ) - ( r ,  - r h ) l l  

X ( i , j )  t max(v-k(m + n  -2)-plq, -r, I, y + v + 2 k ]  
score t max(score, X(i,j)-pl(qm - q i ) - ( r n  - r , ) l ]  

I 

Fig. 1. The algorithm of Waterman et al. (1984). 
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System and methods rightmost aligned pairs. Also each site not present in any aligned 
segment is penalized by A. 

For a finite set Q, let \ lQl\ denote the number of elements 
in Q. Let v be a non-negative number. The score u(i,j;k,Z) is 
defined to be 

The programs are written in C and developed on Sun work- 
stations. The programs are portable and are designed to run 
on workstations. 

Algorithm u(i,j;k,l) = v)Ifa, : i 5 t I k )  n (b, : j I t I Z)\I - 
The extension of the basic model along with corresponding pl(qk - qi) - (rl - rj)l - Xll(t : i I t I k and a, # b, 
algorithms for global and local similarities is discussed. Then for each s, ~ I 1)1 1 - I(t : I ~ and b, # a, 
time-efficient algorithms for global and local alignments are 
described. for each s, i I s I k )  1 1  

Each enzyme common to both the segments [i,k] and [j,Z] is Global similarities 
given a reward of v, and each site for an enzyme in one but 

We introduce a new notion of alignment of two entire maps not both of the segments is penalized by ~~0 the discrepancy 
and describe a simple dynamic Programming algorithm for in distance between the segments is penalized by a factor of 
computing the maximum score. Then we consider a space- p. For example, in Figure 2, the score u(1,2;3,4) is 
efficient way to construct an alignment with the maximum score. 2 - - A, and the of this alignment is 

. 

A dynamic programming algorithm. For some non-negative 
number CY, we assume that if two sites for different enzymes 
are more than CY base pairs apart, then the relative order of the 
two sites is always determined correctly. Also assume that two 
sites for the same enzyme that are more than CY base pairs apart 
are always mapped as two distinct sites. In other words, two 
closely spaced sites for different enzymes may be ordered 
incorrectly, and two closely spaced sites for the same enzyme 
may be mapped as a single site. If two maps A and B are 
constructed using different methods, it might be necessary to 
use two distinct numbers a1 for A and a2 for B. For 
convenience, we develop the algorithms with a1 = aZ. 

A segment [i,k] of A consists of sites i through k with 
0 I qk - qi 5 CY. A matching pair of segments [i,k] of A 
and UZ] of B is denoted by (i,j;k,Z). A global alignment II of 
A and B is a sequence of ordered matching pairs of segments 
(il,jI;kI,ld (i~,j2;k& . . . ( id&&&, where k, < i,+l and 
1, < j,+, for each t < d .  An example of alignment illustrated 
in Figure 2 is represented by (1,2;3,4) (4,5;4,5) (5,6;7,8), 
where a = 30. The similarity score u(i,j;k,Z) of a matching 
segment pair (i,j;k,Z) is defined below. Let X and p be non- 
negative numbers. Then the score of the alignment Il is defined 
to be 

Here the discrepancy in distance between two adjacent aligned 
pairs (i, - , , j t  - 1; k, - ,,lt - 1) and (i& kr,lr) is penalized by 
a factor of p,  as are the discrepancies to the leftmost and 

6v - 4X - 38p. This definition allows sites for a common 
enzyme in one segment to be aligned with sites for the same 
enzyme in the other segment. Note that no order restriction is 
imposed on aligned sites between a pair of segments. This 
implies that a site in one segment may be aligned with several 
sites in the other segment and that aligned pairs of sites need 
not have the same order in each segment. In other words, this 
definition accommodates the two types of map errors. 

The definition of the function u given in the previous 
paragraph is intended for the situation where both maps contain 
the errors. Sometimes one of the two maps is error-free; for 
example, a map is constructed from a DNA sequence that is 
presumably correct. In such a situation, the definition of the 
scoring function can be adjusted slightly to reflect this. Assume 
that the map A is error-free and that the map B may contain 
the errors. We must not allow any site of A to be aligned with 
several sites of B for the same enzyme since no single site of 
A represents multiple sites. On the other hand, a single site of 
B may be aligned with several closely spaced sites of A for the 
same enzyme, and two nearby sites of B (for different enzymes) 
may be out of order with two nearby sites of A. For each com- 
mon enzyme e between segments [i,k] and b,1], if the number 
c(e,i,k) of sites for the enzyme e in [i,k] is larger than the 
numberJle,j,l) of sites for e in [ j , l ] ,  then c(e,i,k) - Ae, j , l )  
sites for the enzyme e in the segment [i,k] are deleted at a cost 
of X each. Otherwise, there is no charge for these sites for e 
in [i ,k].  Let y(x,y) be x - y if x > y  and 0 otherwise. Then 
the scoring function (I‘ is defined as 

u ’ ( i , j ; k , / )  = u( i , j ;k , />  - x y(c(e , i ,k )Ae , j ,Z) )  
common enzyme e 

The function u’ gives the score of aligning each pair of segments 
from the maps A and B, where A is error-free but B is subject 
to the errors as discussed above. 

An optimal global alignment has the maximum score. First 
we develop a dynamic programming method for computing the 
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Map B 4 
Fig. 2. An illustration of a map alignment. 

maximum score. For a segment pair (i,j;k,l), define F’(i,j;k,Z) 
to be the score of an optimal global alignment with the rightmost 
segment pair (i,j;k,Z), excluding the term pl(qm - qk)  - 
(rn - rr)l that accounts for the discrepancy between the 
segment pair (i,j;k,l) and the rightmost ends of the maps A and 
6. Let S(k,l) be the maximum of F’(i,j;k,Z) over all (i,j;k,Z)’s. 
The following recurrences are used for computing the matrix S. 

WJI 

F’(i,j;k,l) = u(i,j;k,l) + max( -X(m - k + i + n - 1 + 
= maxMg,h) - pl(q; - qg) - (rj - rdl : 

g < i a n d h  < j )  

j - 2) - plqi- 51, ~(ij) + ~ ( k  - i + 
1 - j + 2)) 

S(k,l) = max F(i,j;k,l) 

The score of an optimal global alignment of A and B is 

(i,j;k.O 

max(S(k,l) - pI(qm - q k )  - ( r n  - rJI 
1 s k I m a n d l s Z s n )  

Examining the recurrences, we find that we just need to 
compute and save the matrix S; the matrix F is computed 
implicitly. Figure 3 shows a new dynamic programming 
algorithm for computing the maximum score, where we assume 
that S(k,l) = -a initially for each (k,l). 

The time complexity of the algorithm can be obtained easily. 
A total of O(m2n2) time is spent in the two nested for loops 
indexed by g and h. The two nested for loops indexed by k 
and 1 require a total of O(R) iterations, where R is the number 
of segment pairs. We need not compute 4 and c; explicitly; 
for example, we can break the for loop indexed by 1 when 
rl - 7 > a. So the algorithm takes O(m2n2 + R) time. Note 
that R is usually much smaller than m2n2. The time analysis 
given here is based on the assumption that the function u is 
computed in O(1) time. This can be done when a small number 
of different enzymes are used in a map, which is usually true 
in practice. Each enzyme is associated with a unique small 
integer. A simple hashing technique can be used to compute 
the number of common enzymes and the number of sites with 
distinct enzymes between a pair of segments in an incremental 
fashion, so u(i,j;k,l) can be evaluated in 0(1) time. The space 
complexity of the algorithm is qmn) since the matrix S is saved. 

In practice, we may want to use a simple, approximate 
method to compute the maximum score. Let 6 be a positive 
integer constant. In computing G(i,j], we take the maximum 
over only those (g,h)’s such that max(1,i - 6) I g < i and 

score t - p(q, + r, ) - k(m + n ) 
for i t 1 to m do 

for j t 1 to n do 
{ Y t -c1(9, + r , ) - k ( m  + n )  

for g t 1 to i-1 do 
for h t 1 to j - 1  do 

y max(y, S(g,h)-pl(qi  - 9 8 ) - ( r ,  - r h ) l )  
ci t max[k : k <m and 9 k  -qi I a) 
dj  t m x ( l  : I In and r l  - r j  I a) 
for k t i to ci do 

for 1 t j to dj  do 
[ t t m a x ( - k ( m - k + i + n - [ + j - 2 ) - p l q i - r , I ,  

y + k ( k - i + l - j + 2 ) )  
S ( k . 1 )  t max(S(k , I ) ,  t + a ( i , j ; k , I ) l  

1 
score t max[score, S ( i , j ) - p l ( q , , , - 9 i ) - ( r n  - r j ) l l  

1 

Fig. 3. A new dynamic programming algorithm. 

max(1j - 6) I h < j .  The approximate method takes 
0(ti2mm + R) time. Since we do not go back very far in 
computing G, we only need to save the 6 most recently 
computed rows of S, provided S is computed in order of rows. 
Thus the space requirement of the method is O(m + 6 X n). 

Construction of an optimal alignment. An optimal alignment 
of the two maps can be found in several ways. If only the matrix 
S is saved, then the use of a straightforward traceback method 
allows the alignment to be computed in the same order of time 
as required by the forward computation. Alternatively, the 
traceback computation can be done in O(m + n) time at the 
cost of using additional matrices. In particular, for each (k,l) 
we need to save (i,j) such that F(i,j; k,l) = S(k,l) and (g,h) 
such that 

I 

Usually k - i and 1 - j are very small integers, while g and 
h are quite large. It is possible to pack g and k - i, and h and 
1 - j into two single integer words. This method requires two 
m x n integer matrices. One disadvantage of the method is that 
the matrix S has to be saved, which takes O(mn) space. 

As discussed before, the approximate method takes 
O(m + 6 x n) space to compute the maximum score of those 
alignments satisfying the restriction that any two adjacent aligned 
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segment pairs are at most 6 sites apart in each map. We can 
also find an alignment of the maximum score in roughly the 
same order of space. Hirschberg (1975) designed an elegant 
divide - conquer algorithm that constructs a longest common 
subsequence of two sequences of lengths m and n in O(m + n) 
space. Later Myers and Miller (1988) applied the Hirschberg 
technique to construction of an optimal global alignment of two 
sequences under affine gap penalties in O(m + n) space. In the 
remainder of this subsection, we develop an application of the 
divide-conquer technique to map comparison. First we briefly 
review this technique in the context of sequence comparison. 
Each global alignment of the two sequences corresponds to a 
path from the point (0,O) to the point (m,n) in a 
(m + 1) x (n + 1) grid graph. Finding an optimal alignment 

Let i = Tm/21 be the middle row of the graph. An important 
observation is that each path from (0,O) to (m,n) must intersect 
row i. In the Hirschberg method, the intersection point (i,j] 
of an optimal path with row i is first determined, and the two 
smaller optimal paths from (0,O) to (i,j] and from (i,j] to (m,n) 
are constructed recursively. 

We now apply the Hirschberg method to computation of a 
largest scoring alignment (il jl;kl,ll) . . . (i&;k&) that 
satisfies i, - k, - I 6 for each 1. (Recall 
that this restriction is imposed in order to reduce computation 
time.) Let /3 be equal to 26 + 1 plus the maximum number 
of sites in any segment of map A. Take an interval in the center 
of A from sites x to y with y - x + 1 = /3, assuming that A 
has more than /3 sites. First we look at how an alignment 
intersects this central interval. It can be proved that for any 
alignment II = (il,jl;kl,Zl) . . . (id,jd;k&) satisfying the 
restriction, at least one of the following three equations holds. 

9 means finding a path with the maximum score in the graph. 

I 6 and j ,  - 

t kd I Y (1) 

il 1 x (2) 

kr-l 1 x and i, I y for some t, 1 < t I d (3) 
Equation (1) says that the rightmost pair of II contains only 
the site of A that are in or to the left of the central interval. 
If neither (1) nor (2) holds for the alignment ll, then II must 
have two adjacent pairs that both contain some sites from the 
central interval (equation (3)). For p =‘1,2,3, let group p 
contain those alignments that satisfy equation @). 

Constructing an optimal alignment by the Hirschberg method 
involves computation of dynamic programming matrices from 
both ends of the maps. Recall that the matrix S is computed 
in increasing order of site indices. Now we describe the 
recurrences for the computation in decreasing order of site 
indices. For a segment pair (i,j;k,Z), let &i,j;k,Z) be the score 
of an optimal global alignment with the leftmost segment pair 
(i,j;k,l), excluding the discrepancy plq; - 51 between the left 
map ends and (i,j;k,l). Let C(i,j] be the maximum of &i,j;k,l) 
over all (i,j;kJ)’s. The following recurrences are used for 
computing the matrix C. 

= max(C(g,h) - pl(qk - qg)  - 0-1 - dl : 

j - 2) - PI(qm - q k )  - (rn - ~II I ,  

g > k a n d h > Z )  

D(i,j;k,Z) = a(i,j;k,t) + max(-X(m - k + i + n - Z + 
E(k,l) + X(k - i + 1 - j + 2)) 

C(i,j] = max D(i,j;k,Z) 
(i.j;k,O 

The three equations below give the maximum score for each 
of the three groups of alignments. An optimal alignment is in 
the group with the largest overaU score, M = ma~(Ml,M.,M3). 

(4) 

(5) 

= max(S(k,Z) - pI(qm - q k )  - (rn - r11l 
1 I k I yand 1 I I I n) 

x I i I mand 1 ~j I n) 
M~ = max(C(i,j] - pI(q; - rjl : 

M3 = max (S(k,Z) + C(i,j] + X(m + - 
n) 
x I k < i s y,i - k I 6 
I s l < j I n j - l s 6  

- PI(q; - qk) - (rj - rr)I) (6) 
Equations (4) and (5) are obvious and correspond directly to 
(1) and (2). Equation (6) is a little involved. In S(k,Z), the sites 
to the right of site k on A and the sites to the right of site 1 
on B are charged -A per site, as are the sites to the left of 
site i andj on A and B in C(i,j]. So in S(k,Z) + C(i,j], the sum 

By adding X(m + n) to S( i j ]  + C(k,Z), we avoid penalizing 
deleted sites more than once. 

We are ready to outline a divide-and-conquer algorithm for 
constructing an optimal map alignment. If A contains at most 
0 sites, then construct the optimal alignment directly by the 
traceback procedure as described in the beginning of the 
discussion on alignment construction. Otherwise, compute S(k,Z) 
for1 I k I yandl  I 1 1  n,andC(ij]forx I i I mand 
1 I j I n. Then find the entry/entries attaining the largest 
overall score according to equations (4)-(6). If the largest 
overall score M is equal to M3 that is achieved at two entries, 
say, (k,l) and (i,j], then recursively construct an optimal 
alignment of A[ 1 ,k] and B[ 1 ,Z] and an optimal alignment of 
A[i,mI and Bu,n]. Note that when computing an optimal 
alignment of A[i,m] and Bu,n], we no longer charge the distance 
discrepancy lqi - rjl since it has already been taken care of 
in the previous computation. In case that M is equal to MI (or 
M2) obtained at (k,Z) (or (i,j?), we just apply the procedure 
recursively to A[ l,k] and B[l,ZI (or to A[i,mI and Bu,m]). 

Obviously the algorithm requires O(/3(m + n)) space. We 
want to show that the algorithm takes O(p2mn) time. Let 
T(m,n) denote the time for the algorithm to compute an optimal 
alignment of two maps of m and n sites respectively. For the 
analysis, assume that m and /3 are powers of 2. The algorithm 
takes the most time when equation (6) gives the largest overall 
score because it must compute recursively two alignments. It 

ofthetwopenaltytermsis -X(m + n + (i - k + j  - z - 2)). 
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is easy to see that the total time spent by the algorithm to 
determine the largest scoring pair of entries, excluding the time 
for the recursive calls, is bounded by 0w2mn + R). Since the 
number R of segment pairs is most p2mn from the definition 
of 0, the total non-recursive time is O(p2mn). Thus we have, 
for some constant c ,  and for parameters t and n’, It1 I 012 
and 1 I n’ < n, that 

T(m,n> I cp2mn + ~ ( m / 2 - ~ , n ’ )  + q m / 2  + { ,n - n’) 

where T(m/2 - c,n’) and T(m/2 + c,n - n’) are the time 
spent for the recursive calls. We prove by induction on m that 
T(m,n) I 4cp2mn for m L 2p. Assume that 

T(m/2 - c,n’) I 4cp2(m/2 - c)n’ 
~ ( m / 2  + c,n - n’) I 4cp2(m/2 + c)(n - n’) 

Since 1 I n’ < n, we obtain In - 2n’l < n. Combining 
I e )  I PI2 and 20 I m, we obtain I m/4. Thus we have 
that 

T(m,n) I cp2mn + 4cp2(m/2 - [)n’ + 
4cp2 (mi2 + c)(n - n’) 

= cp2mn + 4cp2(mn/2) + 4cp2t(n - 2n’) 

I c p 2 m  + 2cp2mn + 4cp2(c( (n  - 2n’l 

I cp2m + 2cp2mn + 4cp2(mn/4) 

= 4cp2mn 

Local similarities 

First we define best local alignments of two restriction maps 
and present an algorithm for computing the best local map 
alignments. Then we discuss a fast approximate method for 
finding the best local alignments. These algorithms are useful 
to find unknown repeats in or between maps. 

K best local map alignments. A local alignment II of A and 
B is a sequence of ordered matching pairs of segments (il,jl; 

f t  < j ,  + for each r < d. Let u, X, p and v be the same as 
above. Then the score of the alignment II is defined to be 

score@) = 

k1,ll) (id,jd;kd,ld), where kt < it + 1 and 

d d 

~(it~jtjt;kt~lt) - P I(qi, - qk,-J - (rj, - r/,-l)I - 
t =  I t = 2  

d d 

(it - kt-l - 1) + (i, - lt-I - I)] 
t = 2  

In this definition, the regions to the left and right of ll are no 
longer penalized. 

A best local alignment has the maximum score. The 
recurrences for computing a best local alignment can be 
developed similarly. For a segment pair ( i j ;k , f ) ,  define Z(ij;k,f) 

to be the score of a best local alignment with the rightmost 
segment pair (i,j;k,l) minus X(m - k + n - I ) ,  the penalty 
for the indels of the sites to the right of sites k and 1 respec- 
tively. Define H(k,l )  to be the maximum of Z(i,j;k,f) over all 
(i,j;k;f)’s. The following recurrences are used for computing 
the matrix H .  

j(i,j) 

Z(i,j;k,f) = u(i,j;k,I) + max(- X(m - k + n - I), 

H(k,l )  = max Z(i,j;k,f) 

The score of a best local alignment of A and B is 

= maxtH@,h) - pI(qi - q g )  - (5 - rh)l : 
g < i and h < j) 

J ( i j )  + X(k - i + 1 - j + 2))  

( i J ; k , l )  

max(H(k,l) + X(m - k + n - I )  : 
1 I k 5 mand 1 s  I I n) 

It is easy to see that a best local alignment can be computed 
in O(m2n2 + R) time and O(mn) space. 

Two maps may contain several similar regions of interest to 
biologists. It is desirable to be able to compute more than one 
best local map alignment. Waterman and Eggert (1987) 
introduced the notion of the K best non-intersecting local 
alignments between two sequences and developed a time- 
efficient algorithm to compute those K best alignments. Below 
we develop a method for computing the K best non-intersecting 
local alignments between two maps by generalizing the 
Waterman -Eggert technique from sequence comparison to map 
comparison. 

Two segment pairs (il,jl;kl,fl) and (i2,j2;k2,f2) intersect if 
there is an entry (g,h) such that max(il,i2) I g I min(kl,k2) 
and max(jl,j2) I h I min{11,12). Two local map alignments 
are non-intersecting if no segment pair of one alignment inter- 
sects any segment pair of the other alignment. We are interested 
in computing the K best non-intersecting local map alignments: 
the largest scoring alignment, then the next largest scoring 
alignment that does not intersect those already computed, and 
so on. 

For two entries (g,h) and (k , l )  of the matrix H with g < k 
and h < 1, we say that (g,h) affects (k , l )  with respect to H 
if we have the following equation for some segment pair 
(i,j;k,f), i > g a n d j  > h: 

H(k,l )  = H(g,h) - pI(qi - q g )  - (‘j - rh)l + 
u(i,j;k,Z) + X(k - i + I - j + 2)  

For each entry (g ,h) ,  we want to determine a region of entries 
that might be affected by (g,h).  A simple way of representing 
the region is to use the indices of the furthest row and column 
affected. So if (g,h) affects no entry, then define row(g,h) = g 
and col(g,h) = h. Otherwise, define row(g,h) to be the largest 
k > g such that (k ,r )  is affected by (g,h) for some t > h, and 
col(g,h) to be the largest I > h such that (s , l )  is affected by 
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(g,h) for some s > g. It is obvious that the matrices row and 
col can be computed easily along with the matrix H .  

We are ready to present a method for computing the K best 
non-intersecting local map alignments. Initially the matrices H, 
row and col are computed and saved. An entry of H with the 
maximum score is located and the largest scoring alignment 
ending at this entry is constructed by a traceback procedure. 
This alignment is the best local alignment. Assumed that 
( i l , j l ; k l , l l )  and (id,j&,,ld) are the first and last segment pairs 
of the alignment. Then recompute the portion of H from rows 
i ,  to kd and from columns jl to ld using only segment pairs that 
do not intersect any segment pair of the best alignment. During 
the recomputation, parts of the matrices row and col are 
modified in such a way that the value for each entry can only 
be increased. Continue the calculation by adding one row or 
one column at a time. Let row k and column I be the last row 
and column of the recomputed region, and let H’ denote the 
new matrix generated in the recomputation process, where 
H’(g,h) = H(g,h)  for each (g ,h) ,  g C i l  or h C j , .  If there 
exists some i and j ,  id < i < k and j d  < j < 1, such that 
equations (7) - (9) hold 

H’(g,h) = H(g,h) for each 

H’(g,h) = H(g,h)  for each 

row(g,h) I k and col(g,h) 5 1 for each 

- 

(g,h),i I g I k a n d j l  I h I 1 

(g,h), i ,  I g I k and j  I h I 1 

(g,h), i ,  I g < i andj,  I h < j 

(7) 

(8) 

(9) 

then terminate the recomputation process. Next find an entry 
of H with the maximum score and report the Corresponding 
alignment, which is the second best non-intersecting alignment. 
Repeat this process until the K best non-intersecting local 
alignments are found. 

We now examine equations (7)-(9) in detail. In words, 
equation (7) is to assure that the H‘ values in the submatrix 
from rows i to k and from columnsj, to 1 are the same as the 
corresponding H values, and equation (8) is to guarantee that 
the H values in the submatrix from rows i l  to k and from 
columns j to 1 are the same as the corresponding H values. 
Equations (9) implies that the entries in the intersection of rows 
i ,  through i - 1 and columnsjl throughj - 1 cannot affect 
any entry beyond row k or column 1. Let H’ be the matrix 
calculated if the recomputation is carried out to row m and 
column n. We want to show that there is no need to carry out 
the recomputation to the end, Le. H’(s,t) = H(s,t) for each 
(s , t ) ,  s > k and t L j,, or s 1 i l  and t > 1. Since we can- 
not use the segment pairs of the already determined alignments 
in computing H‘, we have H’(g,h) I H(g,h) for each (g ,h)  
g 2 i ,  and h L j , .  Take an entry ( s , t ) ,  s > k and t 2 j , ,  or 
s L i l  and t > 1. Assume that (s , f )  is affected by some (s ’ , t ’ ) ,  
s’ 5 k and t’ I 1, with respect to H. By (9) we conclude that 
at least one of the following cases is true: (i) s‘ < i l ,  (ii) 

5 

t’ c j , ,  (iii) i I s’ I k andj, I t’ I 1 or (iv) i l  I s’ I k 
a n d j  I t’ I 1. It follows from the definition of H’ and by 
equations (7) and (8) that H’(s’,t’) = H(s’,t’). Since (s ’ , t ’ )  
affects (s,t) ,  we have, for some segment pair (i , j;s ,f) ,  i > s’ 
and j > t ’ ,  

H(s,t) = H(s‘,t’) - pI(q; - qs,) - (r, - rtF)l + 
a(i,j;s,t) + X(s - i + t - j + 2) 

a(i,j;s,t) + X(s - i + t - j + 2) 
= H’(s’,t’) - &q; - qs,) - (5 - r,r)l + 

- < H’(s,t)  

Thus H’(s, t )  = H(s, t ) .  
The time complexity of the algorithm is 

K- 1 

O(m2n2 + mn Q,) 
t = l  

where O(m2n2) time is spent in the initial complete sweep and 
Q, is the number of entries recomputed after the rth best 
alignment is found. Note that it takes O ( m )  time to compute 
one entry by the naive dynamic programming method. 

An approximate method. The algorithm discussed above is 
expensive in time and space. Here we give an approximate 
method that is easy to implement. This method also has its 
counterpart in sequence comparison. Gotoh (1987) developed 
an approximate algorithm for comptuing K local alignments 
between two sequences. The K alignments produced by the 
method are not necessarily the K best non-intersecting 
alignments. In this method, alignments with the same left 
endpoint are put into the same group and the right endpoint 
of the largest scoring alignment in each group is saved. In a 
single sweep of the dynamic programming matrix, the left and 
right endpoints of the largest scoring alignment in each of the 
K best groups are determined. Then each of these K alignments 
is constructed. The single sweep can be made in space 
proportional to the sequence lengths. Although the construction 
of each alignment usually requires a limited amount of space, 
its worst-case complexity is quadratic in the alignment length. 
Huang et al. (1990) observed that each local alignment can be 
constructed in linear space by the method of Myers and Miller 
(1988). 

Consider the extension of the Gotoh algorithm to map 
comparison. For a local alignment II = ( i l , j l ;k l , l l )  . . . (id&; 
kd,ld), (il,jl) and (kd,ld) are called the left and right endpoints 
of II respectively. For an entry (g,h),  define L(g,h) to be the 
left point of an alignment ending at (g,h) of score H(g,h). The 
matrix L is easily computed together with H. 

Now we describe the method. The first step is to obtain the 
K largest scoring entries (gl,h1), (g2,h2), . . . , ( g ~ , h ~ )  with 
L(g,,h,) # L(g,,h,), s # t ,  by computing the matrices H and 
L in a single sweep. Then construct the alignment with the 
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endpoints L(g,,h,) and (g,,h,) for each s, 1 I s I K, using 
the space-efficient procedure as discussed in the ‘Global 
similarities’ subsection. To speed up the sweep, we just use 
the 62 entries (g ,h) ,  i - g I 6 and j  - h I 6, to calculate 
H(i, j ) ,  which requires that we save at most the 6 most recent 
rows of H. It should be pointed out that the map alignments 
produced by this approximate method may be intersecting. 
However, this rarely happens in practice, as will be 
demonstrated in the Implementation section. 

The initial sweep takes O(p2mn) time and 
O(P(m + n) + K) space, where O(K) space is devoted to the 
storage of the K best entires along with their L values. Observe 
thatpisequalto26 + max(k - i + 1 : 0 I q k  - q; I a). 
The construction of an alignment of length L1 by the space- 
efficient method takes O(P2L12) time and O(PLl) space. 
Therefore the approximate method requires 

K 
O(P2m + P2 EL: )  

t =  1 

time, where L, is the length of the tth alignment. Its space 
requirement is O(P(m + n )  + K). 

Faster algorithms 

Myers and Huang (1992) presented a time-efficient algorithm 
for computing the minimum distance between two restriction 
maps under the basic model proposed by Waterman et al. 
(1984). The algorithm takes O(mn(1og m + log n)) time and 
O ( m )  space. The description of the algorithm was given in 
the context of the distance measure, where minimum operations 
are performed. Now we briefly describe the Myers-Huang 
algorithm in the context of the similarity measure. Consider 
the recurrences for computing the matrix X as given in the 
introduction. 

Y(I’J) = max(X(gh) - PI(% - s g )  - (r, - dl: 
g < i,h < j and ag = bh) 

X(ij) = max(v - X(m + n - 2) - plq, - ‘-1, 
Y ( i j )  + v + 2x1 

To compute each Y(iJ) efficiently, a list of computed entries 
with their X-values is kept. If a computed entry could not 
possibly affect any entry to be calculated, then the computed 
entry (called a dead entry) with its X-value is removed from 
the list. Newly computed entries are placed into the list. Assume 
that the matrix X is computed in increasing order of i. After 
removal of dead entries, each entry (g,h) in the list is associated 
with a sub-interval of the interval [O,r,] in such a way that 
(g ,h)  affects those entries ( i j )  with r, in that sub-interval. 
These sub-intervals form a partition of the interval [O,r,]. The 
entries in the list are ordered linearly according to the increas- 
ing order of the associated subintervals. The list is implemented 
by a balanced search tree so that the value X(g,h) yielding the 

maximum score Y(i,j) can be located in O(1ogm + logn) time, 
instead of O ( m )  time. Thus the algorithm takes O(mn(1ogm + 
logn)) time to compute the matrix X. If the matrix X and the 
trace-back information are saved, then O ( m )  space is required. 

Now we consider the application of the Myers-Huang 
technique to the computation of global and local alignments 
under the new model of map comparison. First look at the 
recurrences involving S,F and G for computing a single optimal 
alignment. The most costly computation is: 

W j )  = max(S(g,h) - pl(q; - qg> - (rj - rh)l : 
g < i and h < j )  

which requires O ( m )  time by the straightforward method. This 
recurrence is essentially the one that was treated by Myers and 
Huang (1992), which implies that G(ij) can be computed in 
O(logm + logn) time. Thus an optimal global alignment can 
be found in O(m(logm + logn) + R) time and O(mn) space. 

With the same observation, we see that the best local map 
alignment can be computed in O(mn(logm + logn) + R) time 
and O ( m )  space, and the K best non-intersecting local map 
alignments can be computed in O(Kmn(logm + logn) + KR) 
Table I. Local alignments within the E.coli map 

Number score Region 1 Region 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

76 
68 
64 
62 
61 
60 
60 
59 
59 
59 
58 
58 
58 
57 
57 
54 
54 
54 

2055.9-2060.1 
121.3-126.1 

3466.9-3469.4 
292.2-295.0 

2119.7-2124.6 
2271.6-2273.8 
987.0-990.6 

2161.1 -2164.2 
916.0-917.9 
229.7-233.0 

2041.6-2043.6 
3462.4 - 3469.0 
3521.3 -3527.1 
2039.2 -2044.7 
1814.2- 1818.2 
190.0-192.4 
229.7 -230.9 
315.4-316.6 

3474.1-3479.8 
2093.0-2097.4 
3592.4 - 3594.7 
3781.8-3784.4 
2265.6-2270.1 
3676.4 -2678.9 
3656.9-3661.2 
3676.4 -3679.3 
4012.8-4015.1 
3776.3-3780.2 
3552.8-3554.8 
3581.7-3587.3 
3788.3 -3794.6 
3058.4-3062.9 
2652.2-2656.4 
1856.4-1859.0 
292 1.7 - 2923.2 

714.9-716.4 

Table II. Multiple similar regions within the E.coli map 

Group Copy 1 Copy 2 Copy 3 Copy 4 Copy 5 Copy 6 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2271.6 2373.4 
916.0 1289.7 
738.2 2040.5 
229.4 2488.2 
315.4 714.9 

2573.0 2724.1 
715.9 2162.7 

2040.5 2573.7 
988.0 2197.8 

1581.5 2755.4 

2814.4 3546.5 3676.4 3953.4 
2040.9 2573.7 3677.6 4012.9 
2162.7 3953.7 4232.8 
2921.7 4234.8 
4674.5 
4012.8 
3552.8 
4098.9 
3658.1 
2925.7 

. 
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L 

time and O ( m )  space by making K complete passes of the 
matrix. 

It should be pointed out that the algorithm of Myers and 
Huang (1992) requires that each map is strictly increasing in 
site position, Le. q; < q; + and rj < 5 + for each i andj. 
If map data do not satisfy this requirement, we can modify the 
map data slightly so that they satisfy the requirement. Of course, 
we have to set CY to a value big enough for a segment to cover 
the map sites that are originally at the same position. 

Huang and Miller (1991) developed a spaceefficient version 
of the algorithm of Waterman and Eggert (1987) for computing 
the K best non-intersecting local alignments between two 
sequences. This space-efficient technique, combined with the 
time-efficient method of Myers and Huang (1992), has been 
applied to the construction of map alignments under the previous 
model (K.Chao and W.Miller, personal communication). We 
think that those techniques are also applicable to our new model 
of map comparison, though the resulting algorithm might be 
very complicated. 

Implementation 

We have implemented as portable C programs two approximate 
algorithms: the space-efficient one for aligning two entire maps 
described in the ‘Global similarities’ subsection, and the space- 
efficient one for finding local similarities between two maps 
presented in the ‘Local similarities’ subsection. The programs 
are used to analyze a restriction map of the E.coli genome 
constructed by Kohara et al. (1987). The E. coli map contains 
> 7000 sites for eight different restriction enzymes. Because 
of the limited gel resolution, the map is subject to the two types 
of errors we have discussed: the incorrect order of closely 
spaced sites for distinct enzymes and the merge of several sites 
for the same enzyme into a single site. Observe that the analysis 
of the E. coli map requires the use of space-efficient algorithms 
on conventional computers. 

To find repeated regions within a single map, the local 
similarity algorithm has to be modified so that the computation 
is restricted to the upper triangular part of the matrix. A pair 
of segments from the same map can be aligned only if they 
have no site in common. So the trivial alignment of some map 
region with itself is excluded. 

There are two digitized versions of Kohara’s map: one made 
by D.L.Daniels of University of Wisconsin, and the other by 
K.E.Rudd of Food and Drug Administration. The Daniels map 
was used in a statistical analysis of the distribution of restriction 
sites (Churchill et al., 1990), while the Rudd map was utilized 
in the localization of sequenced genes on the genome (Rudd 
et al., 1990,1991). To compare the two maps, the numbers 
showing site positions in base pairs on the Daniels map were 
scaled to be in 100 base units, the scale for site positions of 
the Rudd map. 

Consider choosing the values for the parameters v, p,  X, CY 

and 6. It is observed that the errors usually occur in a region 

~ 0 . 5  kb in length (Kohara et al., 1987). So we set CY to 5 since 
site positions are in 100 bp. We always set v to 10. The selection 
of the values for p and X depends on experience. We found 
that the choice of p = 2 and X = 5 works well in practice. 
It should be pointed out that the magnitude of the values for 
these parameters is determined by the scale for site positions 
of map data. The parameter 6 is an upper bound on the number 
of sites allowed between every pair of adjacent segments in a 
computed alignment. The choice of 6 = 10 seems to allow 
interesting alignments to be computed in a reasonable time. 

The global map alignment program was used to compare the 
two maps. Generally, the Rudd map has more sites than the 
Daniels map. Therefore, the optimal alignment shows the 
locations of insertion of sites into the Daniels map (or deletion 
of sites from the Rudd map). In addition, the optimal align- 
ment shows the locations where closely spaced sites are ordered 
differently between the two maps. 

The local map alignment program was applied to each map 
to detect similar regions on the map, where the program 
generates local alignments in order to score. In both maps, the 
top alignments involve the four regions that are known to be 
copies of an insertion sequence (Muramatsu et al., 1988). The 
highest scoring alignment from the Daniels map shows fewer 
sites that are out of order than the corresponding one from the 
Rudd map. For reason of space, below we report only the results 
obtained with the Daniels map. The program was used to 
compute 100 largest scoring local alignments. We rarely found 
any intersecting alignments in the 100 alignments. The four 
copies of the insertion element form six pairs of similar regions, 
all of which show up in the top five alignments with one of 
the alignments containing two pairs. Those five alignments show 
very strong matches. Although the remaining alignments are 
short and of low score, some of them might be of interest and 
are listed in Table I. Table I shows 18 alignments with one 
alignment per row. The column ‘score’ lists the score of each 
alignment. The locations of aligned regions in kb are given in 
the columns ‘Region 1’ and ‘Region 2’. The experimental results 
show that the local alignment program performs well at 
producing non-intersecting , high-scoring alignments in practice. 

It is not easy to identify multiple copies of a short repeated 
element from the output of the program. To facilitate this task, 
we developed a search program that takes every region of a 
fixed number 1 of sites called a probe and searches the entire 
map for all approximate occurrences of the probe. The program 
was run with 1 = 7, 8, 9. The results are presented in Table 
11. Here 10 groups of similar regions are shown with one group 
per row. Only the starting location of each region in a group 
is given, where the numbers showing the locations are in kb. 

Discussion 

We did not present a specific algorithm for finding the best 
overlap between two map fragments-a problem that is of 
interest in physical mapping (e.g. Kohara et al., 1987). In the 
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sequence case, a variant of the Smith - Waterman algorithm can 
be used to compute the overlapping alignment of the maximum 
score between two sequence fragments in quadratic time 
(X.Huang, submitted). An algorithm for detecting the best 
overlap between two map fragments can easily be obtained by 
modifying the local map similarity algorithm presented in this 
paper. 

We have generalized the previous model of map comparison 
to address two types of map errors. The new model still allows 
dynamic programming techniques to compute an optimal map 
alignment. We have also demonstrated that many efficient 
techniques employed in sequence comparison and map 
comparison under the previous model are applicable to map 
comparison under the new model. It is expected that the 
algorithms presented in this paper will be useful as more and 
more restriction map data become available. Readers interested 
in the computer programs may contact the authors by electronic 
mail at huang@cs.mtu.edu or msw@hto.usc.edu. 
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