
Vo1.8. no.5. 1992
Pages 51 1 - 520

Dynamic programming algorithms for
restriction map comparison

Xiaoqiu Huang and Michael S. Waterman'

Abstract

For most sequence comparison problems there is a
corresponding map comparison algorithm. While map data may
appear to be incompatible with dynarmc programming, we show
in this paper that the rigor and eficiency of dynamic
programming algorithms carry over to the map comparison
algorithms. We present algorithms for restriction map
comparison that deal with two types of map errors: (i) closely
spaced sites for different enzymes can be ordered incorrectly,
and (ii) closely spaced sites for the same enzyme can be mapped
as a single site. i%e new algorithms are a natural extension
of a previous map Comparison model. Dynamic programming
algorithms for computing optimal global and local alignments
under the new model are described. i%e new algorithms take
about the same order of time as previous map comparison
algorithms. Programs implementing some of the new algorithms
are used to Jnd similar regions within the Escherichia coli
restriction map of Kohara et al.

Introduction

It is often the case that a physical map is constructed prior to
genomic sequencing projects, as in the pioneering work of
Coulson et al. (1986) on nematode and of Olson et al. (1986)
on yeast. Kohara et al. (1987) published a physical map of the
entire Escherichia coli chromosome showing the approximate
locations of the restriction sites for eight restriction enzymes.
Many projects are underway to physically map a variety of
genomes. Clearly physical maps will often be complete long
before the complete sequence information is available. For a
variety of reasons it is important to have appropriate analytical
tools to study these data. In Waterman et al. (1984) the model
problem was to study the evolution between homologous genes
from closely related organisms. The goal is to align all of each
map-the so-called global alignment problem. Later Rudd et al.
(1990) posed the problem of locating sequenced DNA from
E. coli on the Kohara map. Here a small and highly precise map
is to be aligned somewhere along a very long map. Obviously
many other variants exist; essentially there is a map alignment
problem of interest for every sequence alignment problem.

Lkptiment of Computer Science, Michigan Technological University, Houghton
MI 49931 - 1295 and 'Departments of Mathematics and Molecular Biology,
Universiry of Southern California, Los Angeles, CA 90089-1113, USA

Finding the best local map alignments, for example, corresponds
to the best local sequence alignment problem of Smith and
Waterman (1981). Finding the best overlap between two
mapped clones is relevant to construction of the genomic
physical map itself and finding the best overlap between two
sequence fragments is relevant to construction of the sequence
itself. One of the major points of this paper is that the rigor
and efficiency of dynamic programming algorithms can be
retained even when the data appear incompatible with dynamic
programming.

Restriction maps give a sequence of restriction sites with
distances between the sites. If intersite distances were ignored,
then dynamic programming algorithms for sequence comparison
could be immediately applied to compare two restriction maps.
Waterman et al. (1984) developed an alogrithm that handles
the distances between sites as well as the linear sequence of
sites. It is necessary, however, to examine restriction maps more
carefully. Restriction map data often contain two types of errors:
(i) the order of closely spaced sites for different enzymes is
incorrect, and (ii) closely spaced sites for the same enzyme are
merged as a single site. Map comparison methods that properly
address the two types of map errors are likely to discover map
similarities that are missed by methods that only deal with the
insertions/deletions (indels) of sites and distance discrepancies.

Waterman et al. (1984) first defined a notion of map
alignment and gave an algorithm for computing an optimal
alignment of two maps. The alignment allowd for site indels
as well as differences in distance between sites. This notion
of alignment and scoring method do not handle the two types
of map errors listed above. A simple modification to the
algorithm handles the second type of errors, but not the first
type (Waterman and Raymond, 1987). Myers and Huang (1992)
improved the time efficiency of the algorithm of Waterman
et al. (1984). Miller et al. (1990) introduced a notion of
alignment that treats both types of map errors and designed a
simple algorithm for computing an optimal alignment. A recent
improvement of the Miller et al. algorithm permits the search
of a long map of m sites for best matches to a short map of
n sites to be done in O (m log n) time (Miller et al., 1991),
which is about the time requirement of a faster version of a
variant of the algorithm presented in this paper. The alogrithms
of Miller et al. (1990, 1991) are used to align a sequence to
a restriction map (Rudd et al . , 1990, 1991). However, the
scoring scheme employed by Miller et al. (1990, 1991) can

0 Oxford University Press 511

X.Huang and M.S.Waterman

cause a single map error to be penalized many times. Also it
is not clear how to generalize the algorithm to find best local
map alignments efficiently. The notion of alignment and
objective scoring function described in this paper address both
types of errors and allow nearly all varients of map comparison
problems to be solved efficiently. This is done through the
generalization of the dynamic programming model of Waterman
et al. (1984) by introducing the concept of a ‘segment’, which
is a short region of the map where both types of errors may
occur.

Next we present the map comparison model and the algorithm
of Waterman et al. (1984). A map of m restriction sites is
represented by a sequence of enzyme-position pairs <al,ql >
<a2,q2> . . . <am,qm>. Here ai denotes the enzyme
recognizing site i and qi gives the position of site i in base pairs
relative to some origin. Assume that the pairs are ordered
according to their positions, i.e. qi I qi+ 1 I ;< m. Let
A = <al ,q l> <a2,q2> . . . <am,qm> and B = <bl , r l>
<b2,r2> . . . <b,,,r,> be two maps of m and n sites
respectively. A[i] denotes site i of A, and A[s,t] denotes sites
s through t of A, s I t.

An alignment ll of A and B is a sequence of ordered matching
pairs of sites (iljl) (i2j2) . . . (idjd), where ail = bit, it < it+l
and j, < j , + , for each t. Let u , X and p be non-negative
numbers. Then the score of the global alignment II is defined
to be

In this scoring scheme, each matching pair is given a reward
of u. The discrepancy in distance between adjacent aligned pairs
(it - ,j, - and (if&) is penalized by a factor of p, as are the
discrepancies to the leftmost and rightmost aligned pairs. Also
each unaligned site is penalized by X.

Assume throughout this paper that the maximum over the
empty set is - 00, i.e. max 0 = - 00. In practice, a proper
substitute for -00 can be -p(qm + r,) - X(m + n), the
score of the alignment of no matching pairs. For a pair (ij’)
with ai = bj, let X(ij’) be the score of the largest scoring
alignment with the rightmost aligned pair (i j ’) , not including
the term pl(q,,, - qi) - (r,, - rj)l. Then we have the
following recurrences for computing the matrix X.

Here u - X(m + n - 2) - plqi - rjl is the score of the
alignment consisting only of the pair (ij’), and Y(ij’) + u + 2X
is the score of the largest scoring alignment with at least one
matching pair to the left of (ij’). Both X(ij’) and Y(ij’) exclude
the end penalty pl(qm - 4;) - (r,, - rj)l. The score of an
optimal alignment is therefore

rnax(X(ij3 - pl(qm - 4;) - (r,, - r,)l : 1 I i I m,
1 I j 5 n and ai = bj)

A simple dynamic programming algorithm as shown in Figure
1 computes the maximum score in o(m2n2) time.

A simple way to speed up the computation is to limit the
number of X-values examined in computing Y(ij’) to at most
6’ for some integer 6. The two nested for loops indexed by
g and h in Figure 1 become

for g - max(1, i - 6) to i - 1 do
for h - max(1, j - 6) to j - 1 do

This gives an O(6’rnn) approximate algorithm. Myers and
Huang (1992) showed that the maximum alignment score of
two maps can be computed in O(mn(log m + log n)) time.

If we change the definition of alignment so that a site of one
map is allowed to match several closely spaced sites of the other
map for the same enzyme, then a simple modification to the
algorithm of Waterman et al. (1984) can compute an optimal
alignment under this new model. Specifically, let the score of
aligning A[i] with B[t,j] for the same enzyme be
u - p(rj - rt) = u - p[(rt + 1 - rt) + . . . +(q - 5 - I)].
In Figure 1, insert the following statement immediately after
the assignment statement with X(iJ on the left-hand side

X(i,j’) - max(X(i,j’), X + max(X(i,j - 1) - p(rj - 5-l),
X(i - 1J’) - P(q; - qi-1)))

where X(s,t) = - 00 if a, # bt. In the expression on the right-
hand side, the term X + X(i,j- 1) - p(5 - rj - I) is the score
of an optimal alignment with A[i] aligned with B[t,j] for some
t < j . During the computation, no special care is needed to
avoid meaningless alignments such as one where A[i - 11 is
aligned with B[j - 1, j] , and B[j] with A[i - 1 $1. The reason
is that this alignment cannot be optimal. This modification first
appeared in Waterman and Raymond (1987).

score t - p(qm + r,) - k(m + n)
for i t 1 to rn do

for j t 1 to n do
if ai = bj then

(Y + -p(qm+rn)-k(m + n)
forg t 1 toi-1 do

for h t 1 to j - 1 do
if ag = bh then

Y t max(y. X (g , h) - d (q , - q g) - (r , - r h) l l

X (i , j) t max(v-k(m + n -2)-plq, -r, I, y + v + 2 k]
score t max(score, X(i,j)-pl(qm - q i) - (r n - r ,) l]

I

Fig. 1. The algorithm of Waterman et al. (1984).

512

Algorithms for restriction map comparison

System and methods rightmost aligned pairs. Also each site not present in any aligned
segment is penalized by A.

For a finite set Q, let \ lQl\ denote the number of elements
in Q. Let v be a non-negative number. The score u(i,j;k,Z) is
defined to be

The programs are written in C and developed on Sun work-
stations. The programs are portable and are designed to run
on workstations.

Algorithm u(i,j;k,l) = v)Ifa, : i 5 t I k) n (b, : j I t I Z)\I -
The extension of the basic model along with corresponding pl(qk - qi) - (rl - rj)l - Xll(t : i I t I k and a, # b,
algorithms for global and local similarities is discussed. Then for each s, ~ I 1)1 1 - I(t : I ~ and b, # a,
time-efficient algorithms for global and local alignments are
described. for each s, i I s I k) 1 1

Each enzyme common to both the segments [i,k] and [j,Z] is Global similarities
given a reward of v, and each site for an enzyme in one but

We introduce a new notion of alignment of two entire maps not both of the segments is penalized by ~~0 the discrepancy
and describe a simple dynamic Programming algorithm for in distance between the segments is penalized by a factor of
computing the maximum score. Then we consider a space- p. For example, in Figure 2, the score u(1,2;3,4) is
efficient way to construct an alignment with the maximum score. 2 - - A, and the of this alignment is

.

A dynamic programming algorithm. For some non-negative
number CY, we assume that if two sites for different enzymes
are more than CY base pairs apart, then the relative order of the
two sites is always determined correctly. Also assume that two
sites for the same enzyme that are more than CY base pairs apart
are always mapped as two distinct sites. In other words, two
closely spaced sites for different enzymes may be ordered
incorrectly, and two closely spaced sites for the same enzyme
may be mapped as a single site. If two maps A and B are
constructed using different methods, it might be necessary to
use two distinct numbers a1 for A and a2 for B. For
convenience, we develop the algorithms with a1 = aZ.

A segment [i,k] of A consists of sites i through k with
0 I qk - qi 5 CY. A matching pair of segments [i,k] of A
and UZ] of B is denoted by (i,j;k,Z). A global alignment II of
A and B is a sequence of ordered matching pairs of segments
(il,jI;kI,ld (i~,j2;k& . . . (id&&&, where k, < i,+l and
1, < j,+, for each t < d . An example of alignment illustrated
in Figure 2 is represented by (1,2;3,4) (4,5;4,5) (5,6;7,8),
where a = 30. The similarity score u(i,j;k,Z) of a matching
segment pair (i,j;k,Z) is defined below. Let X and p be non-
negative numbers. Then the score of the alignment Il is defined
to be

Here the discrepancy in distance between two adjacent aligned
pairs (i, - , , j t - 1; k, - ,,lt - 1) and (i& kr,lr) is penalized by
a factor of p, as are the discrepancies to the leftmost and

6v - 4X - 38p. This definition allows sites for a common
enzyme in one segment to be aligned with sites for the same
enzyme in the other segment. Note that no order restriction is
imposed on aligned sites between a pair of segments. This
implies that a site in one segment may be aligned with several
sites in the other segment and that aligned pairs of sites need
not have the same order in each segment. In other words, this
definition accommodates the two types of map errors.

The definition of the function u given in the previous
paragraph is intended for the situation where both maps contain
the errors. Sometimes one of the two maps is error-free; for
example, a map is constructed from a DNA sequence that is
presumably correct. In such a situation, the definition of the
scoring function can be adjusted slightly to reflect this. Assume
that the map A is error-free and that the map B may contain
the errors. We must not allow any site of A to be aligned with
several sites of B for the same enzyme since no single site of
A represents multiple sites. On the other hand, a single site of
B may be aligned with several closely spaced sites of A for the
same enzyme, and two nearby sites of B (for different enzymes)
may be out of order with two nearby sites of A. For each com-
mon enzyme e between segments [i,k] and b,1], if the number
c(e,i,k) of sites for the enzyme e in [i,k] is larger than the
numberJle,j,l) of sites for e in [j , l] , then c(e,i,k) - Ae, j , l)
sites for the enzyme e in the segment [i,k] are deleted at a cost
of X each. Otherwise, there is no charge for these sites for e
in [i ,k]. Let y(x,y) be x - y if x > y and 0 otherwise. Then
the scoring function (I‘ is defined as

u ’ (i , j ; k , /) = u(i , j ;k , /> - x y(c(e , i ,k)Ae , j ,Z))
common enzyme e

The function u’ gives the score of aligning each pair of segments
from the maps A and B, where A is error-free but B is subject
to the errors as discussed above.

An optimal global alignment has the maximum score. First
we develop a dynamic programming method for computing the

513

-

X.Huang and M.S.Waterman

Map B 4
Fig. 2. An illustration of a map alignment.

maximum score. For a segment pair (i,j;k,l), define F’(i,j;k,Z)
to be the score of an optimal global alignment with the rightmost
segment pair (i,j;k,Z), excluding the term pl(qm - qk) -
(rn - rr)l that accounts for the discrepancy between the
segment pair (i,j;k,l) and the rightmost ends of the maps A and
6. Let S(k,l) be the maximum of F’(i,j;k,Z) over all (i,j;k,Z)’s.
The following recurrences are used for computing the matrix S.

WJI

F’(i,j;k,l) = u(i,j;k,l) + max(-X(m - k + i + n - 1 +
= maxMg,h) - pl(q; - qg) - (rj - rdl :

g < i a n d h < j)

j - 2) - plqi- 51, ~(ij) + ~ (k - i +
1 - j + 2))

S(k,l) = max F(i,j;k,l)

The score of an optimal global alignment of A and B is

(i,j;k.O

max(S(k,l) - pI(qm - q k) - (r n - rJI
1 s k I m a n d l s Z s n)

Examining the recurrences, we find that we just need to
compute and save the matrix S; the matrix F is computed
implicitly. Figure 3 shows a new dynamic programming
algorithm for computing the maximum score, where we assume
that S(k,l) = -a initially for each (k,l).

The time complexity of the algorithm can be obtained easily.
A total of O(m2n2) time is spent in the two nested for loops
indexed by g and h. The two nested for loops indexed by k
and 1 require a total of O(R) iterations, where R is the number
of segment pairs. We need not compute 4 and c; explicitly;
for example, we can break the for loop indexed by 1 when
rl - 7 > a. So the algorithm takes O(m2n2 + R) time. Note
that R is usually much smaller than m2n2. The time analysis
given here is based on the assumption that the function u is
computed in O(1) time. This can be done when a small number
of different enzymes are used in a map, which is usually true
in practice. Each enzyme is associated with a unique small
integer. A simple hashing technique can be used to compute
the number of common enzymes and the number of sites with
distinct enzymes between a pair of segments in an incremental
fashion, so u(i,j;k,l) can be evaluated in 0(1) time. The space
complexity of the algorithm is qmn) since the matrix S is saved.

In practice, we may want to use a simple, approximate
method to compute the maximum score. Let 6 be a positive
integer constant. In computing G(i,j], we take the maximum
over only those (g,h)’s such that max(1,i - 6) I g < i and

score t - p(q, + r,) - k(m + n)
for i t 1 to m do

for j t 1 to n do
{ Y t -c1(9, + r ,) - k (m + n)

for g t 1 to i-1 do
for h t 1 to j - 1 do

y max(y, S(g,h)-pl(qi - 9 8) - (r , - r h) l)
ci t max[k : k <m and 9 k -qi I a)
dj t m x (l : I In and r l - r j I a)
for k t i to ci do

for 1 t j to dj do
[t t m a x (- k (m - k + i + n - [+ j - 2) - p l q i - r , I ,

y + k (k - i + l - j + 2))
S (k . 1) t max(S(k , I) , t + a (i , j ; k , I) l

1
score t max[score, S (i , j) - p l (q , , , - 9 i) - (r n - r j) l l

1

Fig. 3. A new dynamic programming algorithm.

max(1j - 6) I h < j . The approximate method takes
0(ti2mm + R) time. Since we do not go back very far in
computing G, we only need to save the 6 most recently
computed rows of S, provided S is computed in order of rows.
Thus the space requirement of the method is O(m + 6 X n).

Construction of an optimal alignment. An optimal alignment
of the two maps can be found in several ways. If only the matrix
S is saved, then the use of a straightforward traceback method
allows the alignment to be computed in the same order of time
as required by the forward computation. Alternatively, the
traceback computation can be done in O(m + n) time at the
cost of using additional matrices. In particular, for each (k,l)
we need to save (i,j) such that F(i,j; k,l) = S(k,l) and (g,h)
such that

I

Usually k - i and 1 - j are very small integers, while g and
h are quite large. It is possible to pack g and k - i, and h and
1 - j into two single integer words. This method requires two
m x n integer matrices. One disadvantage of the method is that
the matrix S has to be saved, which takes O(mn) space.

As discussed before, the approximate method takes
O(m + 6 x n) space to compute the maximum score of those
alignments satisfying the restriction that any two adjacent aligned

514

Algorithms for restriction map Comparison

segment pairs are at most 6 sites apart in each map. We can
also find an alignment of the maximum score in roughly the
same order of space. Hirschberg (1975) designed an elegant
divide - conquer algorithm that constructs a longest common
subsequence of two sequences of lengths m and n in O(m + n)
space. Later Myers and Miller (1988) applied the Hirschberg
technique to construction of an optimal global alignment of two
sequences under affine gap penalties in O(m + n) space. In the
remainder of this subsection, we develop an application of the
divide-conquer technique to map comparison. First we briefly
review this technique in the context of sequence comparison.
Each global alignment of the two sequences corresponds to a
path from the point (0,O) to the point (m,n) in a
(m + 1) x (n + 1) grid graph. Finding an optimal alignment

Let i = Tm/21 be the middle row of the graph. An important
observation is that each path from (0,O) to (m,n) must intersect
row i. In the Hirschberg method, the intersection point (i,j]
of an optimal path with row i is first determined, and the two
smaller optimal paths from (0,O) to (i,j] and from (i,j] to (m,n)
are constructed recursively.

We now apply the Hirschberg method to computation of a
largest scoring alignment (il jl;kl,ll) . . . (i&;k&) that
satisfies i, - k, - I 6 for each 1. (Recall
that this restriction is imposed in order to reduce computation
time.) Let /3 be equal to 26 + 1 plus the maximum number
of sites in any segment of map A. Take an interval in the center
of A from sites x to y with y - x + 1 = /3, assuming that A
has more than /3 sites. First we look at how an alignment
intersects this central interval. It can be proved that for any
alignment II = (il,jl;kl,Zl) . . . (id,jd;k&) satisfying the
restriction, at least one of the following three equations holds.

9 means finding a path with the maximum score in the graph.

I 6 and j , -

t kd I Y (1)

il 1 x (2)

kr-l 1 x and i, I y for some t, 1 < t I d (3)
Equation (1) says that the rightmost pair of II contains only
the site of A that are in or to the left of the central interval.
If neither (1) nor (2) holds for the alignment ll, then II must
have two adjacent pairs that both contain some sites from the
central interval (equation (3)). For p =‘1,2,3, let group p
contain those alignments that satisfy equation @).

Constructing an optimal alignment by the Hirschberg method
involves computation of dynamic programming matrices from
both ends of the maps. Recall that the matrix S is computed
in increasing order of site indices. Now we describe the
recurrences for the computation in decreasing order of site
indices. For a segment pair (i,j;k,Z), let &i,j;k,Z) be the score
of an optimal global alignment with the leftmost segment pair
(i,j;k,l), excluding the discrepancy plq; - 51 between the left
map ends and (i,j;k,l). Let C(i,j] be the maximum of &i,j;k,l)
over all (i,j;kJ)’s. The following recurrences are used for
computing the matrix C.

= max(C(g,h) - pl(qk - qg) - 0-1 - dl :

j - 2) - PI(qm - q k) - (rn - ~II I ,

g > k a n d h > Z)

D(i,j;k,Z) = a(i,j;k,t) + max(-X(m - k + i + n - Z +
E(k,l) + X(k - i + 1 - j + 2))

C(i,j] = max D(i,j;k,Z)
(i.j;k,O

The three equations below give the maximum score for each
of the three groups of alignments. An optimal alignment is in
the group with the largest overaU score, M = ma~(Ml,M.,M3).

(4)

(5)

= max(S(k,Z) - pI(qm - q k) - (rn - r11l
1 I k I yand 1 I I I n)

x I i I mand 1 ~j I n)
M~ = max(C(i,j] - pI(q; - rjl :

M3 = max (S(k,Z) + C(i,j] + X(m + -
n)
x I k < i s y,i - k I 6
I s l < j I n j - l s 6

- PI(q; - qk) - (rj - rr)I) (6)
Equations (4) and (5) are obvious and correspond directly to
(1) and (2). Equation (6) is a little involved. In S(k,Z), the sites
to the right of site k on A and the sites to the right of site 1
on B are charged -A per site, as are the sites to the left of
site i andj on A and B in C(i,j]. So in S(k,Z) + C(i,j], the sum

By adding X(m + n) to S(i j] + C(k,Z), we avoid penalizing
deleted sites more than once.

We are ready to outline a divide-and-conquer algorithm for
constructing an optimal map alignment. If A contains at most
0 sites, then construct the optimal alignment directly by the
traceback procedure as described in the beginning of the
discussion on alignment construction. Otherwise, compute S(k,Z)
for1 I k I yandl I 1 1 n,andC(ij]forx I i I mand
1 I j I n. Then find the entry/entries attaining the largest
overall score according to equations (4)-(6). If the largest
overall score M is equal to M3 that is achieved at two entries,
say, (k,l) and (i,j], then recursively construct an optimal
alignment of A[1 ,k] and B[1 ,Z] and an optimal alignment of
A[i,mI and Bu,n]. Note that when computing an optimal
alignment of A[i,m] and Bu,n], we no longer charge the distance
discrepancy lqi - rjl since it has already been taken care of
in the previous computation. In case that M is equal to MI (or
M2) obtained at (k,Z) (or (i,j?), we just apply the procedure
recursively to A[l,k] and B[l,ZI (or to A[i,mI and Bu,m]).

Obviously the algorithm requires O(/3(m + n)) space. We
want to show that the algorithm takes O(p2mn) time. Let
T(m,n) denote the time for the algorithm to compute an optimal
alignment of two maps of m and n sites respectively. For the
analysis, assume that m and /3 are powers of 2. The algorithm
takes the most time when equation (6) gives the largest overall
score because it must compute recursively two alignments. It

ofthetwopenaltytermsis -X(m + n + (i - k + j - z - 2)).

515

X.Huang and M.S.Waterman

is easy to see that the total time spent by the algorithm to
determine the largest scoring pair of entries, excluding the time
for the recursive calls, is bounded by 0w2mn + R). Since the
number R of segment pairs is most p2mn from the definition
of 0, the total non-recursive time is O(p2mn). Thus we have,
for some constant c , and for parameters t and n’, It1 I 012
and 1 I n’ < n, that

T(m,n> I cp2mn + ~ (m / 2 - ~ , n ’) + q m / 2 + { ,n - n’)

where T(m/2 - c,n’) and T(m/2 + c,n - n’) are the time
spent for the recursive calls. We prove by induction on m that
T(m,n) I 4cp2mn for m L 2p. Assume that

T(m/2 - c,n’) I 4cp2(m/2 - c)n’
~ (m / 2 + c,n - n’) I 4cp2(m/2 + c)(n - n’)

Since 1 I n’ < n, we obtain In - 2n’l < n. Combining
I e) I PI2 and 20 I m, we obtain I m/4. Thus we have
that

T(m,n) I cp2mn + 4cp2(m/2 - [)n’ +
4cp2 (mi2 + c)(n - n’)

= cp2mn + 4cp2(mn/2) + 4cp2t(n - 2n’)

I c p 2 m + 2cp2mn + 4cp2(c((n - 2n’l

I cp2m + 2cp2mn + 4cp2(mn/4)

= 4cp2mn

Local similarities

First we define best local alignments of two restriction maps
and present an algorithm for computing the best local map
alignments. Then we discuss a fast approximate method for
finding the best local alignments. These algorithms are useful
to find unknown repeats in or between maps.

K best local map alignments. A local alignment II of A and
B is a sequence of ordered matching pairs of segments (il,jl;

f t < j , + for each r < d. Let u, X, p and v be the same as
above. Then the score of the alignment II is defined to be

score@) =

k1,ll) (id,jd;kd,ld), where kt < it + 1 and

d d

~(it~jtjt;kt~lt) - P I(qi, - qk,-J - (rj, - r/,-l)I -
t = I t = 2

d d

(it - kt-l - 1) + (i, - lt-I - I)]
t = 2

In this definition, the regions to the left and right of ll are no
longer penalized.

A best local alignment has the maximum score. The
recurrences for computing a best local alignment can be
developed similarly. For a segment pair (i j ;k , f) , define Z(ij;k,f)

to be the score of a best local alignment with the rightmost
segment pair (i,j;k,l) minus X(m - k + n - I) , the penalty
for the indels of the sites to the right of sites k and 1 respec-
tively. Define H(k,l) to be the maximum of Z(i,j;k,f) over all
(i,j;k;f)’s. The following recurrences are used for computing
the matrix H .

j(i,j)

Z(i,j;k,f) = u(i,j;k,I) + max(- X(m - k + n - I),

H(k,l) = max Z(i,j;k,f)

The score of a best local alignment of A and B is

= maxtH@,h) - pI(qi - q g) - (5 - rh)l :
g < i and h < j)

J (i j) + X(k - i + 1 - j + 2))

(i J ; k , l)

max(H(k,l) + X(m - k + n - I) :
1 I k 5 mand 1 s I I n)

It is easy to see that a best local alignment can be computed
in O(m2n2 + R) time and O(mn) space.

Two maps may contain several similar regions of interest to
biologists. It is desirable to be able to compute more than one
best local map alignment. Waterman and Eggert (1987)
introduced the notion of the K best non-intersecting local
alignments between two sequences and developed a time-
efficient algorithm to compute those K best alignments. Below
we develop a method for computing the K best non-intersecting
local alignments between two maps by generalizing the
Waterman -Eggert technique from sequence comparison to map
comparison.

Two segment pairs (il,jl;kl,fl) and (i2,j2;k2,f2) intersect if
there is an entry (g,h) such that max(il,i2) I g I min(kl,k2)
and max(jl,j2) I h I min{11,12). Two local map alignments
are non-intersecting if no segment pair of one alignment inter-
sects any segment pair of the other alignment. We are interested
in computing the K best non-intersecting local map alignments:
the largest scoring alignment, then the next largest scoring
alignment that does not intersect those already computed, and
so on.

For two entries (g,h) and (k , l) of the matrix H with g < k
and h < 1, we say that (g,h) affects (k , l) with respect to H
if we have the following equation for some segment pair
(i,j;k,f), i > g a n d j > h:

H(k,l) = H(g,h) - pI(qi - q g) - (‘j - rh)l +
u(i,j;k,Z) + X(k - i + I - j + 2)

For each entry (g ,h) , we want to determine a region of entries
that might be affected by (g,h). A simple way of representing
the region is to use the indices of the furthest row and column
affected. So if (g,h) affects no entry, then define row(g,h) = g
and col(g,h) = h. Otherwise, define row(g,h) to be the largest
k > g such that (k ,r) is affected by (g,h) for some t > h, and
col(g,h) to be the largest I > h such that (s , l) is affected by

516

Algorithms for restriction map comparison

(g,h) for some s > g. It is obvious that the matrices row and
col can be computed easily along with the matrix H .

We are ready to present a method for computing the K best
non-intersecting local map alignments. Initially the matrices H,
row and col are computed and saved. An entry of H with the
maximum score is located and the largest scoring alignment
ending at this entry is constructed by a traceback procedure.
This alignment is the best local alignment. Assumed that
(i l , j l ; k l , l l) and (id,j&,,ld) are the first and last segment pairs
of the alignment. Then recompute the portion of H from rows
i , to kd and from columns jl to ld using only segment pairs that
do not intersect any segment pair of the best alignment. During
the recomputation, parts of the matrices row and col are
modified in such a way that the value for each entry can only
be increased. Continue the calculation by adding one row or
one column at a time. Let row k and column I be the last row
and column of the recomputed region, and let H’ denote the
new matrix generated in the recomputation process, where
H’(g,h) = H(g,h) for each (g ,h) , g C i l or h C j , . If there
exists some i and j , id < i < k and j d < j < 1, such that
equations (7) - (9) hold

H’(g,h) = H(g,h) for each

H’(g,h) = H(g,h) for each

row(g,h) I k and col(g,h) 5 1 for each

-

(g,h),i I g I k a n d j l I h I 1

(g,h), i , I g I k and j I h I 1

(g,h), i , I g < i andj, I h < j

(7)

(8)

(9)

then terminate the recomputation process. Next find an entry
of H with the maximum score and report the Corresponding
alignment, which is the second best non-intersecting alignment.
Repeat this process until the K best non-intersecting local
alignments are found.

We now examine equations (7)-(9) in detail. In words,
equation (7) is to assure that the H‘ values in the submatrix
from rows i to k and from columnsj, to 1 are the same as the
corresponding H values, and equation (8) is to guarantee that
the H values in the submatrix from rows i l to k and from
columns j to 1 are the same as the corresponding H values.
Equations (9) implies that the entries in the intersection of rows
i , through i - 1 and columnsjl throughj - 1 cannot affect
any entry beyond row k or column 1. Let H’ be the matrix
calculated if the recomputation is carried out to row m and
column n. We want to show that there is no need to carry out
the recomputation to the end, Le. H’(s,t) = H(s,t) for each
(s , t) , s > k and t L j,, or s 1 i l and t > 1. Since we can-
not use the segment pairs of the already determined alignments
in computing H‘, we have H’(g,h) I H(g,h) for each (g ,h)
g 2 i , and h L j , . Take an entry (s , t) , s > k and t 2 j , , or
s L i l and t > 1. Assume that (s , f) is affected by some (s ’ , t ’) ,
s’ 5 k and t’ I 1, with respect to H. By (9) we conclude that
at least one of the following cases is true: (i) s‘ < i l , (ii)

5

t’ c j , , (iii) i I s’ I k andj, I t’ I 1 or (iv) i l I s’ I k
a n d j I t’ I 1. It follows from the definition of H’ and by
equations (7) and (8) that H’(s’,t’) = H(s’,t’). Since (s ’ , t ’)
affects (s,t) , we have, for some segment pair (i , j;s ,f) , i > s’
and j > t ’ ,

H(s,t) = H(s‘,t’) - pI(q; - qs,) - (r, - rtF)l +
a(i,j;s,t) + X(s - i + t - j + 2)

a(i,j;s,t) + X(s - i + t - j + 2)
= H’(s’,t’) - &q; - qs,) - (5 - r,r)l +

- < H’(s,t)

Thus H’(s, t) = H(s, t) .
The time complexity of the algorithm is

K- 1

O(m2n2 + mn Q,)
t = l

where O(m2n2) time is spent in the initial complete sweep and
Q, is the number of entries recomputed after the rth best
alignment is found. Note that it takes O (m) time to compute
one entry by the naive dynamic programming method.

An approximate method. The algorithm discussed above is
expensive in time and space. Here we give an approximate
method that is easy to implement. This method also has its
counterpart in sequence comparison. Gotoh (1987) developed
an approximate algorithm for comptuing K local alignments
between two sequences. The K alignments produced by the
method are not necessarily the K best non-intersecting
alignments. In this method, alignments with the same left
endpoint are put into the same group and the right endpoint
of the largest scoring alignment in each group is saved. In a
single sweep of the dynamic programming matrix, the left and
right endpoints of the largest scoring alignment in each of the
K best groups are determined. Then each of these K alignments
is constructed. The single sweep can be made in space
proportional to the sequence lengths. Although the construction
of each alignment usually requires a limited amount of space,
its worst-case complexity is quadratic in the alignment length.
Huang et al. (1990) observed that each local alignment can be
constructed in linear space by the method of Myers and Miller
(1988).

Consider the extension of the Gotoh algorithm to map
comparison. For a local alignment II = (i l , j l ;k l , l l) . . . (id&;
kd,ld), (il,jl) and (kd,ld) are called the left and right endpoints
of II respectively. For an entry (g,h), define L(g,h) to be the
left point of an alignment ending at (g,h) of score H(g,h). The
matrix L is easily computed together with H.

Now we describe the method. The first step is to obtain the
K largest scoring entries (gl,h1), (g2,h2), . . . , (g ~ , h ~) with
L(g,,h,) # L(g,,h,), s # t , by computing the matrices H and
L in a single sweep. Then construct the alignment with the

517

X.Huang and M.S.Waterman

endpoints L(g,,h,) and (g,,h,) for each s, 1 I s I K, using
the space-efficient procedure as discussed in the ‘Global
similarities’ subsection. To speed up the sweep, we just use
the 62 entries (g ,h) , i - g I 6 and j - h I 6, to calculate
H(i, j) , which requires that we save at most the 6 most recent
rows of H. It should be pointed out that the map alignments
produced by this approximate method may be intersecting.
However, this rarely happens in practice, as will be
demonstrated in the Implementation section.

The initial sweep takes O(p2mn) time and
O(P(m + n) + K) space, where O(K) space is devoted to the
storage of the K best entires along with their L values. Observe
thatpisequalto26 + max(k - i + 1 : 0 I q k - q; I a).
The construction of an alignment of length L1 by the space-
efficient method takes O(P2L12) time and O(PLl) space.
Therefore the approximate method requires

K
O(P2m + P2 EL:)

t = 1

time, where L, is the length of the tth alignment. Its space
requirement is O(P(m + n) + K).

Faster algorithms

Myers and Huang (1992) presented a time-efficient algorithm
for computing the minimum distance between two restriction
maps under the basic model proposed by Waterman et al.
(1984). The algorithm takes O(mn(1og m + log n)) time and
O (m) space. The description of the algorithm was given in
the context of the distance measure, where minimum operations
are performed. Now we briefly describe the Myers-Huang
algorithm in the context of the similarity measure. Consider
the recurrences for computing the matrix X as given in the
introduction.

Y(I’J) = max(X(gh) - PI(% - s g) - (r, - dl:
g < i,h < j and ag = bh)

X(ij) = max(v - X(m + n - 2) - plq, - ‘-1,
Y (i j) + v + 2x1

To compute each Y(iJ) efficiently, a list of computed entries
with their X-values is kept. If a computed entry could not
possibly affect any entry to be calculated, then the computed
entry (called a dead entry) with its X-value is removed from
the list. Newly computed entries are placed into the list. Assume
that the matrix X is computed in increasing order of i. After
removal of dead entries, each entry (g,h) in the list is associated
with a sub-interval of the interval [O,r,] in such a way that
(g ,h) affects those entries (i j) with r, in that sub-interval.
These sub-intervals form a partition of the interval [O,r,]. The
entries in the list are ordered linearly according to the increas-
ing order of the associated subintervals. The list is implemented
by a balanced search tree so that the value X(g,h) yielding the

maximum score Y(i,j) can be located in O(1ogm + logn) time,
instead of O (m) time. Thus the algorithm takes O(mn(1ogm +
logn)) time to compute the matrix X. If the matrix X and the
trace-back information are saved, then O (m) space is required.

Now we consider the application of the Myers-Huang
technique to the computation of global and local alignments
under the new model of map comparison. First look at the
recurrences involving S,F and G for computing a single optimal
alignment. The most costly computation is:

W j) = max(S(g,h) - pl(q; - qg> - (rj - rh)l :
g < i and h < j)

which requires O (m) time by the straightforward method. This
recurrence is essentially the one that was treated by Myers and
Huang (1992), which implies that G(ij) can be computed in
O(logm + logn) time. Thus an optimal global alignment can
be found in O(m(logm + logn) + R) time and O(mn) space.

With the same observation, we see that the best local map
alignment can be computed in O(mn(logm + logn) + R) time
and O (m) space, and the K best non-intersecting local map
alignments can be computed in O(Kmn(logm + logn) + KR)
Table I. Local alignments within the E.coli map

Number score Region 1 Region 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

76
68
64
62
61
60
60
59
59
59
58
58
58
57
57
54
54
54

2055.9-2060.1
121.3-126.1

3466.9-3469.4
292.2-295.0

2119.7-2124.6
2271.6-2273.8
987.0-990.6

2161.1 -2164.2
916.0-917.9
229.7-233.0

2041.6-2043.6
3462.4 - 3469.0
3521.3 -3527.1
2039.2 -2044.7
1814.2- 1818.2
190.0-192.4
229.7 -230.9
315.4-316.6

3474.1-3479.8
2093.0-2097.4
3592.4 - 3594.7
3781.8-3784.4
2265.6-2270.1
3676.4 -2678.9
3656.9-3661.2
3676.4 -3679.3
4012.8-4015.1
3776.3-3780.2
3552.8-3554.8
3581.7-3587.3
3788.3 -3794.6
3058.4-3062.9
2652.2-2656.4
1856.4-1859.0
292 1.7 - 2923.2

714.9-716.4

Table II. Multiple similar regions within the E.coli map

Group Copy 1 Copy 2 Copy 3 Copy 4 Copy 5 Copy 6

1
2
3
4
5
6
7
8
9

10

2271.6 2373.4
916.0 1289.7
738.2 2040.5
229.4 2488.2
315.4 714.9

2573.0 2724.1
715.9 2162.7

2040.5 2573.7
988.0 2197.8

1581.5 2755.4

2814.4 3546.5 3676.4 3953.4
2040.9 2573.7 3677.6 4012.9
2162.7 3953.7 4232.8
2921.7 4234.8
4674.5
4012.8
3552.8
4098.9
3658.1
2925.7

.

518

Algorithms for restriction map comparison

L

time and O (m) space by making K complete passes of the
matrix.

It should be pointed out that the algorithm of Myers and
Huang (1992) requires that each map is strictly increasing in
site position, Le. q; < q; + and rj < 5 + for each i andj.
If map data do not satisfy this requirement, we can modify the
map data slightly so that they satisfy the requirement. Of course,
we have to set CY to a value big enough for a segment to cover
the map sites that are originally at the same position.

Huang and Miller (1991) developed a spaceefficient version
of the algorithm of Waterman and Eggert (1987) for computing
the K best non-intersecting local alignments between two
sequences. This space-efficient technique, combined with the
time-efficient method of Myers and Huang (1992), has been
applied to the construction of map alignments under the previous
model (K.Chao and W.Miller, personal communication). We
think that those techniques are also applicable to our new model
of map comparison, though the resulting algorithm might be
very complicated.

Implementation

We have implemented as portable C programs two approximate
algorithms: the space-efficient one for aligning two entire maps
described in the ‘Global similarities’ subsection, and the space-
efficient one for finding local similarities between two maps
presented in the ‘Local similarities’ subsection. The programs
are used to analyze a restriction map of the E.coli genome
constructed by Kohara et al. (1987). The E. coli map contains
> 7000 sites for eight different restriction enzymes. Because
of the limited gel resolution, the map is subject to the two types
of errors we have discussed: the incorrect order of closely
spaced sites for distinct enzymes and the merge of several sites
for the same enzyme into a single site. Observe that the analysis
of the E. coli map requires the use of space-efficient algorithms
on conventional computers.

To find repeated regions within a single map, the local
similarity algorithm has to be modified so that the computation
is restricted to the upper triangular part of the matrix. A pair
of segments from the same map can be aligned only if they
have no site in common. So the trivial alignment of some map
region with itself is excluded.

There are two digitized versions of Kohara’s map: one made
by D.L.Daniels of University of Wisconsin, and the other by
K.E.Rudd of Food and Drug Administration. The Daniels map
was used in a statistical analysis of the distribution of restriction
sites (Churchill et al., 1990), while the Rudd map was utilized
in the localization of sequenced genes on the genome (Rudd
et al., 1990,1991). To compare the two maps, the numbers
showing site positions in base pairs on the Daniels map were
scaled to be in 100 base units, the scale for site positions of
the Rudd map.

Consider choosing the values for the parameters v, p, X, CY

and 6. It is observed that the errors usually occur in a region

~ 0 . 5 kb in length (Kohara et al., 1987). So we set CY to 5 since
site positions are in 100 bp. We always set v to 10. The selection
of the values for p and X depends on experience. We found
that the choice of p = 2 and X = 5 works well in practice.
It should be pointed out that the magnitude of the values for
these parameters is determined by the scale for site positions
of map data. The parameter 6 is an upper bound on the number
of sites allowed between every pair of adjacent segments in a
computed alignment. The choice of 6 = 10 seems to allow
interesting alignments to be computed in a reasonable time.

The global map alignment program was used to compare the
two maps. Generally, the Rudd map has more sites than the
Daniels map. Therefore, the optimal alignment shows the
locations of insertion of sites into the Daniels map (or deletion
of sites from the Rudd map). In addition, the optimal align-
ment shows the locations where closely spaced sites are ordered
differently between the two maps.

The local map alignment program was applied to each map
to detect similar regions on the map, where the program
generates local alignments in order to score. In both maps, the
top alignments involve the four regions that are known to be
copies of an insertion sequence (Muramatsu et al., 1988). The
highest scoring alignment from the Daniels map shows fewer
sites that are out of order than the corresponding one from the
Rudd map. For reason of space, below we report only the results
obtained with the Daniels map. The program was used to
compute 100 largest scoring local alignments. We rarely found
any intersecting alignments in the 100 alignments. The four
copies of the insertion element form six pairs of similar regions,
all of which show up in the top five alignments with one of
the alignments containing two pairs. Those five alignments show
very strong matches. Although the remaining alignments are
short and of low score, some of them might be of interest and
are listed in Table I. Table I shows 18 alignments with one
alignment per row. The column ‘score’ lists the score of each
alignment. The locations of aligned regions in kb are given in
the columns ‘Region 1’ and ‘Region 2’. The experimental results
show that the local alignment program performs well at
producing non-intersecting , high-scoring alignments in practice.

It is not easy to identify multiple copies of a short repeated
element from the output of the program. To facilitate this task,
we developed a search program that takes every region of a
fixed number 1 of sites called a probe and searches the entire
map for all approximate occurrences of the probe. The program
was run with 1 = 7, 8, 9. The results are presented in Table
11. Here 10 groups of similar regions are shown with one group
per row. Only the starting location of each region in a group
is given, where the numbers showing the locations are in kb.

Discussion

We did not present a specific algorithm for finding the best
overlap between two map fragments-a problem that is of
interest in physical mapping (e.g. Kohara et al., 1987). In the

519

X.Huang and M.S.Waterman

sequence case, a variant of the Smith - Waterman algorithm can
be used to compute the overlapping alignment of the maximum
score between two sequence fragments in quadratic time
(X.Huang, submitted). An algorithm for detecting the best
overlap between two map fragments can easily be obtained by
modifying the local map similarity algorithm presented in this
paper.

We have generalized the previous model of map comparison
to address two types of map errors. The new model still allows
dynamic programming techniques to compute an optimal map
alignment. We have also demonstrated that many efficient
techniques employed in sequence comparison and map
comparison under the previous model are applicable to map
comparison under the new model. It is expected that the
algorithms presented in this paper will be useful as more and
more restriction map data become available. Readers interested
in the computer programs may contact the authors by electronic
mail at huang@cs.mtu.edu or msw@hto.usc.edu.

Acknowledgements

We thank Donna Daniels and Ken Rudd for kindly providing the map data.
We also thank the referees for suggestions. The work was done when X.H.
was visiting USC. This research was supported by the National Science
Foundation and the National Institutes of Health.

References

Churchdl,G.A., Daniels,D.L. and Waterman,M.S. (1990) The distribution of
restriction enzymes sites in Escherichia coli. Nucleic Acidr Res., 18,589-597.

Coulson,A., Su1ston.J.. Brenner,S. and Karn,J. (1986) Toward a physical map
of the genome of the nematode Caenorhabditis elegans. Proc. Natl. Acad.

Gotoh,O. (1987) Pattern matching of biological sequences with limited storage.
Comput. Applic. Biosci., 3 , 17-20.

Hirschberg,D.S. (1975) A linear space algorithm for computing maximal
common subsequences. Commwl. ACM, 18, 341-343.

Huang,X., Hardison,R.C. and Miller,W. (1990) A spaceefficient algorithm
for local similarities. Comput. Applic. Biosci., 6 , 373-381.

Huang,X. and Miller,W. (1991) A time-efficient, linear-space local similarity
algorithm. Adv. Appl. Math., 12, 337-357.

Kohara,Y., Akiyama,K. and Isono,K. (1987) The physical map of the whole
E. coli c h m m e : application of a new strategy for rapid analysis and sorting
of a large genomic library. Cell, 50, 495-508.

Miller,W., Ostel1,J. and Rudd,K.E. (1990) An algorithm for searching
restrictions maps. Comput. Applic. Biosci., 6 , 247-252.

Miller,W., Barr,J.C. and Rudd,K.E. (1991) Improved algorithms for searching
restriction maps. Compur. Applic. Biosci., 7 , 447-456.

Muramatsu,S., Kato,M., Kohara,Y. and Mizuno,T. (1988) Insertion sequence
Is5 contains a sharply curved DNA struchlre at its terminus. Mol. Gen. Genet.,

Myers,E.W. and Miller,W. (1988) Optimal alignments in linear space. Compur.
Applic. Biosci., 4, 11-17.

Myers,E.W. and Huang,X. (1992) An O(N’1og N) restriction map comparison
and search algorithm. Bull. Math. Biol., in press.

Olson,M.V., Dutchik,J.E., Graham,M.Y., Brodeur,G.M., Helms,C.,
Frank,M., MacCollin,M., Scheinman,R. and Frank,T. (1986) Random-clone
strategy for genomic restriction mapping in yeast. Proc. Natl. Acad. Sci.
USA, 83, 7826-7830.

Rudd,K.E., Miller,W., Ostel1,J. and Benson,D.A. (1990) Alignment of
Escherichia coli K12 DNA sequences to a genomic restriction map. Nucleic
Acids Res., 18, 313-321.

Rudd,K.E., Miller ,W., Werner ,C . , OsteU,J ., Tolstoshev,C . and Satteriield,S.G.
(1991) Mapping sequenced E.coli genes by computer: software, strategies
and examples. Nucleic Acids Res., 19, 637-647.

Sci. USA, 83, 7821-7825.

214, 433-438.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular
subsequences. J. Mol. Biol., 147, 195- 197.

Waterman,M.S. and Eggert,M. (1987) A new algorithm for best subsequence
alignments with application to tRNA-rRNA comparisons. J. Mol. Biol., 197,

Waterman,M.S. and Raymond,R. (1987) The match game: new stratigraphic

Waterman,M.S., Smith,T.F. and Katcher,H.L. (1984) Algorithms for restriction

723 - 728.

correlation algorithms. Math. Geol., 19, 109-127.

map comparisons. Nucleic Acids Res., 12, 237-242.

Received on January 6, 1992; accepted on March 10, 1992

Circle No. 11 on Reader Enquiry Card

J

520

mailto:huang@cs.mtu.edu
mailto:msw@hto.usc.edu

