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Abstract. We give a novel general approach for solving NP-hard optimization problems
that combines dynamic programming and fast matrix multiplication. The technique is based
on reducing much of the computation involved to matrix multiplication. We exemplify our
approach on problems like Vertex Cover, Dominating Set and Longest Path. Our
approach works faster than the usual dynamic programming solution for any vertex subset
problem on graphs of bounded branchwidth. In particular, we obtain the currently fastest
algorithms for Planar Vertex Cover of runtime O(22.52

√
n), for Planar Dominating

Set of runtime exact O(23.99
√

n) and parameterized O(211.98
√

k) · nO(1), and for Planar

Longest Path of runtime O(25.58
√

n). The exponent of the running time is depending
heavily on the running time of the fastest matrix multiplication algorithm that is currently
o(n2.376).

1 Introduction

Dynamic programming is a useful tool for the fastest algorithms solving NP-hard problems. We
give a new technique for combining dynamic programming and matrix multiplication and apply
this approach to problems like Dominating Set and Vertex Cover for improving the best
algorithms on graphs of bounded treewidth.

Fast matrix multiplication gives the currently fastest algorithms for some of the most funda-
mental graph problems. The main algorithmic tool for solving the All Pair Shortest Paths
problem for both directed and undirected graphs with small and large integer weights is to itera-
tively apply the distance product on the adjacency matrix of a graph [28],[30],[3],[36]. Next to the
distance product, another variation of matrix multiplication—the boolean matrix multiplication—
is solved via fast matrix multiplication. Boolean matrix multiplication is used to obtain the
fastest algorithm for Recognizing Triangle-Free Graphs [22]. Recently,Vassilevska and
Williams [34] applied the distance product to present the first truly sub-cubic algorithm for
finding a Maximum Node-Weighted Triangle in directed and undirected graphs.

The fastest known matrix multiplication of two n × n-matrices by Coppersmith and Wino-
grad [10] in time O(nω) for ω < 2.376 is also used for the fastest boolean matrix multiplication in
same time. Rectangular matrix multiplication of an (n× p)- and (p× n)-matrix with p < n gives
the runtime O(n1.85 ·p0.54). If p > n , we get time O(p ·nω−1). The time complexity of the current
algorithm for distance product is O(n3/ log n), but for integer entries less than M , where M is

some small number, there is an Õ(M · nω) algorithm [36]. For the arbitrarily weighted distance
product no truly sub-cubic algorithm is known. Though, [34] show that the most significant bit of
the distance product can be computed in sub-cubic time, and they conjecture that their method
may be extended in order to compute the distance product.
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Numerous problems are solved by matrix multiplication, e.g. see [21] for computing minimal
triangulations, [24] for finding different types of subgraphs as for example clique cutsets, and [11]
for LUP-decompositions, computing the determinant, matrix inversion and transitive closure, to
only name a few. However, for NP-hard problems the common approaches do not involve fast
matrix multiplication. Williams [35] established new connections between fast matrix multiplica-
tion and hard problems. He reduces the instances of the well-known problems Max-2-SAT and
Max-Cut to exponential size graphs dependent on some parameter k, arguing that the optimum
weight k-clique corresponds to an optimum solution to the original problem instance.

The idea of applying fast matrix multiplication is basically to use the information stored in
the adjacency matrix of a graph in order to fast detect special subgraphs such as shortest paths,
small cliques—as in the previous example—or fixed sized induced subgraphs. Uncommonly—as
in [35]—we do not use the technique on the graph directly. Instead, it facilitates a fast search
in the solution space. In the literature, there has been some approaches speeding up linear pro-
gramming using fast matrix multiplication, e.g. see [32]. For our problems, we consider dynamic
programming, which is a method for reducing the runtime of algorithms exhibiting the proper-
ties of overlapping subproblems and optimal substructure. A standard approach for getting fast
exact algorithms for NP-hard problems is to apply dynamic programming across subsets of the
solution space. Famous applications of dynamic programming are, among others, Dijkstra’s algo-
rithm Single Source and Destination Shortest Path algorithm, Bellman-Ford algorithm,
the TSP problem, the Knapsack problem, Chain Matrix Multiplication and many string
algorithms including the Longest-Common Subsequence problem. See [11] for an introduc-
tion to dynamic programming. We present a novel approach to fast computing these subsets by
applying the distance product on the structure of dynamic programming.

Many NP-complete graph problems turn out to be solvable in polynomial time or even lin-
ear time when restricted to the class of graphs of bounded treewidth. The tree-decomposition
detects how “tree-like” a graph is and the graph parameter treewidth is a measure of this “tree-
likeness”. The corresponding algorithms typically rely on a dynamic programming strategy. Telle
and Proskurowski [31] gave an algorithm based on tree-decompositions having width ` that com-
putes the Dominating Set of a graph in time O(9`) · nO(1). Alber et al. [1] not only improved
this bound to O(4`) ·nO(1) by using several tricks, but also were the first to give a subexponential
fixed parameter algorithm for Planar Dominating Set.

Recently there have been several papers [18, 8, 14, 17, 19], showing that for planar graphs
or graphs of bounded genus the base of the exponent in the running time of these algorithms
could be improved by instead doing dynamic programming along a branch-decomposition of
optimal branchwidth—both notions are closely related to tree-decomposition and treewidth.
Fomin and Thilikos [18] significantly improved the result of [1] for Planar Dominating Set to

O(215.13
√

kk + n3) where k is the size of the solution. The same authors [19] achieve small con-
stants in the running time of a branch-decomposition based exact algorithms for Planar Vertex
Cover and Planar Dominating Set, namely O(23.182

√
n) and O(25.043

√
n), respectively. Dorn

et al. [14] use the planar structure of sphere cut decompositions to obtain fast algorithms for
problems like Planar Longest Path in time O(26.903

√
n). Dynamic programming along either

a branch-decomposition or a tree-decomposition of a graph both share the property of traversing
a tree bottom-up and combining tables of solutions to problems on certain subgraphs that overlap
in a bounded-size separator of the original graph.

Our contribution. We give a new technique for combining dynamic programming and matrix
multiplication and apply this approach to problems like Dominating Set, Vertex Cover
and Longest Path for improving the best algorithms on graphs of bounded branchwidth. We



introduce the new dynamic programming approach on branch-decompositions. Instead of using
tables, it stores the solutions in matrices that are computed via distance product. Since distance
product is not known to have a fast matrix multiplication in general, we only consider unweighted
and small integer weighted problems with weights of size M = nO(1).

Our approach is fully general. It runs faster than the usual dynamic programming for any ver-
tex subset problem on graphs of bounded branchwidth. It also can be used for tree-decompositions
with a structure proposed in [16]. To simplify matters, we first introduce our technique on
the Vertex Cover problem on graphs of branchwidth bw and show the improvement from
O(21.5 bw) · nO(1) to O(2

ω
2

bw) · nO(1) where ω is the exponent of fast matrix multiplication (cur-
rently ω < 2.376).

Next, we give the general technique and show how to apply it to several optimization problems
such as Dominating Set, that we improve from O(31.5 bw) · nO(1) to O(4bw) · nO(1)—please
note that here ω influences the runtime indirectly. Finally, we show the significant improvement
of the low constants of the runtime for the approach on planar graph problems. On Planar
Dominating Set we reduce the time to even O(20.793ω bw) · nO(1) and hence an improvement of

the fixed parameter algorithm in [18] to O(211.98
√

k)·nO(1) where k is the size of the dominating set.
For exact subexponential algorithms as on Planar Vertex Cover and Planar Dominating
Set, this means an improvement to O(21.06ω

√
n) and O(21.679ω

√
n), respectively. We also achieve

an improvement for several variants in [2] and [16].

Since the treewidth tw and branchwidth bw of a graph satisfy the relation bw ≤ tw +1 ≤ 3
2 bw,

it is natural to formulate the following question as done in [16]: Given a tree-decomposition and a
branch-decomposition, for which graphs is it better to use a tree-decomposition based approach
and for which is branch-decomposition the appropriate tool? Table 1 compares our results to [16].
It illustrates that dynamic programming is almost always faster on branch-decompositions when
using fast matrix multiplication rather than dynamic programming on tree-decompositions. For
Planar Dominating Set it turns out that our approach is always the better one in comparison
to [1], i.e., we achieve O(3.688bw) < O(4tw). For Planar Longest Path, we preprocess the
matrices in order to apply our method using boolean matrix multiplication in time O(22.347ω

√
n).

In Table 1, we also add the runtimes for solving related problems and the runtime improvement
compared to [14], [15], and [18], and [19].

Organization of the paper. After giving the basic definitions in Section 2, we exemplify on Ver-
tex Cover the common dynamic programming approaches on tree-decompositions and branch-
decompositions in Section 3. Then we introduce in Section 4 the basic idea of applying fast matrix
multiplication on the solution space of a problem by using Max Cut as an example and stating
an alternative technique than in [35]. This technique will be the main key for our algorithm that
employs distance product on the overlapping solutions of dynamic programming. In Section 5, we
will see why planarity helps when using dynamic programming with fast matrix multiplication.

2 Definitions

2.1 Width parameters

The graph parameters treewidth and branchwidth have been introduced by Robertson and Sey-
mour in their seminal work on Graph Minors theory [26, 27] and since then played an important
role in both, graph theory and algorithm theory.



Table 1. Worst-case runtime in the upper part expressed also by treewidth tw and branchwidth bw of
the input graph. The problems marked with ‘∗’ are the only one where treewidth may be the better
choice for some cutpoint tw ≤ α · bw with α = 1.19 and 1.05 (compare with [16]). The lower part gives
a summary of the most important improvements on exact and parameterized algorithms with parameter
k. Note that we use the fast matrix multiplication constant ω < 2.376.

Previous results New results

Dominating Set (DS) O(n2min{2 tw,2.38 bw}) O(n22 bw)

Vertex Cover∗ (VC) O(n2tw) O(n2min{tw,1.19 bw})

Independent DS O(n2min{2 tw,2.38 bw}) O(n22 bw)

Perfect Code∗ O(n2min{2 tw,2.58 bw}) O(n2min{2 tw,2.09 bw})

Perfect DS∗ O(n2min{2 tw,2.58 bw}) O(n2min{2 tw,2.09 bw})

Maximum 2-Packing∗ O(n2min{2 tw,2.58 bw}) O(n2min{2 tw,2.09 bw})

Total DS O(n2min{2.58 tw,3 bw}) O(n22.58 bw)

Perfect Total DS O(n2min{2.58 tw,3.16 bw}) O(n22.58 bw)

Planar DS∗ O(n2min{1.58 tw,2.38 bw}) O(n2min{1.58 tw,1.89 bw})

Planar Longest Path∗ O(n2min{2.58 tw,3.29 bw}) O(n2min{2.58 tw,2.75 bw})

Planar DS O(25.04
√

n) [19] O(23.99
√

n)

Planar VC O(23.18
√

n) [19] O(22.52
√

n)

Planar Longest Path O(26.9
√

n) [14] O(25.58
√

n)

Planar Graph TSP O(29.86
√

n) [14] O(28.15
√

n)

Planar connected DS O(29.82
√

n) [14] O(28.11
√

n)

Planar Steiner Tree O(28.49
√

n) [14] O(27.16
√

n)

Planar Feedback Vertex Set O(29.26
√

n) [14] O(27.56
√

n)

Parameterized Planar DS O(215.13
√

kk + n3) [18] O(211.98
√

kk + n3)

Parameterized Planar VC O(25.67
√

kk + n3) [19] O(23.56
√

kk + n3)

Param Planar Longest Path O(213.6
√

kk + n3) [14] O(210.5
√

kk + n3)

Tree-decompositions. Let G be a graph, T a tree, and let Z = (Zt)t∈T be a family of vertex
sets Zt ⊆ V (G), called bags, indexed by the nodes of T . The pair T = (T,Z) is called a tree-

decomposition of G if it satisfies the following three conditions:
• V (G) = ∪t∈T Zt,
• for every edge e ∈ E(G) there exists a t ∈ T such that both ends of e are in Zt,
• Zt1 ∩ Zt3 ⊆ Zt2 whenever t2 is a vertex of the path connecting t1 and t3 in T .

The width tw(T ) of the tree-decomposition T = (T,Z) is the maximum size over all bags minus
one.

Branch-decompositions. A branch-decomposition (T, µ) of a graph G consists of an ternary tree T
(i.e. all internal vertices of degree three) and a bijection µ : L → E(G) from the set L of leaves of
T to the edge set of G. We define for every edge e of T the middle set mid(e) ⊆ V (G) as follows:
Let T1 and T2 be the two connected components of T \ {e}. Then let Gi be the graph induced by
the edge set {µ(f) : f ∈ L∩V (Ti)} for i ∈ {1, 2}. The middle set is the intersection of the vertex
sets of G1 and G2, i.e., mid(e) := V (G1) ∩ V (G2). The width bw of (T, µ) is the maximum order
of the middle sets over all edges of T , i.e., bw(T, µ) := max{|mid(e)| : e ∈ T}.

Tree- and branchwidth. For a graph G its treewidth tw(G) and branchwidth bw(G) is the smallest
width of any tree-decomposition and branch-decomposition of G respectively. The two graph



parameters treewidth and branchwidth were introduced by Robertson and Seymour as tools in
their seminal proof of the Graph Minors Theorem. The treewidth tw(G) and branchwidth bw(G)
of a graph G satisfy the relation [27]

bw(G) ≤ tw(G) + 1 ≤ 3

2
bw(G),

and thus whenever one of these parameters is bounded by some fixed constant on a class of graphs,
then so is the other.

See Figure 1 for an illustration of tree-decompositions and branch-decompositions.
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Fig. 1. The left diagram shows a graph with vertex and edge labels. In the middle, we see a tree-
decomposition of the graph on the left, and on the right a branch-decomposition.

2.2 Graphs on surfaces

We denote by S0 the sphere (x, y, z | x2 + y2 + z2 = 1). A line in S0 is a subset homeomorphic to
[0, 1]. An O-arc is a subset of S0 homeomorphic to a circle. We call a S0-embedded graph together
with its embedding a plane graph. To simplify notations we do not distinguish between a vertex
of G and the point of S0 used in the drawing to represent the vertex or between an edge and the
line representing it. We also consider G as the union of the points corresponding to its vertices
and edges.

Nooses. A subset of S0 meeting the drawing only in vertices of G is called G-normal. If an O-arc
is G-normal then we call it noose O. The length of a noose O is the number of its vertices and
we denote it by |O|.

Proposition 1 ([19]). For any planar graph G, bw(G) ≤
√

4.5n ≤ 2.122
√

n.



Sphere-cut Decompositions. For a plane graph G, we define a sphere-cut decomposition or sc-

decomposition (T, µ, π) as a branch-decomposition such that for every edge e of T there exists a
noose Oe bounding the two open disks ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2. Thus Oe

meets G only in mid(e) and its length is |mid(e)|. A clockwise traversal of Oe in the drawing of
G defines the cyclic ordering π of mid(e). We always assume that the vertices of every middle
set mid(e) = V (G1)∩ V (G2) are enumerated according to π. See Figure 2 for an illustration of a
sphere-cut decomposition.
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Fig. 2. The left diagram shows a graph which is separated by a noose two parts–emphasized by the red
labeling of the one part. On the right, a sc-decomposition, whose labeled edge corresponds to the noose.

2.3 Matrix multiplication.

Two (n×n)-matrices can be multiplied using O(nω) algebraic operations, where the naive matrix
multiplication shows ω ≤ 3. The best upper bound on ω is currently ω < 2.376 [10].

For rectangular matrix multiplication between two (n × p)- and (p × n)-matrices B = (bij)
and C = (cij) we differentiate between p ≤ n and p > n. For the case p ≤ n Coppersmith [9]
gives an O(n1.85 · p0.54) time algorithm (under the assumption that ω = 2.376). If p > n , we get
O( p

n
·n2.376 + p

n
·n2) by matrix splitting: Split each matrix into p

n
many n×n matrices B1, . . . , B p

n

and C1, . . . , C p

n
and multiply each A` = B` ·C` (for all 1 ≤ ` ≤ p

n
). Sum up each entry a`

ij overall
matrices A` to obtain the solution.

The distance product of two (n×n)-matrices B and C, denoted by B ?C, is an (n×n)-matrix
A such that

aij = min
1≤k≤n

{bik + ckj}, 1 ≤ i, j ≤ n. (1)

The distance product of two (n×n)-matrices can be computed naively in time O(n3). Zwick [36]
describes a way of using fast matrix multiplication, and fast integer multiplication, to compute
distance products of matrices whose elements are taken from the set {−m, . . . , 0, . . . ,m} The

running time of the algorithm is Õ(m · nω). For distance product of two (n × p)- and (p × n)-

matrices with p > n we get Õ(p ·(m ·nω−1)) again by matrix splitting: Here we take the minimum
of the entries a`

ij overall matrices A` with 1 ≤ ` ≤ p
n
.



Another variant is the boolean matrix multiplication. The boolean matrix multiplication of
two boolean (n× n)-matrices B and C, i.e. with only 0,1-entries, is an boolean (n× n)-matrix A
such that

aij =
∨

1≤k≤n

{bik ∧ ckj}, 1 ≤ i, j ≤ n. (2)

The fastest algorithm simply uses fast matrix multiplication and sets aij = 1 if aij > 0.

3 Dynamic programming: tree-decompositions vs. branch-

decompositions

In Subsection 3.1 and 3.2 we describe how to do dynamic programming on tree-decompositions
and branch-decompositions, respectively, using Vertex Cover as an example.

In particular, for a graph G with |V (G)| = n of treewidth tw (branchwidth bw), we will see
how the weighted Vertex Cover problem with positive node weights wv for all v ∈ V (G) can
be solved in time O(f(tw)) · nO(1) (O(f(bw)) · nO(1)) where f(·) is an exponential time function
only dependent on tw (bw).

3.1 Solving Vertex Cover on tree-decompositions

The algorithm is based on dynamic programming on a rooted tree-decomposition T = (T,Z) of
G. The vertex cover is computed by processing T in post-order from the leaves to the root. For
each bag Zt an optimal vertex cover intersects with some subset U of Zt. Since Zt may have size
up to tw, this may give 2tw possible subsets to consider. The separation property of each bag Zt

ensures that the problems in the different subtrees can be solved independently.
We root T by arbitrarily choosing a node R. Each internal node t of T now has one adjacent

node on the path from t to R, called the parent node, and some adjacent nodes toward the leaves,
called the children nodes.

Let Tt be a subtree of T rooted at node t. Gt is the subgraph of G induced by all bags of Tt. For
a subset U of V (G) let w(U) denote the total weight of vertices in U . That is, w(U) =

∑
u∈U wu.

Define a set of subproblems for each subtree Tt. Each set corresponds to a subset U ⊆ Zt that
may represent the intersection of an optimal solution with V (Gt). Thus, for each vertex cover
U ⊆ Zt, we denote by Vt(U) the minimum weight of a vertex cover S in Gt such that S∩Zt = U ,
that is w(S) = Vt(U). We set Vt(U) = +∞ if U is not a vertex cover since U cannot be part of an
optimal solution. There are 2|Zt| possible subproblems associated with each node t of T . Since T
has O(|V (G)|) edges, there are in total at most 2tw · |V (G)| subproblems. The minimum weight
vertex cover is determined by taking the maximum over all subproblems associated with the root
R.

For each node t the information needed to compute Vt(U) is already computed in the values
for the subtrees. For all children nodes s1, . . . , s`, we simply need to determine the value of the
minimum-weight vertex covers Ssi

of Gsi
(1 ≤ i ≤ `), subject to the constraints that Ssi

∩ Zt =
U ∩ Zsi

.
With vertex covers Usi

⊆ Zsi
(1 ≤ i ≤ `) that are not necessarily optimal, the value Vt(U) is

given as follows:

Vt(U) = w(U) + min {
∑̀

i=1

Vsi
(Usi

) − w(Usi
∩ U) :

Usi
∩ Zt = U ∩ Zsi

}. (3)



The brute force approach computes for all 2|Zt| sets U associated with t the value Vt(U) in
time O(` · 2z) where z = maxi{|Zsi

|}.Hence, the total time spent on node t is O(4tw · n).

Tables. We will see now how this running time can be improved, namely by the use of a more
refined data structure. With a table, one has an object that allows to store all sets U ⊆ Zt in an
ordering such that the time used per node is reduced to O(2tw · n).

Each node t is assigned a table Tablet that is labeled with the sequence of vertices Zt. When
updating Tablet with Tablesi

, both tables are sorted by the intersecting vertices Zt ∩ Zsi
. For

computing Vt(U), this allows to only process the part of the table Tablesi
with Usi

∩Zt = U ∩Zsi
.

Thus both tables get processed only once in total.

For achieving an efficient running time, one uses an adequate encoding of the table entries.
First define a coloring c : V (G) → {0, 1}: For a node t, each set U ⊆ Zt, if v ∈ Zt \ U then
c(v) = 0 else c(v) = 1. Then sort Tablesi

(1 ≤ i ≤ `) to get entries in an increasing order in order
to achieve a fast inquiry.

3.2 Solving Vertex Cover on branch-decompositions

On branch-decompositions the algorithm seems to be a bit more circumstantial due to more
structure. But as we will see at some point later, this structure is of great help to achieve fast
algorithms.

Now we introduce dynamic programming on a rooted branch-decomposition (T, µ) of G. As on
tree-decompositions, the vertex cover is computed by processing T in post-order from the leaves
to the root. For each middle set mid(e) an optimal vertex cover intersects with some subset U of
mid(e). Since mid(e) may have size up to bw, this may give 2bw possible subsets to consider. The
separation property of mid(e) ensures that the problems in the different subtrees can be solved
independently.

We root T by arbitrarily choosing an edge e, and subdivide it by inserting a new node s.
Let e′, e′′ be the new edges and set mid(e′) = mid(e′′) = mid(e). Create a new node root r,
connect it to s and set mid({r, s}) = ∅. Each internal node v of T now has one adjacent edge on
the path from v to r, called the parent edge, and two adjacent edges toward the leaves, called the
children edges. To simplify matters, we call them the left child and the right child.

Let Te be a subtree of T rooted at edge e. Ge is the subgraph of G induced by all leaves of Te.
For a subset U of V (G) let w(U) denote the total weight of nodes in U . That is, w(U) =

∑
u∈U wu.

Define a set of subproblems for each subtree Te. Each set corresponds to a subset U ⊆ mid(e)
that may represent the intersection of an optimal solution with V (Ge). Thus, for each vertex
cover U ⊆ mid(e), we denote by Ve(U) the minimum weight of a vertex cover S in Ge such that
S ∩ mid(e) = U , that is w(S) = Ve(U). We set Ve(U) = +∞ if U is not a vertex cover since U
cannot be part of an optimal solution. There are 2|mid(e)| possible subproblems associated with
each edge e of T . Since T has O(|E(G)|) edges, there are in total at most 2bw ·|E(G)| subproblems.
The minimum weight vertex cover is determined by taking the minimum over all subproblems
associated with the root r.

For each edge e the information needed to compute Ve(U) is already computed in the values
for the subtrees. Since T is ternary, we have that a parent edge e has two children edges f and g.
For f and g, we simply need to determine the value of the minimum-weight vertex covers Sf of Gf

and Sg of Gg, subject to the constraints that Sf ∩mid(e) = U ∩mid(f), Sg ∩mid(e) = U ∩mid(g)
and Sf ∩ mid(g) = Sg ∩ mid(f).



With vertex covers Uf ⊆ mid(f) and Ug ⊆ mid(g) that are not necessarily optimal, the value
Ve(U) is given as follows:

Ve(U) = w(U) + min{ Vf (Uf ) − w(Uf ∩ U) + Vg(Ug) − w(Ug ∩ U) − w(Uf ∩ Ug \ U) :

Uf ∩ mid(e) = U ∩ mid(f),

Ug ∩ mid(e) = U ∩ mid(g),

Uf ∩ mid(g) = Ug ∩ mid(f)}. (4)

The brute force approach computes for all 2|mid(e)| sets U associated with e the value Ve(U)
in time O(2|mid(f)| · 2|mid(g)|). Hence, the total time spent on edge e is O(8bw).

Tables. A more sophisticated approach exploits properties of the middle sets and uses tables as
data structure. With a table, one has an object that allows to store all sets U ⊆ mid(e) in an
ordering such that the time used per edge is reduced to O(21.5 bw).

By the definition of middle sets, a vertex has to be in at least two of three middle sets of
adjacent edges e, f, g. You may simply recall that a vertex has to be in all middle sets along the
path between two leaves of T .

For the sake of a refined analysis, we partition the middle sets of parent edge e and left child
f and right child g into four sets L,R, F, I as follows:

– Intersection vertices I := mid(e) ∩ mid(f) ∩ mid(g),
– Forget vertices F := mid(f) ∩ mid(g) \ I,
– Symmetric difference vertices L := mid(e) ∩ mid(f) \ I and R := mid(e) ∩ mid(g) \ I.

We thus can restate the constraints of Equation (4) for the computation of value Ve(U).
Weight w(U) is already contained in w(Uf ∪ Ug) since mid(e) ⊆ mid(f) ∪mid(g). Hence, we can
change the objective function:

Ve(U) = min{ Vf (Uf ) + Vg(Ug) − w(Uf ∩ Ug) :

Uf ∩ (I ∪ L) = U ∩ (I ∪ L),

Ug ∩ (I ∪ R) = U ∩ (I ∪ R),

Uf ∩ (I ∪ F ) = Ug ∩ (I ∪ F )}. (5)

Turning to tables, each edge e is assigned a table Tablee that is labeled with the sequence
of vertices mid(e). More precisely, the table is labeled with the concatenation of three sequences
out of {L,R, I, F}. Define the concatenation ’‖’ of two sequences λ1 and λ2 as λ1‖λ2. Then,
concerning parent edge e and left child f and right child g we obtain the labels: ’I‖L‖R’ for
Tablee, ’I‖L‖F ’ for Tablef , and ’I‖R‖F ’ for Tableg. Tablef contains all sets Uf with value
Vf (Uf ) and analogously, Tableg contains all sets Ug with value Vg(Ug).

For computing Ve(U) of each of the 2|I|+|L|+|R| entries of Tablee, we thus only have to consider
2|F | sets Uf and Ug subject to the constraints of Equation (5). Since mid(e)∪mid(f)∪mid(g) =
I ∪L∪R∪F , we have that |I|+ |L|+ |R|+ |F | ≤ 1.5 ·bw. Thus we spend in total time O(21.5 bw)
on each edge of T .

A technical note: for achieving an efficient running time, one uses an adequate encoding of
the table entries. First define a coloring c : V (G) → {0, 1}: For an edge e, each set U ⊆ mid(e),
if v ∈ mid(e) \ U then c(v) = 0 else c(v) = 1. Then sort Tablef and Tableg to get entries in an
increasing order in order to achieve a fast inquiry.



4 Dynamic programming and fast matrix multiplication

The idea of applying fast matrix multiplication and distance product for solving basic graph
problems is to multiply the adjacency matrix of the graph with itself in order to fast detect all
paths of length two. By iteratively self-multiplying the adjacency matrix one can fast compute
all pairs of shortest paths and cycles. For dynamic programming, we exhibit the properties of
overlapping subproblems and optimal substructure. In this Section, we show how to compute
these subsets by applying the distance product on the structure of dynamic programming instead
of the graph itself.

4.1 How fast matrix multiplication improves algorithms

The first application of fast matrix multiplication to NP-hard problems was given by Williams [35],
who reduced the instances of the well-known problems Max-2-SAT and Max-Cut to Max
Triangle on an exponential size graphs dependent on some parameter k, arguing that the
optimum weight k-clique corresponds to an optimum solution to the original problem instance.

Max Cut & fast matrix multiplication In [35], Williams reduces the problems Max-2-SAT
and Max Cut to the problem of Max Triangle, that is, finding a maximum weighted 3-clique
in a large auxiliary graph. In general, finding 3-cliques in an arbitrary graph G with n vertices can
be done in time O(nω): Multiply the adjacency matrix A twice with itself, if A3 has a non-zero
entry on its main-diagonal, then G contains a 3-clique. The key for solving Max Cut is to reduce
the problem with the input graph on n vertices to Max Triangle on an exponentially sized
graph, i.e., on O(2

n
3 ) vertices and O(2

2n
3 ) edges. The problem is then solved via distance product

on some type of adjacency matrix of the auxiliary graph.
We will now show here a more straight forward way to solve Max Cut that does the trick

directly on matrices without making a detour to Max Triangle. Note that both the idea behind
it and the runtime are the same than in [35]. We state this alternative technique here for it is the
main key for our algorithm.

Max Cut. The Max Cut problem on a graph G is to find a cut of maximum cardinality, that
is, a set X ⊂ V (G) that maximizes the number of edges between X and V (G) \ X. Max Cut
can be solved in runtime O(2n) by brute force trying all possible subsets of V (G) and storing the
maximum number of edges in the cut.

The following lemma is already stated in [35], the new part is the alternative proof:

Lemma 1. Max Cut on a graph with n vertices can be solved in time O(2ω n
3 ) with ω < 2.376

the fast matrix multiplication factor.

Proof: Goal is to find the subset X with the optimal value V(X) to our problem instance. We
partition V (G) into three (roughly) equal sets V1, V2, V3. We consider all subsets Xi,j ⊆ Vi ∪ Vj

(1 ≤ i < j ≤ 3) and define V(Xi,j) := |{{u, v} ∈ E(G) | u ∈ Xi,j , w ∈ Vi ∪ Vj \ Xi,j}|.
We compute the value V(X) for an optimal solution X as follows:

V(X) = max{ V(X1,2) + V(X2,3) − |{{u, v} ∈ E(G) | u ∈ X2,3 ∩ V2, w ∈ V2 \ X2,3}| +
V(X1,3) − |{{u, v} ∈ E(G) | u ∈ X1,3 ∩ Vi, w ∈ Vi \ X1,3, (i = 1, 3)}| :

X1,2 ∩ V1 = X1,3 ∩ V1,

X1,2 ∩ V2 = X2,3 ∩ V2,

X1,3 ∩ V3 = X2,3 ∩ V3}. (6)



That is, we maximize the value V over all subsets X1,2,X1,3,X2,3 such that they form an
optimal solution X. When summing up the values V(X1,2) + V(X1,3) + V(X2,3), we have to
subtract the edges that are counted more than once.

We now use distance product to obtain the optimal solution to Max Cut. In order to apply
Equation (6) and not to count the edges several times, we slightly change the values:

– V ′

(X1,2) := V(X1,2);

– V ′

(X2,3) := V(X2,3) − |{{u, v} ∈ E(G) | u ∈ X2,3 ∩ V2, w ∈ V2 \ X2,3}|;
– V ′

(X1,3) := V(X1,3) − |{{u, v} ∈ E(G) | u ∈ X1,3 ∩ Vi, w ∈ Vi \ X1,3, (i = 1, 3)}|.
We have that

V(X) = max{V ′

(X1,2) + V ′

(X2,3) + V ′

(X1,3)}
under the constraints of Equation (6).

For 1 ≤ i < j ≤ 3, we create the 2
n
3 × 2

n
3 matrices Mi,j with rows the power set of Vi and

columns the power set of Vj . Each row r and column t specify entry mi,j
rt = −V ′

(Xr,t) where
Xr,t = Xr ∪ Xt for subsets Xr ⊆ Vi and Xt ⊆ Vj . Note that we negate the values because we
need to turn the problem into a minimization problem in order to apply the distance product.
Then, V(X) is the minimum entry of M1,3 + (M1,2 ? M2,3),i.e.,

V(X) = min
1≤r,t≤2

n
3

{m1,3
rt + m1,2,3

rt },

where
m1,2,3

rt := min
1≤s≤2

n
3

{m1,2
rs + m2,3

st }.

That is, we first apply distance product on two 2
n
3 × 2

n
3 matrices and then add the resulting

matrix to a third. Thus, the time we need is O(n · 2ω n
3 + 2

2n
3 ). �

4.2 How distance product improves dynamic programming

We introduce a dynamic programming approach on branch-decompositions. Instead of using ta-
bles, it stores the solutions in matrices that are computed via distance product. Since distance
product is not known to have a fast matrix multiplication in general, we only consider unweighted
and small integer weighted problems with weights of size M = nO(1).

Matrices. We start again with the example of Vertex Cover and use the notions of Subsec-
tion 3.2. In the remaining section we show how to use matrices instead of tables as data structure
for dynamic programming. Then we apply the distance product of two matrices to compute the
values V(U) for a subset U ⊆ mid(e) of the parent edge e in the branch-decomposition. Recall
also from Subsection 3.2 the definitions of intersection-, forget-, and symmetric difference vertices
I,F , and L,R, respectively. Reformulating the constraints of Equation (5) in the computation of
Ve(U) , we obtain:

Ve(U) = min{ Vf (Uf ) + Vg(Ug) − w(Uf ∩ Ug) :

U ∩ I = Uf ∩ I = Ug ∩ I,

Uf ∩ L = U ∩ L,

Ug ∩ R = U ∩ R,

Uf ∩ F = Ug ∩ F}. (7)



With U ∩ I = Uf ∩ I = Ug ∩ I, one may observe that every vertex cover Se of Ge is determined
by the vertex covers Sf and Sg such that all three sets intersect in some subset U I ⊆ I. From
the previous subsection, we got the idea to not compute Ve(U) for every subset U separately but
to simultaneously calculate for each subset U I ⊆ I the values Ve(U) for all U ⊆ mid(e) subject
to the constraint that U ∩ I = U I . For each of these sets U the values Ve(U) are stored in a
matrix A. A row is labeled with a subset UL ⊆ L and a column with a subset UR ⊆ R. The
entry determined by row UL and column UR is filled with Ve(U) for U subject to the constraints
U ∩ L = UL, U ∩ R = UR, and U ∩ I = U I .

We will show how matrix A is computed by the distance product of the two matrices B and
C assigned to the children edges f and g: For the left child f , a row of matrix B is labeled
with UL ⊆ L and a column with UF ⊆ F that appoint the entry Vf (Uf ) for Uf subject to the
constraints Uf ∩ L = UL, Uf ∩ F = UF and Uf ∩ I = U I . Analogously we fill the matrix C
for the right child with values for all vertex covers Ug with Ug ∩ I = U I . Now we label a row
with UF ⊆ F and a column with UR ⊆ R storing value Vg(Ug) for Ug subject to the constraints
Ug ∩F = UF and Ug ∩R = UR. Note that entries have value ‘+∞’ if they are determined by two
subsets where at least one set is not a vertex cover.

Lemma 2. Given a vertex cover U I ⊆ I. For all vertex covers U ⊆ mid(e), Uf ⊆ mid(f) and

Ug ⊆ mid(g) subject to the constraint U ∩ I = Uf ∩ I = Ug ∩ I = U I let the matrices B and C
have entries Vf (Uf ) and Vg(Ug). The entries Ve(U) of matrix A are computed by the distance

product A = B ? C.

Proof: The rows and columns of A, B and C must be ordered that two equal subsets stand at
the same position, i.e., UL must be at the same position in either row of A and B, UR in either
column of A and C, and UF must be in the same position in the columns of B as in the rows of
C. Note that we set all entries with value ‘∞’ to

∑
v∈V (G) wv + 1. Now, the only obstacle from

applying the distance product (Equation (1)) for our needs, is the additional term w(Uf ∩Ug) in
Equation (5). Since Uf and Ug only intersect in U I and UF , we substitute entry Vg(Ug) in C for
Vg(Ug) − |U I | − |UF | and we get a new equation:

Ve(U) = min { Vf (Uf ) + (Vg(Ug) − |U I | − |UF |) :

U ∩ I = Uf ∩ I = Ug ∩ I = U I ,

Uf ∩ L = U ∩ L = UL,

Ug ∩ R = U ∩ R = UR,

Uf ∩ F = Ug ∩ F = UF }. (8)

Since we have for the worst case analysis that |L| = |R| due to symmetry reason, we may assume
that |UL| = |UR| and thus A is a square matrix. Every value Ve(U) in matrix A can be calculated
by the distance product of matrix B and C, i.e., by taking the minimum over all sums of entries
in row UL in B and column UR in C. �

Theorem 1. Dynamic programming for the Vertex Cover problem on weights M = nO(1)

on graphs of branchwidth bw takes time Õ(M · 2ω
2
·bw) with ω the exponent of the fastest matrix

multiplication.

Proof:

For every U I we compute the distance product of B and C with absolute integer values less
than M . We show that, instead of a O(2|L|+|R|+|F |+|I|) running time, dynamic programming takes



time Õ(M · 2(ω−1)|L| · 2|F | · 2|I|). We need time O(2|I|) for considering all subsets U I ⊆ I. Under
the assumption that 2|F | ≥ 2|L| we get the running time for rectangular matrix multiplication:

Õ(M · 2|F |

2|L| ·2ω|L|). If 2|F | < 2|L| we simply get Õ(M ·21.85|L| ·20.54|F |) (for ω = 2.376), so basically
the same running time behavior. By the definition of the sets L,R, I, F we obtain four constraints:
• |I| + |L| + |R| ≤ bw, since mid(e) = I ∪ L ∪ R,
• |I| + |L| + |F | ≤ bw, since mid(f) = I ∪ L ∪ F ,
• |I| + |R| + |F | ≤ bw, since mid(g) = I ∪ R ∪ F , and
• |I| + |L| + |R| + |F | ≤ 1.5 · bw, since mid(e) ∪ mid(f) ∪ mid(g) = I ∪ L ∪ R ∪ F .

When we maximize our objective function Õ(M · 2(ω−1)|L| · 2|F | · 2|I|) subject to these con-

straints, we get the claimed running time of Õ(M · 2ω
2
·bw). �

4.3 A general technique

Now we formulate the dynamic programming approach using distance product in a more general
way than in the previous section in order to apply it to several optimization problems. In the
literature these problems are often called vertex-state problems. That is, we have given an alphabet
λ of vertex-states defined by the corresponding problem. E.g., for the considered Vertex Cover
we have that the vertices in the graph have two states relating to an vertex cover U : state ‘1’ means
“element of U” and state ‘0’ means “not an element of U”. We define a coloring c : V (G) → λ
and assign for an edge e of the branch-decomposition (T, µ) a color c to each vertex in mid(e).
Given an ordering of mid(e), a sequence of vertex-states forms a string Se ∈ λ|mid(e)|.

Encoding solutions as strings. Recall the definition of concatenating two strings S1 and S2 as
S1‖S2. We then define the strings Sx(ρ) with ρ ∈ {L,R, F, I} of length |ρ| as substrings of Sx with
x ∈ {e, f, g} with e parent edge, f left child and g right child. We set Se = Se(I)‖Se(L)‖Se(R),
Sf = Sf (I)‖Sf (L)‖Sf (F ) and Sg = Sg(I)‖Sg(F )‖Sg(R). We say that Se is formed by the strings
Sf and Sg if Se(ρ), Sf (ρ) and Sg(ρ) suffice some problem dependent constraints for some ρ ∈
{L,R, F, I}. For Vertex Cover we had in the previous section that Se is formed by the strings
Sf and Sg if Se(I) = Sf (I) = Sg(I), Se(L) = Sf (L), Se(R) = Sg(R) and Sf (F ) = Sg(F ). For
problems as Dominating Set it is sufficient to mention that “formed” is differently defined,
see for example [16]. With the common dynamic programming approach of using tables, we get

to proceed c
|L|
1 · c

|R|
1 · c

|F |
2 · c

|I|
3 update operations of polynomial time where c1, c2 and c3 are

small problem dependent constants. Actually, we consider |λ||L| · |λ||F | · |λ||I| solutions of Gf and
|λ||R| · |λ||F | · |λ||I| solutions of Gg to obtain |λ||L| · |λ||R| · |λ||I| solutions of Ge. In every considered
problem, we have c1 ≡ |λ|, c2, c3 ≤ |λ|2 and c1 ≤ c2, c3.

Generating the matrices. We construct the matrices as follows: For the edges f and g we fix a
string Sf (I) ∈ λI and a string Sg(I) ∈ λI such that Sf (I) and Sg(I) form a string Se(I) ∈ λI .

We compute a matrix A with c
|L|
1 rows and c

|R|
1 columns and with entries Ve(Se) for all strings Se

that contain Se(I). That is, we label monotonically increasing both the rows with strings Se(L)
and the columns with strings Se(R) that determine the entry Ve(Se) subject to the constraint
Se = Se(I)‖Se(L)‖Se(R).

How to do matrix multiplication. Using the distance product, we compute matrix A from ma-
trices B and C that are assigned to the child edges f and g, respectively. Matrix B is labeled
monotonically increasing row-wise with strings Sf (L) and column-wise with strings Sf (F ). That

is, B has c
|L|
1 rows and c

|F |
2 columns. A column labeled with string Sf (F ) is duplicated depending



on how often it contributes to forming the strings Se ⊃ Se(I). The entry determined by Sf (L)
and Sf (F ) consists of the value Vf (Sf ) subject to Sf = Sf (I)‖Sf (L)‖Sf (F ).

Analogously, we compute for edge g the matrix C with c
|F |
2 rows and c

|R|
1 columns and with

entries Vg(Sg) for all strings Sg that contain Sg(I). We label the columns with strings Sg(R)
and rows with strings Sg(F ) with duplicates as for matrix B. However, we do not sort the
rows by increasing labels. We order the rows such that the strings Sg(F ) and Sf (F ) match,
where Sg(F ) is assigned to row k in C and Sf (F ) is assigned to column k in B. I.e., for all
Sf (L) and Sg(R) we have that Sf = Sf (I)‖Sf (L)‖Sf (F ) and Sg = Sg(I)‖Sg(F )‖Sg(R) form
Se = Se(I)‖Se(L)‖Se(R). The entry determined by Sg(F ) and Sg(R) consists of the value Vg(Sg)
subject to Sg = Sg(I)‖Sg(F )‖Sg(R) minus an overlap. The overlap is the contribution of the
vertex-states of the vertices of Sg(F ) ∩ F and Sg(I) ∩ I to Vg(Sg). That is, the part of the value
that is contributed by Sg(F )‖Sg(R) is not counted since it is already counted in Vf (Sf ).

Lemma 3. Consider fixed strings Se(I), Sf (I) and Sg(I) such that there exist solutions Se ⊃
Se(I) formed by some Sf ⊃ Sf (I) and Sg ⊃ Sg(I). The values Vf (Sf ) and Vg(Sg) are stored in

matrices B and C, respectively. Then the values Ve(Se) of all possible solutions Se ⊃ Se(I) are

computed by the distance product of B and C, and are stored in matrix A = B ? C.

Proof: For all pairs of strings Sf (L), Sg(R) we compute all possible concatenations Se(L)‖Se(R).
In row i of B representing one string Sf (L), the values of every string Sf are stored with fixed
substrings Sf (L) and Sf (I), namely for all possible substrings Sf (F ) labeling the columns. Sup-
pose Sf (L) is updated with string Sg(R) labeling column j of C, i.e., Sf (L) and Sg(R) contribute
to forming Se with substrings Se(L) and Se(R). The values of every string Sg ⊃ Sg(I)‖Sg(R)
are stored in that column. For solving a minimization problem we look for the minimum overall
possible pairings of Sf (L)‖Sf (F ) and Sg(F )‖Sg(R). By construction, a column k of B = (bij) is
labeled with the string that that matches the string labeling row k of C = (cij). Thus, the value
Ve(Se) is stored in matrix A at entry aij where

aij = min
k

{bik + ckj}, 1 ≤ i ≤ c
|L|
1 , 1 ≤ j ≤ c

|R|
1 , 1 ≤ k ≤ c

|F |
2 .

Hence A is the distance product of B and C. �

The following theorem refers especially to all the problems enumerated in Table 1.

Theorem 2. Dynamic programming for solving vertex-state problems on weights M on graphs of

branchwidth bw takes time O(M ·max{c(ω−1)· bw

2

1 c
bw

2

2 , cbw
2 , cbw

3 }) with ω the exponent of the fastest

matrix multiplication and c1, c2 and c3 the number of algebraic update operations for the sets

{L,R}, F and I, respectively.

Proof:

For each update step we compute for all possible pairings of Sf (I) and Sg(I) the distance

product of B and C with absolute integer values less than M . That is, instead of a c
2·|L|
1 · c|F |

2 · c|I|3

running time, dynamic programming takes time O(M · c
(ω−1)|L|
1 · c

|F |
2 · c

|I|
3 ). Note that for the

worst case analysis we have due to symmetry reason that |L| = |R|. We need time c
|I|
3 for

computing all possible pairings of Sf (I) and Sg(I). Under the assumption that c
|F |
2 ≥ c

|L|
1 we get

the running time for rectangular matrix multiplication: O(M · c
|F |
2

c
|L|
1

· cω|L|
1 ). If c

|F |
2 < c

|L|
1 we simply

get (M · c1.85|L|
1 · c0.54|F |

2 ) (for ω = 2.376), so basically the same running time behavior.



For parent edge e and child edges f and g, a vertex v ∈ mid(e)∪mid(f)∪mid(g) appears in at
least two out of mid(e), mid(f) and mid(g). From this follows the constraint |mid(e) ∪ mid(f) ∪
mid(g)| ≤ 1.5 bw which in addition to the constraints |mid(e)| ≤ bw, |mid(f)| ≤ bw, |mid(g)| ≤
bw gives us four constraints altogether: |L| + |R| + |I| + |F | ≤ 1.5 bw, |L| + |R| + |I| ≤ bw,
|L| + |I| + |F | ≤ bw, and |R| + |I| + |F | ≤ bw. When we maximize our objective function

O(M · c(ω−1)|L|
1 · c|F |

2 · c|I|3 ), we get above result in dependency of the values of c1, c2 and c3. �

4.4 Application of the technique

The technique can be applied for several optimization problems such as Dominating Set and
its variants in order to obtain fast algorithms.

For Dominating Set we have that c1 ≡ c2 = 3 and c3 = 4. The former running time was
O(31.5 bw) · nO(1). We have Õ(M · max{3(ω−1)· bw

2 3
bw

2 , 3bw, 4bw}) = Õ(M · 4bw) for node weights
M if we use a matrix multiplication algorithm with ω < 2.5 and thus hide the factor ω.

5 Planarity and dynamic programming

For planar embedded graphs, separators have a structure that cuts the surface into two or more
pieces onto which the separated subgraphs are embedded on. Miller [25] was the first to describe
how to find small simple cyclic separators in planar triangulations. Applying those ideas, one can
find small separators whose vertices can be connected by nooses. (e.g. see [4]).

Tree-decompositions and branch-decompositions have been historically the choice when solv-
ing NP-hard optimization and FPT problems with a dynamic programming approach (see for
example [5] for an overview). Although much is known about the combinatorial structure of tree-
decompositions (e.g., [6, 33]) and branch-decompositions (e.g., [18]), there are only few results
relating to the topology of tree-decompositions or branch-decompositions of planar graphs (e.g.,
[7, 12, 13, 23].

Computing sphere-cut decompositions. The main idea to speed-up algorithms obtained by the
branch-decomposition approach is to exploit planarity for the three times: First in the upper
bound on the branchwidth of a graph and second in the polynomial time algorithm for constructing
an optimal branch-decomposition. We present here how planarity is used to improve our dynamic
programming approach on graphs of bounded branchwidth.

Our results are based on deep results of Seymour & Thomas [29] on geometric properties of
planar branch decompositions. Loosely speaking, their results imply that for a graph G embedded
on a sphere S0, some branch decompositions can be seen as decompositions of S0 into disks
(or sphere-cuts)—so-called sphere-cut decompositions. Sphere-cut decompositions seem to be an
appropriate tool for solving a variety of planar graph problems.

The following theorem provides us with the main technical tool. It follows almost directly
from the results of Seymour & Thomas [29] (see also [20]).

Theorem 3. Let G be a connected plane graph of branchwidth at most ` without vertices of degree

one. There exists an sc-decomposition of G of width at most ` and such a branch-decomposition

can be constructed in time O(n3).
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Fig. 3. On the left we see the same graph G as in the last figure. The gray rhombus and gray edges
illustrate the radial graph RG. G is partitioned by the rectangle vertices of S1, S2, S3 into GL in drawn-
through edges, GR in dashed edges, and GP in pointed edges. On the right the three nooses OL, OR

and OP are marked. Note that the nooses are induced by S1, S2, S3 and the highlighted gray edges on
the left hand. All three nooses here intersect in one intersection vertex s.

5.1 Planarity and fast matrix multiplication

Root a given sc-decomposition (T, µ, π). Recall that for three neighboring edges of T , the edge
closest to the root is called parent edge eP and the two other edges, child edges eL and eR.

Let OL, OR, and OP be the nooses corresponding to edges eL, eR and eP , and let ∆L, ∆R

and ∆P be the disks bounded by these nooses. Due to the definition of branch-decompositions,
every vertex must appear in at least two of the three middle sets. We partition the set (OL ∪
OR ∪ OP ) ∩ V (G) into three sets accordingly to Subsection 3.2:

– Intersection vertices I := OL ∩ OR ∩ OP ∩ V (G),
– Forget vertices F := OL ∩ OR ∩ V (G) \ I,
– Symmetric difference vertices L := OP ∩ OL ∩ V (G) \ I and R := OP ∩ OR ∩ V (G) \ I.

See Figure 3 for an illustration of these notions. Observe that |I| ≤ 2, as the disk ∆P contains the
union of the disks ∆L and ∆R. This observation will prove to be crucial for improving dynamic
programming for planar graph problems.

With the nice property that |I| ≤ 2 for all middle sets, we achieve better running times for
many discussed problems when we restrict them to planar graphs. The following theorem is the
counterpart to Theorem 2 for planarity:

Theorem 4. Let ω be the exponent of the fastest matrix multiplication and c1 and c2 the number

of algebraic update operations for the sets {L,R} and F , respectively. Then, dynamic programming

for solving vertex-subset problems on weights M = nO(1) on planar graphs of branchwidth bw takes

time Õ(M · max{c(ω−1)· bw

2

1 c
bw

2

2 , cbw
2 }).



Planar Dominating Set. For Planar Dominating Set with node weights M , the runtime
changes from O(4bw) · nO(1) to Õ(M · 31.188 bw) = Õ(M · 3.688bw). This runtime is strictly better
than the actual runtime of the treewidth based technique of O(4tw) · nO(1) [1].

Planar Longest Path. For Planar Longest Path, it is not immediately clear how to use
matrices since here it seems necessary to compute the entire solution at a dynamic programming
step. I.e., in [14] the usual dynamic programming step is applied with the difference that a
postprocessing step uncovers forbidden solutions and changes the coloring of the vertices in the
L- and R-set. The idea that helps is that we replace the latter step by a preprocessing step,
changing the matrix entries of the child edges depending on the change of the coloring. That
coloring is only dependent on the coloring of the F -set in both matrices. Hence we do not query
the coloring of all three sets L, R and F simultaneously.

Lemma 4. Planar Longest Path on a planar graph G with branchwidth ` can be solved in

time O(22.746``n + n3).

Proof: According to [14], there are

Z := (
z

2
+ 1)

`
2 · 3 `

2

possible ways to update the states of F where z ≤ 3.68133. That is, we obtain two matrices A,B,
A with 4

`
2 rows and Z columns and B with Z rows and 4

`
2 columns. The rows of A and the

columns of B represent the ways L∩OL and R∩OR, respectively, contribute to the solution. The
Z columns of A and rows B are ordered such that column i and row i form a valid assignment
for all 1 ≤ i ≤ Z and we get

C := (−1) · ([(−1) · A] ? [(−1) · B]),

the distance product of A and B with inverted signs for obtaining the maximum over the
entries. Other than for previous distance product applications, we do not need to post-process
matrix C, since the paths in ∆L and ∆R do not overlap.

By Theorem 4, we obtain an overall running time of O(4(ω−1) `
2 ·6.68

`
2 ·`n+n3) = O(22.746``n+

n3) for fast matrix multiplication constant ω < 2.376. �

By Proposition 1 and Lemma 4 we achieve an algorithm for Planar Longest Path of
running time O(25.58

√
n).

6 Conclusions

We established a combination of dynamic programming and fast matrix multiplication as an
important tool for finding fast exact algorithms for NP-hard problems. Even though the currently
best constant ω < 2.376 of fast matrix multiplication is of rather theoretical interest, there exist
indeed some practical sub-cubic runtime algorithms that help improving the runtime for solving
all mentioned problems. An interesting side-effect of our technique is that any improvement on
the constant ω has a direct effect on the runtime behavior for solving the considered problems.
E.g., for Planar Dominating Set; under the assumption that ω = 2, we come to the point
where the constant in the computation is 3 what equals the number of vertex states, which is the
natural lower bound for dynamic programming. Currently, [34] have made some conjecture on an



improvement for distance product, which would enable us to apply our approach to optimization
problems with arbitrary weights.

It is easy to answer the question why our technique does not help for getting faster tree-
decomposition based algorithms. The answer lies in the different parameter; even though tree-
decompositions can have the same structure as branch-decompositions (see [16]), fast matrix
multiplication does not affect the theoretical worst case behavior—though practically it is an
improvement. For the planar case, an interesting question arises: can we change the structure
of tree-decompositions to attack its disadvantage against sphere cut decompositions? This ques-
tion has been partially answered in [13] by introducing geometric tree-decompositions, where the
intersection of two adjacent bags form a noose. Geometric tree-decompositions T would get appli-
cable to fast matrix multiplication if we had “well-balanced” separators in T . That is, we assume
that the three sets L,R, F—defined in the same way for geometric tree-decompositions as for sc-
decompositions—are of equal cardinality for every three adjacent bags. Since |L|+ |R|+ |F | ≤ tw,
we thus would have that |L|, |R|, |F | ≤ tw

3 . Applying the fast matrix multiplication method for

example to Planar Vertex Cover, this would lead to a 2
ω
3

tw(T ) · nO(1) algorithm, where
ω < 2.376. Does every planar graph have a geometric tree-decomposition with well-balanced
separators?

Another interesting question, that comes to ones mind, is since the intersection set I is not
considered at all for matrix multiplication: Is there anything to win for dynamic programming
if we use 3-dimensional matrices as a data structure? That is, if we have the third dimension
labeled with Se(I)?
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