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In this chapter we consider approximation methods for challenging, compu-
tationally intensive DP problems. We discussed a number of such methods
in Chapter 6 of Vol. I and Chapter 1 of the present volume, such as for
example rollout and other one-step lookahead approaches. Here our focus
will be on algorithms that are mostly patterned after two principal methods
of infinite horizon DP: policy and value iteration. These algorithms form
the core of a methodology known by various names, such as approximate
dynamic programming, or neuro-dynamic programming, or reinforcement
learning.

A principal aim of the methods of this chapter is to address problems
with very large number of states n. In such problems, ordinary linear
algebra operations such as n-dimensional inner products, are prohibitively
time-consuming, and indeed it may be impossible to even store an n-vector
in a computer memory. Our methods will involve linear algebra operations
of dimension much smaller than n, and require only that the components
of n-vectors are just generated when needed rather than stored.

Another aim of the methods of this chapter is to address model-free
situations, i.e., problems where a mathematical model is unavailable or
hard to construct. Instead, the system and cost structure may be sim-
ulated (think, for example, of a queueing network with complicated but
well-defined service disciplines at the queues). The assumption here is that
there is a computer program that simulates, for a given control u, the prob-
abilistic transitions from any given state i to a successor state j according
to the transition probabilities pij(u), and also generates a corresponding
transition cost g(i, u, j).

Given a simulator, it may be possible to use repeated simulation to
calculate (at least approximately) the transition probabilities of the system
and the expected stage costs by averaging, and then to apply the methods
discussed in earlier chapters. The methods of this chapter, however, are
geared towards an alternative possibility, which is much more attractive
when one is faced with a large and complex system, and one contemplates
approximations. Rather than estimate explicitly the transition probabil-
ities and costs, we will aim to approximate the cost function of a given
policy or even the optimal cost-to-go function by generating one or more
simulated system trajectories and associated costs, and by using some form
of “least squares fit.”

Implicit in the rationale of methods based on cost function approxi-
mation is of course the hypothesis that a more accurate cost-to-go approx-
imation will yield a better one-step or multistep lookahead policy. This
is a reasonable but by no means self-evident conjecture, and may in fact
not even be true in a given problem. In another type of method, which
we will discuss somewhat briefly, we use simulation in conjunction with a
gradient or other method to approximate directly an optimal policy with
a policy of a given parametric form. This type of method does not aim at
good cost function approximation through which a well-performing policy
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may be obtained. Rather it aims directly at finding a policy with good
performance.

Let us also mention, two other approximate DP methods, which we
have discussed at various points in other parts of the book, but we will not
consider further: rollout algorithms (Sections 6.4, 6.5 of Vol. I, and Section
1.3.5 of Vol. II), and approximate linear programming (Section 1.3.4).

Our main focus will be on two types of methods: policy evaluation al-
gorithms , which deal with approximation of the cost of a single policy (and
can also be embedded within a policy iteration scheme), and Q-learning
algorithms, which deal with approximation of the optimal cost. Let us
summarize each type of method, focusing for concreteness on the finite-
state discounted case.

Policy Evaluation Algorithms

With this class of methods, we aim to approximate the cost function Jµ(i)
of a policy µ with a parametric architecture of the form J̃(i, r), where
r is a parameter vector (cf. Section 6.3.5 of Vol. I). This approximation
may be carried out repeatedly, for a sequence of policies, in the context
of a policy iteration scheme. Alternatively, it may be used to construct
an approximate cost-to-go function of a single suboptimal/heuristic policy,
which can be used in an on-line rollout scheme, with one-step or multistep
lookahead. We focus primarily on two types of methods.†

In the first class of methods, called direct , we use simulation to collect
samples of costs for various initial states, and fit the architecture J̃ to
the samples through some least squares problem. This problem may be
solved by several possible algorithms, including linear least squares methods
based on simple matrix inversion. Gradient methods have also been used
extensively, and will be described in Section 6.2.

The second and currently more popular class of methods is called
indirect . Here, we obtain r by solving an approximate version of Bellman’s
equation. We will focus exclusively on the case of a linear architecture,
where J̃ is of the form Φr, and Φ is a matrix whose columns can be viewed
as basis functions (cf. Section 6.3.5 of Vol. I). In an important method of

† In another type of policy evaluation method, often called the Bellman equa-

tion error approach, which we will discuss briefly in Section 6.8.4, the parameter
vector r is determined by minimizing a measure of error in satisfying Bellman’s
equation; for example, by minimizing over r

‖J̃ − T J̃‖,

where ‖ · ‖ is some norm. If ‖ · ‖ is a Euclidean norm, and J̃(i, r) is linear in r,

this minimization is a linear least squares problem.
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this type, we obtain the parameter vector r by solving the equation

Φr = ΠT (Φr), (6.1)

where Π denotes projection with respect to a suitable norm on the subspace
of vectors of the form Φr, and T is either the mapping Tµ or a related
mapping, which also has Jµ as its unique fixed point [here ΠT (Φr) denotes
the projection of the vector T (Φr) on the subspace].†

We can view Eq. (6.1) as a form of projected Bellman equation. We
will show that for a special choice of the norm of the projection, ΠT is
a contraction mapping, so the projected Bellman equation has a unique
solution Φr∗. We will discuss several iterative methods for finding r∗ in
Section 6.3. All these methods use simulation and can be shown to converge
under reasonable assumptions to r∗, so they produce the same approximate
cost function. However, they differ in their speed of convergence and in
their suitability for various problem contexts. Here are the methods that we
will focus on in Section 6.3 for discounted problems, and also in Sections 6.6-
6.8 for other types of problems. They all depend on a parameter λ ∈ [0, 1],
whose role will be discussed later.

(1) TD(λ) or temporal differences method . This algorithm may be viewed
as a stochastic iterative method for solving a version of the projected
equation (6.1) that depends on λ. The algorithm embodies important
ideas and has played an important role in the development of the
subject, but in practical terms, it is usually inferior to the next two
methods, so it will be discussed in less detail.

(2) LSTD(λ) or least squares temporal differences method . This algo-
rithm computes and solves a progressively more refined simulation-
based approximation to the projected Bellman equation (6.1).

(3) LSPE(λ) or least squares policy evaluation method . This algorithm
is based on the idea of executing value iteration within the lower
dimensional space spanned by the basis functions. Conceptually, it
has the form

Φrk+1 = ΠT (Φrk) + simulation noise, (6.2)

† Another method of this type is based on aggregation (cf. Section 6.3.4 of

Vol. I) and is discussed in Section 6.4. This approach can also be viewed as a

problem approximation approach (cf. Section 6.3.3 of Vol. I): the original problem

is approximated with a related “aggregate” problem, which is then solved exactly

to yield a cost-to-go approximation for the original problem. The aggregation

counterpart of the equation Φr = ΠT (Φr) has the form Φr = ΦDT (Φr), where

Φ and D are matrices whose rows are restricted to be probability distributions

(the aggregation and disaggregation probabilities, respectively).
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i.e., the current value iterate T (Φrk) is projected on S and is suitably
approximated by simulation. The simulation noise tends to 0 asymp-
totically, so assuming that ΠT is a contraction, the method converges
to the solution of the projected Bellman equation (6.1). There are
also a number of variants of LSPE(λ). Both LSPE(λ) and its vari-
ants have the same convergence rate as LSTD(λ), because they share
a common bottleneck: the slow speed of simulation.

Q-Learning Algorithms

With this class of methods, we aim to compute, without any approximation,
the optimal cost function (not just the cost function of a single policy). Q-
learning maintains and updates for each state-control pair (i, u) an estimate
of the expression that is minimized in the right-hand side of Bellman’s
equation. This is called the Q-factor of the pair (i, u), and is denoted
by Q∗(i, u). The Q-factors are updated with what may be viewed as a
simulation-based form of value iteration, as will be explained in Section
6.5. An important advantage of using Q-factors is that when they are
available, they can be used to obtain an optimal control at any state i
simply by minimizing Q∗(i, u) over u ∈ U(i), so the transition probabilities
of the problem are not needed.

On the other hand, for problems with a large number of state-control
pairs, Q-learning is often impractical because there may be simply too
many Q-factors to update. As a result, the algorithm is primarily suitable
for systems with a small number of states (or for aggregated/few-state
versions of more complex systems). There are also algorithms that use
parametric approximations for the Q-factors (see Section 6.5), although
their theoretical basis is generally less solid.

Chapter Organization

Throughout this chapter, we will focus almost exclusively on perfect state
information problems, involving a Markov chain with a finite number of
states i, transition probabilities pij(u), and single stage costs g(i, u, j). Ex-
tensions of many of the ideas to continuous state spaces are possible, but
they are beyond our scope. We will consider first, in Sections 6.1-6.5, the
discounted problem using the notation of Section 1.3. Section 6.1 pro-
vides a broad overview of cost approximation architectures and their uses
in approximate policy iteration. Section 6.2 focuses on direct methods for
policy evaluation. Section 6.3 is a long section on a major class of indirect
methods for policy evaluation, which are based on the projected Bellman
equation. Section 6.4 discusses methods based on aggregation. Section 6.5
discusses Q-learning and its variations, and extends the projected Bellman
equation approach to the case of multiple policies, and particularly to opti-
mal stopping problems. Stochastic shortest path and average cost problems
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are discussed in Sections 6.6 and 6.7, respectively. Section 6.8 extends and
elaborates on the projected Bellman equation approach of Sections 6.3,
6.6, and 6.7, discusses another approach based on the Bellman equation
error, and generalizes the aggregation methodology. Section 6.9 describes
methods based on parametric approximation of policies rather than cost
functions.

6.1 GENERAL ISSUES OF COST APPROXIMATION

Most of the methodology of this chapter deals with approximation of some
type of cost function (optimal cost, cost of a policy, Q-factors, etc). The
purpose of this section is to highlight the main issues involved, without
getting too much into the mathematical details.

We start with general issues of parametric approximation architec-
tures, which we have also discussed in Vol. I (Section 6.3.5). We then
consider approximate policy iteration (Section 6.1.2), and the two general
approaches for approximate cost evaluation (direct and indirect; Section
6.1.3). In Section 6.1.4, we discuss various special structures that can be
exploited to simplify approximate policy iteration. In Sections 6.1.5 and
6.1.6 we provide orientation into the main mathematical issues underlying
the methodology, and focus on two of its main components: contraction
mappings and simulation.

6.1.1 Approximation Architectures

The major use of cost approximation is for obtaining a one-step lookahead
suboptimal policy (cf. Section 6.3 of Vol. I).† In particular, suppose that
we use J̃(j, r) as an approximation to the optimal cost of the finite-state
discounted problem of Section 1.3. Here J̃ is a function of some chosen
form (the approximation architecture) and r is a parameter/weight vector.
Once r is determined, it yields a suboptimal control at any state i via the
one-step lookahead minimization

µ̃(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

. (6.3)

The degree of suboptimality of µ̃, as measured by ‖Jµ̃ − J∗‖∞, is bounded
by a constant multiple of the approximation error according to

‖Jµ̃ − J∗‖∞ ≤ 2α

1 − α
‖J̃ − J∗‖∞,

† We may also use a multiple-step lookahead minimization, with a cost-to-go

approximation at the end of the multiple-step horizon. Conceptually, single-step

and multiple-step lookahead approaches are similar, and the cost-to-go approxi-

mation algorithms of this chapter apply to both.
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as shown in Prop. 1.3.7. This bound is qualitative in nature, as it tends to
be quite conservative in practice.

An alternative possibility is to obtain a parametric approximation
Q̃(i, u, r) of the Q-factor of the pair (i, u), defined in terms of the optimal
cost function J∗ as

Q∗(i, u) =

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ∗(j)
)

.

Since Q∗(i, u) is the expression minimized in Bellman’s equation, given the
approximation Q̃(i, u, r), we can generate a suboptimal control at any state
i via

µ̃(i) = arg min
u∈U(i)

Q̃(i, u, r).

The advantage of using Q-factors is that in contrast with the minimiza-
tion (6.3), the transition probabilities pij(u) are not needed in the above
minimization. Thus Q-factors are better suited to the model-free context.

Note that we may similarly use approximations to the cost functions
Jµ and Q-factors Qµ(i, u) of specific policies µ. A major use of such ap-
proximations is in the context of an approximate policy iteration scheme;
see Section 6.1.2.

The choice of architecture is very significant for the success of the
approximation approach. One possibility is to use the linear form

J̃(i, r) =

s
∑

k=1

rkφk(i), (6.4)

where r = (r1, . . . , rs) is the parameter vector, and φk(i) are some known
scalars that depend on the state i. Thus, for each state i, the approximate
cost J̃(i, r) is the inner product φ(i)′r of r and

φ(i) =







φ1(i)
...

φs(i)






.

We refer to φ(i) as the feature vector of i, and to its components as features
(see Fig. 6.1.1). Thus the cost function is approximated by a vector in the
subspace

S = {Φr | r ∈ ℜs},

where

Φ =







φ1(1) . . . φs(1)
...

...
...

φ1(n) . . . φs(n)






=







φ(1)′

...
φ(n)′






.
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State i Feature Extraction
on Mapping on Mapping

g Feature Vector φ(i) ) Linear

) Linear Cost
Approximator φ(i)′r

Figure 6.1.1 A linear feature-based architecture. It combines a mapping that

extracts the feature vector φ(i) =
(

φ1(i), . . . , φs(i)
)′

associated with state i, and
a parameter vector r to form a linear cost approximator.

We can view the s columns of Φ as basis functions, and Φr as a linear
combination of basis functions.

Features, when well-crafted, can capture the dominant nonlinearities
of the cost function, and their linear combination may work very well as an
approximation architecture. For example, in computer chess (Section 6.3.5
of Vol. I) where the state is the current board position, appropriate fea-
tures are material balance, piece mobility, king safety, and other positional
factors.

Example 6.1.1 (Polynomial Approximation)

An important example of linear cost approximation is based on polynomial
basis functions. Suppose that the state consists of q integer components
x1, . . . , xq, each taking values within some limited range of integers. For
example, in a queueing system, xk may represent the number of customers
in the kth queue, where k = 1, . . . , q. Suppose that we want to use an
approximating function that is quadratic in the components xk. Then we
can define a total of 1 + q + q2 basis functions that depend on the state
x = (x1, . . . , xq) via

φ0(x) = 1, φk(x) = xk, φkm(x) = xkxm, k, m = 1, . . . , q.

A linear approximation architecture that uses these functions is given by

J̃(x, r) = r0 +

q
∑

k=1

rkxk +

q
∑

k=1

q
∑

m=k

rkmxkxm,

where the parameter vector r has components r0, rk, and rkm, with k =
1, . . . , q, m = k, . . . , q. In fact, any kind of approximating function that is
polynomial in the components x1, . . . , xq can be constructed similarly.

It is also possible to combine feature extraction with polynomial approx-

imations. For example, the feature vector φ(i) =
(

φ1(i), . . . , φs(i)
)′

trans-
formed by a quadratic polynomial mapping, leads to approximating functions
of the form

J̃(i, r) = r0 +

s
∑

k=1

rkφk(i) +

s
∑

k=1

s
∑

ℓ=1

rkℓφk(i)φℓ(i),
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where the parameter vector r has components r0, rk, and rkℓ, with k, ℓ =
1, . . . , s. This function can be viewed as a linear cost approximation that
uses the basis functions

w0(i) = 1, wk(i) = φk(i), wkℓ(i) = φk(i)φℓ(i), k, ℓ = 1, . . . , s.

Example 6.1.2 (Interpolation)

A common type of approximation of a function J is based on interpolation.
Here, a set I of special states is selected, and the parameter vector r has one
component ri per state i ∈ I , which is the value of J at i:

ri = J(i), i ∈ I.

The value of J at states i /∈ I is approximated by some form of interpolation
using r.

Interpolation may be based on geometric proximity. For a simple ex-
ample that conveys the basic idea, let the system states be the integers within
some interval, let I be a subset of special states, and for each state i let i and
ī be the states in I that are closest to i from below and from above. Then for
any state i, J̃(i, r) is obtained by linear interpolation of the costs ri = J(i)
and rī = J (̄i):

J̃(i, r) =
i − i

ī − i
ri +

ī − i

ī − i
rī.

The scalars multiplying the components of r may be viewed as features, so
the feature vector of i above consists of two nonzero features (the ones cor-
responding to i and ī), with all other features being 0. Similar examples can
be constructed for the case where the state space is a subset of a multidimen-
sional space (see Example 6.3.13 of Vol. I).

A generalization of the preceding example is approximation based on
aggregation; see Section 6.3.4 of Vol. I and the subsequent Section 6.4 in
this chapter. There are also interesting nonlinear approximation architec-
tures, including those defined by neural networks, perhaps in combination
with feature extraction mappings (see Bertsekas and Tsitsiklis [BeT96], or
Sutton and Barto [SuB98] for further discussion). In this chapter, we will
mostly focus on the case of linear architectures, because many of the policy
evaluation algorithms of this chapter are valid only for that case.

We note that there has been considerable research on automatic ba-
sis function generation approaches (see e.g., Keller, Mannor, and Precup
[KMP06], and Jung and Polani [JuP07]). Moreover it is possible to use
standard basis functions which may be computed by simulation (perhaps
with simulation error). The following example discusses this possibility.
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Example 6.1.3 (Krylov Subspace Generating Functions)

We have assumed so far that the columns of Φ, the basis functions, are known,
and the rows φ(i)′ of Φ are explicitly available to use in the various simulation-
based formulas. We will now discuss a class of basis functions that may not
be available, but may be approximated by simulation in the course of various
algorithms. For concreteness, let us consider the evaluation of the cost vector

Jµ = (I − αPµ)−1gµ

of a policy µ in a discounted MDP. Then Jµ has an expansion of the form

Jµ =

∞
∑

t=0

αtP t
µgµ.

Thus gµ, Pµgµ, . . . , P s
µgµ yield an approximation based on the first s+1 terms

of the expansion, and seem suitable choices as basis functions. Also a more
general expansion is

Jµ = J +

∞
∑

t=0

αtP t
µq,

where J is any vector in ℜn and q is the residual vector

q = TµJ − J = gµ + αPµJ − J ;

this can be seen from the equation Jµ −J = αPµ(Jµ −J)+ q. Thus the basis
functions J, q, Pµq, . . . , P s−1

µ q yield an approximation based on the first s + 1
terms of the preceding expansion.

Generally, to implement various methods in subsequent sections with
basis functions of the form P m

µ gµ, m ≥ 0, one would need to generate the ith
components (P m

µ gµ)(i) for any given state i, but these may be hard to calcu-
late. However, it turns out that one can use instead single sample approxi-
mations of (P m

µ gµ)(i), and rely on the averaging mechanism of simulation to
improve the approximation process. The details of this are beyond our scope
and we refer to the original sources (Bertsekas and Yu [BeY07], [BeY09]) for
further discussion and specific implementations.

We finally mention the possibility of optimal selection of basis func-
tions within some restricted class. In particular, consider an approximation
subspace

Sθ =
{

Φ(θ)r | r ∈ ℜs
}

,

where the s columns of the n×s matrix Φ are basis functions parametrized
by a vector θ. Assume that for a given θ, there is a corresponding vector
r(θ), obtained using some algorithm, so that Φ(θ)r(θ) is an approximation
of a cost function J (various such algorithms will be presented later in
this chapter). Then we may wish to select θ so that some measure of
approximation quality is optimized. For example, suppose that we can
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compute the true cost values J(i) (or more generally, approximations to
these values) for a subset of selected states I. Then we may determine θ
so that

∑

i∈I

(

J(i) − φ(i, θ)′r(θ)
)2

is minimized, where φ(i, θ)′ is the ith row of Φ(θ). Alternatively, we may
determine θ so that the norm of the error in satisfying Bellman’s equation,

∥

∥Φ(θ)r(θ) − T
(

Φ(θ)r(θ)
)∥

∥

2
,

is minimized. Gradient and random search algorithms for carrying out such
minimizations have been proposed in the literature (see Menache, Mannor,
and Shimkin [MMS06], and Yu and Bertsekas [YuB09]).

6.1.2 Approximate Policy Iteration

Let us consider a form of approximate policy iteration, where we com-
pute simulation-based approximations J̃(·, r) to the cost functions Jµ of
stationary policies µ, and we use them to compute new policies based on
(approximate) policy improvement. We impose no constraints on the ap-
proximation architecture, so J̃(i, r) may be linear or nonlinear in r.

Suppose that the current policy is µ, and for a given r, J̃(i, r) is an
approximation of Jµ(i). We generate an “improved” policy µ using the
formula

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

, for all i. (6.5)

The method is illustrated in Fig. 6.1.2. Its theoretical basis was discussed in
Section 1.3 (cf. Prop. 1.3.6), where it was shown that if the policy evaluation
is accurate to within δ (in the sup-norm sense), then for an α-discounted
problem, the method will yield in the limit (after infinitely many policy
evaluations) a stationary policy that is optimal to within

2αδ

(1 − α)2
,

where α is the discount factor. Experimental evidence indicates that this
bound is usually conservative. Furthermore, often just a few policy evalu-
ations are needed before the bound is attained.

When the sequence of policies obtained actually converges to some µ̂,
then it can be proved that µ̂ is optimal to within

2αδ

1 − α
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Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Generate “Improved” Policy µ

Evaluate Approximate Cost Φr

Using Simulation

Figure 6.1.2 Block diagram of approximate policy iteration.

(see Section 6.3.8 and also Section 6.4.2, where it is shown that if policy
evaluation is done using an aggregation approach, the generated sequence
of policies does converge).

A simulation-based implementation of the algorithm is illustrated in
Fig. 6.1.3. It consists of four parts:

(a) The simulator , which given a state-control pair (i, u), generates the
next state j according to the system’s transition probabilities.

(b) The decision generator , which generates the control µ(i) of the im-
proved policy at the current state i for use in the simulator.

(c) The cost-to-go approximator , which is the function J̃(j, r) that is used
by the decision generator.

(d) The cost approximation algorithm, which accepts as input the output
of the simulator and obtains the approximation J̃(·, r) of the cost of
µ.

Note that there are two policies µ and µ, and parameter vectors r
and r, which are simultaneously involved in this algorithm. In particular,
r corresponds to the current policy µ, and the approximation J̃(·, r) is used
in the policy improvement Eq. (6.5) to generate the new policy µ. At the
same time, µ drives the simulation that generates samples to be used by
the algorithm that determines the parameter r corresponding to µ, which
will be used in the next policy iteration.

The Issue of Exploration

Let us note an important generic difficulty with simulation-based policy
iteration: to evaluate a policy µ, we need to generate cost samples using
that policy, but this biases the simulation by underrepresenting states that
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System Simulator

r Decision Generator
) Decision µ(i)

Cost-to-Go Approximatorn Generator
r Supplies Values J̃(j, r)

i Cost Approximation

n Algorithm

J̃(j, r)

State i

) Samples

Figure 6.1.3 Simulation-based implementation approximate policy iteration al-
gorithm. Given the approximation J̃(i, r), we generate cost samples of the “im-
proved” policy µ by simulation (the “decision generator” module). We use these
samples to generate the approximator J̃(i, r) of µ.

are unlikely to occur under µ. As a result, the cost-to-go estimates of
these underrepresented states may be highly inaccurate, causing potentially
serious errors in the calculation of the improved control policy µ via the
policy improvement Eq. (6.5).

The difficulty just described is known as inadequate exploration of the
system’s dynamics because of the use of a fixed policy. It is a particularly
acute difficulty when the system is deterministic, or when the randomness
embodied in the transition probabilities is “relatively small.” One possibil-
ity for guaranteeing adequate exploration of the state space is to frequently
restart the simulation and to ensure that the initial states employed form
a rich and representative subset. A related approach, called iterative re-
sampling, is to enrich the sampled set of states in evaluating the current
policy µ as follows: derive an initial cost evaluation of µ, simulate the next
policy µ obtained on the basis of this initial evaluation to obtain a set of
representative states S visited by µ, and repeat the evaluation of µ using
additional trajectories initiated from S.

Still another frequently used approach is to artificially introduce some
extra randomization in the simulation, by occasionally using a randomly
generated transition rather than the one dictated by the policy µ (although
this may not necessarily work because all admissible controls at a given
state may produce “similar” successor states). This and other possibilities
to improve exploration will be discussed further in Section 6.3.7.
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Limited Sampling/Optimistic Policy Iteration

In the approximate policy iteration approach discussed so far, the policy
evaluation of the cost of the improved policy µmust be fully carried out. An
alternative, known as optimistic policy iteration, is to replace the policy µ
with the policy µ after only a few simulation samples have been processed,
at the risk of J̃(·, r) being an inaccurate approximation of Jµ.

Optimistic policy iteration has been successfully used, among oth-
ers, in an impressive backgammon application (Tesauro [Tes92]). However,
the associated theoretical convergence properties are not fully understood.
As will be illustrated by the discussion of Section 6.3.8 (see also Section
6.4.2 of [BeT96]), optimistic policy iteration can exhibit fascinating and
counterintuitive behavior, including a natural tendency for a phenomenon
called chattering, whereby the generated parameter sequence {rk} con-
verges, while the generated policy sequence oscillates because the limit of
{rk} corresponds to multiple policies.

We note that optimistic policy iteration tends to deal better with
the problem of exploration discussed earlier, because with rapid changes
of policy, there is less tendency to bias the simulation towards particular
states that are favored by any single policy.

Approximate Policy Iteration Based on Q-Factors

The approximate policy iteration method discussed so far relies on the cal-
culation of the approximation J̃(·, r) to the cost function Jµ of the current
policy, which is then used for policy improvement using the minimization

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

.

Carrying out this minimization requires knowledge of the transition proba-
bilities pij(u) and calculation of the associated expected values for all con-
trols u ∈ U(i) (otherwise a time-consuming simulation of these expected
values is needed). A model-free alternative is to compute approximate Q-
factors

Q̃(i, u, r) ≈
n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

, (6.6)

and use the minimization

µ(i) = arg min
u∈U(i)

Q̃(i, u, r) (6.7)

for policy improvement. Here, r is an adjustable parameter vector and
Q̃(i, u, r) is a parametric architecture, possibly of the linear form

Q̃(i, u, r) =

s
∑

k=1

rkφk(i, u),
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where φk(i, u) are basis functions that depend on both state and control
[cf. Eq. (6.4)].

The important point here is that given the current policy µ, we can
construct Q-factor approximations Q̃(i, u, r) using any method for con-
structing cost approximations J̃(i, r). The way to do this is to apply the
latter method to the Markov chain whose states are the pairs (i, u), and
the probability of transition from (i, u) to (j, v) is

pij(u) if v = µ(j),

and is 0 otherwise. This is the probabilistic mechanism by which state-
control pairs evolve under the stationary policy µ.

A major concern with this approach is that the state-control pairs
(i, u) with u 6= µ(i) are never generated in this Markov chain, so they are
not represented in the cost samples used to construct the approximation
Q̃(i, u, r) (see Fig. 6.1.4). This creates an acute difficulty due to diminished
exploration, which must be carefully addressed in any simulation-based
implementation. We will return to the use of Q-factors in Section 6.5,
where we will discuss exact and approximate implementations of the Q-
learning algorithm.

) States

s (i, u)

s j

pij(u)

g(i, u, j)

µ(j)

(

j, µ(j)
)

State-Control Pairs: Fixed Policy µ

Figure 6.1.4 Markov chain underlying Q-factor-based policy evaluation, associ-
ated with policy µ. The states are the pairs (i, u), and the probability of transition
from (i, u) to (j, v) is pij(u) if v = µ(j), and is 0 otherwise. Thus, after the first
transition, the generated pairs are exclusively of the form (i, µ(i)); pairs of the
form (i, u), u 6= µ(i), are not explored.

The Issue of Policy Oscillations

Contrary to exact policy iteration, which converges to an optimal policy
in a fairly regular manner, approximate policy iteration may oscillate. By
this we mean that after a few iterations, policies tend to repeat in cycles.
The associated parameter vectors r may also tend to oscillate. This phe-
nomenon is explained in Section 6.3.8 and can be particularly damaging,
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because there is no guarantee that the policies involved in the oscillation are
“good” policies, and there is often no way to verify how well they perform
relative to the optimal.

We note that oscillations can be avoided and approximate policy it-
eration can be shown to converge under special conditions that arise in
particular when aggregation is used for policy evaluation. These condi-
tions involve certain monotonicity assumptions regarding the choice of the
matrix Φ, which are fulfilled in the case of aggregation (see Section 6.3.8,
and also Section 6.4.2). However, when Φ is chosen in an unrestricted man-
ner, as often happens in practical applications of the projected equation
methods of Section 6.3, policy oscillations tend to occur generically, and
often for very simple problems (see Section 6.3.8 for an example).

6.1.3 Direct and Indirect Approximation

We will now preview two general algorithmic approaches for approximating
the cost function of a fixed stationary policy µ within a subspace of the
form S = {Φr | r ∈ ℜs}. (A third approach, based on aggregation, uses a
special type of matrix Φ and is discussed in Section 6.4.) The first and most
straightforward approach, referred to as direct , is to find an approximation
J̃ ∈ S that matches best Jµ in some normed error sense, i.e.,

min
J̃∈S

‖Jµ − J̃‖,

or equivalently,
min
r∈ℜs

‖Jµ − Φr‖

(see the left-hand side of Fig. 6.1.5).† Here, ‖ · ‖ is usually some (possibly
weighted) Euclidean norm, in which case the approximation problem is a
linear least squares problem, whose solution, denoted r∗, can in principle be
obtained in closed form by solving the associated quadratic minimization
problem. If the matrix Φ has linearly independent columns, the solution is
unique and can also be represented as

Φr∗ = ΠJµ,

where Π denotes projection with respect to ‖·‖ on the subspace S.† A major
difficulty is that specific cost function values Jµ(i) can only be estimated

† Note that direct approximation may be used in other approximate DP

contexts, such as finite horizon problems, where we use sequential single-stage

approximation of the cost-to-go functions Jk, going backwards (i.e., starting with

JN , we obtain a least squares approximation of JN−1, which is used in turn to

obtain a least squares approximation of JN−2, etc). This approach is sometimes

called fitted value iteration.

† In what follows in this chapter, we will not distinguish between the linear

operation of projection and the corresponding matrix representation, denoting

them both by Π. The meaning should be clear from the context.
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Subspace S = {Φr | r ∈ ℜs}

0

Subspace S = {Φr | r ∈ ℜs}

0

or Jµ

ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected

d form of Bellman’s equation

Direct Method: Projection of

of cost vector Jµ

Figure 6.1.5 Two methods for approximating the cost function Jµ as a linear
combination of basis functions (subspace S). In the direct method (figure on

the left), Jµ is projected on S. In the indirect method (figure on the right), the
approximation is found by solving Φr = ΠTµ(Φr), a projected form of Bellman’s
equation.

through their simulation-generated cost samples, as we discuss in Section
6.2.

An alternative and more popular approach, referred to as indirect ,
is to approximate the solution of Bellman’s equation J = TµJ on the
subspace S (see the right-hand side of Fig. 6.1.5). An important example
of this approach, which we will discuss in detail in Section 6.3, leads to the
problem of finding a vector r∗ such that

Φr∗ = ΠTµ(Φr∗). (6.8)

We can view this equation as a projected form of Bellman’s equation. We
will consider another type of indirect approach based on aggregation in
Section 6.4.

We note that solving projected equations as approximations to more
complex/higher-dimensional equations has a long history in scientific com-
putation in the context of Galerkin methods (see e.g., [Kra72]). For exam-
ple, some of the most popular finite-element methods for partial differential
equations are of this type. However, the use of the Monte Carlo simulation
ideas that are central in approximate DP is an important characteristic
that differentiates the methods of the present chapter from the Galerkin
methodology.

An important fact here is that ΠTµ is a contraction, provided we use
a special weighted Euclidean norm for projection, as will be proved in Sec-
tion 6.3 for discounted problems (Prop. 6.3.1). In this case, Eq. (6.8) has
a unique solution, and allows the use of algorithms such as LSPE(λ) and
TD(λ), which are discussed in Section 6.3. Unfortunately, the contrac-
tion property of ΠTµ does not extend to the case where Tµ is replaced by
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T , the DP mapping corresponding to multiple/all policies, although there
are some interesting exceptions, one of which relates to optimal stopping
problems and is discussed in Section 6.5.3.

6.1.4 Simplifications

We now consider various situations where the special structure of the prob-
lem may be exploited to simplify policy iteration or other approximate DP
algorithms.

Problems with Uncontrollable State Components

In many problems of interest the state is a composite (i, y) of two compo-
nents i and y, and the evolution of the main component i can be directly
affected by the control u, but the evolution of the other component y can-
not. Then as discussed in Section 1.4 of Vol. I, the value and the policy
iteration algorithms can be carried out over a smaller state space, the space
of the controllable component i. In particular, we assume that given the
state (i, y) and the control u, the next state (j, z) is determined as follows:
j is generated according to transition probabilities pij(u, y), and z is gen-
erated according to conditional probabilities p(z | j) that depend on the
main component j of the new state (see Fig. 6.1.6). Let us assume for
notational convenience that the cost of a transition from state (i, y) is of
the form g(i, y, u, j) and does not depend on the uncontrollable component
z of the next state (j, z). If g depends on z it can be replaced by

ĝ(i, y, u, j) =
∑

z

p(z | j)g(i, y, u, j, z)

in what follows.

) States

s j

pij(u)

Controllable State Components

(i, y) (j, z)

g(i, y, u, j)

) Control u

) No Control
p(z | j)

Figure 6.1.6 States and transition probabilities for a problem with uncontrollable
state components.
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For an α-discounted problem, consider the mapping T̂ defined by

(T̂ Ĵ)(i) =
∑

y

p(y | i)(T Ĵ)(i, y)

=
∑

y

p(y | i) min
u∈U(i,y)

n
∑

j=0

pij(u, y)
(

g(i, y, u, j) + αĴ(j)
)

,

and the corresponding mapping for a stationary policy µ,

(T̂µĴ)(i) =
∑

y

p(y | i)(TµJ)(i, y)

=
∑

y

p(y | i)
n
∑

j=0

pij

(

µ(i, y), y
)(

g
(

i, y, µ(i, y), j
)

+ αĴ(j)
)

.

Bellman’s equation, defined over the controllable state component i,
takes the form

Ĵ(i) = (T̂ Ĵ)(i), for all i. (6.9)

The typical iteration of the simplified policy iteration algorithm consists of
two steps:

(a) The policy evaluation step, which given the current policy µk(i, y),
computes the unique Ĵµk(i), i = 1, . . . , n, that solve the linear system

of equations Ĵµk = T̂µk Ĵµk or equivalently

Ĵµk(i) =
∑

y

p(y | i)
n
∑

j=0

pij

(

µk(i, y)
)

(

g
(

i, y, µk(i, y), j
)

+ αĴµk (j)
)

for all i = 1, . . . , n.

(b) The policy improvement step, which computes the improved policy
µk+1(i, y), from the equation T̂µk+1 Ĵµk = T̂ Ĵµk or equivalently

µk+1(i, y) = arg min
u∈U(i,y)

n
∑

j=0

pij(u, y)
(

g(i, y, u, j) + αĴµk (j)
)

,

for all (i, y).

Approximate policy iteration algorithms can be similarly carried out in
reduced form.
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Problems with Post-Decision States

In some stochastic problems, the transition probabilities and stage costs
have the special form

pij(u) = q
(

j | f(i, u)
)

, (6.10)

where f is some function and q
(

· | f(i, u)
)

is a given probability distribution
for each value of f(i, u). In words, the dependence of the transitions on
(i, u) comes through the function f(i, u). We may exploit this structure by
viewing f(i, u) as a form of state: a post-decision state that determines the
probabilistic evolution to the next state. An example where the conditions
(6.10) are satisfied are inventory control problems of the type considered in
Section 4.2 of Vol. I. There the post-decision state at time k is xk +uk, i.e.,
the post-purchase inventory, before any demand at time k has been filled.

Post-decision states can be exploited when the stage cost has no de-
pendence on j,† i.e., when we have (with some notation abuse)

g(i, u, j) = g(i, u).

Then the optimal cost-to-go within an α-discounted context at state i is
given by

J∗(i) = min
u∈U(i)

[

g(i, u) + αV ∗
(

f(i, u)
)

]

,

while the optimal cost-to-go at post-decision state m (optimal sum of costs
of future stages) is given by

V ∗(m) =

n
∑

j=1

q(j | m)J∗(j).

In effect, we consider a modified problem where the state space is enlarged
to include post-decision states, with transitions between ordinary states
and post-decision states specified by f and q

(

· | f(i, u)
)

(see Fig. 6.1.7).
The preceding two equations represent Bellman’s equation for this modified
problem.

Combining these equations, we have

V ∗(m) =

n
∑

j=1

q(j | m) min
u∈U(j)

[

g(j, u) + αV ∗
(

f(j, u)
)

]

, ∀ m, (6.11)

which can be viewed as Bellman’s equation over the space of post-decision
states m. This equation is similar to Q-factor equations, but is defined

† If there is dependence on j, one may consider computing, possibly by simu-

lation, (an approximation to) g(i, u) =
∑n

j=1
pij(u)g(i, u, j), and using it in place

of g(i, u, j).
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State-Control Pairs

s (i, u) s (j, v)

g(i, u,m)

m

s Post-Decision States

m = f(i, u)
q(j | m)
Control v

No Control u

Figure 6.1.7 Modified problem where the post-decision states are viewed as
additional states.

over the space of post-decision states rather than the larger space of state-
control pairs. The advantage of this equation is that once the function V ∗

is calculated (or approximated), the optimal policy can be computed as

µ∗(i) = arg min
u∈U(i)

[

g(i, u) + αV ∗
(

f(i, u)
)

]

,

which does not require the knowledge of transition probabilities and com-
putation of an expected value. It involves a deterministic optimization,
and it can be used in a model-free context (as long as the functions g and
f are known). This is important if the calculation of the optimal policy is
done on-line.

It is straightforward to construct a policy iteration algorithm that is
defined over the space of post-decision states. The cost-to-go function Vµ

of a stationary policy µ is the unique solution of the corresponding Bellman
equation

Vµ(m) =

n
∑

j=1

q(j | m)
(

g
(

j, µ(j)
)

+ αVµ

(

f
(

j, µ(j)
))

)

, ∀ m.

Given Vµ, the improved policy is obtained as

µ(i) = arg min
u∈U(i)

[

g(i, u) + Vµ

(

f(i, u)
)

]

, i = 1, . . . , n.

There are also corresponding approximate policy iteration methods with
cost function approximation.

An advantage of this method when implemented by simulation is that
the computation of the improved policy does not require the calculation
of expected values. Moreover, with a simulator, the policy evaluation of
Vµ can be done in model-free fashion, without explicit knowledge of the
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probabilities q(j | m). These advantages are shared with policy iteration
algorithms based on Q-factors. However, when function approximation is
used in policy iteration, the methods using post-decision states may have a
significant advantage over Q-factor-based methods: they use cost function
approximation in the space of post-decision states, rather than the larger
space of state-control pairs, and they are less susceptible to difficulties due
to inadequate exploration.

We note that there is a similar simplification with post-decision states
when g is of the form

g(i, u, j) = h
(

f(i, u), j
)

,

for some function h. Then we have

J∗(i) = min
u∈U(i)

V ∗
(

f(i, u)
)

,

where V ∗ is the unique solution of the equation

V ∗(m) =

n
∑

j=1

q(j | m)

(

h(m, j) + α min
u∈U(j)

V ∗
(

f(j, u)
)

)

, ∀ m.

Here V ∗(m) should be interpreted as the optimal cost-to-go from post-
decision state m, including the cost h(m, j) incurred within the stage when
m was generated . When h does not depend on j, the algorithm takes the
simpler form

V ∗(m) = h(m) + α
n
∑

j=1

q(j | m) min
u∈U(j)

V ∗
(

f(j, u)
)

, ∀ m. (6.12)

Example 6.1.4 (Tetris)

Let us revisit the game of tetris, which was discussed in Example 1.4.1 of Vol.
I in the context of problems with an uncontrollable state component. We
will show that it also admits a post-decision state. Assuming that the game
terminates with probability 1 for every policy (a proof of this has been given
by Burgiel [Bur97]), we can model the problem of finding an optimal tetris
playing strategy as a stochastic shortest path problem.

The state consists of two components:

(1) The board position, i.e., a binary description of the full/empty status
of each square, denoted by x.

(2) The shape of the current falling block, denoted by y (this is the uncon-
trollable component).

The control, denoted by u, is the horizontal positioning and rotation applied
to the falling block.
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Bellman’s equation over the space of the controllable state component
takes the form

Ĵ(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵ
(

f(x, y, u)
)

]

, for all x,

where g(x, y, u) and f(x, y, u) are the number of points scored (rows removed),
and the board position when the state is (x, y) and control u is applied,
respectively [cf. Eq. (6.9)].

This problem also admits a post-decision state. Once u is applied at
state (x, y), a new board position m is obtained, and the new state component
x is obtained from m after removing a number of rows. Thus we have

m = f(x, y, u)

for some function f , and m also determines the reward of the stage, which
has the form h(m) for some m [h(m) is the number of complete rows that
can be removed from m]. Thus, m may serve as a post-decision state, and
the corresponding Bellman’s equation takes the form (6.12), i.e.,

V ∗(m) = h(m) +

n
∑

(x,y)

q(m, x, y) max
u∈U(j)

V ∗
(

f(x, y, u)
)

, ∀ m,

where (x, y) is the state that follows m, and q(m,x, y) are the corresponding
transition probabilities. Note that both of the simplified Bellman’s equations
share the same characteristic: they involve a deterministic optimization.

Trading off Complexity of Control Space with Complexity of
State Space

Suboptimal control using cost function approximation deals fairly well with
large state spaces, but still encounters serious difficulties when the number
of controls available at each state is large. In particular, the minimization

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + J̃(j, r)
)

using an approximate cost-go function J̃(j, r) may be very time-consuming.
For multistep lookahead schemes, the difficulty is exacerbated, since the
required computation grows exponentially with the size of the lookahead
horizon. It is thus useful to know that by reformulating the problem, it
may be possible to reduce the complexity of the control space by increasing
the complexity of the state space. The potential advantage is that the
extra state space complexity may still be dealt with by using function
approximation and/or rollout.
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In particular, suppose that the control u consists of m components,

u = (u1, . . . , um).

Then, at a given state i, we can break down u into the sequence of the
m controls u1, u2, . . . , um, and introduce artificial intermediate “states”
(i, u1), (i, u1, u2), . . . , (i, u1, . . . , um−1), and corresponding transitions to mo-
del the effect of these controls. The choice of the last control component
um at “state” (i, u1, . . . , um−1) marks the transition to state j according
to the given transition probabilities pij(u). In this way the control space is
simplified at the expense of introducing m − 1 additional layers of states,
and m− 1 additional cost-to-go functions

J1(i, u1), J2(i, u1, u2), . . . , Jm−1(i, u1, . . . , um−1).

To deal with the increase in size of the state space we may use rollout, i.e.,
when at “state” (i, u1, . . . , uk), assume that future controls uk+1, . . . , um

will be chosen by a base heuristic. Alternatively, we may use function
approximation, that is, introduce cost-to-go approximations

J̃1(i, u1, r1), J̃2(i, u1, u2, r2), . . . , J̃m−1(i, u1, . . . , um−1, rm−1),

in addition to J̃(i, r). We refer to [BeT96], Section 6.1.4, for further dis-
cussion.

A potential complication in the preceding schemes arises when the
controls u1, . . . , um are coupled through a constraint of the form

u = (u1, . . . , um) ∈ U(i). (6.13)

Then, when choosing a control uk, care must be exercised to ensure that
the future controls uk+1, . . . , um can be chosen together with the already
chosen controls u1, . . . , uk to satisfy the feasibility constraint (6.13). This
requires a variant of the rollout algorithm that works with constrained DP
problems; see Exercise 6.19 of Vol. I, and also references [Ber05a], [Ber05b].

6.1.5 Monte Carlo Simulation

In this subsection and the next, we will try to provide some orientation
into the mathematical content of this chapter. The reader may wish to
skip these subsections at first, but return to them later for a higher level
view of some of the subsequent technical material.

The methods of this chapter rely to a large extent on simulation in
conjunction with cost function approximation in order to deal with large
state spaces. The advantage that simulation holds in this regard can be
traced to its ability to compute (approximately) sums with a very large
number of terms. These sums arise in a number of contexts: inner product
and matrix-vector product calculations, the solution of linear systems of
equations and policy evaluation, linear least squares problems, etc.
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Example 6.1.5 (Approximate Policy Evaluation)

Consider the approximate solution of the Bellman equation that corresponds
to a given policy of an n-state discounted problem:

J = g + αPJ ;

where P is the transition probability matrix and α is the discount factor.
Let us adopt a hard aggregation approach (cf. Section 6.3.4 of Vol. I; see
also Section 6.4 later in this chapter), whereby we divide the n states in two
disjoint subsets I1 and I2 with I1 ∪ I2 = {1, . . . , n}, and we use the piecewise
constant approximation

J(i) =
{

r1 if i ∈ I1,
r2 if i ∈ I2.

This corresponds to the linear feature-based architecture J ≈ Φr, where Φ
is the n × 2 matrix with column components equal to 1 or 0, depending on
whether the component corresponds to I1 or I2.

We obtain the approximate equations

J(i) ≈ g(i) + α





∑

j∈I1

pij



 r1 + α





∑

j∈I2

pij



 r2, i = 1, . . . , n,

which we can reduce to just two equations by forming two weighted sums
(with equal weights) of the equations corresponding to the states in I1 and
I2, respectively:

r1 ≈ 1

n1

∑

i∈I1

J(i), r2 ≈ 1

n2

∑

i∈I2

J(i),

where n1 and n2 are numbers of states in I1 and I2, respectively. We thus
obtain the aggregate system of the following two equations in r1 and r2:

r1 =
1

n1

∑

i∈I1

g(i) +
α

n1





∑

i∈I1

∑

j∈I1

pij



 r1 +
α

n1





∑

i∈I1

∑

j∈I2

pij



 r2,

r2 =
1

n2

∑

i∈I2

g(i) +
α

n2





∑

i∈I2

∑

j∈I1

pij



 r1 +
α

n2





∑

i∈I2

∑

j∈I2

pij



 r2.

Here the challenge, when the number of states n is very large, is the calcu-
lation of the large sums in the right-hand side, which can be of order O(n2).
Simulation allows the approximate calculation of these sums with complexity
that is independent of n. This is similar to the advantage that Monte-Carlo
integration holds over numerical integration, as discussed in standard texts
on Monte-Carlo methods.
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To see how simulation can be used with advantage, let us consider
the problem of estimating a scalar sum of the form

z =
∑

ω∈Ω

v(ω),

where Ω is a finite set and v : Ω 7→ ℜ is a function of ω. We introduce a
distribution ξ that assigns positive probability ξ(ω) to every element ω ∈ Ω
(but is otherwise arbitrary), and we generate a sequence

{ω1, . . . , ωT }

of samples from Ω, with each sample ωt taking values from Ω according to
ξ. We then estimate z with

ẑT =
1

T

T
∑

t=1

v(ωt)

ξ(ωt)
. (6.14)

Clearly ẑ is unbiased:

E[ẑT ] =
1

T

T
∑

t=1

E

[

v(ωt)

ξ(ωt)

]

=
1

T

T
∑

t=1

∑

ω∈Ω

ξ(ω)
v(ω)

ξ(ω)
=
∑

ω∈Ω

v(ω) = z.

Suppose now that the samples are generated in a way that the long-
term frequency of each ω ∈ Ω is equal to ξ(ω), i.e.,

lim
T→∞

T
∑

t=1

δ(ωt = ω)

T
= ξ(ω), ∀ ω ∈ Ω, (6.15)

where δ(·) denotes the indicator function [δ(E) = 1 if the event E has
occurred and δ(E) = 0 otherwise]. Then from Eq. (6.14), we have

zT =
∑

ω∈Ω

T
∑

t=1

δ(ωt = ω)

T
· v(ω)

ξ(ω)
,

and by taking limit as T → ∞ and using Eq. (6.15),

lim
T→∞

ẑT =
∑

ω∈Ω

lim
T→∞

T
∑

t=1

δ(ωt = ω)

T
· v(ω)

ξ(ω)
=
∑

ω∈Ω

v(ω) = z.

Thus in the limit, as the number of samples increases, we obtain the desired
sum z. An important case, of particular relevance to the methods of this
chapter, is when Ω is the set of states of an irreducible Markov chain. Then,
if we generate an infinitely long trajectory {ω1, ω2, . . .} starting from any
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initial state ω1, then the condition (6.15) will hold with probability 1, with
ξ(ω) being the steady-state probability of state ω.

The samples ωt need not be independent for the preceding properties
to hold, but if they are, then the variance of ẑT is the sum of the variances
of the independent components in the sum of Eq. (6.14), and is given by

var(ẑT ) =
1

T 2

T
∑

t=1

∑

ω∈Ω

ξ(ω)

(

v(ω)

ξ(ω)
− z

)2

=
1

T

∑

ω∈Ω

ξ(ω)

(

v(ω)

ξ(ω)
− z

)2

.

(6.16)
An important observation from this formula is that the accuracy of the
approximation does not depend on the number of terms in the sum z (the
number of elements in Ω), but rather depends on the variance of the random
variable that takes values v(ω)/ξ(ω), ω ∈ Ω, with probabilities ξ(ω).† Thus,
it is possible to execute approximately linear algebra operations of very
large size through Monte Carlo sampling (with whatever distributions may
be convenient in a given context), and this a principal idea underlying the
methods of this chapter.

In the case where the samples are dependent, the variance formula
(6.16) does not hold, but similar qualitative conclusions can be drawn under
various assumptions, which ensure that the dependencies between samples
become sufficiently weak over time (see the specialized literature).

Monte Carlo simulation is also important in the context of this chap-
ter for an additional reason. In addition to its ability to compute efficiently
sums of very large numbers of terms, it can often do so in model-free fash-
ion (i.e., by using a simulator, rather than an explicit model of the terms
in the sum).

6.1.6 Contraction Mappings and Simulation

Most of the chapter (Sections 6.3-6.8) deals with the approximate com-
putation of a fixed point of a (linear or nonlinear) mapping T within a

† The selection of the distribution
{

ξ(ω) | ω ∈ Ω
}

can be optimized (at least
approximately), and methods for doing this are the subject of the technique of
importance sampling . In particular, assuming that samples are independent and
that v(ω) ≥ 0 for all ω ∈ Ω, we have from Eq. (6.16) that the optimal distribution
is ξ∗ = v/z and the corresponding minimum variance value is 0. However, ξ∗

cannot be computed without knowledge of z. Instead, ξ is usually chosen to be
an approximation to v, normalized so that its components add to 1. Note that
we may assume that v(ω) ≥ 0 for all ω ∈ Ω without loss of generality: when v
takes negative values, we may decompose v as

v = v+ − v−,

so that both v+ and v− are positive functions, and then estimate separately

z+ =
∑

ω∈Ω
v+(ω) and z− =

∑

ω∈Ω
v−(ω).
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subspace
S = {Φr | r ∈ ℜs}.

We will discuss a variety of approaches with distinct characteristics, but at
an abstract mathematical level, these approaches fall into two categories:

(a) A projected equation approach, based on the equation

Φr = ΠT (Φr), (6.17)

where Π is a projection operation with respect to a Euclidean norm
(see Section 6.3 for discounted problems, and Sections 7.1-7.3 for other
types of problems).

(b) An aggregation approach, based on an equation of the form

Φr = ΦDT (Φr), (6.18)

where D is an s× n matrix whose rows are probability distributions
and Φ are matrices that satisfy certain restrictions.

When iterative methods are used for solution of Eqs. (6.17) and (6.18),
it is important that ΠT and ΦDT be contractions over the subspace S.
Note here that even if T is a contraction mapping (as is ordinarily the
case in DP), it does not follow that ΠT and ΦDT are contractions. In
our analysis, this is resolved by requiring that T be a contraction with
respect to a norm such that Π or ΦD, respectively, is a nonexpansive
mapping. As a result, we need various assumptions on T , Φ, and D, which
guide the algorithmic development. We postpone further discussion of these
issues, but for the moment we note that the projection approach revolves
mostly around Euclidean norm contractions and cases where T is linear,
while the aggregation/Q-learning approach revolves mostly around sup-
norm contractions.

If T is linear, both equations (6.17) and (6.18) may be written as
square systems of linear equations of the form Cr = d, whose solution can
be approximated by simulation. The approach here is very simple: we
approximate C and d with simulation-generated approximations Ĉ and d̂,
and we solve the resulting (approximate) linear system Ĉr = d̂ by matrix

inversion, thereby obtaining the solution estimate r̂ = Ĉ−1d̂. A primary
example is the LSTD methods of Section 6.3.4. We may also try to solve
the linear system Ĉr = d̂ iteratively, which leads to the LSPE type of
methods, some of which produce estimates of r simultaneously with the
generation of the simulation samples of w (see Section 6.3.4).

Stochastic Approximation Methods

Let us also mention some stochastic iterative algorithms that are based
on a somewhat different simulation idea, and fall within the framework of
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stochastic approximation methods . The TD(λ) and Q-learning algorithms
fall in this category. For an informal orientation, let us consider the com-
putation of the fixed point of a general mapping F : ℜn 7→ ℜn that is a
contraction mapping with respect to some norm, and involves an expected
value: it has the form

F (x) = E
{

f(x,w)
}

, (6.19)

where x ∈ ℜn is a generic argument of F , w is a random variable and f(·, w)
is a given function. Assume for simplicity that w takes values in a finite
set W with probabilities p(w), so that the fixed point equation x = F (x)
has the form

x =
∑

w∈W

p(w)f(x,w).

We generate a sequence of samples {w1, w2, . . .} such that the empirical
frequency of each value w ∈W is equal to its probability p(w), i.e.,

lim
k→∞

nk(w)

k
= p(w), w ∈ W,

where nk(w) denotes the number of times that w appears in the first k
samples w1, . . . , wk. This is a reasonable assumption that may be verified
by application of various laws of large numbers to the sampling method at
hand.

Given the samples, we may consider approximating the fixed point of
F by the (approximate) fixed point iteration

xk+1 =
∑

w∈W

nk(w)

k
f(xk, w), (6.20)

which can also be equivalently written as

xk+1 =
1

k

k
∑

i=1

f(xk, wi). (6.21)

We may view Eq. (6.20) as a simulation-based version of the convergent
fixed point iteration

xk+1 = F (xk) =
∑

w∈W

p(w)f(xk, w),

where the probabilities p(w) have been replaced by the empirical frequen-

cies nk(w)
k . Thus we expect that the simulation-based iteration (6.21) con-

verges to the fixed point of F .
On the other hand the iteration (6.21) has a major flaw: it requires,

for each k, the computation of f(xk, wi) for all sample values wi, i =
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1, . . . , k. An algorithm that requires much less computation than iteration
(6.21) is

xk+1 =
1

k

k
∑

i=1

f(xi, wi), k = 1, 2, . . . , (6.22)

where only one value of f per sample wi is computed. This iteration can
also be written in the simple recursive form

xk+1 = (1 − γk)xk + γkf(xk, wk), k = 1, 2, . . . , (6.23)

with the stepsize γk having the form γk = 1/k. As an indication of its
validity, we note that if it converges to some limit then this limit must be
the fixed point of F , since for large k the iteration (6.22) becomes essentially
identical to the iteration xk+1 = F (xk). Other stepsize rules, which satisfy
γk → 0 and

∑∞
k=1 γk = ∞, may also be used. However, a rigorous analysis

of the convergence of iteration (6.23) is nontrivial and is beyond our scope.
The book by Bertsekas and Tsitsiklis [BeT96] contains a fairly detailed
development, which is tailored to DP. Other more general references are
Benveniste, Metivier, and Priouret [BMP90], Borkar [Bor08], Kushner and
Yin [KuY03], and Meyn [Mey07].

6.2 DIRECT POLICY EVALUATION - GRADIENT METHODS

We will now consider the direct approach for policy evaluation.† In par-
ticular, suppose that the current policy is µ, and for a given r, J̃(i, r) is
an approximation of Jµ(i). We generate an “improved” policy µ using the
formula

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

, for all i. (6.24)

To evaluate approximately Jµ, we select a subset of “representative” states

S̃ (perhaps obtained by some form of simulation), and for each i ∈ S̃, we
obtain M(i) samples of the cost Jµ(i). The mth such sample is denoted by

† Direct policy evaluation methods have been historically important, and

provide an interesting contrast with indirect methods. However, they are cur-

rently less popular than the projected equation methods to be considered in the

next section, despite some generic advantages (the option to use nonlinear ap-

proximation architectures, and the capability of more accurate approximation).

The material of this section will not be substantially used later, so the reader

may read lightly this section without loss of continuity.
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c(i,m), and mathematically, it can be viewed as being Jµ(i) plus some sim-
ulation error/noise.‡ Then we obtain the corresponding parameter vector
r by solving the following least squares problem

min
r

∑

i∈S̃

M(i)
∑

m=1

(

J̃(i, r) − c(i,m)
)2
, (6.25)

and we repeat the process with µ and r replacing µ and r, respectively (see
Fig. 6.1.1).

The least squares problem (6.25) can be solved exactly if a linear
approximation architecture is used, i.e., if

J̃(i, r) = φ(i)′r,

where φ(i)′ is a row vector of features corresponding to state i. In this case
r is obtained by solving the linear system of equations

∑

i∈S̃

M(i)
∑

m=1

φ(i)
(

φ(i)′r − c(i,m)
)

= 0,

which is obtained by setting to 0 the gradient with respect to r of the
quadratic cost in the minimization (6.25). When a nonlinear architecture
is used, we may use gradient-like methods for solving the least squares
problem (6.25), as we will now discuss.

Batch Gradient Methods for Policy Evaluation

Let us focus on an N -transition portion (i0, . . . , iN ) of a simulated trajec-
tory, also called a batch. We view the numbers

N−1
∑

t=k

αt−kg
(

it, µ(it), it+1

)

, k = 0, . . . , N − 1,

‡ The manner in which the samples c(i, m) are collected is immaterial for

the purposes of the subsequent discussion. Thus one may generate these samples

through a single very long trajectory of the Markov chain corresponding to µ, or

one may use multiple trajectories, with different starting points, to ensure that

enough cost samples are generated for a “representative” subset of states. In

either case, the samples c(i, m) corresponding to any one state i will generally be

correlated as well as “noisy.” Still the average 1
M(i)

∑M(i)

m=1
c(i, m) will ordinarily

converge to Jµ(i) as M(i) → ∞ by a law of large numbers argument [see Exercise

6.2 and the discussion in [BeT96], Sections 5.1, 5.2, regarding the behavior of the

average when M(i) is finite and random].
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as cost samples, one per initial state i0, . . . , iN−1, which can be used for
least squares approximation of the parametric architecture J̃(i, r) [cf. Eq.
(6.25)]:

min
r

N−1
∑

k=0

1

2

(

J̃(ik, r) −
N−1
∑

t=k

αt−kg
(

it, µ(it), it+1

)

)2

. (6.26)

One way to solve this least squares problem is to use a gradient method,
whereby the parameter r associated with µ is updated at time N by

r := r − γ

N−1
∑

k=0

∇J̃(ik, r)

(

J̃(ik, r) −
N−1
∑

t=k

αt−kg
(

it, µ(it), it+1

)

)

. (6.27)

Here, ∇J̃ denotes gradient with respect to r and γ is a positive stepsize,
which is usually diminishing over time (we leave its precise choice open for
the moment). Each of the N terms in the summation in the right-hand
side above is the gradient of a corresponding term in the least squares
summation of problem (6.26). Note that the update of r is done after
processing the entire batch, and that the gradients ∇J̃(ik, r) are evaluated
at the preexisting value of r, i.e., the one before the update.

In a traditional gradient method, the gradient iteration (6.27) is
repeated, until convergence to the solution of the least squares problem
(6.26), i.e., a single N -transition batch is used. However, there is an im-
portant tradeoff relating to the size N of the batch: in order to reduce
simulation error and generate multiple cost samples for a representatively
large subset of states, it is necessary to use a large N , yet to keep the work
per gradient iteration small it is necessary to use a small N .

To address the issue of size of N , an expanded view of the gradient
method is preferable in practice, whereby batches may be changed after one
or more iterations. Thus, in this more general method, the N -transition
batch used in a given gradient iteration comes from a potentially longer
simulated trajectory, or from one of many simulated trajectories. A se-
quence of gradient iterations is performed, with each iteration using cost
samples formed from batches collected in a variety of different ways and
whose lengthN may vary. Batches may also overlap to a substantial degree.

We leave the method for generating simulated trajectories and form-
ing batches open for the moment, but we note that it influences strongly
the result of the corresponding least squares optimization (6.25), provid-
ing better approximations for the states that arise most frequently in the
batches used. This is related to the issue of ensuring that the state space is
adequately “explored,” with an adequately broad selection of states being
represented in the least squares optimization, cf. our earlier discussion on
the exploration issue.

The gradient method (6.27) is simple, widely known, and easily un-
derstood. There are extensive convergence analyses of this method and
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its variations, for which we refer to the literature cited at the end of the
chapter. These analyses often involve considerable mathematical sophis-
tication, particularly when multiple batches are involved, because of the
stochastic nature of the simulation and the complex correlations between
the cost samples. However, qualitatively, the conclusions of these analyses
are consistent among themselves as well as with practical experience, and
indicate that:

(1) Under some reasonable technical assumptions, convergence to a lim-
iting value of r that is a local minimum of the associated optimization
problem is expected.

(2) For convergence, it is essential to gradually reduce the stepsize to 0,
the most popular choice being to use a stepsize proportional to 1/m,
while processing the mth batch. In practice, considerable trial and
error may be needed to settle on an effective stepsize choice method.
Sometimes it is possible to improve performance by using a different
stepsize (or scaling factor) for each component of the gradient.

(3) The rate of convergence is often very slow, and depends among other
things on the initial choice of r, the number of states and the dynamics
of the associated Markov chain, the level of simulation error, and
the method for stepsize choice. In fact, the rate of convergence is
sometimes so slow, that practical convergence is infeasible, even if
theoretical convergence is guaranteed.

Incremental Gradient Methods for Policy Evaluation

We will now consider a variant of the gradient method called incremental .
This method can also be described through the use of N -transition batches,
but we will see that (contrary to the batch version discussed earlier) the
method is suitable for use with very long batches, including the possibility
of a single very long simulated trajectory, viewed as a single batch.

For a givenN -transition batch (i0, . . . , iN), the batch gradient method
processes the N transitions all at once, and updates r using Eq. (6.27). The
incremental method updates r a total of N times, once after each transi-
tion. Each time it adds to r the corresponding portion of the gradient in
the right-hand side of Eq. (6.27) that can be calculated using the newly
available simulation data. Thus, after each transition (ik, ik+1):

(1) We evaluate the gradient ∇J̃(ik, r) at the current value of r.

(2) We sum all the terms in the right-hand side of Eq. (6.27) that involve
the transition (ik, ik+1), and we update r by making a correction
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along their sum:

r := r − γ

(

∇J̃(ik, r)J̃(ik, r) −
(

k
∑

t=0

αk−t∇J̃(it, r)

)

g
(

ik, µ(ik), ik+1

)

)

.

(6.28)

By adding the parenthesized “incremental” correction terms in the above
iteration, we see that after N transitions, all the terms of the batch iter-
ation (6.27) will have been accumulated, but there is a difference: in the
incremental version, r is changed during the processing of the batch, and
the gradient ∇J̃(it, r) is evaluated at the most recent value of r [after the
transition (it, it+1)]. By contrast, in the batch version these gradients are
evaluated at the value of r prevailing at the beginning of the batch. Note
that the gradient sum in the right-hand side of Eq. (6.28) can be conve-
niently updated following each transition, thereby resulting in an efficient
implementation.

It can now be seen that because r is updated at intermediate transi-
tions within a batch (rather than at the end of the batch), the location of
the end of the batch becomes less relevant. It is thus possible to have very
long batches, and indeed the algorithm can be operated with a single very
long simulated trajectory and a single batch. In this case, for each state
i, we will have one cost sample for every time when state i is encountered
in the simulation. Accordingly state i will be weighted in the least squares
optimization in proportion to the frequency of its occurrence within the
simulated trajectory.

Generally, within the least squares/policy evaluation context of this
section, the incremental versions of the gradient methods can be imple-
mented more flexibly and tend to converge faster than their batch counter-
parts, so they will be adopted as the default in our discussion. The book
by Bertsekas and Tsitsiklis [BeT96] contains an extensive analysis of the
theoretical convergence properties of incremental gradient methods (they
are fairly similar to those of batch methods), and provides some insight into
the reasons for their superior performance relative to the batch versions; see
also the author’s nonlinear programming book [Ber99] (Section 1.5.2), the
paper by Bertsekas and Tsitsiklis [BeT00], and the author’s recent survey
[Ber10d]. Still, however, the rate of convergence can be very slow.

Implementation Using Temporal Differences – TD(1)

We now introduce an alternative, mathematically equivalent, implemen-
tation of the batch and incremental gradient iterations (6.27) and (6.28),
which is described with cleaner formulas. It uses the notion of temporal
difference (TD for short) given by

qk = J̃(ik, r)−αJ̃(ik+1, r)−g
(

ik, µ(ik), ik+1

)

, k = 0, . . . , N−2, (6.29)
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qN−1 = J̃(iN−1, r) − g
(

iN−1, µ(iN−1), iN
)

. (6.30)

In particular, by noting that the parenthesized term multiplying ∇J̃(ik, r)
in Eq. (6.27) is equal to

qk + αqk+1 + · · · + αN−1−kqN−1,

we can verify by adding the equations below that iteration (6.27) can also
be implemented as follows:

After the state transition (i0, i1), set

r := r − γq0∇J̃(i0, r).

After the state transition (i1, i2), set

r := r − γq1
(

α∇J̃(i0, r) + ∇J̃(i1, r)
)

.

Proceeding similarly, after the state transition (iN−1, t), set

r := r − γqN−1

(

αN−1∇J̃(i0, r) + αN−2∇J̃(i1, r) + · · · + ∇J̃(iN−1, r)
)

.

The batch version (6.27) is obtained if the gradients ∇J̃(ik, r) are
all evaluated at the value of r that prevails at the beginning of the batch.
The incremental version (6.28) is obtained if each gradient ∇J̃(ik, r) is
evaluated at the value of r that prevails when the transition (ik, ik+1) is
processed.

In particular, for the incremental version, we start with some vector
r0, and following the transition (ik, ik+1), k = 0, . . . , N − 1, we set

rk+1 = rk − γkqk

k
∑

t=0

αk−t∇J̃(it, rt), (6.31)

where the stepsize γk may very from one transition to the next. In the
important case of a linear approximation architecture of the form

J̃(i, r) = φ(i)′r, i = 1, . . . , n,

where φ(i) ∈ ℜs are some fixed vectors, it takes the form

rk+1 = rk − γkqk

k
∑

t=0

αk−tφ(it). (6.32)

This algorithm is known as TD(1), and we will see in Section 6.3.6 that it
is a limiting version (as λ→ 1) of the TD(λ) method discussed there.
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6.3 PROJECTED EQUATION METHODS

In this section, we consider the indirect approach, whereby the policy eval-
uation is based on solving a projected form of Bellman’s equation (cf. the
right-hand side of Fig. 6.1.5). We will be dealing with a single station-
ary policy µ, so we generally suppress in our notation the dependence on
control of the transition probabilities and the cost per stage. We thus con-
sider a stationary finite-state Markov chain, and we denote the states by
i = 1, . . . , n, the transition probabilities by pij , i, j = 1, . . . , n, and the stage
costs by g(i, j). We want to evaluate the expected cost of µ corresponding
to each initial state i, given by

Jµ(i) = lim
N→∞

E

{

N−1
∑

k=0

αkg(ik, ik+1)
∣

∣

∣ i0 = i

}

, i = 1, . . . , n,

where ik denotes the state at time k, and α ∈ (0, 1) is the discount factor.
We approximate Jµ(i) with a linear architecture of the form

J̃(i, r) = φ(i)′r, i = 1, . . . , n, (6.33)

where r is a parameter vector and φ(i) is an s-dimensional feature vector
associated with the state i. (Throughout this section, vectors are viewed
as column vectors, and a prime denotes transposition.) As earlier, we also
write the vector

(

J̃(1, r), . . . , J̃(n, r)
)′

in the compact form Φr, where Φ is the n× s matrix that has as rows the
feature vectors φ(i), i = 1, . . . , n. Thus, we want to approximate Jµ within

S = {Φr | r ∈ ℜs},

the subspace spanned by s basis functions, the columns of Φ. Our as-
sumptions in this section are the following (we will later discuss how our
methodology may be modified in the absence of these assumptions).

Assumption 6.3.1: The Markov chain has steady-state probabilities
ξ1, . . . , ξn, which are positive, i.e., for all i = 1, . . . , n,

lim
N→∞

1

N

N
∑

k=1

P (ik = j | i0 = i) = ξj > 0, j = 1, . . . , n.

Assumption 6.3.2: The matrix Φ has rank s.
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Assumption 6.3.1 is equivalent to assuming that the Markov chain is
irreducible, i.e., has a single recurrent class and no transient states. As-
sumption 6.3.2 is equivalent to the basis functions (the columns of Φ) being
linearly independent, and is analytically convenient because it implies that
each vector J in the subspace S is represented in the form Φr with a unique
vector r.

6.3.1 The Projected Bellman Equation

We will now introduce the projected form of Bellman’s equation. We use
a weighted Euclidean norm on ℜn of the form

‖J‖v =

√

√

√

√

n
∑

i=1

vi

(

J(i)
)2
,

where v is a vector of positive weights v1, . . . , vn. Let Π denote the projec-
tion operation onto S with respect to this norm. Thus for any J ∈ ℜn, ΠJ
is the unique vector in S that minimizes ‖J − Ĵ‖2

v over all Ĵ ∈ S. It can
also be written as

ΠJ = ΦrJ ,

where
rJ = arg min

r∈ℜs
‖J − Φr‖2

v, J ∈ ℜn. (6.34)

This is because Φ has rank s by Assumption 6.3.2, so a vector in S is
uniquely written in the form Φr.

Note that Π and rJ can be written explicitly in closed form. This can
be done by setting to 0 the gradient of the quadratic function

‖J − Φr‖2
v = (J − Φr)′V (J − Φr),

where V is the diagonal matrix with vi, i = 1, . . . , n, along the diagonal
[cf. Eq. (6.34)]. We thus obtain the necessary and sufficient optimality
condition

Φ′V (J − ΦrJ ) = 0, (6.35)

from which
rJ = (Φ′V Φ)−1Φ′V J,

and using the formula ΦrJ = ΠJ ,

Π = Φ(Φ′V Φ)−1Φ′V.

[The inverse (Φ′V Φ)−1 exists because Φ is assumed to have rank s; cf.
Assumption 6.3.2.] The optimality condition (6.35), through left multipli-
cation with r′, can also be equivalently expressed as

(Φr)′V (J − ΦrJ ) = 0, ∀ Φr ∈ S. (6.36)
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The interpretation is that the difference/approximation error J − ΦrJ is
orthogonal to the subspace S in the scaled geometry of the norm ‖ · ‖v (two
vectors x, y ∈ ℜn are called orthogonal if x′V y =

∑n
i=1 vixiyi = 0).

Consider now the mapping T given by

(TJ)(i) =

n
∑

i=1

pij

(

g(i, j) + αJ(j)
)

, i = 1, . . . , n,

the mapping ΠT (the composition of Π with T ), and the equation

Φr = ΠT (Φr). (6.37)

We view this as a projected/approximate form of Bellman’s equation, and
we view a solution Φr∗ of this equation as an approximation to Jµ. Note
that Φr∗ depends only on the projection norm and the subspace S, and
not on the matrix Φ, which provides just an algebraic representation of S,
i.e., all matrices Φ whose range space is S result in identical vectors Φr∗).

We know from Section 1.4 that T is a contraction with respect to
the sup-norm, but unfortunately this does not necessarily imply that T
is a contraction with respect to the norm ‖ · ‖v. We will next show an
important fact: if v is chosen to be the steady-state probability vector ξ,
then T is a contraction with respect to ‖ · ‖v, with modulus α. The critical
part of the proof is addressed in the following lemma.

Lemma 6.3.1: For any n×n stochastic matrix P that has a steady-
state probability vector ξ = (ξ1, . . . , ξn) with positive components, we
have

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ ℜn.

Proof: Let pij be the components of P . For all z ∈ ℜn, we have

‖Pz‖2
ξ =

n
∑

i=1

ξi





n
∑

j=1

pijzj





2

≤
n
∑

i=1

ξi

n
∑

j=1

pijz2
j

=
n
∑

j=1

n
∑

i=1

ξipijz2
j

=

n
∑

j=1

ξjz2
j

= ‖z‖2
ξ,
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where the inequality follows from the convexity of the quadratic func-
tion, and the next to last equality follows from the defining property
∑n

i=1 ξipij = ξj of the steady-state probabilities. Q.E.D.

We next note an important property of projections: they are nonex-
pansive, in the sense

‖ΠJ − ΠJ̄‖v ≤ ‖J − J̄‖v, for all J, J̄ ∈ ℜn.

To see this, note that by using the linearity of Π, we have

‖ΠJ−ΠJ̄‖2
v =

∥

∥Π(J−J̄)
∥

∥

2

v
≤
∥

∥Π(J−J̄)
∥

∥

2

v
+
∥

∥(I−Π)(J−J̄)
∥

∥

2

v
= ‖J−J̄‖2

v,

where the rightmost equality follows from the Pythagorean Theorem:†

‖X‖2
v = ‖ΠX‖2

v + ‖(I − Π)X‖2
v, for all X ∈ ℜn, (6.38)

applied with X = J − J̄ . Thus, for ΠT to be a contraction with respect to
‖ · ‖v, it is sufficient that T be a contraction with respect to ‖ · ‖v, since

‖ΠTJ − ΠT J̄‖v ≤ ‖TJ − T J̄‖v ≤ β‖J − J̄‖v,

where β is the modulus of contraction of T with respect to ‖ · ‖v (see Fig.
6.3.1). This leads to the following proposition.

Proposition 6.3.1: The mappings T and ΠT are contractions of
modulus α with respect to the weighted Euclidean norm ‖ · ‖ξ, where
ξ is the steady-state probability vector of the Markov chain.

Proof: We write T in the form TJ = g + αPJ, where g is the vector
with components

∑n
j=1 pijg(i, j), i = 1, . . . , n, and P is the matrix with

components pij . Then we have for all J, J̄ ∈ ℜn,

TJ − T J̄ = αP (J − J̄).

We thus obtain

‖TJ − T J̄‖ξ = α‖P (J − J̄)‖ξ ≤ α‖J − J̄‖ξ,

where the inequality follows from Lemma 6.3.1. Hence T is a contraction
of modulus α. The contraction property of ΠT follows from the contrac-
tion property of T and the nonexpansiveness property of Π noted earlier.
Q.E.D.

† The Pythagorean Theorem follows from the orthogonality of the vectors

ΠX and (I − Π)X in the scaled geometry of the norm ‖ · ‖v .
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Subspace S = {Φr | r ∈ ℜs}

J

TJ

J ΠTJ

J̄

T J̄

ΠT J̄0

Figure 6.3.1 Illustration of the contraction property of ΠT due to the nonex-
pansiveness of Π. If T is a contraction with respect to ‖ · ‖v, the Euclidean norm
used in the projection, then ΠT is also a contraction with respect to that norm,
since Π is nonexpansive and we have

‖ΠTJ − ΠT J̄‖v ≤ ‖TJ − T J̄‖v ≤ β‖J − J̄‖v ,

where β is the modulus of contraction of T with respect to ‖ · ‖v.

The next proposition gives an estimate of the error in estimating Jµ

with the fixed point of ΠT .

Proposition 6.3.2: Let Φr∗ be the fixed point of ΠT . We have

‖Jµ − Φr∗‖ξ ≤ 1√
1 − α2

‖Jµ − ΠJµ‖ξ.

Proof: We have

‖Jµ − Φr∗‖2
ξ = ‖Jµ − ΠJµ‖2

ξ +
∥

∥ΠJµ − Φr∗
∥

∥

2

ξ

= ‖Jµ − ΠJµ‖2
ξ +

∥

∥ΠTJµ − ΠT (Φr∗)
∥

∥

2

ξ

≤ ‖Jµ − ΠJµ‖2
ξ + α2‖Jµ − Φr∗‖2

ξ,

where the first equality uses the Pythagorean Theorem [cf. Eq. (6.38) with
X = Jµ − Φr∗], the second equality holds because Jµ is the fixed point of
T and Φr∗ is the fixed point of ΠT , and the inequality uses the contraction
property of ΠT . From this relation, the result follows. Q.E.D.

Note the critical fact in the preceding analysis: αP (and hence T )
is a contraction with respect to the projection norm ‖ · ‖ξ (cf. Lemma
6.3.1). Indeed, Props. 6.3.1 and 6.3.2 hold if T is any (possibly nonlinear)
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contraction with respect to the Euclidean norm of the projection (cf. Fig.
6.3.1).

The Matrix Form of the Projected Bellman Equation

Let us now write the projected Bellman equation Φr = ΠT (Φr) in explicit
form. We note that this is a linear equation, since the projection Π is linear
and also T is linear of the form

TJ = g + αPJ,

where g is the vector with components
∑n

j=1 pijg(i, j), i = 1, . . . , n, and
P is the matrix with components pij . The solution of the projected Bell-
man equation is the vector J = Φr∗, where r∗ satisfies the orthogonality
condition

Φ′Ξ
(

Φr∗ − (g + αPΦr∗)
)

= 0, (6.39)

with Ξ being the diagonal matrix with the steady-state probabilities ξ1, . . . , ξn
along the diagonal [cf. Eq. (6.36)].†

Thus the projected equation is written as

Cr∗ = d, (6.40)

where
C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg, (6.41)

and can be solved by matrix inversion:

r∗ = C−1d,

just like the Bellman equation, which can also be solved by matrix inversion,

J = (I − αP )−1g.

An important difference is that the projected equation has smaller dimen-
sion (s rather than n). Still, however, computing C and d using Eq. (6.41),
requires computation of inner products of size n, so for problems where n
is very large, the explicit computation of C and d is impractical. We will
discuss shortly efficient methods to compute inner products of large size by
using simulation and low dimensional calculations. The idea is that an in-
ner product, appropriately normalized, can be viewed as an expected value
(the weighted sum of a large number of terms), which can be computed by
sampling its components with an appropriate probability distribution and
averaging the samples, as discussed in Section 6.1.5.

† Here Φr∗ is the projection of g+αPΦr∗, so Φr∗−(g+αPΦr∗) is orthogonal
to the columns of Φ. Alternatively, r∗ solves the problem

min
r∈ℜs

∥

∥Φr − (g + αPΦr∗)
∥

∥

2

ξ
.

Setting to 0 the gradient with respect to r of the above quadratic expression, we

obtain Eq. (6.39).
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Subspace S = {Φr | r ∈ ℜs}

0

Value Iterate

e T (Φrk) = g + αPΦrk

Projection on S

Φrk+1

Φrk

Figure 6.3.2 Illustration of the projected value iteration (PVI) method

Φrk+1 = ΠT (Φrk).

At the typical iteration k, the current iterate Φrk is operated on with T , and the
generated vector T (Φrk) is projected onto S, to yield the new iterate Φrk+1.

6.3.2 Projected Value Iteration - Other Iterative Methods

We noted in Chapter 1 that for problems where n is very large, an iterative
method such as value iteration may be appropriate for solving the Bellman
equation J = TJ . Similarly, one may consider an iterative method for
solving the projected Bellman equation Φr = ΠT (Φr) or its equivalent
version Cr = d [cf. Eqs. (6.40)-(6.41)].

Since ΠT is a contraction (cf. Prop. 6.3.1), the first iterative method
that comes to mind is the analog of value iteration: successively apply ΠT ,
starting with an arbitrary initial vector Φr0:

Φrk+1 = ΠT (Φrk), k = 0, 1, . . . . (6.42)

Thus at iteration k, the current iterate Φrk is operated on with T , and
the generated value iterate T (Φrk) (which does not necessarily lie in S)
is projected onto S, to yield the new iterate Φrk+1 (see Fig. 6.3.2). We
refer to this as projected value iteration (PVI for short). Since ΠT is a
contraction, it follows that the sequence {Φrk} generated by PVI converges
to the unique fixed point Φr∗ of ΠT .

It is possible to write PVI explicitly by noting that

rk+1 = arg min
r∈ℜs

∥

∥Φr − (g + αPΦrk)
∥

∥

2

ξ
.

By setting to 0 the gradient with respect to r of the above quadratic ex-
pression, we obtain the orthogonality condition

Φ′Ξ
(

Φrk+1 − (g + αPΦrk)
)

= 0,
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[cf. Eq. (6.39)], which yields

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d), (6.43)

where C and d are given by Eq. (6.41).
From the point of view of DP, the PVI method makes intuitive sense,

and connects well with established DP theory. However, the methodology
of iterative methods for solving linear equations suggests a much broader
set of algorithmic possibilities. In particular, in a generic lass of methods,
the current iterate rk is corrected by the “residual” Crk−d (which tends to
0), after “scaling” with some s×s scaling matrix G, leading to the iteration

rk+1 = rk − γG(Crk − d), (6.44)

where γ is a positive stepsize, and G is some s× s scaling matrix.† When
G = (Φ′ΞΦ)−1 and γ = 1, we obtain the PVI method, but there are other
interesting possibilities. For example when G is the identity or a diagonal
approximation to (Φ′ΞΦ)−1, the iteration (6.44) is simpler than PVI in
that it does not require a matrix inversion (it does require, however, the
choice of a stepsize γ).

The iteration (6.44) converges to the solution of the projected equa-
tion if and only if the matrix I − γGC has eigenvalues strictly within the
unit circle. The following proposition shows that this is true when G is
positive definite symmetric, as long as the stepsize γ is small enough to
compensate for large components in the matrix G. This hinges on an im-
portant property of the matrix C, which we now define. Let us say that a
(possibly nonsymmetric) s× s matrix M is positive definite if

r′Mr > 0, ∀ r 6= 0.

We say that M is positive semidefinite if

r′Mr ≥ 0, ∀ r ∈ ℜs.

The following proposition shows that C is positive definite, and if G is
positive definite and symmetric, the iteration (6.44) is convergent for suf-
ficiently small stepsize γ.

† Iterative methods that involve incremental changes along directions of the

form Gf(x) are very common for solving a system of equations f(x) = 0. They

arise prominently in cases where f(x) is the gradient of a cost function, or has

certain monotonicity properties. They also admit extensions to the case where

there are constraints on x (see [Ber09b], [Ber11a] for an analysis that is relevant

to the present DP context).
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Proposition 6.3.3: The matrix C of Eq. (6.41) is positive definite.
Furthermore, if the s× s matrix G is symmetric and positive definite,
there exists γ > 0 such that the eigenvalues of

I − γGC

lie strictly within the unit circle for all γ ∈ (0, γ].

For the proof we need the following lemma, which is attributed to
Lyapunov (see Theorem 3.3.9, and Note 3.13.6 of Cottle, Pang, and Stone
[CPS92]).

Lemma 6.3.2: The eigenvalues of a positive definite matrix have
positive real parts.

Proof: Let M be a positive definite matrix. Then for sufficiently small
γ > 0 we have (γ/2)r′M ′Mr < r′Mr for all r 6= 0, or equivalently

∥

∥(I − γM)r
∥

∥

2
< ‖r‖2, ∀ r 6= 0,

implying that I−γM is a contraction mapping with respect to the standard
Euclidean norm. Hence the eigenvalues of I−γM lie within the unit circle.
Since these eigenvalues are 1 − γλ, where λ are the eigenvalues of M , it
follows that if M is positive definite, the eigenvalues of M have positive
real parts. Q.E.D.

Proof of Prop. 6.3.3: For all r ∈ ℜs, we have

‖ΠPΦr‖ξ ≤ ‖PΦr‖ξ ≤ ‖Φr‖ξ, (6.45)

where the first inequality follows from the Pythagorean Theorem,

‖PΦr‖2
ξ = ‖ΠPΦr‖2

ξ + ‖(I − Π)PΦr‖2
ξ ,

and the second inequality follows from Prop. 6.3.1. Also from properties of
projections, all vectors of the form Φr are orthogonal to all vectors of the
form x− Πx, i.e.,

r′Φ′Ξ(I − Π)x = 0, ∀ r ∈ ℜs, x ∈ ℜn, (6.46)

[cf. Eq. (6.36)]. Thus, we have for all r 6= 0,

r′Cr = r′Φ′Ξ(I − αP )Φr
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= r′Φ′Ξ
(

I − αΠP + α(Π − I)P
)

Φr

= r′Φ′Ξ(I − αΠP )Φr

= ‖Φr‖2
ξ − αr′Φ′ΞΠPΦr

≥ ‖Φr‖2
ξ − α‖Φr‖ξ · ‖ΠPΦr‖ξ

≥ (1 − α)‖Φr‖2
ξ

> 0,

where the third equality follows from Eq. (6.46), the first inequality follows
from the Cauchy-Schwartz inequality applied with inner product < x, y >=
x′Ξy, and the second inequality follows from Eq. (6.45). This proves the
positive definiteness of C.

If G is symmetric and positive definite, the matrix G1/2 exists and is
symmetric and positive definite. Let M = G1/2CG1/2, and note that since
C is positive definite, M is also positive definite, so from Lemma 6.3.2
it follows that its eigenvalues have positive real parts. The eigenvalues
of M and GC are equal (with eigenvectors that are multiples of G1/2 or
G−1/2 of each other), so the eigenvalues of GC have positive real parts. It
follows that the eigenvalues of I−γGC lie strictly within the unit circle for
sufficiently small γ > 0. This completes the proof of Prop. 6.3.3. Q.E.D.

Note that for the conclusion of Prop. 6.3.3 to hold, it is not necessary
that G is symmetric. It is sufficient that GC has eigenvalues with positive
real parts. An example is G = C′Σ−1, where Σ is a positive definite sym-
metric matrix, in which case GC = C′Σ−1C is a positive definite matrix.
Another example, which is important for our purposes as we will see later
(cf., Section 6.3.4), is

G = (C′Σ−1C + βI)−1C′Σ−1, (6.47)

where Σ is a positive definite symmetric matrix, and β is a positive scalar.
Then GC is given by

GC = (C′Σ−1C + βI)−1C′Σ−1C,

and can be shown to have real eigenvalues that lie in the interval (0, 1),
even if C is not positive definite.† As a result I−γGC has real eigenvalues
in the interval (0, 1) for any γ ∈ (0, 2].

† To see this let λ1, . . . , λs be the eigenvalues of C′Σ−1C and let UΛU ′ be
its singular value decomposition, where Λ = diag{λ1, . . . , λs} and U is a unitary
matrix (UU ′ = I ; see [Str09], [TrB97]). We also have C′Σ−1C + βI = U(Λ +
βI)U ′, so

GC =
(

U(Λ + βI)U ′
)−1

UΛU ′ = U(Λ + βI)−1ΛU ′.

It follows that the eigenvalues of GC are λi/(λi + β), i = 1, . . . , s, and lie in the
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Unfortunately, however, while PVI and its scaled version (6.44) are
conceptually important, they are not practical algorithms for problems
where n is very large. The reason is that the vector T (Φrk) is n-dimensional
and its calculation is prohibitive for the type of large problems that we aim
to address. Furthermore, even if T (Φrk) were calculated, its projection on
S requires knowledge of the steady-state probabilities ξ1, . . . , ξn, which are
generally unknown. Fortunately, both of these difficulties can be dealt with
through the use of simulation, as we discuss next.

6.3.3 Simulation-Based Methods

We will now consider approximate versions of the methods for solving the
projected equation, which involve simulation and low-dimensional calcu-
lations. The idea is very simple: we collect simulation samples from the
Markov chain associated with the policy, and we average them to form a
matrix Ck that approximates

C = Φ′Ξ(I − αP )Φ,

and a vector dk that approximates

d = Φ′Ξg;

[cf. Eq. (6.41)]. We then approximate the solution C−1d of the projected
equation with C−1

k dk, or we approximate the term (Crk − d) in the PVI
iteration (6.43) [or its scaled version (6.44)] with (Ckrk − dk).

The simulation can be done as follows: we generate an infinitely long
trajectory (i0, i1, . . .) of the Markov chain, starting from an arbitrary state
i0. After generating state it, we compute the corresponding row φ(it)′ of Φ,
and after generating the transition (it, it+1), we compute the corresponding
cost component g(it, it+1). After collecting k+1 samples (k = 0, 1, . . .), we
form

Ck =
1

k + 1

k
∑

t=0

φ(it)
(

φ(it) − αφ(it+1)
)′
, (6.48)

interval (0, 1). Actually, the iteration

rk+1 = rk − G(Crk − d),

[cf. Eq. (6.44)], where G is given by Eq. (6.47), is the so-called proximal point

algorithm applied to the problem of minimizing (Cr−d)′Σ−1(Cr−d) over r. From

known results about this algorithm (Martinet [Mar70] and Rockafellar [Roc76]) it

follows that the iteration will converge to a minimizing point of (Cr−d)′Σ−1(Cr−
d). Thus it will converge to some solution of the projected equation Cr = d, even

if there exist many solutions (as in the case where Φ does not have rank s).
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and

dk =
1

k + 1

k
∑

t=0

φ(it)g(it, it+1), (6.49)

where φ(i)′ denotes the ith row of Φ.
It can be proved using simple law of large numbers arguments that

Ck → C and dk → d with probability 1. To show this, we use the expression
Φ′ =

[

φ(1) · · ·φ(n)
]

to write C explicitly as

C = Φ′Ξ(I − αP )Φ =
n
∑

i=1

ξiφ(i)



φ(i) − α
n
∑

j=1

pijφ(j)





′

, (6.50)

and we rewrite Ck in a form that matches the preceding expression, except
that the probabilities ξi and pij are replaced by corresponding empirical
frequencies produced by the simulation. Indeed, by denoting δ(·) the in-
dicator function [δ(E) = 1 if the event E has occurred and δ(E) = 0
otherwise], we have

Ck =

n
∑

i=1

n
∑

j=1

∑k
t=0 δ(it = i, it+1 = j)

k + 1

(

φ(i)
(

φ(i) − αφ(j)
)′
)

=
n
∑

i=1

∑k
t=0 δ(it = i)

k + 1
φ(i)



φ(i) − α
n
∑

j=1

∑k
t=0 δ(it = i, it+1 = j)
∑k

t=0 δ(it = i)
φ(j)





′

and finally

Ck =
n
∑

i=1

ξ̂i,kφ(i)



φ(i) − α
n
∑

j=1

p̂ij,kφ(j)





′

,

where

ξ̂i,k =

∑k
t=0 δ(it = i)

k + 1
, p̂ij,k =

∑k
t=0 δ(it = i, it+1 = j)
∑k

t=0 δ(it = i)
. (6.51)

Here, ξ̂i,k and p̂ij,k are the fractions of time that state i, or transition
(i, j) has occurred within (i0, . . . , ik), the initial (k + 1)-state portion of

the simulated trajectory. Since the empirical frequencies ξ̂i,k and p̂ij,k

asymptotically converge (with probability 1) to the probabilities ξi and
pij , respectively, we have with probability 1,

Ck →
n
∑

i=1

ξiφ(i)



φ(i) − α

n
∑

j=1

pijφ(j)





′

= Φ′Ξ(I − αP )Φ = C,
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[cf. Eq. (6.50)]. Similarly, we can write

dk =

n
∑

i=1

ξ̂i,kφ(i)

n
∑

j=1

p̂ij,kg(i, j),

and we have

dk →
n
∑

i=1

ξφ(i)

n
∑

j=1

pijg(i, j) = Φ′Ξg = d.

Note that from Eqs. (6.48)-(6.49), Ck and dk can be updated in a
manner reminiscent of stochastic iterative methods, as new samples φ(ik)
and g(ik, ik+1) are generated. In particular, we have

Ck = (1 − δk)Ck−1 + δkφ(ik)
(

φ(ik) − αφ(ik+1)
)′
,

dk = (1 − δk)dk−1 + δkφ(ik)g(ik, ik+1),

with the initial conditions C−1 = 0, d−1 = 0, and

δk =
1

k + 1
, k = 0, 1, . . . .

In these update formulas, δk can be viewed as a stepsize, and indeed it can
be shown that Ck and dk converge to C and d for other choices of δk (see
[Yu10a,b]).

6.3.4 LSTD, LSPE, and TD(0) Methods

Given the simulation-based approximations Ck and dk of Eqs. (6.48) and
(6.49), one possibility is to construct a simulation-based approximate solu-
tion

r̂k = C−1
k dk. (6.52)

This is known as the LSTD (least squares temporal differences) method.
Despite the dependence on the index k, this is not an iterative method,
since r̂k−1 is not needed to compute r̂k. Rather it may be viewed as an
approximate matrix inversion approach: we replace the projected equation
Cr = d with the approximation Ckr = dk, using a batch of k+1 simulation
samples, and solve the approximate equation by matrix inversion. Note
that by using Eqs. (6.48) and (6.49), the equation Ckr = dk can be written
as

Ckr − dk =
1

k + 1

k
∑

t=0

φ(it)qk,t = 0, (6.53)

where
qk,t = φ(it)′rk − αφ(it+1)′rk − g(it, it+1). (6.54)
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The scalar qk,t is the so-called temporal difference, associated with rk and
transition (it, it+1). It may be viewed as a sample of a residual term arising
in the projected Bellman’s equation. More specifically, from Eqs. (6.40),
(6.41), we have

Crk − d = Φ′Ξ(Φrk − αPΦrk − g). (6.55)

The three terms in the definition (6.54) of the temporal difference qk,t

can be viewed as samples [associated with the transition (it, it+1)] of the
corresponding three terms in the expression Ξ(Φrk − αPΦrk − g) in Eq.
(6.55).

Regression-Based LSTD

An important concern in LSTD is to ensure that the simulation-induced
error

ek = Φ(r̂k − r∗) = Φ(C−1
k dk − C−1d)

is not excessively large. Then the low-dimensional error C−1
k dk − C−1d is

typically also large (the reverse is not true: r̂k−r∗ may be large without ek

being large). In the lookup table representation case (Φ = I) a large error
ek may be traced directly to the simulation error in evaluating C and d,
combined with near singularity of Ξ(I−αP ). In the compact representation
case (Φ 6= I), the effect of near singularity of C on the high-dimensional
error ek is more complex, but is also primarily due to the same causes.†
In what follows we will consider approaches to reduce the low-dimensional
error r̂k − r∗ with the understanding that these approaches will also be
effective in reducing the high-dimensional error ek, when the latter is very
large.

† Near-singularity of C, causing large low-dimensional errors C−1
k dk −C−1d,

may be due either to the columns of Φ being nearly linearly dependent or to the

matrix Ξ(I−αP ) being nearly singular [cf. the formula C = Φ′Ξ(I−αP )Φ of Eq.

(6.41)]. However, near-linear dependence of the columns of Φ will not affect the

high-dimensional error ek. The reason is that ek depends only on the subspace S

and not its representation in terms of the matrix Φ. In particular, if we replace

Φ with a matrix ΦB where B is an s × s invertible scaling matrix, the subspace

S will be unaffected and the errors ek will also be unaffected, as can be verified

using the formulas of Section 6.3.3. On the other hand, near singularity of the

matrix I − αP may affect significantly ek. Note that I − αP is nearly singular

in the case where α is very close to 1, or in the corresponding undiscounted case

where α = 1 and P is substochastic with eigenvalues very close to 1 (see Section

6.6). Large variations in the size of the diagonal components of Ξ may also

affect significantly ek, although this dependence is complicated by the fact that

Ξ appears not only in the formula C = Φ′Ξ(I − αP )Φ but also in the formula

d = Φ′Ξg.
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Example 6.3.1

To get a rough sense of the potential effect of the simulation error in LSTD,
consider the approximate inversion of a small nonzero number c, which is
estimated with simulation error ǫ. The absolute and relative errors are

E =
1

c + ǫ
− 1

c
, Er =

E

1/c
.

By a first order Taylor series expansion around ǫ = 0, we obtain for small ǫ

E ≈
∂
(

1/(c + ǫ)
)

∂ǫ

∣

∣

∣

ǫ=0
ǫ = − ǫ

c2
, Er ≈ − ǫ

c
.

Thus for the estimate 1
c+ǫ

to be reliable, we must have |ǫ| << |c|. If N
independent samples are used to estimate c, the variance of ǫ is proportional
to 1/N , so for a small relative error, N must be much larger than 1/c2. Thus
as c approaches 0, the amount of sampling required for reliable simulation-
based inversion increases very fast.

To reduce the size of the errors r̂k − r∗, an effective remedy is to
estimate r∗ by a form of regularized regression, which works even if Ck

is singular, at the expense of a systematic/deterministic error (a “bias”)
in the generated estimate. In this approach, instead of solving the system
Ckr = dk, we use a least-squares fit of a linear model that properly encodes
the effect of the simulation noise.

We write the projected form of Bellman’s equation d = Cr as

dk = Ckr + ek, (6.56)

where ek is the vector

ek = (C − Ck)r + dk − d,

which we view as “simulation noise.” We then estimate the solution r∗

based on Eq. (6.56) by using regression. In particular, we choose r by
solving the least squares problem:

min
r

{

(dk − Ckr)′Σ−1(dk − Ckr) + β‖r − r̄‖2
}

, (6.57)

where r̄ is an a priori estimate of r∗, Σ is some positive definite symmetric
matrix, and β is a positive scalar. By setting to 0 the gradient of the least
squares objective in Eq. (6.57), we can find the solution in closed form:

r̂k = (C′
kΣ−1Ck + βI)−1(C′

kΣ−1dk + βr̄). (6.58)

A suitable choice of r̄ may be some heuristic guess based on intuition about
the problem, or it may be the parameter vector corresponding to the es-
timated cost vector Φr̄ of a similar policy (for example a preceding policy
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in an approximate policy iteration context). One may try to choose Σ in
special ways to enhance the quality of the estimate of r∗, but we will not
consider this issue here, and the subsequent analysis in this section does not
depend on the choice of Σ, as long as it is positive definite and symmetric.

The quadratic β‖r − r̄‖2 in Eq. (6.57) is known as a regularization
term, and has the effect of “biasing” the estimate r̂k towards the a priori
guess r̄. The proper size of β is not clear (a large size reduces the effect of
near singularity of Ck, and the effect of the simulation errors Ck − C and
dk − d, but may also cause a large “bias”). However, this is typically not a
major difficulty in practice, because trial-and-error experimentation with
different values of β involves low-dimensional linear algebra calculations
once Ck and dk become available.

We will now derive an estimate for the error r̂k−r∗, where r∗ = C−1d
is the solution of the projected equation. Let us denote

bk = Σ−1/2(dk − Ckr∗),

so from Eq. (6.58),

r̂k − r∗ = (C′
kΣ−1Ck + βI)

−1 (
C′

kΣ−1/2bk + β(r̄ − r∗)
)

. (6.59)

We have the following proposition, which involves the singular values of the
matrix Σ−1/2Ck (these are the square roots of the eigenvalues of C′

kΣ−1Ck;
see e.g., [Str09], [TrB97]).

Proposition 6.3.4: We have

‖r̂k−r∗‖ ≤ max
i=1,...,s

{

λi

λ2
i + β

}

‖bk‖+ max
i=1,...,s

{

β

λ2
i + β

}

‖r̄−r∗‖, (6.60)

where λ1, . . . , λs are the singular values of Σ−1/2Ck.

Proof: Let Σ−1/2Ck = UΛV ′ be the singular value decomposition of
Σ−1/2Ck, where Λ = diag{λ1, . . . , λs}, and U , V are unitary matrices
(UU ′ = V V ′ = I and ‖U‖ = ‖U ′‖ = ‖V ‖ = ‖V ′‖ = 1; see [Str09],
[TrB97]). Then, Eq. (6.59) yields

r̂k − r∗ = (V ΛU ′UΛV ′ + βI)−1 (V ΛU ′bk + β(r̄ − r∗))

= (V ′)−1(Λ2 + βI)−1V −1 (V ΛU ′bk + β(r̄ − r∗))

= V (Λ2 + βI)−1ΛU ′bk + β V (Λ2 + βI)−1V ′(r̄ − r∗).
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Confidence Regions

r
∗

∞ = r̄

r̂k =

(

C
′

k
Σ

−1
Ck + βI

)

−1
(

C
′

k
Σ

−1
dk + βr̄

)

r
∗

β =

(

C
′
Σ

−1
C + βI

)

−1
(

C
′
Σ

−1
d + βr̄

)

r̂k = C
−1

k
dk

r
∗

0
= r

∗
= C

−1
d

Figure 6.3.3 Illustration of Prop. 6.3.4. The figure shows the estimates

r̂k =
(

C′
kΣ−1Ck + βI

)−1 (

C′
kΣ−1dk + βr̄

)

corresponding to a finite number of samples, and the exact values

r∗β =
(

C′Σ−1C + βI
)−1 (

C′Σ−1d + βr̄
)

corresponding to an infinite number of samples. We may view r̂k − r∗ as the sum
of a “simulation error” r̂k − r∗

β
whose norm is bounded by the first term in the

estimate (6.60) and can be made arbitrarily small by sufficiently long sampling,
and a “regularization error” r∗

β
− r∗ whose norm is bounded by the second term

in the right-hand side of Eq. (6.60).

Therefore, using the triangle inequality, we have

‖r̂k − r∗‖ ≤ ‖V ‖ max
i=1,...,s

{

λi

λ2
i + β

}

‖U ′‖ ‖bk‖

+ β‖V ‖ max
i=1,...,s

{

1

λ2
i + β

}

‖V ′‖ ‖r̄ − r∗‖

= max
i=1,...,s

{

λi

λ2
i + β

}

‖bk‖ + max
i=1,...,s

{

β

λ2
i + β

}

‖r̄ − r∗‖.

Q.E.D.

From Eq. (6.60), we see that the error ‖r̂k − r∗‖ is bounded by the
sum of two terms. The first term can be made arbitrarily small by using a
sufficiently large number of samples, thereby making ‖bk‖ small. The sec-
ond term reflects the bias introduced by the regularization and diminishes
with β, but it cannot be made arbitrarily small by using more samples (see
Fig. 6.3.3).

Now consider the case where β = 0, Σ is the identity, and Ck is
invertible. Then r̂k is the LSTD solution C−1

k dk, and the proof of Prop.
6.3.4 can be replicated to show that

‖r̂k − r∗‖ ≤ max
i=1,...,s

{

1

λi

}

‖bk‖,
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where λ1, . . . , λs are the (positive) singular values of Ck. This suggests that
without regularization, the LSTD error can be adversely affected by near
singularity of the matrixCk (smallest λi close to 0). Thus we expect that for
a nearly singular matrix C, a very large number of samples are necessary to
attain a small error (r̂k − r∗), with serious difficulties potentially resulting,
consistent with the scalar inversion example we gave earlier.

We also note an alternative and somewhat simpler regularization ap-
proach, whereby we approximate the equation Ckr = dk by

(Ck + βI)r̂ = dk + βr̄, (6.61)

where β is a positive scalar and r̄ is some guess of the solution r∗ = C−1d.
We refer to [Ber11a] for more details on this method.

Generally, the regularization of LSTD alleviates the effects of near
singularity of C and simulation error, but it comes at a price: there is a
bias of the estimate r̂k towards the prior guess r̄ (cf. Fig. 6.3.3). One
possibility to eliminate this bias is to adopt an iterative regularization
approach: start with some r̄, obtain r̂k, replace r̄ by r̂k, and repeat for any
number of times. This turns the regression-based LSTD method (6.58) to
the iterative method

r̂k+1 = (C′
kΣ−1

k Ck + βI)−1(C′
kΣ−1

k dk + βr̂k), (6.62)

which will be shown to be a special case of the class of iterative LSPE-type
methods to be discussed later.

LSPE Method

We will now develop a simulation-based implementation of the PVI itera-
tion

Φrk+1 = ΠT (Φrk).

By expressing the projection as a least squares minimization, we see that
rk+1 is given by

rk+1 = arg min
r∈ℜs

∥

∥Φr − T (Φrk)
∥

∥

2

ξ
,

or equivalently

rk+1 = arg min
r∈ℜs

n
∑

i=1

ξi



φ(i)′r −
n
∑

j=1

pij

(

g(i, j) + αφ(j)′rk
)





2

. (6.63)

We approximate this optimization by generating an infinitely long trajec-
tory (i0, i1, . . .) and by updating rk after each transition (ik, ik+1) according
to

rk+1 = arg min
r∈ℜs

k
∑

t=0

(

φ(it)′r − g(it, it+1) − αφ(it+1)′rk
)2
. (6.64)
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We call this iteration least squares policy evaluation (LSPE for short).
The similarity of PVI [Eq. (6.63)] and LSPE [Eq. (6.64)] can be seen

by explicitly calculating the solutions of the associated least squares prob-
lems. For PVI, by setting the gradient of the cost function in Eq. (6.63) to
0 and using a straightforward calculation, we have

rk+1 =

(

n
∑

i=1

ξi φ(i)φ(i)′

)−1




n
∑

i=1

ξi φ(i)

n
∑

j=1

pij

(

g(i, j) + αφ(j)′rk
)



 .

(6.65)
For LSPE, we similarly have from Eq. (6.64)

rk+1 =

(

k
∑

t=0

φ(it)φ(it)′

)−1( k
∑

t=0

φ(it)
(

g(it, it+1) + αφ(it+1)′rk
)

)

.

(6.66)
This equation can equivalently be written as

rk+1 =

(

n
∑

i=1

ξ̂i,k φ(i)φ(i)′

)−1




n
∑

i=1

ξ̂i,k φ(i)
n
∑

j=1

p̂ij,k

(

g(i, j) + αφ(j)′rk
)



 ,

(6.67)

where ξ̂i,k and p̂ij,k are empirical frequencies of state i and transition (i, j),
defined by

ξ̂i,k =

∑k
t=0 δ(it = i)

k + 1
, p̂ij,k =

∑k
t=0 δ(it = i, it+1 = j)
∑k

t=0 δ(it = i)
. (6.68)

(We will discuss later the question of existence of the matrix inverses in the
preceding equations.) Here, δ(·) denotes the indicator function [δ(E) = 1

if the event E has occurred and δ(E) = 0 otherwise], so for example, ξ̂i,k is
the fraction of time that state i has occurred within (i0, . . . , ik), the initial
(k+1)-state portion of the simulated trajectory. By comparing Eqs. (6.65)
and (6.67), we see that they asymptotically coincide, since the empirical

frequencies ξ̂i,k and p̂ij,k asymptotically converge (with probability 1) to
the probabilities ξi and pij , respectively.

Thus, LSPE may be viewed as PVI with simulation error added in the
right-hand side (see Fig. 6.3.3). Since the empirical frequencies ξ̂i,k and p̂ij,k

converge to the probabilities ξi and pij , the error asymptotically diminishes
to 0 (assuming the iterates produced by LSPE are bounded). Because of
this diminishing nature of the error and the contraction property of ΠT ,
it is intuitively clear and can be rigorously shown that LSPE converges to
the same limit as PVI. The limit is the unique r∗ satisfying the equation

Φr∗ = ΠT (Φr∗)

[cf. Eq. (6.37)], and the error estimate of Prop. 6.3.2 applies. LSPE may
also be viewed as a special case of the class of simulation-based versions of
the deterministic iterative methods of Section 6.3.2, which we discuss next.
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Other Iterative Simulation-Based Methods

An alternative to LSTD is to use a true iterative method to solve the
projected equation Cr = d using simulation-based approximations to C
and d. One possibility is to approximate the scaled PVI iteration [cf. Eq.
(6.44)]

rk+1 = rk − γG(Crk − d) (6.69)

with
rk+1 = rk − γĜ(Ĉrk − d̂), (6.70)

where Ĉ and d̂ are simulation-based estimates of C and d, γ is a positive
stepsize, and Ĝ is an s×smatrix, which may also be obtained by simulation.
Assuming that I −γĜĈ is a contraction, this iteration will yield a solution
to the system Ĉr = d̂, which will serve as a simulation-based approximation
to a solution of the projected equation Cr = d.

Like LSTD, this may be viewed as a batch simulation approach: we
first simulate to obtain Ĉ, d̂, and Ĝ, and then solve the system Ĉr = d̂
by the iteration (6.70) rather than direct matrix inversion. An alternative
is to iteratively update r as simulation samples are collected and used to
form ever improving approximations to C and d. In particular, one or
more iterations of the form (6.70) may be performed after collecting a few
additional simulation samples that are used to improve the approximations
of the current Ĉ and d̂. In the most extreme type of such an algorithm,
the iteration (6.70) is used after a single new sample is collected. This
algorithm has the form

rk+1 = rk − γGk(Ckrk − dk), (6.71)

where Gk is an s×smatrix, γ is a positive stepsize, and Ck and dk are given
by Eqs. (6.48)-(6.49). For the purposes of further discussion, we will focus
on this algorithm, with the understanding that there are related versions
that use (partial) batch simulation and have similar properties. Note that
the iteration (6.71) may also be written in terms of temporal differences as

rk+1 = rk − γ

k + 1
Gk

k
∑

t=0

φ(it)qk,t (6.72)

[cf. Eqs. (6.48), (6.49), (6.54)]. The convergence behavior of this method is
satisfactory. Generally, we have rk → r∗, provided Ck → C, dk → d, and
Gk → G, where G and γ are such that I − γGC is a contraction [this is
fairly evident in view of the convergence of the iteration (6.69), which was
shown in Section 6.3.2; see also the papers [Ber09b], [Ber11a]].

To ensure that I − γGC is a contraction for small γ, we may choose
G to be symmetric and positive definite, or to have a special form, such as

G = (C′Σ−1C + βI)−1C′Σ−1,
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where Σ is any positive definite symmetric matrix, and β is a positive scalar
[cf. Eq. (6.47)].

Regarding the choices of γ and Gk, one possibility is to choose γ = 1
and Gk to be a simulation-based approximation to G = (Φ′ΞΦ)−1, which
is used in the PVI method (6.42)-(6.43):

Gk =

(

1

k + 1

k
∑

t=0

φ(it)φ(it)′

)−1

, (6.73)

or

Gk =

(

β

k + 1
I +

1

k + 1

k
∑

t=0

φ(it)φ(it)′

)−1

, (6.74)

where βI is a positive multiple of the identity (to ensure that Gk is positive
definite). Note that when γ = 1 and Gk is given by Eq. (6.73), the iteration
(6.71) is identical to the LSPE iteration (6.66) [cf. the forms of Ck and dk

given by Eqs. (6.48) and (6.49)].
While Gk, as defined by Eqs. (6.73) and (6.74), requires updating

and inversion at every iteration, a partial batch mode of updating Gk is
also possible: one may introduce into iteration (6.71) a new estimate of
G = (Φ′ΞΦ)−1 periodically, obtained from the previous estimate using
multiple simulation samples. This will save some computation and will not
affect the asymptotic convergence rate of the method, as we will discuss
shortly. Indeed, as noted earlier, the iteration (6.71) itself may be executed
in partial batch mode, after collecting multiple samples between iterations.
Note also that even if Gk is updated at every k using Eqs. (6.73) and (6.74),
the updating can be done recursively; for example, from Eq. (6.73) we have

G−1
k =

k

k + 1
G−1

k−1 +
1

k + 1
φ(ik)φ(ik)′.

A simple possibility is to use a diagonal matrix Gk, thereby simpli-
fying the matrix inversion in the iteration (6.71). One possible choice is a
diagonal approximation to Φ′ΞΦ, obtained by discarding the off-diagonal
terms of the matrix (6.73) or (6.74). Then it is reasonable to expect that a
stepsize γ close to 1 will often lead to I−γGC being a contraction, thereby
facilitating the choice of γ. The simplest possibility is to just choose Gk to
be the identity, although in this case, some experimentation is needed to
find a proper value of γ such that I − γC is a contraction.

Another choice of Gk is

Gk = (C′
kΣ−1

k Ck + βI)−1C′
kΣ−1

k , (6.75)

where Σk is some positive definite symmetric matrix, and β is a positive
scalar. Then the iteration (6.71) takes the form

rk+1 = rk − γ(C′
kΣ−1

k Ck + βI)−1C′
kΣ−1

k (Ckrk − dk),
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and for γ = 1, it can be written as

rk+1 = (C′
kΣ−1

k Ck + βI)−1(C′
kΣ−1

k dk + βrk). (6.76)

We recognize this as an iterative version of the regression-based LSTD
method (6.58), where the prior guess r̄ is replaced by the previous iterate
rk [cf. Eq. (6.62)]. This iteration is convergent to r∗ provided that {Σ−1

k }
is bounded [γ = 1 is within the range of stepsizes for which I − γGC is a
contraction; see the discussion following Eq. (6.47)].

A simpler regularization-based choice of Gk is

Gk = (Ck + βI)−1

[cf. Eq. (6.61)]. Then the iteration (6.71) takes the form

rk+1 = rk − (Ck + βI)−1(Ckrk − dk). (6.77)

The convergence of this iteration can be proved, thanks to the positive
definiteness of C [cf. Prop. 6.3.3], based on the fact Ck → C and standard
convergence results for the proximal point algorithm ([Mar70], [Roc76]); see
also [Ber11a]. Note that by contrast with Eq. (6.76), the positive definite-
ness of C is essential both for invertibility of Ck + βI and for convergence
of Eq. (6.77).

Convergence Rate of Iterative Methods – Comparison with
LSTD

Let us now discuss the choice of γ and G from the convergence rate point of
view. It can be easily verified with simple examples that the values of γ and
G affect significantly the convergence rate of the deterministic scaled PVI
iteration (6.69). Surprisingly, however, the asymptotic convergence rate of
the simulation-based iteration (6.71) does not depend on the choices of γ
and G. Indeed it can be proved that the iteration (6.71) converges at the
same rate asymptotically, regardless of the choices of γ and G, as long as
I − γGC is a contraction (although the short-term convergence rate may
be significantly affected by the choices of γ and G).

The reason is that the scaled PVI iteration (6.69) has a linear con-
vergence rate (since it involves a contraction), which is fast relative to the
slow convergence rate of the simulation-generated Gk, Ck, and dk. Thus
the simulation-based iteration (6.71) operates on two time scales (see, e.g.,
Borkar [Bor08], Ch. 6): the slow time scale at which Gk, Ck, and dk change,
and the fast time scale at which rk adapts to changes in Gk, Ck, and dk. As
a result, essentially, there is convergence in the fast time scale before there
is appreciable change in the slow time scale. Roughly speaking, rk “sees
Gk, Ck, and dk as effectively constant,” so that for large k, rk is essentially
equal to the corresponding limit of iteration (6.71) with Gk, Ck, and dk



Sec. 6.3 Projected Equation Methods 379

held fixed. This limit is C−1
k dk. It follows that the sequence rk generated

by the scaled LSPE iteration (6.71) “tracks” the sequence C−1
k dk generated

by the LSTD iteration in the sense that

‖rk − C−1
k dk‖ << ‖rk − r∗‖, for large k,

independent of the choice of γ and the scaling matrix G that is approxi-
mated by Gk (see also [YuB06b], [Ber09b], [Ber11a] for analysis and further
discussion).

TD(0) Method

This is an iterative method for solving the projected equation Cr = d. Like
LSTD and LSPE, it generates an infinitely long trajectory {i0, i1, . . .} of
the Markov chain, but at each iteration, it uses only one sample, the last
one. It has the form

rk+1 = rk − γkφ(ik)qk,k, (6.78)

where γk is a stepsize sequence that diminishes to 0. It may be viewed as
an instance of a classical stochastic approximation scheme for solving the
projected equation Cr = d. This equation can be written as Φ′Ξ(Φr −
AΦr − b) = 0, and by using Eqs. (6.54) and (6.78), it can be seen that
the direction of change φ(ik)qk,k in TD(0) is a sample of the left-hand side
Φ′Ξ(Φr −AΦr − b) of the equation.

Let us note a similarity between TD(0) and the scaled LSPE method
(6.72) with Gk = I, given by:

rk+1 = rk − γ(Ckrk − dk) = rk − γ

k + 1

k
∑

t=0

φ(it)qk,t. (6.79)

While LSPE uses as direction of change a time-average approximation of
Crk − d based on all the available samples, TD(0) uses a single sample
approximation. It is thus not surprising that TD(0) is a much slower algo-
rithm than LSPE, and moreover requires that the stepsize γk diminishes
to 0 in order to deal with the nondiminishing noise that is inherent in the
term φ(ik)qk,k of Eq. (6.78). On the other hand, TD(0) requires much less
overhead per iteration: calculating the single temporal difference qk,k and
multiplying it with φ(ik), rather than updating the s × s matrix Ck and
multiplying it with rk. Thus when s, the number of features, is very large,
TD(0) may offer a significant overhead advantage over LSTD and LSPE.

We finally note a scaled version of TD(0) given by

rk+1 = rk − γkGkφ(ik)qk,k, (6.80)

where Gk is a positive definite symmetric scaling matrix, selected to speed
up convergence. It is a scaled (by the matrix Gk) version of TD(0), so it
may be viewed as a type of scaled stochastic approximation method.
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6.3.5 Optimistic Versions

In the LSTD and LSPE methods discussed so far, the underlying assump-
tion is that each policy is evaluated with a very large number of samples,
so that an accurate approximation of C and d are obtained. There are also
optimistic versions (cf. Section 6.1.2), where the policy µ is replaced by
an “improved” policy µ after only a certain number of simulation samples
have been processed.

A natural form of optimistic LSTD is r̂k+1 = C−1
k dk, where Ck and

dk are obtained by averaging samples collected using the controls corre-
sponding to the (approximately) improved policy. By this we mean that
Ck and dk are time averages of the matrices and vectors

φ(it)
(

φ(it) − αφ(it+1)
)′
, φ(it)g(it, it+1),

corresponding to simulated transitions (it, it+1) that are generated using
the policy µk+1 whose controls are given by

µk+1(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αφ(j)′ r̂k
)

[cf. Eq. (6.52)]. Unfortunately, this method requires the collection of many
samples between policy updates, as it is susceptible to simulation noise in
Ck and dk.

The optimistic version of (scaled) LSPE is based on similar ideas.
Following the state transition (ik, ik+1), we update rk using the iteration

rk+1 = rk − γGk(Ckrk − dk), (6.81)

where Ck and dk are given by Eqs. (6.48), (6.49) [cf. Eq. (6.71)], and Gk is a
scaling matrix that converges to some G for which I−γGC is a contraction.
For example Gk could be a positive definite symmetric matrix [such as for
example the one given by Eq. (6.73)] or the matrix

Gk = (C′
kΣ−1

k Ck + βI)−1C′
kΣ−1

k (6.82)

[cf. Eq. (6.75)]. In the latter case, for γ = 1 the method takes the form

r̂k+1 = (C′
kΣ−1

k Ck + βI)−1(C′
kΣ−1

k dk + βr̂k), (6.83)

[cf. Eq. (6.76)]. The simulated transitions are generated using a policy
that is updated every few samples. In the extreme case of a single sample
between policies, we generate the next transition (ik+1, ik+2) using the
control

uk+1 = arg min
u∈U(ik+1)

n
∑

j=1

pik+1j(u)
(

g(ik+1, u, j) + αφ(j)′rk+1

)

.
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Because the theoretical convergence guarantees of LSPE apply only to the
nonoptimistic version, it may be essential to experiment with various values
of the stepsize γ [this is true even if Gk is chosen according to Eq. (6.73), for
which γ = 1 guarantees convergence in the nonoptimistic version]. There
is also a similar optimistic version of TD(0).

To improve the reliability of the optimistic LSTD method it seems
necessary to turn it into an iterative method, which then brings it closer
to LSPE. In particular, an iterative version of the regression-based LSTD
method (6.58) is given by Eq. (6.83), and is the special case of LSPE,
corresponding to the special choice of the scaling matrix Gk of Eq. (6.82).

Generally, in optimistic LSTD and LSPE, a substantial number of
samples may need to be collected with the same policy before switching
policies, in order to reduce the variance of Ck and dk. As an alternative,
one may consider building up Ck and dk as weighted averages, using sam-
ples from several past policies, while giving larger weight to the samples
of the current policy. One may argue that mixing samples from several
past policies may have a beneficial exploration effect. Still, however, sim-
ilar to other versions of policy iteration, to enhance exploration, one may
occasionally introduce randomly transitions other than the ones dictated
by the current policy (cf. the discussion of Section 6.1.2). The complexities
introduced by these variations are not fully understood at present. For ex-
perimental investigations of optimistic policy iteration, see Bertsekas and
Ioffe [BeI96], Jung and Polani [JuP07], Busoniu et al. [BED09], and Thiery
and Scherrer [ThS10a].

6.3.6 Multistep Simulation-Based Methods

A useful approach in approximate DP is to replace Bellman’s equation with
an equivalent equation that reflects control over multiple successive stages.
This amounts to replacing T with a multistep version that has the same
fixed points; for example, T ℓ with ℓ > 1, or T (λ) given by

T (λ) = (1 − λ)

∞
∑

ℓ=0

λℓT ℓ+1,

where λ ∈ (0, 1). We will focus on the λ-weighted multistep Bellman
equation

J = T (λ)J.

By noting that

T 2J = g + αP (TJ) = g + αP (g + αPJ) = (I + αP )g + α2P 2J,

T 3J = g+αP (T 2J) = g+αP
(

(I +αP )g+α2P 2J
)

= (I +αP +α2P 2)g+α3P 3J,

etc, this equation can be written as

J = T (λ)J = g(λ) + αP (λ)J, (6.84)
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with

P (λ) = (1 − λ)

∞
∑

ℓ=0

αℓλℓP ℓ+1, g(λ) =

∞
∑

ℓ=0

αℓλℓP ℓg = (I − αλP )−1g.

(6.85)
We may then apply variants of the preceding simulation algorithms

to find a fixed point of T (λ) in place of T . The corresponding projected
equation takes the form

C(λ)r = d(λ),

where
C(λ) = Φ′Ξ

(

I − αP (λ)
)

Φ, d(λ) = Φ′Ξg(λ), (6.86)

[cf. Eq. (6.41)]. The motivation for replacing T with T (λ) is that the mod-
ulus of contraction of T (λ) is smaller, resulting in a tighter error bound.
This is shown in the following proposition.

Proposition 6.3.5: The mappings T (λ) and ΠT (λ) are contractions
of modulus

αλ =
α(1 − λ)

1 − αλ

with respect to the weighted Euclidean norm ‖ · ‖ξ, where ξ is the
steady-state probability vector of the Markov chain. Furthermore

‖Jµ − Φr∗λ‖ξ ≤ 1
√

1 − α2
λ

‖Jµ − ΠJµ‖ξ, (6.87)

where Φr∗λ is the fixed point of ΠT (λ).

Proof: Using Lemma 6.3.1, we have

‖P (λ)z‖ξ ≤ (1 − λ)

∞
∑

ℓ=0

αℓλℓ‖P ℓ+1z‖ξ

≤ (1 − λ)

∞
∑

ℓ=0

αℓλℓ‖z‖ξ

=
(1 − λ)

1 − αλ
‖z‖ξ.

Since T (λ) is linear with associated matrix αP (λ) [cf. Eq. (6.84)], it follows
that T (λ) is a contraction with modulus α(1 − λ)/(1 − αλ). The estimate
(6.87) follows similar to the proof of Prop. 6.3.2. Q.E.D.

Note that αλ decreases as λ increases, and αλ → 0 as λ → 1. Fur-
thermore, the error bound (6.87) becomes better as λ increases. Indeed
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from Eq. (6.87), it follows that as λ → 1, the projected equation solution
Φr∗λ converges to the “best” approximation ΠJµ of Jµ on S. This suggests
that large values of λ should be used. On the other hand, we will later
argue that when simulation-based approximations are used, the effects of
simulation noise become more pronounced as λ increases. Furthermore, we
should note that in the context of approximate policy iteration, the objec-
tive is not just to approximate well the cost of the current policy, but rather
to use the approximate cost to obtain the next “improved” policy. We are
ultimately interested in a “good” next policy, and there is no consistent
experimental or theoretical evidence that this is achieved solely by good
cost approximation of the current policy. Thus, in practice, some trial and
error with the value of λ may be useful.

Another interesting fact, which follows from limλ→1 αλ = 0, is that
given any norm, the mapping T (λ) is a contraction (with arbitrarily small
modulus) with respect to that norm for λ sufficiently close to 1. This
is a consequence of the norm equivalence property in ℜn (any norm is
bounded by a constant multiple of any other norm). As a result, for any
weighted Euclidean norm of projection, ΠT (λ) is a contraction provided λ
is sufficiently close to 1.

LSTD(λ), LSPE(λ), and TD(λ)

The simulation-based methods of the preceding subsections correspond to
λ = 0, but can be extended to λ > 0. In particular, in a matrix inversion
approach, the unique solution of the projected equation may be approxi-
mated by

(

C
(λ)
k

)−1
d
(λ)
k , (6.88)

where C
(λ)
k and d

(λ)
k are simulation-based approximations of C(λ) and d(λ),

given by Eq. (6.86). This is the LSTD(λ) method. There is also a regres-
sion/regularization variant of this method along the lines described earlier
[cf. Eq. (6.58)].

Similarly, we may consider the (scaled) LSPE(λ) iteration

rk+1 = rk − γGk

(

C
(λ)
k rk − d

(λ)
k

)

, (6.89)

where γ is a stepsize and Gk is a scaling matrix that converges to some G
such that I − γGC(λ) is a contraction. One possibility is to choose γ = 1
and

Gk =

(

1

k + 1

k
∑

t=0

φ(it)φ(it)′

)−1

,

[cf. Eq. (6.73)]. Diagonal approximations to this matrix may also be used to
avoid the computational overhead of matrix inversion. Another possibility
is

Gk =
(

C
(λ)′

k Σ−1
k C

(λ)
k + βI

)−1

C
(λ)′

k Σ−1
k , (6.90)
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where Σk is some positive definite symmetric matrix, and β is a positive
scalar [cf. Eq. (6.75)]. For γ = 1, we obtain the iteration

rk+1 =
(

C
(λ)′

k Σ−1
k C

(λ)
k + βI

)−1 (

C
(λ)′

k Σ−1
k d

(λ)
k + βrk

)

. (6.91)

This as an iterative version of the regression-based LSTD method [cf. Eq.

(6.76)], for which convergence is assured provided C
(λ)
k → C(λ), d

(λ)
k →

d(λ), and {Σ−1
k } is bounded.

Regarding the calculation of appropriate simulation-based approxi-

mations C
(λ)
k and d

(λ)
k , one possibility is the following extension of Eqs.

(6.48)-(6.49):

C
(λ)
k =

1

k + 1

k
∑

t=0

φ(it)

k
∑

m=t

αm−tλm−t
(

φ(im) − αφ(im+1)
)′
, (6.92)

d
(λ)
k =

1

k + 1

k
∑

t=0

φ(it)
k
∑

m=t

αm−tλm−tgim . (6.93)

It can be shown that indeed these are correct simulation-based approxima-
tions to C(λ) and d(λ) of Eq. (6.86). The verification is similar to the case
λ = 0, by considering the approximation of the steady-state probabilities
ξi and transition probabilities pij with the empirical frequencies ξ̂i,k and
p̂ij,k defined by Eq. (6.68).

For a sketch of the argument, we first verify that the rightmost ex-

pression in the definition (6.92) of C
(λ)
k can be written as

k
∑

m=t

αm−tλm−t
(

φ(im) − αφ(im+1)
)′

= φ(it) − α(1 − λ)

k−1
∑

m=t

αm−tλm−tφ(im+1) − αk−t+1λk−tφ(ik+1),

which by discarding the last term (it is negligible for k >> t), yields

k
∑

m=t

αm−tλm−t
(

φ(im) − αφ(im+1)
)′

= φ(it) − α(1 − λ)
k−1
∑

m=t

αm−tλm−tφ(im+1).

Using this relation in the expression (6.92) for C
(λ)
k , we obtain

C
(λ)
k =

1

k + 1

k
∑

t=0

φ(it)

(

φ(it) − α(1 − λ)

k−1
∑

m=t

αm−tλm−tφ(im+1)

)′

.
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We now compare this expression with C(λ), which similar to Eq. (6.50),
can be written as

C(λ) = Φ′Ξ(I − αP (λ))Φ =

n
∑

i=1

ξiφ(i)



φ(i) − α

n
∑

j=1

p
(λ)
ij φ(j)





′

,

where p
(λ)
ij are the components of the matrix P (λ). It can be seen (cf. the

derivations of Section 6.3.3) that

1

k + 1

k
∑

t=0

φ(it)φ(it)′ →
n
∑

i=1

ξiφ(i)φ(i)′,

while by using the formula

p
(λ)
ij = (1 − λ)

∞
∑

ℓ=0

αℓλℓp
(ℓ+1)
ij

with p
(ℓ+1)
ij being the (i, j)th component of P (ℓ+1) [cf. Eq. (6.85)], it can

be verified that

1

k + 1

k
∑

t=0

φ(it)

(

(1 − λ)

k−1
∑

m=t

αm−tλm−tφ(im+1)′

)

→
n
∑

i=1

ξiφ(i)

n
∑

j=1

p
(λ)
ij φ(j)′.

Thus, by comparing the preceding expressions, we see that C
(λ)
k → C(λ)

with probability 1. A full convergence analysis can be found in [NeB03] and
also in [BeY09], [Yu10a,b], in a more general exploration-related context,
to be discussed in Section 6.3.7 and also in Section 6.8.

We may also streamline the calculation of C
(λ)
k and d

(λ)
k by introduc-

ing the vector

zt =
t
∑

m=0

(αλ)t−mφ(im), (6.94)

which is often called the eligibility vector ; it is a weighted sum of the present
and past feature vectors φ(im) obtained from the simulations [discounted
by (αλ)t−m]. Then, by straightforward calculation, we may verify that

C
(λ)
k =

1

k + 1

k
∑

t=0

zt

(

φ(it) − αφ(it+1)
)′
, (6.95)

d
(λ)
k =

1

k + 1

k
∑

t=0

zt g(it, it+1). (6.96)
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Note that zk, C
(λ)
k , d

(λ)
k , can be conveniently updated by means of recursive

formulas, as in the case λ = 0. In particular, we have

zk = αλ zk−1 + φ(ik),

C
(λ)
k = (1 − δk)C

(λ)
k−1 + δkzk

(

φ(ik) − αφ(ik+1)
)′
,

d
(λ)
k = (1 − δk)d

(λ)
k−1 + δkzkg(ik, ik+1),

with the initial conditions z−1 = 0, C−1 = 0, d−1 = 0, and

δk =
1

k + 1
, k = 0, 1, . . . .

Let us also note that by using the above formulas for C
(λ)
k and d

(λ)
k ,

the scaled LSPE(λ) iteration (6.89) can also be written as

rk+1 = rk − γ

k + 1
Gk

k
∑

t=0

ztqk,t, (6.97)

where qk,t is the temporal difference

qk,t = φ(it)′rk − αφ(it+1)′rk − g(it, it+1) (6.98)

[cf. Eqs. (6.54) and (6.71)].
The TD(λ) algorithm is essentially TD(0) applied to the multistep

projected equation C(λ)r = d(λ). It takes the form

rk+1 = rk − γkzkqk,k, (6.99)

where γk is a stepsize parameter. When compared to the scaled LSPE(λ)
method (6.97), we see that TD(λ) uses Gk = I and only the latest temporal
difference qk,k. This amounts to approximating C(λ) and d(λ) by a single
sample, instead of k + 1 samples. Note that as λ → 1, zk approaches
∑k

t=0 α
k−tφ(it) [cf. Eq. (6.94)], and TD(λ) approaches the TD(1) method

given earlier in Section 6.2 [cf. Eq. (6.32)].

Least Squares Implementation of LSPE(λ)

Let us now discuss an alternative development of the (unscaled) LSPE(λ)
method, which is based on the PVI(λ) method and parallels the imple-
mentation (6.64) for LSPE(0). We first obtain an alternative formula for
T (λ), and to this end we view T t+1J as the vector of costs over a horizon
of (t+ 1) stages with the terminal cost function being J , and write

T t+1J = αt+1P t+1J +

t
∑

k=0

αkP kg. (6.100)
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As a result the mapping T (λ) = (1 − λ)
∑∞

t=0 λ
tT t+1 can be expressed as

(T (λ)J)(i) =

∞
∑

t=0

(1 − λ)λtE

{

αt+1J(it+1) +

t
∑

k=0

αkg(ik, ik+1)
∣

∣

∣ i0 = i

}

,

(6.101)
which can be written as

(T (λ)J)(i) = J(i) + (1 − λ)

·
∞
∑

t=0

t
∑

k=0

λtαkE
{

g(ik, ik+1) + αJt(ik+1) − Jt(ik) | i0 = i
}

= J(i) + (1 − λ)

·
∞
∑

k=0

(

∞
∑

t=k

λt

)

αkE
{

g(ik, ik+1) + αJ(ik+1) − J(ik) | i0 = i
}

and finally,

(T (λ)J)(i) = J(i) +

∞
∑

t=0

(αλ)kE
{

g(it, it+1) + αJ(it+1) − J(it) | i0 = i
}

.

Using this equation, we can write the PVI(λ) iteration

Φrk+1 = ΠT (λ)(Φrk)

as

rk+1 = arg min
r∈ℜs

n
∑

i=1

ξi

(

φ(i)′r − φ(i)′rk

−
∞
∑

t=0

(αλ)tE
{

g(it, it+1) + αφ(it+1)′rk − φ(it)′rk | i0 = i
}

)2

and by introducing the temporal differences

dk(it, it+1) = g(it, it+1) + αφ(it+1)′rk − φ(it)′rk,

we finally obtain PVI(λ) in the form

rk+1 = arg min
r∈ℜs

n
∑

i=1

ξi

(

φ(i)′r − φ(i)′rk

−
∞
∑

t=0

(αλ)tE
{

dk(it, it+1) | i0 = i
}

)2

.

(6.102)
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The LSPE(λ) method is a simulation-based approximation to the
above PVI(λ) iteration. It has the form

rk+1 = arg min
r∈ℜs

k
∑

t=0

(

φ(it)′r − φ(it)′rk −
k
∑

m=t

(αλ)m−tdk(im, im+1)

)2

,

(6.103)
where (i0, i1, . . .) is an infinitely long trajectory generated by simulation.
The justification is that the solution of the least squares problem in the
PVI(λ) iteration (6.102) is approximately equal to the solution of the least
squares problem in the LSPE(λ) iteration (6.103). Similar to the case λ = 0
[cf. Eqs. (6.63) and (6.64)], the approximation is due to:

(a) The substitution of the steady-state probabilities ξi and transition

probabilities pij with the empirical frequencies ξ̂i,k and p̂ij,k defined
by Eq. (6.68).

(b) The approximation of the infinite discounted sum of temporal differ-
ences in Eq. (6.102) with the finite discounted sum in Eq. (6.103),
which also uses an approximation of the conditional probabilities of
the transitions (it, it+1) with corresponding empirical frequencies.

Since as k → ∞, the empirical frequencies converge to the true probabilities
and the finite discounted sums converge to the infinite discounted sums, it
follows that PVI(λ) and LSPE(λ) asymptotically coincide.

Exploration-Enhanced LSPE(λ), LSTD(λ), and TD(λ)

We next develop an alternative least squares implementation of LSPE(λ).
It uses multiple simulation trajectories and the initial state of each tra-
jectory may be chosen essentially as desired, thereby allowing flexibility
to generate a richer mixture of state visits. In particular, we generate t
simulated trajectories. The states of a trajectory are generated according
to the transition probabilities pij of the policy under evaluation, the tran-
sition cost is discounted by an additional factor α with each transition,
and following each transition to a state j, the trajectory is terminated with
probability 1 − λ and with an extra cost αφ(i)′rk, where Φrk is the cur-
rent estimate of the cost vector of the policy under evaluation. Once a
trajectory is terminated, an initial state for the next trajectory is chosen
according to a fixed probability distribution ζ0 =

(

ζ0(1), . . . , ζ0(n)
)

, where

ζ0(i) = P (i0 = i) > 0, i = 1, . . . , n,

and the process is repeated. The details are as follows.
Let the mth trajectory have the form (i0,m, i1,m, . . . , iNm,m), where

i0,m is the initial state, and iNm,m is the state at which the trajectory
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is completed (the last state prior to termination). For each state iℓ,m,
ℓ = 0, . . . , Nm − 1, of the mth trajectory, the simulated cost is

cℓ,m(rk) = αNm−ℓφ(iNm,m)′rk +

Nm−1
∑

q=ℓ

αq−ℓg(iq,m, iq+1,m). (6.104)

Once the costs cℓ,m(rk) are computed for all states iℓ,m of the mth trajec-
tory and all trajectories m = 1, . . . , t, the vector rk+1 is obtained by a least
squares fit of these costs:

rk+1 = arg min
r∈ℜs

t
∑

m=1

Nm−1
∑

ℓ=0

(

φ(iℓ,m)′r − cℓ,m(rk)
)2
, (6.105)

similar to Eq. (6.103).
We will now show that in the limit, as t→ ∞, the vector rk+1 of Eq.

(6.105) satisfies
Φrk+1 = Π̂T (λ)(Φrk), (6.106)

where Π̂ denotes projection with respect to the weighted sup-norm with
weight vector ζ =

(

ζ(1), . . . , ζ(n)
)

, where

ζ(i) =
ζ̂(i)

∑n
j=1 ζ̂(j)

, i = 1, . . . , n,

and ζ̂(i) =
∑∞

ℓ=0 ζℓ(i), with ζℓ(i) being the probability of the state being
i after ℓ steps of a randomly chosen simulation trajectory. Note that ζ(i)
is the long-term occupancy probability of state i during the simulation
process.

Indeed, let us view T ℓ+1J as the vector of total discounted costs over
a horizon of (ℓ + 1) stages with the terminal cost function being J , and
write

T ℓ+1J = αℓ+1P ℓ+1
µk+1

J +

ℓ
∑

q=0

αqP qgµk+1
.

where P and g are the transition probability matrix and cost vector, re-
spectively, under the current policy. As a result the vector T (λ)J =
(1 − λ)

∑∞
ℓ=0 λ

ℓT ℓ+1J can be expressed as

(

T (λ)J
)

(i) =

∞
∑

ℓ=0

(1 − λ)λℓE

{

αℓ+1J(iℓ+1) +

ℓ
∑

q=0

αqg(iq, iq+1)
∣

∣

∣ i0 = i

}

.

(6.107)
Thus

(

T (λ)J
)

(i) may be viewed as the expected value of the (ℓ+ 1)-stages
cost of the policy under evaluation starting at state i, with the number
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of stages being random and geometrically distributed with parameter λ
[probability of κ + 1 transitions is (1 − λ)λκ, κ = 0, 1, . . .]. It follows that
the cost samples cℓ,m(rk) of Eq. (6.104), produced by the simulation process
described earlier, can be used to estimate

(

T (λ)(Φrk)
)

(i) for all i by Monte
Carlo averaging. The estimation formula is

Ct(i) =
1

∑t
m=1

∑Nm−1
ℓ=0 δ(iℓ,m = i)

·
t
∑

m=1

Nm−1
∑

ℓ=0

δ(iℓ,m = i)cℓ,m(rk), (6.108)

where for any event E, we denote by δ(E) the indicator function of E, and
we have

(

T (λ)(Φrk)
)

(i) = lim
t→∞

Ct(i), i = 1, . . . , n,

(see also the discussion on the consistency of Monte Carlo simulation for
policy evaluation in Section 6.2, Exercise 6.2, and [BeT96], Section 5.2).

Let us now compare iteration (6.106) with the simulation-based im-
plementation (6.105). Using the definition of projection, Eq. (6.106) can
be written as

rk+1 = arg min
r∈ℜs

n
∑

i=1

ζ(i)
(

φ(i)′r −
(

T (λ)(Φrk)
)

(i)
)2

,

or equivalently

rk+1 =

(

n
∑

i=1

ζ(i)φ(i)φ(i)′

)−1 n
∑

i=1

ζ(i)φ(i)
(

T (λ)(Φrk)
)

(i). (6.109)

Let ζ̃(i) be the empirical relative frequency of state i during the simulation,
given by

ζ̃(i) =
1

N1 + · · · +Nt

t
∑

m=1

Nm−1
∑

ℓ=0

δ(iℓ,m = i). (6.110)

Then the simulation-based estimate (6.105) can be written as

rk+1 =

(

t
∑

m=1

Nm−1
∑

ℓ=0

φ(iℓ,m)φ(iℓ,m)′

)−1 t
∑

m=1

Nm−1
∑

ℓ=0

φ(iℓ,m)cℓ,m(rk)

=

(

n
∑

i=1

t
∑

m=1

Nm−1
∑

ℓ=0

δ(iℓ,m = i)φ(i)φ(i)′

)−1

·

·
n
∑

i=1

t
∑

m=1

Nm−1
∑

ℓ=0

δ(iℓ,m = i)φ(i)cℓ,m(rk)
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=

(

n
∑

i=1

ζ̃(i)φ(i)φ(i)′

)−1

·

·
n
∑

i=1

1

N1 + · · · +Nt
· φ(i) ·

t
∑

m=1

Nm−1
∑

ℓ=0

δ(iℓ,m = i)cℓ,m(rk)

=

(

n
∑

i=1

ζ̃(i)φ(i)φ(i)′

)−1 n
∑

i=1

∑t
m=1

∑Nm−1
ℓ=0 δ(iℓ,m = i)

N1 + · · · +Nt
· φ(i)·

· 1
∑t

m=1

∑Nm−1
ℓ=0 δ(iℓ,m = i)

·
t
∑

m=1

Nm−1
∑

ℓ=0

δ(iℓ,m = i)cℓ,m(rk)

and finally, using Eqs. (6.108) and (6.110),

rk+1 =

(

n
∑

i=1

ζ̃(i)φ(i)φ(i)′

)−1 n
∑

i=1

ζ̃(i)φ(i)Ct(i). (6.111)

Since
(

T (λ)(Φrk)
)

(i) = limt→∞ Ct(i) and ζ(i) = limt→∞ ζ̃(i), we see that
the iteration (6.109) and the simulation-based implementation (6.111) asymp-
totically coincide.

An important fact is that the implementation just described deals
effectively with the issue of exploration. Since each simulation trajectory
is completed at each transition with the potentially large probability 1−λ,
a restart with a new initial state i0 is frequent and the length of each of
the simulated trajectories is relatively small. Thus the restart mechanism
can be used as a “natural” form of exploration, by choosing appropriately
the restart distribution ζ0, so that ζ0(i) reflects a “substantial” weight for
all states i.

An interesting special case is when λ = 0, in which case the simulated
trajectories consist of a single transition. Thus there is a restart at every
transition, which means that the simulation samples are from states that
are generated independently according to the restart distribution ζ0.

We can also develop similarly, a least squares exploration-enhanced
implementation of LSTD(λ). We use the same simulation procedure, and
in analogy to Eq. (6.104) we define

cℓ,m(r) = αNm−ℓφ(iNm,m)′r +

Nm−1
∑

q=ℓ

αq−ℓg(iq,m, iq+1,m).

The LSTD(λ) approximation Φr̂ to the projected equation

Φr = Π̂T (λ)(Φr),
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[cf. Eq. (6.106)] is determined from the fixed point equation

r̂ = arg min
r∈ℜs

t
∑

m=1

Nm−1
∑

ℓ=0

(

φ(iℓ,m)′r − cℓ,m(r̂)
)2
. (6.112)

By writing the optimality condition

t
∑

m=1

Nm−1
∑

ℓ=0

φ(iℓ,m)
(

φ(iℓ,m)′r̂ − cℓ,m(r̂)
)

= 0

for the above least squares minimization and solving for r̂, we obtain

r̂ = Ĉ−1d̂, (6.113)

where

Ĉ =
t
∑

m=1

Nm−1
∑

ℓ=0

φ(iℓ,m)
(

φ(iℓ,m) − αNm−ℓφ(iNm,m)
)′
, (6.114)

and

d̂ =

t
∑

m=1

Nm−1
∑

ℓ=0

Nm−1
∑

q=ℓ

αq−ℓg(iq,m, iq+1,m). (6.115)

For a large number of trajectories t, the methods (6.105) and (6.112) [or
equivalently (6.113)-(6.115)] yield similar results, particularly when λ ≈ 1.
However, the method (6.105) has an iterative character (rk+1 depends on
rk), so it is reasonable to expect that it is less susceptible to simulation
noise in an optimistic PI setting where the number of samples per policy
is low.

Similarly, to obtain an exploration-enhanced TD(λ), we simply solve
approximately the least squares problem in Eq. (6.105) by iterating, per-
haps multiple times, with an incremental gradient method. The details of
this type of algorithm are straightforward (see Section 6.2). The method
does not involve matrix inversion like the exploration-enhanced implemen-
tations (6.105) and (6.113)-(6.115) of LSPE(λ) and LSTD(λ), respectively,
but is much slower and less reliable.

Feature Scaling and its Effect on LSTD(λ), LSPE(λ), and TD(λ)

Let us now discuss how the representation of the approximation subspace
S affects the results produced by LSTD(λ), LSPE(λ), and TD(λ). In
particular, suppose that instead of S being represented as

S = {Φr | r ∈ ℜr},
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it is equivalently represented as

S = {Ψv | v ∈ ℜr},

where
Φ = ΨB,

with B being an invertible r× r matrix. Thus S is represented as the span
of a different set of basis functions, and any vector Φr ∈ S can be written
as Ψv, where the weight vector v is equal to Br. Moreover, each row φ(i)′,
the feature vector of state i in the representation based on Φ, is equal to
ψ(i)′B, the linearly transformed feature vector of i in the representation
based on Ψ.

Suppose that we generate a trajectory (i0, i1, . . .) according to the sim-
ulation process of Section 6.3.3, and we calculate the iterates of LSTD(λ),
LSPE(λ), and TD(λ) using the two different representations of S, based on

Φ and Ψ. Let C
(λ)
k,Φ and C

(λ)
k,Ψ be the corresponding matrices generated by

Eq. (6.95), and let d
(λ)
k,Φ and d

(λ)
k,Ψ be the corresponding vectors generated

by Eq. (6.96). Let also zt,Φ and zt,Ψ be the corresponding eligibility vectors
generated by Eq. (6.94). Then, since φ(im) = B′ψ(im), we have

zt,Φ = B′zt,Ψ,

and from Eqs. (6.95) and (6.96),

C
(λ)
k,Φ = B′C

(λ)
k,ΨB, d

(λ)
k,Φ = B′d

(λ)
k,Ψ.

We now wish to compare the high dimensional iterates Φrk and Ψvk

produced by different methods. Based on the preceding equation, we claim
that LSTD(λ) is scale-free in the sense that Φrk = Ψvk for all k. Indeed,
in the case of LSTD(λ) we have [cf. Eq. (6.88)]

Φrk = Φ
(

C
(λ)
k,Φ

)−1
d
(λ)
k,Φ = ΨB

(

B′C
(λ)
k,ΨB

)−1
B′d

(λ)
k,Ψ = Ψ

(

C
(λ)
k,Ψ

)−1
d
(λ)
k,Ψ = Ψvk.

We also claim that LSPE(λ) with

Gk =

(

1

k + 1

k
∑

t=0

φ(it)φ(it)′

)−1

,

[cf. Eq. (6.73)], is scale-free in the sense that Φrk = Ψvk for all k. This
follows from Eq. (6.97) using a calculation similar to the one for LSTD(λ),
but it also follows intuitively from the fact that LSPE(λ), with Gk as
given above, is a simulation-based implementation of the PVI(λ) iteration
Jk+1 = ΠTJk, which involves the projection operator Π that is scale-free
(does not depend on the representation of S).
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We finally note that the TD(λ) iteration (6.99) is not scale-free unless
B is an orthogonal matrix (BB′ = I). This can be verified with a direct
calculation using the iteration (6.99) for the case of the two representations
of S based on Φ and Ψ. In particular, let {rk} be generated by TD(λ) based
on Φ,

rk+1 = rk − γkzk,Φ

(

φ(ik)′rk − αφ(ik+1)′rk − g(ik, ik+1)
)

,

and let {vk} be generated by TD(λ) based on Ψ,

vk+1 = vk − γkzk,Ψ

(

ψ(ik)′vk − αψ(ik+1)′vk − g(ik, ik+1)
)

,

[cf. Eqs. (6.98), (6.99)]. Then, we generally have Φrk 6= Ψvk, since Φrk =
ΨBrk and Brk 6= vk. In particular, the vector vk = Brk is generated by
the iteration

vk+1 = vk − γkzk,Ψ(BB′)
(

ψ(ik)′vk − αψ(ik+1)′vk − g(ik, ik+1)
)

,

which is different from the iteration that generates vk, unless BB′ = I.
This analysis also indicates that the appropriate value of the stepsize γk

in TD(λ) strongly depends on the choice of basis functions to represent S,
and points to a generic weakness of the method.

6.3.7 Policy Iteration Issues – Exploration

We have discussed so far policy evaluation methods based on the projected
equation. We will now address, in this and the next subsection, some
of the difficulties associated with these methods, when embedded within
policy iteration. One difficulty has to do with the issue of exploration:
for a variety of reasons it is important to generate trajectories according
to the steady-state distribution ξ associated with the given policy µ (one
reason is the need to concentrate on “important” states that are likely
to occur under a near-optimal policy, and another is the desirabiity to
maintain the contraction property of ΠT ). On the other hand, this biases
the simulation by underrepresenting states that are unlikely to occur under
µ, causing potentially serious errors in the calculation of a new policy via
policy improvement.

Another difficulty is that Assumption 6.3.1 (the irreducibility of the
transition matrix P of the policy being evaluated) may be hard or impos-
sible to guarantee, in which case the methods break down, either because
of the presence of transient states (in which case the components of ξ cor-
responding to transient states are 0, and these states are not represented
in the constructed approximation), or because of multiple recurrent classes
(in which case some states will never be generated during the simulation,
and again will not be represented in the constructed approximation).
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We noted earlier one possibility to introduce a natural form of explo-
ration in a least squares implementation of LSPE(λ) and LSTD(λ). We
will now discuss another popular approach to address the exploration dif-
ficulty, which is often used in conjunction with LSTD. This is to modify
the transition matrix P of the given policy µ by occasionally generating
transitions other than the ones dictated by µ. If the modified transition
probability matrix is irreducible, we simultaneously address the difficulty
with multiple recurrent classes and transient states as well. Mathemati-
cally, in such a scheme we generate an infinitely long trajectory (i0, i1, . . .)
according to an irreducible transition probability matrix

P = (I −B)P +BQ, (6.116)

where B is a diagonal matrix with diagonal components βi ∈ [0, 1] and Q
is another transition probability matrix. Thus, at state i, the next state is
generated with probability 1 − βi according to transition probabilities pij ,
and with probability βi according to transition probabilities qij [here pairs
(i, j) with qij > 0 need not correspond to physically plausible transitions].†
We refer to βi as the exploration probability at state i.

Unfortunately, using P in place of P for simulation, with no other
modification in the TD algorithms, creates a bias that tends to degrade
the quality of policy evaluation, because it directs the algorithms towards

approximating the fixed point of the mapping T
(λ)

, given by

T
(λ)

(J) = g(λ) + αP
(λ)
J,

where

T
(λ)

(J) = (1 − λ)

∞
∑

t=0

λtT
t+1

(J),

with
T (J) = g + αPJ

[cf. Eq. (6.85)]. This is the cost of a different policy, a fictitious exploration-
enhanced policy that has a cost vector g with components

gi =
n
∑

j=1

pijg(i, j), i = 1, . . . , n,

† In the literature, e.g., [SuB98], the policy being evaluated is sometimes

called the target policy to distinguish from a policy modified for exploration like

P , which is called behavior policy . Also, methods that use a behavior policy

are called off-policy methods, while methods that do not are called on-policy

methods. Note, however, that P need not correspond to an admissible policy,

and indeed there may not exist a suitable admissible policy that can induce

sufficient exploration.
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and a transition probability matrix P in place of P . In particular, when the
simulated trajectory is generated according to P , the LSTD(λ), LSPE(λ),
and TD(λ) algorithms yield the unique solution rλ of the equation

Φr = ΠT
(λ)

(Φr), (6.117)

where Π denotes projection on the approximation subspace with respect to
‖ · ‖ξ, where ξ is the invariant distribution corresponding to P .

We will discuss in this section some schemes that allow the approxi-
mation of the solution of the projected equation

Φr = ΠT (λ)(Φr), (6.118)

where Π is projection with respect to the norm ‖ · ‖ξ, corresponding to

the steady-state distribution ξ of P . Note the difference between equations
(6.117) and (6.118): the first involves T but the second involves T , so it aims
to approximate the desired fixed point of T , rather than a fixed point of T .
Thus, the following schemes allow exploration, but without the degradation
of approximation quality resulting from the use of T in place of T .

Exploration Using Extra Transitions

The first scheme applies only to the case where λ = 0. Then a vector r∗

solves the exploration-enhanced projected equation Φr = ΠT (Φr) if and
only if it satisfies the orthogonality condition

Φ′Ξ(Φr∗ − αPΦr∗ − g) = 0, (6.119)

where Ξ is the steady-state distribution of P [cf. Eq. (6.39)]. This condition
can be written in matrix form as

Cr∗ = d,

where

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg. (6.120)

These equations should be compared with the equations for the case where
P = P [cf. Eqs. (6.40)-(6.41)]: the only difference is that the distribution
matrix Ξ is replaced by the exploration-enhanced distribution matrix Ξ.

We generate a state sequence
{

i0, i1, . . .
}

according to the exploration-

enhanced transition matrix P (or in fact any steady state distribution ξ,
such as the uniform distribution). We also generate an additional sequence
of independent transitions

{

(i0, j0), (i1, j1), . . .
}

according to the original
transition matrix P .



Sec. 6.3 Projected Equation Methods 397

We approximate the matrix C and vector d of Eq. (6.120) using the
formulas

Ck =
1

k + 1

k
∑

t=0

φ(it)
(

φ(it) − αφ(jt)
)′
,

and

dk =
1

k + 1

k
∑

t=0

φ(it)g(it, jt),

in place of Eqs. (6.48) and (6.49). Similar to the earlier case in Section
6.3.3, where P = P , it can be shown using law of large numbers arguments
that Ck → C and dk → d with probability 1.

The corresponding approximationCkr = dk to the projected equation
Φr = ΠT (Φr) can be written as

k
∑

t=0

φ(it)q̃k,t = 0, (6.121)

where

q̃k,t = φ(it)′rk − αφ(jt)′rk − g(it, jt)

is a temporal difference associated with the transition (it, jt) [cf. Eq. (6.54)].
The three terms in the definition of q̃k,t can be viewed as samples [asso-
ciated with the transition (it, jt)] of the corresponding three terms of the
expression Ξ(Φrk − αPΦrk − g) in Eq. (6.119).

In a modified form of LSTD(0), we approximate the solution C−1d
of the projected equation with C−1

k dk. In a modified form of (scaled)
LSPE(0), we approximate the term (Crk − d) in PVI by (Ckrk − dk),
leading to the iteration

rk+1 = rk − γ

k + 1
Gk

k
∑

t=0

φ(it)q̃k,t, (6.122)

where γ is small enough to guarantee convergence [cf. Eq. (6.72)]. Finally,
the modified form of TD(0) is

rk+1 = rk − γkφ(ik)q̃k,k, (6.123)

where γk is a positive diminishing stepsize [cf. Eq. (6.78)]. Unfortunately,
versions of these schemes for λ > 0 are complicated because of the difficulty
of generating extra transitions in a multistep context.
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Exploration Using Modified Temporal Differences

We will now present an alternative exploration approach that works for all
λ ≥ 0. Like the preceding approach, it aims to solve the projected equation
Φr = ΠT (λ)(Φr) [cf. Eq. (6.118)], but it does not require extra transitions.
It does require, however, the explicit knowledge of the transition probabil-
ities pij and pij , so it does not apply to the model-free context. (Later,
in Section 6.5, we will discuss appropriate model-free modifications in the
context of Q-learning.)

Here we generate a single state sequence
{

i0, i1, . . .
}

according to the

exploration-enhanced transition matrix P . The formulas of the various
TD algorithms are similar to the ones given earlier, but we use modified
versions of temporal differences, defined by

q̃k,t = φ(it)′rk − pitit+1

pitit+1

(

αφ(it+1)′rk + g(it, it+1)
)

, (6.124)

where pij and pij denote the ijth components of P and P , respectively.†
Consider now the case where λ = 0 and the approximation of the

matrix C and vector d of Eq. (6.120) by simulation: we generate a state
sequence {i0, i1, . . .} using the exploration-enhanced transition matrix P .
After collecting k + 1 samples (k = 0, 1, . . .), we form

Ck =
1

k + 1

k
∑

t=0

φ(it)

(

φ(it) − α
pitit+1

pitit+1

φ(it+1)

)′

,

and

dk =
1

k + 1

k
∑

t=0

pitit+1

pitit+1

φ(it)g(it, it+1).

Similar to the earlier case in Section 6.3.3, where P = P , it can be shown
using simple law of large numbers arguments that Ck → C and dk → d with
probability 1 (see also Section 6.8.1, where this approximation approach is
discussed within a more general context). Note that the approximation
Ckr = dk to the projected equation can also be written as

k
∑

t=0

φ(it)q̃k,t = 0,

† Note the difference in the sampling of transitions. Whereas in the preceding

scheme with extra transitions, (it, jt) was generated according to the original

transition matrix P , here (it, it+1) is generated according to the exploration-

enhanced transition matrix P . The approximation of an expected value with

respect to a given distribution (induced by the transition matrix P ) by sampling

with respect to a different distribution (induced by the exploration-enhanced

transition matrix P ) is reminiscent of importance sampling (cf. Section 6.1.5).

The probability ratio
pitit+1
pitit+1

in Eq. (6.124) provides the necessary correction.
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where q̃k,t is the modified temporal difference given by Eq. (6.124) [cf. Eq.
(6.121)].

The exploration-enhanced LSTD(0) method is simply r̂k = C−1
k dk,

and converges with probability 1 to the solution of the projected equation
Φr = ΠT (Φr). Exploration-enhanced versions of LSPE(0) and TD(0) can
be similarly derived [cf. Eqs. (6.122) and (6.123)], but for convergence of
these methods, the mapping ΠT should be a contraction, which is guaran-
teed only if P differs from P by a small amount (see the subsequent Prop.
6.3.6).

Let us now consider the case where λ > 0. We first note that increas-
ing values of λ tend to preserve the contraction of ΠT (λ). In fact, given
any norm ‖ ·‖ξ, T

(λ) is a contraction with respect to that norm, provided λ

is sufficiently close to 1 (see Prop. 6.3.5, which shows that the contraction
modulus of T (λ) tends to 0 as λ → 1). This implies that given any explo-
ration probabilities from the range [0, 1] such that P is irreducible, there
exists λ ∈ [0, 1) such that T (λ) and ΠT (λ) are contractions with respect to
‖ · ‖ξ for all λ ∈ [λ, 1).

Exploration-enhanced versions of LSTD(λ) and LSPE(λ) have been
obtained by Bertsekas and Yu [BeY09], to which we refer for their detailed
development. In particular, the exploration-enhanced LSTD(λ) method

computes r̂k as the solution of the equation C
(λ)
k r = d

(λ)
k , with C

(λ)
k and

d
(λ)
k generated with recursions similar to the ones with unmodified TD [cf.

Eqs. (6.94)-(6.96)]:

C
(λ)
k = (1 − δk)C

(λ)
k−1 + δkzk

(

φ(ik) − α
pikik+1

pikik+1

φ(ik+1)

)′

, (6.125)

d
(λ)
k = (1 − δk)d

(λ)
k−1 + δkzk

pikik+1

pikik+1

g(ik, ik+1), (6.126)

where zk are modified eligibility vectors given by

zk = αλ
pik−1ik

pik−1ik

zk−1 + φ(ik), (6.127)

the initial conditions are z−1 = 0, C−1 = 0, d−1 = 0, and

δk =
1

k + 1
, k = 0, 1, . . . .

It is possible to show the convergence of Φr̂k to the solution of the explora-
tion-enhanced projected equation Φr = ΠT (λ)(Φr), assuming only that
this equation has a unique solution (a contraction property is not neces-
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sary since LSTD is not an iterative method, but rather approximates the
projected equation by simulation).†

The exploration-enhanced LSPE(λ) iteration is given by

rk+1 = rk − γGk

(

C
(λ)
k rk − d

(λ)
k

)

, (6.128)

where Gk is a scaling matrix, γ is a positive stepsize, and qk,t are the modi-
fied temporal differences (6.124). Convergence of iteration (6.128) requires
that Gk converges to a matrix G such that I − γGC(λ) is a contraction.
A favorable special case is the iterative regression method [cf. Eqs. (6.90)
and (6.91)]

rk+1 =
(

C
(λ)′

k Σ−1
k C

(λ)
k + βI

)−1 (

C
(λ)′

k Σ−1
k d

(λ)
k + βrk

)

. (6.129)

This method converges for any λ as it does not require that T (λ) is a
contraction with respect to ‖ · ‖ξ. The corresponding LSPE(λ) method

rk+1 = rk −
(

1

k + 1

k
∑

t=0

φ(it)φ(it)′

)−1
(

C
(λ)
k rk − d

(λ)
k

)

is convergent only if ΠT (λ) is a contraction.
We finally note that an exploration-enhanced version of TD(λ) has

been developed in [BeY09] (Section 5.3). It has the form

rk+1 = rk − γkzkq̃k,k,

where γk is a stepsize parameter and q̃k,k is the modified temporal difference

q̃k,k = φ(ik)′rk −
pikik+1

pikik+1

(

αφ(ik+1)′rk + g(ik, ik+1)
)

,

[cf. Eqs. (6.99) and (6.124)]. However, this method is guaranteed to con-
verge to the solution of the exploration-enhanced projected equation Φr =
ΠT (λ)(Φr) only if ΠT (λ) is a contraction. We next discuss conditions under
which this is so.

† The analysis of the convergence C
(λ)
k → C(λ) and d

(λ)
k → d(λ) has been

given in several sources under different assumptions: (a) In Nedić and Bert-

sekas [NeB03] for the case of policy evaluation in an α-discounted problem with

no exploration (P = P ). (b) In Bertsekas and Yu [BeY09], assuming that

αλ max(i,j)(pij/pij) < 1 (where we adopt the convention 0/0 = 0), in which case

the eligibility vectors zk of Eq. (6.127) are generated by a contractive process and

remain bounded. This covers the common case P =
(

1 − ǫ)P + ǫQ, where ǫ > 0

is a constant. The essential restriction here is that λ should be no more than

(1 − ǫ). (c) In Yu [Yu10a,b], for all λ ∈ [0, 1] and no other restrictions, in which

case the eligibility vectors zk typically become unbounded as k increases when

λ max(i,j)(aij/ℓij) > 1. Mathematically, this is the most challenging analysis,

and involves interesting stochastic phenomena.
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Contraction Properties of Exploration-Enhanced Methods

We now consider the question whether ΠT (λ) is a contraction. This is
important for the corresponding LSPE(λ) and TD(λ)-type methods, which
are valid only if ΠT (λ) is a contraction, as mentioned earlier. Generally,
ΠT (λ) may not be a contraction. The key difficulty here is a potential norm
mismatch: even if T (λ) is a contraction with respect to some norm, Π may
not be nonexpansive with respect to the same norm.

We recall the definition

P = (I −B)P +BQ,

[cf. Eq. (6.116)], where B is a diagonal matrix with the exploration proba-
bilities βi ∈ [0, 1] on the diagonal, and Q is another transition probability
matrix. The following proposition quantifies the restrictions on the size of
the exploration probabilities in order to avoid the difficulty just described.
Since Π is nonexpansive with respect to ‖ · ‖ξ, the proof is based on finding

values of βi for which T (λ) is a contraction with respect to ‖ · ‖ξ. This is
equivalent to showing that the corresponding induced norm of the matrix

αP (λ) = (1 − λ)

∞
∑

t=0

λt(αP )t+1 (6.130)

[cf. Eq. (6.85)] is less than 1.

Proposition 6.3.6: Assume that P is irreducible and ξ is its invariant
distribution. Then T (λ) and ΠT (λ) are contractions with respect to
‖ · ‖ξ for all λ ∈ [0, 1) provided α < 1, where

α =
α

√

1 − maxi=1,...,n βi

.

The associated modulus of contraction is at most equal to

α(1 − λ)

1 − αλ
.

Proof: For all z ∈ ℜn with z 6= 0, we have

‖αPz‖2
ξ

=

n
∑

i=1

ξi





n
∑

j=1

αpijzj





2
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= α2

n
∑

i=1

ξi





n
∑

j=1

pijzj





2

≤ α2

n
∑

i=1

ξi

n
∑

j=1

pijz2
j

≤ α2

n
∑

i=1

ξi

n
∑

j=1

pij

1 − βi
z2

j

≤ α2

1 − β

n
∑

j=1

n
∑

i=1

ξ̄ipijz
2
j

= α2
n
∑

j=1

ξ̄jz2
j

= α2‖z‖2
ξ̄
,

where the first inequality follows from the convexity of the quadratic func-
tion, the second inequality follows from the fact (1 − βi)pij ≤ pij , and the
next to last equality follows from the property

n
∑

i=1

ξ̄ipij = ξj

of the invariant distribution. Thus, αP is a contraction with respect to
‖ · ‖ξ with modulus at most α.

Next we note that if α < 1, the norm of the matrix αP (λ) of Eq.
(6.130) is bounded by

(1 − λ)

∞
∑

t=0

λt‖αP‖t+1
ξ̄

≤ (1 − λ)

∞
∑

t=0

λtαt+1 =
α(1 − λ)

1 − αλ
< 1, (6.131)

from which the result follows. Q.E.D.

The preceding proposition delineates a range of values for the explo-
ration probabilities in order for ΠT (λ) to be a contraction: it is sufficient
that

βi < 1 − α2, i = 1, . . . , n,

independent of the value of λ. We next consider the effect of λ on the
range of allowable exploration probabilities. While it seems difficult to fully
quantify this effect, it appears that values of λ close to 1 tend to enlarge
the range. In fact, T (λ) is a contraction with respect to any norm ‖ ·‖ξ and
consequently for any value of the exploration probabilities βi, provided λ
is sufficiently close to 1. This is shown in the following proposition.
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Proposition 6.3.7: Given any exploration probabilities from the range
[0, 1] such that P is irreducible, there exists λ ∈ [0, 1) such that T (λ)

and ΠT (λ) are contractions with respect to ‖ · ‖ξ for all λ ∈ [λ, 1).

Proof: By Prop. 6.3.6, there exists ξ such that ‖αP‖ξ̄ < 1. From Eq.
(6.131) it follows that limλ→1 ‖αP (λ)‖ξ̄ = 0 and hence limλ→1 αP (λ) = 0.
It follows that given any norm ‖ · ‖, αP (λ) is a contraction with respect
to that norm for λ sufficiently close to 1. In particular, this is true for
any norm ‖ · ‖ξ, where ξ is the invariant distribution of an irreducible P

that is generated with any exploration probabilities from the range [0, 1].
Q.E.D.

We finally note that assuming ΠT (λ) is a contraction with modulus

αλ =
α(1 − λ)

1 − αλ
,

as per Prop. 6.3.6, we have the error bound

‖Jµ − Φrλ‖ξ ≤ 1
√

1 − α2
λ

‖Jµ − ΠJµ‖ξ,

where Φrλ is the fixed point of ΠT (λ). The proof is nearly identical to the
one of Prop. 6.3.5.

6.3.8 Policy Oscillations – Chattering

We will now describe a generic mechanism that tends to cause policy os-
cillations in approximate policy iteration. To this end, we introduce the so
called greedy partition. For a given approximation architecture J̃(·, r), this
is a partition of the space ℜs of parameter vectors r into subsets Rµ, each
subset corresponding to a stationary policy µ, and defined by

Rµ =
{

r | Tµ(Φr) = T (Φr)
}

or equivalently

Rµ =







r

∣

∣

∣

∣

∣

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

, i = 1, . . . , n







.

Thus, Rµ is the set of parameter vectors r for which µ is greedy with respect
to J̃(·, r).
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We first consider the nonoptimistic version of approximate policy iter-
ation. For simplicity, let us assume that we use a policy evaluation method
(e.g., a projected equation or other method) that for each given µ produces
a unique parameter vector denoted rµ. Nonoptimistic policy iteration starts
with a parameter vector r0, which specifies µ0 as a greedy policy with re-
spect to J̃(·, r0), and generates rµ0 by using the given policy evaluation

method. It then finds a policy µ1 that is greedy with respect to J̃(·, rµ0),
i.e., a µ1 such that

rµ0 ∈ Rµ1 .

It then repeats the process with µ1 replacing µ0. If some policy µk satisfying

rµk ∈ Rµk (6.132)

is encountered, the method keeps generating that policy. This is the nec-
essary and sufficient condition for policy convergence in the nonoptimistic
policy iteration method.

rµk

rµk+1

rµk+2

rµk+3

Rµk

Rµk+1

Rµk+2

Rµk+3

Figure 6.3.4 Greedy partition and cycle
of policies generated by nonoptimistic pol-
icy iteration with cost function approxima-
tion. In particular, µ yields µ by policy
improvement if and only if rµ ∈ Rµ. In
this figure, the method cycles between four
policies and the corresponding four param-
eters rµk , rµk+1 , rµk+2 , and rµk+3 .

In the case of a lookup table representation where the parameter
vectors rµ are equal to the cost-to-go vector Jµ, the condition rµk ∈ Rµk is
equivalent to rµk = Trµk , and is satisfied if and only if µk is optimal. When
there is cost function approximation, however, this condition need not be
satisfied for any policy. Since there is a finite number of possible vectors
rµ, one generated from another in a deterministic way, the algorithm ends
up repeating some cycle of policies µk, µk+1, . . . , µk+m with

rµk ∈ Rµk+1 , rµk+1 ∈ Rµk+2 , . . . , rµk+m−1 ∈ Rµk+m , rµk+m ∈ Rµk ;
(6.133)

(see Fig. 6.3.4). Furthermore, there may be several different cycles, and
the method may end up converging to any one of them. The actual cy-
cle obtained depends on the initial policy µ0. This is similar to gradient
methods applied to minimization of functions with multiple local minima,
where the limit of convergence depends on the starting point.
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We now turn to examine policy oscillations in optimistic variants of
policy evaluation methods with function approximation. Then the trajec-
tory of the method is less predictable and depends on the fine details of
the iterative policy evaluation method, such as the frequency of the pol-
icy updates and the stepsize used. Generally, given the current policy µ,
optimistic policy iteration will move towards the corresponding “target”
parameter rµ, for as long as µ continues to be greedy with respect to the
current cost-to-go approximation J̃(·, r), that is, for as long as the current
parameter vector r belongs to the set Rµ. Once, however, the parameter
r crosses into another set, say Rµ, the policy µ becomes greedy, and r
changes course and starts moving towards the new “target” rµ. Thus, the
“targets” rµ of the method, and the corresponding policies µ and sets Rµ

may keep changing, similar to nonoptimistic policy iteration. Simultane-
ously, the parameter vector r will move near the boundaries that separate
the regions Rµ that the method visits, following reduced versions of the
cycles that nonoptimistic policy iteration may follow (see Fig. 6.3.5). Fur-
thermore, as Fig. 6.3.5 shows, if diminishing parameter changes are made
between policy updates (such as for example when a diminishing stepsize
is used by the policy evaluation method) and the method eventually cycles
between several policies, the parameter vectors will tend to converge to
the common boundary of the regions Rµ corresponding to these policies.
This is the so-called chattering phenomenon for optimistic policy iteration,
whereby there is simultaneously oscillation in policy space and convergence
in parameter space.

An additional insight is that the choice of the iterative policy evalu-
ation method (e.g., LSTD, LSPE, or TD for various values of λ) makes a
difference in rate of convergence, but does not seem crucial for the quality
of the final policy obtained (as long as the methods converge). Using a
different value of λ changes the targets rµ somewhat, but leaves the greedy
partition unchanged. As a result, different methods “fish in the same wa-
ters” and tend to yield similar ultimate cycles of policies.

The following is an example of policy oscillations and chattering.
Other examples are given in Section 6.4.2 of [BeT96] (Examples 6.9 and
6.10).

Example 6.3.2 (Policy Oscillation and Chattering)

Consider a discounted problem with two states, 1 and 2, illustrated in Fig.
6.3.6(a). There is a choice of control only at state 1, and there are two policies,
denoted µ∗ and µ. The optimal policy µ∗, when at state 1, stays at 1 with
probability p > 0 and incurs a negative cost c. The other policy is µ and
cycles between the two states with 0 cost. We consider linear approximation
with a single feature φ(i)′ = i for each of the states i = 1, 2, i.e.,

Φ =

(

1
2

)

, J̃ = Φr =

(

r
2r

)

.
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rµ1

rµ2

rµ3

Rµ1

Rµ2

Rµ3

Figure 6.3.5 Illustration of a trajectory of
optimistic policy iteration with cost function
approximation. The algorithm settles into an
oscillation between policies µ1, µ2, µ3 with
rµ1 ∈ Rµ2 , rµ2 ∈ Rµ3 , rµ3 ∈ Rµ1 . The
parameter vectors converge to the common
boundary of these policies.

Cost =0

Cost =0

Cost =0

Cost =0

0 Prob. = 1− p

Prob. = 1

Prob. = 1

Prob. = 1

0 Cost = c < 0
1 Prob. = p

Policy µ Policy µ∗

(a)

(b)

rµ = 0

c

α

rµ∗ ≈

c

1− α

,

0 Rµ Rµ∗

1 12 2

Figure 6.3.6 The problem of Example 6.3.2. (a) Costs and transition prob-
abilities for the policies µ and µ∗. (b) The greedy partition and the solutions
of the projected equations corresponding to µ and µ∗. Nonoptimistic policy
iteration oscillates between rµ and rµ∗ .

Let us construct the greedy partition. We have

Φ =

(

1
2

)

, J̃ = Φr =

(

r
2r

)

.

We next calculate the points rµ and rµ∗ that solve the projected equations

Cµrµ = dµ, Cµ∗rµ∗ = dµ∗ ,

which correspond to µ and µ∗, respectively [cf. Eqs. (6.40), (6.41)]. We have

Cµ = Φ′Ξµ(1 − αPµ)Φ = ( 1 2 )

(

1 0
0 1

)(

1 −α
−a 1

)(

1
2

)

= 5 − 9α,
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dµ = Φ′Ξµgµ = ( 1 2 )

(

1 0
0 1

)(

0
0

)

= 0,

so
rµ = 0.

Similarly, with some calculation,

Cµ∗ = Φ′Ξµ∗(1 − αPµ∗)Φ

= ( 1 2 )

(

1
2−p

0

0 1−p

2−p

)(

1 − αp −α(1 − p)
−a 1

)(

1
2

)

=
5 − 4p − α(4 − 3p)

2 − p
,

dµ∗ = Φ′Ξµ∗gµ∗ = ( 1 2 )

(

1
2−p

0

0 1−p

2−p

)(

c
0

)

=
c

2 − p
,

so
rµ∗ =

c

5 − 4p − α(4 − 3p)
.

We now note that since c < 0,

rµ = 0 ∈ Rµ∗ ,

while for p ≈ 1 and α > 1 − α, we have

rµ∗ ≈ c

1 − α
∈ Rµ;

cf. Fig. 6.3.6(b). In this case, approximate policy iteration cycles between
µ and µ∗. Optimistic policy iteration uses some algorithm that moves the
current value r towards rµ∗ if r ∈ Rµ∗ , and towards rµ if r ∈ Rµ. Thus
optimistic policy iteration starting from a point in Rµ moves towards rµ∗

and once it crosses the boundary point c/α of the greedy partition, it reverses
course and moves towards rµ. If the method makes small incremental changes
in r before checking whether to change the current policy, it will incur a small
oscillation around c/α. If the incremental changes in r are diminishing, the
method will converge to c/α. Yet c/α does not correspond to any one of the
two policies and has no meaning as a desirable parameter value.

Notice that it is hard to predict when an oscillation will occur and what
kind of oscillation it will be. For example if c > 0, we have

rµ = 0 ∈ Rµ,

while for p ≈ 1 and α > 1 − α, we have

rµ∗ ≈ c

1 − α
∈ Rµ∗ .

In this case approximate as well as optimistic policy iteration will converge
to µ (or µ∗) if started with r in Rµ (or Rµ∗ , respectively).
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When chattering occurs, the limit of optimistic policy iteration tends
to be on a common boundary of several subsets of the greedy partition
and may not meaningfully represent a cost approximation of any of the
corresponding policies, as illustrated by the preceding example. Thus, the
limit to which the method converges cannot always be used to construct
an approximation of the cost-to-go of any policy or the optimal cost-to-
go. As a result, at the end of optimistic policy iteration and in contrast
with the nonoptimistic version, one must go back and perform a screening
process; that is, evaluate by simulation the many policies generated by the
method starting from the initial conditions of interest and select the most
promising one. This is a disadvantage of optimistic policy iteration that
may nullify whatever practical rate of convergence advantages it may have
over its nonoptimistic counterpart.

We note, however, that computational experience indicates that for
many problems, the cost functions of the different policies involved in chat-
tering may not be “too different.” Indeed, suppose that we have conver-
gence to a parameter vector r and that there is a steady-state policy os-
cillation involving a collection of policies M. Then, all the policies in M
are greedy with respect to J̃(·, r), which implies that there is a subset of
states i such that there are at least two different controls µ1(i) and µ2(i)
satisfying

min
u∈U(i)

∑

j

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

=
∑

j

pij

(

µ1(i)
)

(

g
(

i, µ1(i), j
)

+ αJ̃(j, r)
)

=
∑

j

pij

(

µ2(i)
)

(

g
(

i, µ2(i), j
)

+ αJ̃(j, r)
)

.

(6.134)

Each equation of this type can be viewed as a constraining relation on the
parameter vector r. Thus, excluding singular situations, there will be at
most s relations of the form (6.134) holding, where s is the dimension of r.
This implies that there will be at most s “ambiguous” states where more
than one control is greedy with respect to J̃(·, r) (in Example 6.3.6, state
1 is “ambiguous”).

Now assume that we have a problem where the total number of states
is much larger than s, and in addition there are no “critical” states; that is,
the cost consequences of changing a policy in just a small number of states
(say, of the order of s) is relatively small. It then follows that all policies in
the set M involved in chattering have roughly the same cost. Furthermore,
for the methods of this section, one may argue that the cost approximation
J̃(·, r) is close to the cost approximation J̃(·, rµ) that would be generated
for any of the policies µ ∈ M. Note, however, that the assumption of “no
critical states,” aside from the fact that it may not be easily quantifiable,
it will not be true for many problems.
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While the preceding argument may explain some of the observed em-
pirical behavior, an important concern remains: even if all policies involved
in chattering have roughly the same cost, it is still possible that none of
them is particularly good; the policy iteration process may be just cycling
in a “bad” part of the greedy partition. An interesting case in point is
the game of tetris, which has been used as a testbed for approximate DP
methods [Van95], [TsV96], [BeI96], [Kak02], [FaV06], [SzL06], [DFM09].
Using a set of 22 features and approximate policy iteration with policy
evaluation based on the projected equation and the LSPE method [BeI96],
an average score of a few thousands was achieved. Using the same features
and a random search method in the space of weight vectors r, an average
score of over 900,000 was achieved [ThS09]. This suggests that in the tetris
problem, policy iteration using the projected equation may be seriously
hampered by oscillations or by chattering between relatively poor policies,
roughly similar to the attraction of gradient methods to poor local minima.
The full ramifications of policy oscillation in practice are not fully under-
stood at present, but it is clear that they give serious reason for concern,
and future research may shed more light on this question. It should also be
noted that local minima-type phenomena may be causing similar difficul-
ties in other related approximate DP methodologies: approximate policy
iteration with the Bellman error method (see Section 6.8.4), policy gradient
methods (see Section 6.9), and approximate linear programming (the tetris
problem, using the same 22 features, has been addressed by approximate
linear programming [FaV06], [DFM09], and with a policy gradient method
[Kak02], also with an achieved average score of a few thousands).

Conditions for Policy Convergence

The preceding discussion has illustrated the detrimental effects of policy
oscillation in approximate policy iteration. Another reason why conver-
gence of policies may be desirable has to do with error bounds. Generally,
in approximate policy iteration, by Prop. 1.3.6, we have an error bound of
the form

lim sup
k→∞

‖Jµk − J∗‖∞ ≤ 2αδ

(1 − α)2
,

where δ satisfies
‖Jk − Jµk‖∞ ≤ δ

for all generated policies µk and Jk is the approximate cost vector of µk

that is used for policy improvement. However, when the policy sequence
{µk} terminates with some µ and the policy evaluation is accurate to within
δ (in the sup-norm sense ‖Φrµ − Jµ‖∞ ≤ δ, for all µ), then one can show
the much sharper bound

‖Jµ − J∗‖∞ ≤ 2αδ

1 − α
. (6.135)
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For a proof, let J be the cost vector Φrµ obtained by policy evaluation of
µ, and note that it satisfies ‖J − Jµ‖∞ ≤ δ (by our assumption on the
accuracy of policy evaluation) and TJ = TµJ (since µk terminates at µ).
We write

TJµ ≥ T (J−δe) = TJ−αδe = TµJ−αδe ≥ Tµ(Jµ−δe)−αδe = TµJµ−2αδe,

and since TµJµ = Jµ, we obtain TJµ ≥ Jµ − 2αδe. From this, by applying
T to both sides, we obtain

T 2Jµ ≥ TJµ − 2α2δe ≥ Jµ − 2αδ(1 + α)e,

and by similar continued application of T to both sides,

J∗ = lim
m→∞

TmJµ ≥ Jµ − 2αδ

1 − α
e,

thereby showing the error bound (6.135).
In view of the preceding discussion, it is interesting to investigate

conditions under which we have convergence of policies. From the mathe-
matical point of view, it turns out that policy oscillation is caused by the
lack of monotonicity of the projection operator (J ≤ J ′ does not imply
that ΠJ ≤ ΠJ ′). Generally, monotonicity is an essential property for the
convergence of policy iteration-type methods (see the proof of the follow-
ing proposition). Changing the sampling policy at each iteration may also
create problems as it changes the projection norm, and interferes with con-
vergence proofs of policy iteration. With this in mind, we will replace Π
with a constant operator W that has a monotonicity property. Moreover,
it is simpler both conceptually and notationally to do this in a broader and
more abstract setting that transcends discounted DP problems, thereby
obtaining a more general approximate policy iteration algorithm.

To this end, consider a method involving a (possibly nonlinear) map-
ping Hµ : ℜn 7→ ℜn, parametrized by the policy µ, and the mapping
H : ℜn 7→ ℜn, defined by

HJ = min
µ∈M

HµJ, (6.136)

where M is a finite subset of policies, and the minimization above is done
separately for each component of HµJ , i.e.,

(HJ)(i) = min
µ∈M

(HµJ)(i), ∀ i = 1, . . . , n.

Abstract mappings of this type and their relation to DP have been studied
in Denardo [Den67], Bertsekas [Ber77], and Bertsekas and Shreve [BeS78].
The discounted DP case corresponds to Hµ = Tµ and H = T . Another
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special case is a mapping Hµ that is similar to Tµ but arises in discounted
semi-Markov problems. Nonlinear mappings Hµ also arise in the context
of minimax DP problems and sequential games; see Shapley [Sha53], and
[Den67], [Ber77], [BeS78].

We will construct a policy iteration method that aims to find an
approximation to a fixed point of H , and evaluates a policy µ ∈ M with a
solution J̃µ of the following fixed point equation in the vector J :

(WHµ)(J) = J, (6.137)

where W : ℜn 7→ ℜn is a mapping (possibly nonlinear, but independent
of µ). Policy evaluation by solving the projected equation corresponds
to W = Π. Rather than specify properties of Hµ under which H has a
unique fixed point (as in [Den67], [Ber77], and [BeS78]), it is simpler for
our purposes to introduce corresponding assumptions on the mappings W
and WHµ. In particular, we assume the following:

(a) For each J , the minimum in Eq. (6.136) is attained, in the sense that
there exists µ ∈ M such that HJ = HµJ .

(b) For each µ ∈ M, the mappings W and WHµ are monotone in the
sense that

WJ ≤WJ, (WHµ)(J) ≤ (WHµ)(J), ∀ J, J̄ ∈ ℜn with J ≤ J̄ .
(6.138)

(c) For each µ, the solution J̃µ of Eq. (6.137) is unique, and for all J
such that (WHµ)(J) ≤ J , we have

J̃µ = lim
k→∞

(WHµ)k(J).

Based on condition (a), we introduce a policy improvement operation that
is similar to the case where Hµ = Tµ, i.e., the “improved” policy µ satisfies
HµJ̃µ = HJ̃µ. Note that condition (c) is satisfied if WHµ is a contrac-
tion, while condition (b) is satisfied if W is a matrix with nonnegative
components and Hµ is monotone for all µ.

Proposition 6.3.8: Let the preceding conditions (a)-(c) hold. Con-
sider the policy iteration method that uses the fixed point J̃µ of the
mapping WHµ for evaluation of the policy µ [cf. Eq. (6.137)], and
the equation HµJ̃µ = HJ̃µ for policy improvement. Assume that the
method is initiated with some policy in M, and it is operated so that
it terminates when a policy µ is obtained such that HµJ̃µ = HJ̃µ.
Then the method terminates in a finite number of iterations, and the
vector J̃µ obtained upon termination is a fixed point of WH .
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Proof: Similar to the standard proof of convergence of (exact) policy it-
eration, we use the policy improvement equation HµJ̃µ = HJ̃µ, the mono-
tonicity of W , and the policy evaluation Eq. (6.137) to write

(WHµ)(J̃µ) = (WH)(J̃µ) ≤ (WHµ)(J̃µ) = J̃µ.

By iterating with the monotone mapping WHµ and by using condition (c),
we obtain

J̃µ = lim
k→∞

(WHµ)k(J̃µ) ≤ J̃µ.

There are finitely many policies, so we must have J̃µ = J̃µ after a finite

number of iterations, which using the policy improvement equationHµJ̃µ =

HJ̃µ, implies that HµJ̃µ = HJ̃µ. Thus the algorithm terminates with µ,

and since J̃µ = (WHµ)(J̃µ), it follows that J̃µ is a fixed point of WH .
Q.E.D.

An important special case where Prop. 6.3.8 applies and policies con-
verge is when Hµ = Tµ, H = T , W is linear of the form W = ΦD, where
Φ and D are n× s and s× n matrices, respectively, whose rows are proba-
bility distributions, and the policy evaluation uses the linear feature-based
approximation J̃µ = Φrµ. This is the case of policy evaluation by aggre-
gation, which will be discussed in Section 6.4. Then it can be seen that
W is monotone and that WTµ is a sup-norm contraction (since W is non-
expansive with respect to the sup-norm), so that conditions (a)-(c) are
satisfied.

Policy convergence as per Prop. 6.3.8 is also attained in the more
general case where W = ΦD, with the matrix W having nonnegative com-
ponents, and row sums that are less than or equal to 1, i.e.,

s
∑

m=1

ΦimDmj ≥ 0, ∀ i, j = 1, . . . , n, (6.139)

s
∑

m=1

Φim

n
∑

j=1

Dmj ≤ 1, ∀ i = 1, . . . , n. (6.140)

If Φ and D have nonnegative components, Eq. (6.139) is automatically
satisfied, while Eq. (6.140) is equivalent to the set of n linear inequalities

φ(i)′ζ ≤ 1, ∀ i = 1, . . . , n, (6.141)
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where φ(i)′ is the ith row of Φ, and ζ ∈ ℜs is the column vector of row
sums of D, i.e., the one that has components†

ζ(m) =
n
∑

j=1

Dmj, ∀ m = 1, . . . , s.

Even in this more general case, the policy evaluation Eq. (6.137) can be
solved by using simulation and low order calculations (see Section 6.8).

A special case arises when through a reordering of indexes, the matrix
D can be partitioned in the form D = (∆ 0 ), where ∆ is a positive
definite diagonal matrix with diagonal elements δm, m = 1, . . . , s, satisfying

s
∑

m=1

Φimδm ≤ 1, ∀ i = 1, . . . , n.

An example of a structure of this type arises in coarse grid discretiza-
tion/aggregation schemes (Section 6.4).

When the projected equation approach is used (W = Π where Π is
a projection matrix) and the mapping Hµ is monotone in the sense that
HµJ ≤ HµJ for all J, J ∈ ℜn with J ≤ J (as it typically is in DP models),
then the monotonicity assumption (6.138) is satisfied if Π is independent
of the policy µ and satisfies ΠJ ≥ 0 for all J with J ≥ 0. This is true in
particular when both Φ and (Φ′ΞΦ)−1 have nonnegative components, in
view of the projection formula Π = Φ(Φ′ΞΦ)−1Φ′Ξ. A special case is when
Φ is nonnegative and has linearly independent columns that are orthogonal
with respect to the inner product < x1, x2 >= x′1Ξx2, in which case Φ′ΞΦ
is positive definite and diagonal.

† A column of Φ that has both positive and negative components may be
replaced with the two columns that contain its positive and the opposite of its
negative components. This will create a new nonnegative matrix Φ with as
many as twice the number of columns, and will also enlarge the approximation
subspace S (leading to no worse approximation). Then the matrix D may be
optimized subject to D ≥ 0 and the constraints (6.141), with respect to some
performance criterion. Given a choice of Φ ≥ 0, an interesting question is how
to construct effective algorithms for parametric optimization of a nonnegative
matrix W = ΦD, subject to the constraints (6.139)-(6.140). One possibility is to
use

D = γ MΦ′Ξ, W = γ ΦMΦ′Ξ,

where M is a positive definite diagonal replacement/approximation of (Φ′ΞΦ)−1

in the projection formula Π = Φ(Φ′ΞΦ)−1Φ′Ξ, and γ > 0 is a scalar parame-

ter that is adjusted to ensure that the condition (c) of Prop. 6.3.8 is satisfied.

Note that Φ′ΞΦ may be easily computed by simulation, but since W should be

independent of µ, the same should be true for Ξ.
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An example of the latter case is hard aggregation, where the state
space {1, . . . , n} is partitioned in s nonempty subsets I1, . . . , Is and (cf.
Section 6.4, and Vol. I, Section 6.3.4):

(1) The ℓth column of Φ has components that are 1 or 0 depending on
whether they correspond to an index in Iℓ or not.

(2) The ℓth row of D is a probability distribution (dℓ1, . . . , dℓn) whose
components are positive depending on whether they correspond to
an index in Iℓ or not, i.e.,

∑n
j=1 dℓj = 1, dℓj > 0 if j ∈ Iℓ, and dℓj = 0

if j /∈ Iℓ.

With these definitions of Φ and D, it can be verified that W is given by
the projection formula

W = ΦD = Π = Φ(Φ′ΞΦ)−1Φ′Ξ,

where Ξ is the diagonal matrix with the nonzero components of D along
the diagonal. In fact Π can be written in the explicit form

(ΠJ)(i) =
∑

j∈Iℓ

dℓjJ(j), ∀ i ∈ Iℓ, ℓ = 1, . . . , s.

Thus Φ and Π have nonnegative components and assuming that D (and
hence Π) is held constant, policy iteration converges.

6.3.9 λ-Policy Iteration

In this section we return to the idea of optimistic policy iteration and we
discuss an alternative method, which connects with TD and with the multi-
step λ-methods. We first consider the case of a lookup table representation,
and we discuss later the case where we use cost function approximation.

We view optimistic policy iteration as a process that generates a se-
quence of cost vector-policy pairs

{

(Jk, µk)
}

, starting with some (J0, µ0).
At iteration k, we generate an “improved” policy µk+1 satisfying

Tµk+1Jk = TJk, (6.142)

and we then compute Jk+1 as an approximate evaluation of the cost vector
Jµk+1 of µk+1. In the optimistic policy iteration method that we have
discussed so far, Jk+1 is obtained by several, say mk, value iterations using
µk+1:

Jk+1 = T
mk

µk+1Jk. (6.143)

We now introduce another method whereby Jk+1 is instead obtained by a

single value iteration using the mapping T
(λ)

µk+1 :

Jk+1 = T
(λ)

µk+1Jk, (6.144)
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where for any µ and λ ∈ (0, 1),

T
(λ)
µ = (1 − λ)

∞
∑

ℓ=0

λℓT ℓ+1
µ .

This is the mapping encountered in Section 6.3.6 [cf. Eqs. (6.84)-(6.85)]:

T
(λ)
µ J = g

(λ)
µ + αP

(λ)
µ J, (6.145)

where

P
(λ)
µ = (1 − λ)

∞
∑

ℓ=0

αℓλℓP ℓ+1
µ , g

(λ)
µ =

∞
∑

ℓ=0

αℓλℓP ℓ
µgµ = (I − αλPµ)−1gµ.

(6.146)
We call the method of Eqs. (6.142) and (6.144) λ-policy iteration, and we
will show shortly that its properties are similar to the ones of the standard
method of Eqs. (6.142), (6.143).

Indeed, both mappings T
mk

µk+1 and T
(λ)

µk+1 appearing in Eqs. (6.143)

and (6.144), involve multiple applications of the value iteration mapping
Tµk+1 : a fixed number mk in the former case (with mk = 1 corresponding
to value iteration and mk → ∞ corresponding to policy iteration), and
an exponentially weighted number in the latter case (with λ = 0 corre-
sponding to value iteration and λ → 1 corresponding to policy iteration).
Thus optimistic policy iteration and λ-policy iteration are similar : they
just control the accuracy of the approximation Jk+1 ≈ Jµk+1 by applying
value iterations in different ways.

The following proposition provides some basic properties of λ-policy
iteration.

Proposition 6.3.9: Given λ ∈ [0, 1), Jk, and µk+1, consider the
mapping Wk defined by

WkJ = (1 − λ)Tµk+1Jk + λTµk+1J. (6.147)

(a) The mapping Wk is a sup-norm contraction of modulus αλ.

(b) The vector Jk+1 generated next by the λ-policy iteration method
of Eqs. (6.142), (6.144) is the unique fixed point of Wk.

Proof: (a) For any two vectors J and J , using the definition (6.147) of
Wk, we have

‖WkJ−WkJ‖ =
∥

∥λ(Tµk+1J−Tµk+1J)
∥

∥ = λ‖Tµk+1J−Tµk+1J‖ ≤ αλ‖J−J‖,
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where ‖ · ‖ denotes the sup-norm, so Wk is a sup-norm contraction with
modulus αλ.

(b) We have

Jk+1 = T
(λ)

µk+1Jk = (1 − λ)

∞
∑

ℓ=0

λℓT ℓ+1
µk+1Jk

so the fixed point property to be shown, Jk+1 = WkJk+1, is written as

(1 − λ)

∞
∑

ℓ=0

λℓT ℓ+1
µk+1Jk = (1 − λ)Tµk+1Jk + λTµk+1(1 − λ)

∞
∑

ℓ=0

λℓT ℓ+1
µk+1Jk,

and evidently holds. Q.E.D.

From part (b) of the preceding proposition, we see that the equation
defining Jk+1 is

Jk+1(i) =

n
∑

j=1

pij

(

µk+1(i)
)

(

(

g(i, µk+1(i), j
)

+ (1 − λ)αJk(j)

+ λαJk+1(j)
)

.

(6.148)

The solution of this equation can be obtained by viewing it as Bellman’s
equation for two equivalent MDP.

(a) As Bellman’s equation for an infinite-horizon λα-discounted MDP
where µk+1 is the only policy, and the cost per stage is

g
(

i, µk+1(i), j
)

+ (1 − λ)αJk(j).

(b) As Bellman’s equation for an infinite-horizon optimal stopping prob-
lem where µk+1 is the only policy. In particular, Jk+1 is the cost
vector of policy µk+1 in an optimal stopping problem that is derived
from the given discounted problem by introducing transitions from
each state j to an artificial termination state. More specifically, in
this stopping problem, transitions and costs occur as follows: at state
i we first make a transition to j with probability pij

(

µk+1(i)
)

; then
we either stay in j and wait for the next transition (this occurs with
probability λ), or else we move from j to the termination state with an
additional termination cost Jk(j) (this occurs with probability 1−λ).
Note that the two MDP described above are potentially much easier

than the original, because they involve a smaller effective discount factor
(λα versus α). The two interpretations of λ-policy iteration in terms of
these MDP provide options for approximate simulation-based solution us-
ing cost function approximation, which we discuss next. The approximate
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solution can be obtained by using the projected equation approach of this
section, or another methodology such as the aggregation approach of Sec-
tion 6.4. Moreover the solution may itself be approximated with a finite
number of value iterations, i.e., the algorithm

Jk+1 = W
mk
k Jk, Tµk+1Jk = TJk, (6.149)

in place of Eqs. (6.142), (6.144), where Wk is the mapping (6.147) and
mk > 1 is an integer. These value iterations may converge fast because
they involve the smaller effective discount factor λα.

Implementations of λ-Policy Iteration

We will now discuss three alternative simulation-based implementations
with cost function approximation J ≈ Φr and projection. The first imple-

mentation is based on the formula Jk+1 = T
(λ)

µk+1Jk. This is just a single

iteration of PVI(λ) for evaluating Jµk+1 , and can be approximated by a
single iteration of LSPE(λ):

Φrk+1 = ΠT
(λ)

µk+1(Φrk).

It can be implemented in the manner discussed in Section 6.3.6, with a
simulation trajectory generated by using µk+1.

The second implementation is based on a property mentioned earlier:
Eq. (6.148) is Bellman’s equation for the policy µk+1 in the context of an
optimal stopping problem. Thus to compute a function approximation to
Jk+1, we may find by simulation an approximate solution of this equation,
by using a function approximation to Jk and the appropriate cost function
approximation methods for stopping problems. We will discuss methods
of this type in Section 6.6, including analogs of LSTD(λ), LSPE(λ), and
TD(λ). We will see that these methods are often able to deal much more
comfortably with the issue of exploration, and do not require elaborate
modifications of the type discussed in Section 6.4.1, particularly they in-
volve a relatively short trajectory from any initial state to the termination
state, followed by restart from a randomly chosen state (see the comments
at the end of Section 6.6). Here the termination probability at each state
is 1 − λ, so for λ not very close to 1, the simulation trajectories are short.
When the details of this implementation are fleshed out it we obtain the
exploration-enhanced version of LSPE(λ) described in Section 6.3.6 (see
[Ber11b] for a detailed development).

The third implementation, suggested and tested by Thiery and Scher-
rer [ThS10a], is based on the fixed point property of Jk+1 [cf. Prop. 6.3.9(b)],
and uses the projected version of the equation WkJ = (1 − λ)Tµk+1Jk +
λTµk+1J [cf. Eq. (6.147)]

Φr = (1 − λ)ΠTµk+1(Φrk) + λΠTµk+1(Φr), (6.150)



418 Approximate Dynamic Programming Chap. 6

or equivalently

Φr = Π
(

gµk+1 + α(1 − λ)Pµk+1Φrk + αλPµk+1Φr
)

.

It can be seen that this is a projected equation in r, similar to the one
discussed in Section 6.3.1 [cf. Eq. (6.37)]. In particular, the solution rk+1

solves the orthogonality equation [cf. Eq. (6.39)]

Cr = d(k),

where

C = Φ′Ξ(I − λαPµk+1)Φ, d(k) = Φ′Ξgµk+1 + (1 − λ)αΦ′ΞPµk+1Φrk,

so that
rk+1 = C−1d(k).

In a simulation-based implementation, the matrix C and the vector d(k)
are approximated similar to LSTD(0). However, rk+1 as obtained by this
method, aims to approximate r∗0 , the limit of TD(0), not r∗λ, the limit
of TD(λ). To see this, suppose that this iteration is repeated an infinite
number of times so it converges to a limit r∗. Then from Eq. (6.150), we
have

Φr∗ = (1 − λ)ΠTµk+1(Φr∗) + λΠTµk+1(Φr∗).

which shows that Φr∗ = ΠTµk+1(Φr∗), so r∗ = r∗0 . Indeed the approxima-
tion via projection in this implementation is somewhat inconsistent: it is

designed so that Φrk+1 is an approximation to T
(λ)

µk+1(Φrk) yet as λ → 1,

from Eq. (6.150) we see that Φrk+1 → r∗0 , not r∗λ. Thus it would appear
that while this implementation deals well with the issue of exploration, it
may not deal well with the issue of bias. For further discussion, we refer to
Bertsekas [Ber11b].

Convergence and Convergence Rate of λ-Policy Iteration

The following proposition shows the validity of the λ-policy iteration method
and provides its convergence rate for the case of a lookup table represen-
tation. A similar result holds for the optimistic version (6.149).

Proposition 6.3.10: (Convergence for Lookup Table Case)
Assume that λ ∈ [0, 1), and let (Jk, µk) be the sequence generated
by the λ-policy iteration algorithm of Eqs. (6.142), (6.144). Then Jk

converges to J∗. Furthermore, for all k greater than some index k, we
have

‖Jk+1 − J∗‖ ≤ α(1 − λ)

1 − αλ
‖Jk − J∗‖, (6.151)

where ‖ · ‖ denotes the sup-norm.
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Proof: Let us first assume that TJ0 ≤ J0. We show by induction that for
all k, we have

J∗ ≤ TJk+1 ≤ Jk+1 ≤ TJk ≤ Jk. (6.152)

To this end, we fix k and we assume that TJk ≤ Jk. We will show that
J∗ ≤ TJk+1 ≤ Jk+1 ≤ TJk, and then Eq. (6.152) will follow from the
hypothesis TJ0 ≤ J0.

Using the fact Tµk+1Jk = TJk and the definition of Wk [cf. Eq.
(6.147)], we have

WkJk = Tµk+1Jk = TJk ≤ Jk.

It follows from the monotonicity of Tµk+1 , which implies monotonicity of

Wk, that for all positive integers ℓ, we have W ℓ+1
k Jk ≤W ℓ

kJk ≤ TJk ≤ Jk,
so by taking the limit as ℓ→ ∞, we obtain

Jk+1 ≤ TJk ≤ Jk. (6.153)

From the definition of Wk, we have

WkJk+1 = Tµk+1Jk + λ(Tµk+1Jk+1 − Tµk+1Jk)

= Tµk+1Jk+1 + (1 − λ)(Tµk+1Jk − Tµk+1Jk+1),

Using the already shown relation Jk − Jk+1 ≥ 0 and the monotonicity of
Tµk+1 , we obtain Tµk+1Jk − Tµk+1Jk+1 ≥ 0, so that

Tµk+1Jk+1 ≤WkJk+1.

Since WkJk+1 = Jk+1, it follows that

TJk+1 ≤ Tµk+1Jk+1 ≤ Jk+1. (6.154)

Finally, the above relation and the monotonicity of Tµk+1 imply that

for all positive integers ℓ, we have T ℓ
µk+1Jk+1 ≤ Tµk+1Jk+1, so by taking

the limit as ℓ→ ∞, we obtain

J∗ ≤ Jµk+1 ≤ Tµk+1Jk+1. (6.155)

From Eqs. (6.153)-(6.155), we see that the inductive proof of Eq. (6.152)
is complete.

From Eq. (6.152), it follows that the sequence Jk converges to some
limit Ĵ with J∗ ≤ Ĵ . Using the definition (6.147) of Wk, and the facts
Jk+1 = WkJk+1 and Tµk+1Jk = TJk, we have

Jk+1 = WkJk+1 = TJk + λ(Tµk+1Jk+1 − Tµk+1Jk),

so by taking the limit as k → ∞ and by using the fact Jk+1 − Jk → 0, we
obtain Ĵ = T Ĵ. Thus Ĵ is a solution of Bellman’s equation, and it follows
that Ĵ = J∗.
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To show the result without the assumption TJ0 ≤ J0, note that we
can replace J0 by a vector Ĵ0 = J0 + se, where e = (1, . . . , 1) and s is a
scalar that is sufficiently large so that we have T Ĵ0 ≤ Ĵ0; it can be seen that
for any scalar s ≥ (1 − α)−1 maxi

(

TJ0(i) − J0(i)
)

, the relation T Ĵ0 ≤ Ĵ0

holds. Consider the λ-policy iteration algorithm started with (Ĵ0, µ0), and
let (Ĵk, µ̂k) be the generated sequence. Then it can be verified by induction
that for all k we have

Ĵk − Jk =

(

α(1 − λ)

1 − αλ

)k

s, µ̂k = µk.

Hence Ĵk − Jk → 0. Since we have already shown that Ĵk → J∗, it follows
that Jk → J∗ as well.

Since Jk → J∗, it follows that for all k larger than some index k, µk+1

is an optimal policy, so that Tµk+1J∗ = TJ∗ = J∗. By using this fact and

Prop. 6.3.5, we obtain for all k ≥ k,

‖Jk+1 − J∗‖ =
∥

∥T
(λ)

µk+1Jk − T
(λ)

µk+1J∗
∥

∥ ≤ α(1 − λ)

1 − αλ
‖Jk − J∗‖.

Q.E.D.

For the case of cost function approximation, we have the following er-
ror bound, which resembles the one for approximate policy iteration (Prop.
1.3.6 in Chapter 1).

Proposition 6.3.11: (Error Bound for Cost Function Approx-
imation Case) Let {λℓ} be a sequence of nonnegative scalars with
∑∞

ℓ=0 λℓ = 1. Consider an algorithm that obtains a sequence of cost
vector-policy pairs

{

(Jk, µk)
}

, starting with some (J0, µ0), as follows:
at iteration k, it generates an improved policy µk+1 satisfying

Tµk+1
Jk = TJk,

and then it computes Jk+1 by some method that satisfies

∥

∥

∥

∥

∥

Jk+1 −
∞
∑

ℓ=0

λℓT ℓ+1
µk+1

Jk

∥

∥

∥

∥

∥

∞

≤ δ,

where δ is some scalar. Then we have

lim sup
k→∞

‖Jµk
− J∗‖∞ ≤ 2αδ

(1 − α)2
.
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For the proof of the proposition, we refer to Thiery and Scherrer
[ThS10b]. Note that the proposition applies to both the standard optimistic
policy iteration method (λℓ = 1 for a single value of ℓ and λℓ = 0 for all
other values), and the λ-policy iteration method [λℓ = (1 − λ)λℓ].

6.3.10 A Synopsis

Several algorithms for approximate evaluation of the cost vector Jµ of a
single stationary policy µ in finite-state discounted problems have been
given so far, and we will now summarize the analysis. We will also explain
what can go wrong when the assumptions of this analysis are violated. We
have focused on two types of algorithms:

(1) Direct methods, such as the batch and incremental gradient methods
of Section 6.2, including TD(1). These methods allow for a nonlinear
approximation architecture, and for a lot of flexibility in the collection
of the cost samples that are used in the least squares optimization.
For example, in direct methods, issues of exploration do not interfere
with issues of convergence. The drawbacks of direct methods are that
they are not well-suited for problems with large variance of simulation
“noise,” and they can also be very slow when implemented using
gradient-like methods. The former difficulty is in part due to the lack
of the parameter λ, which is used in other methods to reduce the
variance/noise in the parameter update formulas.

(2) Indirect methods that are based on solution of a projected version
of Bellman’s equation. These are simulation-based methods that in-
clude approximate matrix inversion methods such as LSTD(λ), and
iterative methods such as LSPE(λ) and its scaled versions, and TD(λ)
(Sections 6.3.1-6.3.6).

The salient characteristics of our analysis of indirect methods are:

(a) For a given choice of λ ∈ [0, 1), all indirect methods aim to com-
pute r∗λ, the unique solution of the projected Bellman equation Φr =
ΠT (λ)(Φr). This equation is linear, of the form C(λ)r = d(λ), and
expresses the orthogonality of the vector Φr − T (λ)(Φr) and the ap-
proximation subspace S.

(b) We may use simulation and low-order matrix-vector calculations to

approximate C(λ) and d(λ) with a matrix C
(λ)
k and vector d

(λ)
k , re-

spectively. The simulation may be supplemented with exploration
enhancement, which suitably changes the projection norm to ensure
adequate weighting of all states in the cost approximation. This is
important in the context of policy iteration, as discussed in Section
6.3.7.
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(c) The approximations C
(λ)
k and d

(λ)
k can be used in both types of meth-

ods: matrix inversion and iterative. The principal example of a matrix
inversion method is LSTD(λ), which simply computes the solution

r̂k = (C
(λ)
k )−1d

(λ)
k (6.156)

of the simulation-based approximation C
(λ)
k r = d

(λ)
k of the projected

equation. Principal examples of iterative methods is LSPE(λ) and its
scaled versions,

rk+1 = rk − γGk

(

C
(λ)
k rk − d

(λ)
k

)

. (6.157)

TD(λ) is another major iterative method. It differs in an important
way from LSPE(λ), namely it uses single-sample approximations of

C(λ) and d(λ), which are much less accurate than C
(λ)
k and d

(λ)
k , and as

a result it requires a diminishing stepsize to deal with the associated
noise. A key property for convergence to r∗λ of TD(λ) and the unscaled
form of LSPE(λ) (without exploration enhancement) is that T (λ) is a
contraction with respect to the projection norm ‖ · ‖ξ, which implies
that ΠT (λ) is also a contraction with respect to the same norm.

(d) LSTD(λ) and LSPE(λ) are connected through the regularized regres-
sion-based form (6.91), which aims to deal effectively with cases where

C
(λ)
k is nearly singular and/or involves large simulation error (see

Section 6.3.4). This is the special case of the LSPE(λ) class of meth-
ods, corresponding to the special choice (6.90) of Gk. The LSTD(λ)
method of Eq. (6.156), and the entire class of LSPE(λ)-type iterations
(6.157) converge at the same asymptotic rate, in the sense that

‖r̂k − rk‖ << ‖r̂k − r∗λ‖

for large k. However, depending on the choice of Gk, the short-term
behavior of the LSPE-type methods is more regular as it involves
implicit regularization through dependence on the initial condition.
This behavior may be an advantage in the policy iteration context
where optimistic variants, involving more noisy iterations, are used.

(e) When the LSTD(λ) and LSPE(λ) methods are exploration-enhanced
for the purpose of embedding within an approximate policy itera-
tion framework, their convergence properties become more compli-
cated: LSTD(λ) and the regularized regression-based version (6.91) of
LSPE(λ) converge to the solution of the corresponding (exploration-
enhanced) projected equation for an arbitrary amount of exploration,
but TD(λ) and other special cases of LSPE(λ) do so only for a limited
amount of exploration and/or for λ sufficiently close to 1, as discussed
in Section 6.3.7. On the other hand there is a special least-squares
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based exploration-enhanced version of LSPE(λ) that overcomes this
difficulty (cf. Section 6.3.6).

(f) The limit r∗λ depends on λ. The estimate of Prop. 6.3.5 indicates
that the approximation error ‖Jµ − Φr∗λ‖ξ increases as the distance
‖Jµ − ΠJµ‖ξ from the subspace S becomes larger, and also increases
as λ becomes smaller. Indeed, the error degradation may be very sig-
nificant for small values of λ, as shown by an example in [Ber95] (also
reproduced in Exercise 6.9), where TD(0) produces a very bad solu-
tion relative to ΠJµ, which is the limit of the solution Φr∗λ produced by
TD(λ) as λ → 1. (This example involves a stochastic shortest path
problem, but can be modified to illustrate the same conclusion for
discounted problems.) Note, however, that in the context of approxi-
mate policy iteration, the correlation between approximation error in
the cost of the current policy and the performance of the next policy
is somewhat unclear in practice (for example adding a constant to the
cost of the current policy at every state does not affect the result of
the policy improvement step).

(g) As λ → 1, the size of the approximation error ‖Jµ − Φr∗λ‖ξ tends
to diminish, but the methods become more vulnerable to simulation
noise, and hence require more sampling for good performance. Indeed,
the noise in a simulation sample of an ℓ-stages cost vector T ℓJ tends
to be larger as ℓ increases, and from the formula

T (λ) = (1 − λ)

∞
∑

ℓ=0

λℓT ℓ+1

it can be seen that the simulation samples of T (λ)(Φrk), used by
LSTD(λ) and LSPE(λ), tend to contain more noise as λ increases.
This is consistent with practical experience, which indicates that the
algorithms tend to be faster and more reliable in practice when λ takes
smaller values (or at least when λ is not too close to 1). Generally,
there is no rule of thumb for selecting λ, which is usually chosen with
some trial and error.

(h) TD(λ) is much slower than LSTD(λ) and LSPE(λ) [unless the number
of basis functions s is extremely large, in which case the overhead
for the linear algebra calculations that are inherent in LSTD(λ) and
LSPE(λ) becomes excessive]. This can be traced to TD(λ)’s use of
single-sample approximations of C(λ) and d(λ), which are much less

accurate than C
(λ)
k and d

(λ)
k .

The assumptions under which convergence of LSTD(λ), LSPE(λ),
and TD(λ) is usually shown include:

(i) The use of a linear approximation architecture Φr, with Φ satisfying
the rank Assumption 6.3.2.
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(ii) The use for simulation purposes of a Markov chain that has a steady-
state distribution vector with positive components, which defines the
projection norm. This is typically the Markov chain associated with
the policy being evaluated, or an exploration-enhanced variant.

(iii) The use for simulation purposes of a Markov chain that defines a
projection norm with respect to which ΠT (λ) is a contraction. This is
important only for some of the methods: TD(λ) and scaled LSPE(λ)
[except for the regularized regression-based version (6.91)].

(iv) The use of a diminishing stepsize in the case of TD(λ). For LSTD(λ),
and LSPE(λ) and its regularized regression-based form (6.91), there is
no stepsize choice, and in various cases of scaled versions of LSPE(λ)
the required stepsize is constant.

(v) The use of a single policy, unchanged during the simulation; conver-
gence does not extend to the case where T involves a minimization
over multiple policies, or optimistic variants, where the policy used
to generate the simulation data is changed after a few transitions.

Let us now discuss the above assumptions (i)-(v). Regarding (i), there
are no convergence guarantees for methods that use nonlinear architectures.
In particular, an example in [TsV97] (also replicated in [BeT96], Example
6.6) shows that TD(λ) may diverge if a nonlinear architecture is used. In
the case where Φ does not have rank s, the mapping ΠT (λ) will still be a
contraction with respect to ‖·‖ξ, so it has a unique fixed point. In this case,
TD(λ) has been shown to converge to some vector r∗ ∈ ℜs. This vector
is the orthogonal projection of the initial guess r0 on the set of solutions
of the projected Bellman equation, i.e., the set of all r such that Φr is the
unique fixed point of ΠT (λ); see [Ber09b], [Ber11a]. LSPE(λ) and its scaled
variants can be shown to have a similar property.

Regarding (ii), if we use for simulation a Markov chain whose steady-
state distribution exists but has some components that are 0, the corre-
sponding states are transient, so they will not appear in the simulation
after a finite number of transitions. Once this happens, the algorithms
will operate as if the Markov chain consists of just the recurrent states,
and convergence will not be affected. However, the transient states would
be underrepresented in the cost approximation. A similar difficulty occurs
if we use for simulation a Markov chain with multiple recurrent classes.
Then the results of the algorithms would depend on the initial state of
the simulated trajectory (more precisely on the recurrent class of this ini-
tial state). In particular, states from other recurrent classes, and transient
states would be underrepresented in the cost approximation obtained.

Regarding (iii), an example of divergence of TD(0) where the un-
derlying projection norm is such that ΠT is not a contraction is given in
[BeT96] (Example 6.7). Exercise 6.4 gives a similar example. On the other
hand, as noted earlier, ΠT (λ) is a contraction for any Euclidean projection
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norm, provided λ is sufficiently close to 1.
Regarding (iv), the method for stepsize choice is critical for TD(λ);

both for convergence and for performance. This is a major drawback of
TD(λ), which compounds its practical difficulty with slow convergence.

Regarding (v), once minimization over multiple policies is introduced
[so T and T (λ) are nonlinear], or optimistic variants are used, the behavior
of the methods becomes quite peculiar and unpredictable because ΠT (λ)

may not be a contraction.† For instance, there are examples where ΠT (λ)

has no fixed point, and examples where it has multiple fixed points; see
[BeT96] (Example 6.9), and [DFV00]. Generally, the issues associated
with policy oscillations, the chattering phenomenon, and the asymptotic
behavior of nonoptimistic and optimistic approximate policy iteration, are
not well understood. Figures 6.3.4 and 6.3.5 suggest their enormously
complex nature: the points where subsets in the greedy partition join are
potential “points of attraction” of the various algorithms.

On the other hand, even in the case where T (λ) is nonlinear, if ΠT (λ)

is a contraction, it has a unique fixed point, and the peculiarities associated
with chattering do not arise. In this case the scaled PVI(λ) iteration [cf.
Eq. (6.44)] takes the form

rk+1 = rk − γGΦ′Ξ
(

Φrk − T (λ)(Φrk)
)

,

where G is a scaling matrix, and γ is a positive stepsize that is small enough
to guarantee convergence. As discussed in [Ber09b], [Ber11a], this iteration
converges to the unique fixed point of ΠT (λ), provided the constant stepsize
γ is sufficiently small. Note that there are limited classes of problems,
involving multiple policies, where the mapping ΠT (λ) is a contraction. An
example, optimal stopping problems, is discussed in Sections 6.5.3 and
6.8.3. Finally, let us note that the LSTD(λ) method relies on the linearity
of the mapping T , and it has no practical generalization for the case where
T is nonlinear.

6.4 AGGREGATION METHODS

In this section we revisit the aggregation methodology discussed in Section
6.3.4 of Vol. I, viewing it now in the context of policy evaluation with cost
function approximation for discounted DP.† The aggregation approach re-
sembles in some ways the problem approximation approach discussed in

† Similar to Prop. 6.3.5, it can be shown that T (λ) is a sup-norm contraction

with modulus that tends to 0 as λ → 1. It follows that given any projection

norm ‖ · ‖, T (λ) and ΠT (λ) are contractions with respect to ‖ · ‖, provided λ is

sufficiently close to 1.

† Aggregation may be used in conjunction with any Bellman equation asso-

ciated with the given problem. For example, if the problem admits post-decision
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Section 6.3.3 of Vol. I: the original problem is approximated with a related
“aggregate” problem, which is then solved exactly to yield a cost-to-go
approximation for the original problem. Still, in other ways the aggrega-
tion approach resembles the projected equation/subspace approximation
approach, most importantly because it constructs cost approximations of
the form Φr, i.e., linear combinations of basis functions. However, there
are important differences: in aggregation methods there are no projections
with respect to Euclidean norms, the simulations can be done more flex-
ibly, and from a mathematical point of view, the underlying contractions
are with respect to the sup-norm rather than a Euclidean norm.

To construct an aggregation framework, we introduce a finite set A
of aggregate states, and we introduce two (somewhat arbitrary) choices of
probabilities, which relate the original system states with the aggregate
states:

(1) For each aggregate state x and original system state i, we specify
the disaggregation probability dxi [we have

∑n
i=1 dxi = 1 for each

x ∈ A]. Roughly, dxi may be interpreted as the “degree to which x is
represented by i.”

(2) For each aggregate state y and original system state j, we specify
the aggregation probability φjy (we have

∑

y∈A φjy = 1 for each j =
1, . . . , n). Roughly, φjy may be interpreted as the “degree of member-
ship of j in the aggregate state y.” The vectors {φjy | j = 1, . . . , n}
may also be viewed as basis functions that will be used to represent
approximations of the cost vectors of the original problem.

Let us mention a few examples:

(a) In hard and soft aggregation (Examples 6.3.9 and 6.3.10 of Vol. I),
we group the original system states into subsets, and we view each
subset as an aggregate state. In hard aggregation each state belongs
to one and only one subset, and the aggregation probabilities are

φjy = 1 if system state j belongs to aggregate state/subset y.

One possibility is to choose the disaggregation probabilities as

dxi = 1/nx if system state i belongs to aggregate state/subset x,

where nx is the number of states of x (this implicitly assumes that all
states that belong to aggregate state/subset y are “equally represen-
tative”). In soft aggregation, we allow the aggregate states/subsets to

states (cf. Section 6.1.4), the aggregation may be done using the correspond-

ing Bellman equation, with potentially significant simplifications resulting in the

algorithms of this section.
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overlap, with the aggregation probabilities φjy quantifying the “de-
gree of membership” of j in the aggregate state/subset y. The selec-
tion of aggregate states in hard and soft aggregation is an important
issue, which is not fully understood at present. However, in specific
practical problems, based on intuition and problem-specific knowl-
edge, there are usually evident choices, which may be fine-tuned by
experimentation.

(b) In various discretization schemes, each original system state j is as-
sociated with a convex combination of aggregate states:

j ∼
∑

y∈A

φjyy,

for some nonnegative weights φjx, whose sum is 1, and which are
viewed as aggregation probabilities (this makes geometrical sense if
both the original and the aggregate states are associated with points
in a Euclidean space, as described in Example 6.3.13 of Vol. I).

(c) In coarse grid schemes (cf. Example 6.3.12 of Vol. I and the subse-
quent example in Section 6.4.1), a subset of representative states is
chosen, each being an aggregate state. Thus, each aggregate state
x is associated with a unique original state ix, and we may use the
disaggregation probabilities dxi = 1 for i = ix and dxi = 0 for i 6= ix.
The aggregation probabilities are chosen as in the preceding case (b).

The aggregation approach approximates cost vectors with Φr, where
r ∈ ℜs is a weight vector to be determined, and Φ is the matrix whose jth
row consists of the aggregation probabilities φj1, . . . , φjs. Thus aggrega-
tion involves an approximation architecture similar to the one of projected
equation methods: it uses as features the aggregation probabilities. Con-
versely, starting from a set of s features for each state, we may construct
a feature-based hard aggregation scheme by grouping together states with
“similar features.” In particular, we may use a more or less regular par-
tition of the feature space, which induces a possibly irregular partition of
the original state space into aggregate states (all states whose features fall
in the same set of the feature partition form an aggregate state). This is
a general approach for passing from a feature-based approximation of the
cost vector to an aggregation-based approximation (see also [BeT96], Sec-
tion 3.1.2). Unfortunately, in the resulting aggregation scheme the number
of aggregate states may become very large.

The aggregation and disaggregation probabilities specify a dynamical
system involving both aggregate and original system states (cf. Fig. 6.4.1).
In this system:

(i) From aggregate state x, we generate original system state i according
to dxi.
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(ii) We generate transitions from original system state i to original system
state j according to pij(u), with cost g(i, u, j).

(iii) From original system state j, we generate aggregate state y according
to φjy .

pij(u),

dxi φjyQ

ji

x y

Original
al System States

s Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation

on Probabilities

Aggregation

on Probabilities

Figure 6.4.1 Illustration of the transition mechanism of a dynamical system
involving both aggregate and original system states.

One may associate various DP problem formulations with this system,
thereby obtaining two types of alternative cost approximations.

(a) In the first approximation, discussed in Section 6.4.1, the focus is on
the aggregate states, the role of the original system states being to
define the mechanisms of cost generation and probabilistic transition
from one aggregate state to the next. This approximation may lead to
small-sized aggregate problems that can be solved by ordinary value
and policy iteration methods, even if the number of original system
states is very large.

(b) In the second approximation, discussed in Section 6.4.2, the focus is
on both the original system states and the aggregate states, which
together are viewed as states of an enlarged system. Policy and value
iteration algorithms are then defined for this enlarged system. For a
large number of original system states, this approximation requires a
simulation-based implementation.

6.4.1 Cost Approximation via the Aggregate Problem

Here we formulate an aggregate problem where the control is applied with
knowledge of the aggregate state (rather than the original system state).
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To this end, we assume that the control constraint set U(i) is independent
of the state i, and we denote it by U . Then, the transition probability from
aggregate state x to aggregate state y under control u, and the correspond-
ing expected transition cost, are given by (cf. Fig. 6.4.1)

p̂xy(u) =

n
∑

i=1

dxi

n
∑

j=1

pij(u)φjy , ĝ(x, u) =

n
∑

i=1

dxi

n
∑

j=1

pij(u)g(i, u, j).

(6.158)
These transition probabilities and costs define an aggregate problem whose
states are just the aggregate states.

The optimal cost function of the aggregate problem, denoted Ĵ , is
obtained as the unique solution of Bellman’s equation

Ĵ(x) = min
u∈U



ĝ(x, u) + α
∑

y∈A

pxy(u)Ĵ(y)



 , ∀ x.

This equation has dimension equal to the number of aggregate states, and
can be solved by any of the available value and policy iteration methods,
including ones that involve simulation. Once Ĵ is obtained, the optimal
cost function J∗ of the original problem is approximated by J̃ given by

J̃(j) =
∑

y∈A

φjy Ĵ(y), ∀ j,

which is used for one-step lookahead in the original system; i.e., a subop-
timal policy µ is obtained through the minimization

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

, i = 1, . . . , n.

Note that for an original system state j, the approximation J̃(j) is a
convex combination of the costs Ĵ(y) of the aggregate states y for which
φjy > 0. In the case of hard aggregation, J̃ is piecewise constant: it assigns
the same cost to all the states j that belong to the same aggregate state y
(since φjy = 1 if j belongs to y and φjy = 0 otherwise).

The preceding scheme can also be applied to problems with infinite
state space, and is well-suited for approximating the solution of partially ob-
served Markov Decision problems (POMDP), which are defined over their
belief space (space of probability distributions over their states, cf. Section
5.4.2 of Vol. I). By discretizing the belief space with a coarse grid, one
obtains a finite spaces (aggregate) DP problem of perfect state information
that can be solved with the methods of Chapter 1 (see [ZhL97], [ZhH01],
[YuB04]). The following example illustrates the main ideas and shows that
in the POMDP case, where the optimal cost function is a concave function
over the simplex of beliefs (see Vol. I, Section 5.4.2), the approximation
obtained is a lower bound of the optimal cost function.
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Example 6.4.1 (Coarse Grid/POMDP Discretization and
Lower Bound Approximations)

Consider an α-discounted DP problem with bounded cost per stage (cf. Sec-
tion 1.2), where the state space is a convex subset C of a Euclidean space.
We use z to denote the elements of this space, to distinguish them from x
which now denotes aggregate states. Bellman’s equation is J = TJ with T
defined by

(TJ)(z) = min
u∈U

E
w

{

g(z, u, w) + αJ
(

f(z, u, w)
)}

, ∀ z ∈ C.

Let J∗ denote the optimal cost function. We select a finite subset/coarse grid
of states {x1, . . . , xm} ∈ C, whose convex hull is C. Thus each state z ∈ C
can be expressed as

z =

m
∑

i=1

φzxi
xi,

where for each z, φzxi
≥ 0, i = 1, . . . , m, and

∑m

i=1
φzxi

= 1. We view
{x1, . . . , xm} as aggregate states with aggregation probabilities φzxi

, i =
1, . . . , m, for each z ∈ C. The disaggregation probabilities are dxki = 1

for i = xk and dxki = 0 for i 6= xk, k = 1, . . . , m. Consider the mapping T̂
defined by

(T̂ J)(z) = min
u∈U

E
w

{

g(z, u, w) + α

m
∑

j=1

φf(z,u,w) xj
J(xj)

}

, ∀ z ∈ C,

where φf(z,u,w) xj
are the aggregation probabilities of the next state f(z, u, w).

We note that T̂ is a contraction mapping with respect to the sup-norm.
Let Ĵ denotes its unique fixed point, so that we have

Ĵ(xi) = (T̂ Ĵ)(xi), i = 1, . . . , m.

This is Bellman’s equation for an aggregated finite-state discounted DP prob-
lem whose states are x1, . . . , xm, and can be solved by standard value and
policy iteration methods that need not use simulation. We approximate the
optimal cost function of the original problem by

J̃(z) =

m
∑

i=1

φzxi
Ĵ(xi), ∀ z ∈ C.

Suppose now that J∗ is a concave function over C (as in the POMDP
case, where J∗ is the limit of the finite horizon optimal cost functions that
are concave, as shown in Vol. I, Section 5.4.2). Then for all (z, u, w), since
φf(z,u,w) xj

, j = 1, . . . , m, are probabilities that add to 1, we have

J∗
(

f(z, u, w)
)

= J∗

(

m
∑

i=1

φf(z,u,w) xi
xi

)

≥
m
∑

i=1

φf(z,u,w) xi
J∗(xi);
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this is a consequence of the definition of concavity and is also known as
Jensen’s inequality (see e.g., [Ber09a]). It then follows from the definitions of
T and T̂ that

J∗(z) = (TJ∗)(z) ≥ (T̂ J∗)(z), ∀ z ∈ C,

so by iterating, we see that

J∗(z) ≥ lim
k→∞

(T̂ kJ∗)(z) = Ĵ(z), ∀ z ∈ C,

where the last equation follows because T̂ is a contraction, and hence T̂ kJ∗

must converge to the unique fixed point Ĵ of T̂ . For z = xi, we have in
particular

J∗(xi) ≥ Ĵ(xi), ∀ i = 1, . . . , m,

from which we obtain for all z ∈ C,

J∗(z) = J∗

(

m
∑

i=1

φzxi
xi

)

≥
m
∑

i=1

φzxi
J∗(xi) ≥

m
∑

i=1

φzxi
Ĵ(xi) = J̃(z),

where the first inequality follows from the concavity of J∗. Thus the approx-
imation J̃(z) obtained from the aggregate system provides a lower bound to
J∗(z). Similarly, if J∗ can be shown to be convex, the preceding argument
can be modified to show that J̃(z) is an upper bound to J∗(z).

6.4.2 Cost Approximation via the Enlarged Problem

The approach of the preceding subsection calculates cost approximations
assuming that policies assign controls to aggregate states, rather than to
states of the original system. Thus, for example, in the case of hard ag-
gregation, the calculations assume that the same control will be applied to
every original system state within a given aggregate state. We will now
discuss an alternative approach that is not subject to this limitation. Let
us consider the system consisting of the original states and the aggregate
states, with the transition probabilities and the stage costs described earlier
(cf. Fig. 6.4.1). We introduce the vectors J̃0, J̃1, and R∗ where:

R∗(x) is the optimal cost-to-go from aggregate state x.

J̃0(i) is the optimal cost-to-go from original system state i that has
just been generated from an aggregate state (left side of Fig. 6.4.1).

J̃1(j) is the optimal cost-to-go from original system state j that has
just been generated from an original system state (right side of Fig.
6.4.1).

Note that because of the intermediate transitions to aggregate states, J̃0

and J̃1 are different.
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These three vectors satisfy the following three Bellman’s equations:

R∗(x) =

n
∑

i=1

dxiJ̃0(i), x ∈ A, (6.159)

J̃0(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃1(j)
)

, i = 1, . . . , n, (6.160)

J̃1(j) =
∑

y∈A

φjyR∗(y), j = 1, . . . , n. (6.161)

By combining these equations, we obtain an equation for R∗:

R∗(x) = (FR∗)(x), x ∈ A,

where F is the mapping defined by

(FR)(x) =

n
∑

i=1

dxi min
u∈U(i)

n
∑

j=1

pij(u)



g(i, u, j) + α
∑

y∈A

φjyR(y)



 , x ∈ A.

(6.162)
It can be seen that F is a sup-norm contraction mapping and has R∗ as
its unique fixed point. This follows from standard contraction arguments
(cf. Prop. 1.2.4) and the fact that dxi, pij(u), and φjy are all transition
probabilities.†

Once R∗ is found, the optimal-cost-to-go of the original problem may
be approximated by J̃1 = ΦR∗, and a suboptimal policy may be found
through the minimization (6.160) that defines J̃0. Again, the optimal cost
function approximation J̃1 is a linear combination of the columns of Φ,
which may be viewed as basis functions.

† A quick proof is to observe that F is the composition

F = DTΦ,

where T is the usual DP mapping, and D and Φ are the matrices with rows the
disaggregation and aggregation distributions, respectively. Since T is a contrac-
tion with respect to the sup-norm ‖·‖∞, and D and Φ are sup-norm nonexpansive
in the sense

‖Dx‖∞ ≤ ‖x‖∞, ∀ x ∈ ℜn,

‖Φy‖∞ ≤ ‖y‖∞, ∀ y ∈ ℜs,

it follows that F is a sup-norm contraction.
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Value and Policy Iteration

One may use value and policy iteration-type algorithms to find R∗. The
value iteration algorithm simply generates successively FR,F 2R, . . ., start-
ing with some initial guess R. The policy iteration algorithm starts with
a stationary policy µ0 for the original problem, and given µk, it finds Rµk

satisfying Rµk = FµkRµk , where Fµ is the mapping defined by

(FµR)(x) =

n
∑

i=1

dxi

n
∑

j=1

pij

(

µ(i)
)



g
(

i, µ(i), j
)

+ α
∑

y∈A

φjyRµ(y)



 , x ∈ A,

(6.163)
(this is the policy evaluation step). It then generates µk+1 by

µk+1(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)



g(i, u, j) + α
∑

y∈A

φjyRµk(y)



 , ∀ i,

(6.164)
(this is the policy improvement step). Based on the discussion in Section
6.3.8 and Prop. 6.3.8, this policy iteration algorithm converges to the unique
fixed point of F in a finite number of iterations. The key fact here is that F
and Fµ are not only sup-norm contractions, but also have the monotonicity
property of DP mappings (cf. Section 1.1.2 and Lemma 1.1.1), which was
used in an essential way in the convergence proof of ordinary policy iteration
(cf. Prop. 1.3.4).

As discussed in Section 6.3.8, when the policy sequence {µk} con-
verges to some µ as it does here, we have the error bound

‖Jµ − J∗‖∞ ≤ 2αδ

1 − α
, (6.165)

where δ satisfies
‖Jk − Jµk‖∞ ≤ δ,

for all generated policies µk and Jk is the approximate cost vector of µk that
is used for policy improvement (which is ΦRµk in the case of aggregation).
This is much sharper than the error bound

lim sup
k→∞

‖Jµk − J∗‖∞ ≤ 2αδ

(1 − α)2
,

of Prop. 1.3.6.
The preceding error bound improvement suggests that approximate

policy iteration based on aggregation may hold some advantage in terms of
approximation quality, relative to its projected equation-based counterpart.
For a generalization of this idea, see Exercise 6.15. The price for this, how-
ever, is that the basis functions in the aggregation approach are restricted
by the requirement that the rows of Φ must be probability distributions.
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Simulation-Based Policy Iteration

The policy iteration method just described requires n-dimensional calcula-
tions, and is impractical when n is large. An alternative, which is consistent
with the philosophy of this chapter, is to implement it by simulation, using
a matrix inversion/LSTD-type method, as we now proceed to describe.

For a given policy µ, the aggregate version of Bellman’s equation,
R = FµR, is linear of the form [cf. Eq. (6.163)]

R = DTµ(ΦR),

where D and Φ are the matrices with rows the disaggregation and aggrega-
tion distributions, respectively, and Tµ is the DP mapping associated with
µ, i.e.,

TµJ = gµ + αPµJ,

with Pµ the transition probability matrix corresponding to µ, and gµ is the
vector whose ith component is

n
∑

j=1

pij

(

µ(i)
)

g
(

i, µ(i), j
)

.

We can thus write this equation as

ER = f,

where
E = I − αDPΦ, f = Dg, (6.166)

in analogy with the corresponding matrix and vector for the projected
equation [cf. Eq. (6.41)].

We may use low-dimensional simulation to approximate E and f
based on a given number of samples, similar to Section 6.3.3 [cf. Eqs.
(6.48) and (6.49)]. In particular, a sample sequence

{

(i0, j0), (i1, j1), . . .
}

is obtained by first generating a sequence of states {i0, i1, . . .} by sampling
according to a distribution {ξi | i = 1, . . . , n} (with ξi > 0 for all i), and
then by generating for each t the column index jt using sampling according
to the distribution {pitj | j = 1, . . . , n}. Given the first k + 1 samples, we

form the matrix Êk and vector f̂k given by

Êk = I − α

k + 1

k
∑

t=0

1

ξit
d(it)φ(jt)′, f̂k =

1

k + 1

k
∑

t=0

1

ξit
d(it)g

(

it, µ(it), jt
)

,

(6.167)
where d(i) is the ith column of D and φ(j)′ is the jth row of Φ. The

convergence Êk → E and f̂k → f follows from the expressions

E = I−α
n
∑

i=1

n
∑

j=1

pij

(

µ(i)
)

d(i)φ(j)′, f =

n
∑

i=1

n
∑

j=1

pij

(

µ(i)
)

d(i)g
(

i, µ(i), j
)

,
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the relation

lim
k→∞

k
∑

t=0

δ(it = i, jt = j)

k + 1
= ξi pij ,

and law of large numbers arguments (cf. Section 6.3.3).
It is important to note that the sampling probabilities ξi are restricted

to be positive, but are otherwise arbitrary and need not depend on the cur-
rent policy. Moreover, their choice does not affect the obtained approximate
solution of the equation ER = f . Because of this possibility, the problem
of exploration is less acute in the context of policy iteration when aggre-
gation is used for policy evaluation. This is in contrast with the projected
equation approach, where the choice of ξi affects the projection norm and
the solution of the projected equation, as well as the contraction properties
of the mapping ΠT .

Note also that instead of using the probabilities ξi to sample orig-
inal system states, we may alternatively sample the aggregate states x
according to a distribution {ζx | x ∈ A}, generate a sequence of aggregate
states {x0, x1, . . .}, and then generate a state sequence {i0, i1, . . .} using
the disaggregation probabilities. In this case the equations (6.167) should
be modified as follows:

Êk = I − α

k + 1

k
∑

t=0

1

ζxtdxtit

d(it)φ(jt)′,

f̂k =
1

k + 1

k
∑

t=0

1

ζxtdxtit

d(it)g
(

it, µ(it), jt
)

.

The corresponding matrix inversion/LSTD-type method generates

R̂k = Ê−1
k f̂k, and approximates the cost vector of µ by the vector ΦR̂k:

J̃µ = ΦR̂k.

There is also a regression-based version that is suitable for the case where
Êk is nearly singular (cf. Section 6.3.4), as well as an iterative regression-
based version of LSTD, which may be viewed as a special case of (scaled)
LSPE. The latter method takes the form

R̂k+1 = (Ê′
kΣ−1

k Êk + βI)−1(Ê′
kΣ−1

k f̂k + βR̂k), (6.168)

where β > 0 and Σk is a positive definite symmetric matrix [cf. Eq. (6.76)].
Note that contrary to the projected equation case, for a discount factor α ≈
1, Êk will always be nearly singular [since DPΦ is a transition probability
matrix, cf. Eq. (6.166)].

The nonoptimistic version of this aggregation-based policy iteration
method does not exhibit the oscillatory behavior of the one based on the
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projected equation approach (cf. Section 6.3.8): the generated policies con-
verge and the limit policy satisfies the sharper error bound (6.165), as noted
earlier. Moreover, optimistic versions of the method also do not exhibit the
chattering phenomenon described in Section 6.3.8. This is similar to opti-
mistic policy iteration for the case of a lookup table representation of the
cost of the current policy: we are essentially dealing with a lookup table
representation of the cost of the aggregate system of Fig. 6.4.1.

The preceding arguments indicate that aggregation-based policy iter-
ation holds an advantage over its projected equation-based counterpart in
terms of regularity of behavior, error guarantees, and exploration-related
difficulties. Its limitation is that the basis functions in the aggregation
approach are restricted by the requirement that the rows of Φ must be
probability distributions. For example in the case of a single basis function
(s = 1), there is only one possible choice for Φ in the aggregation context,
namely the matrix whose single column is the unit vector.

Simulation-Based Value Iteration

The value iteration algorithm also admits a simulation-based implemen-
tation. It generates a sequence of aggregate states {x0, x1, . . .} by some
probabilistic mechanism, which ensures that all aggregate states are gener-
ated infinitely often. Given each xk, it independently generates an original
system state ik according to the probabilities dxki, and updates R(xk) ac-
cording to

Rk+1(xk) = (1 − γk)Rk(xk)

+ γk min
u∈U(i)

n
∑

j=1

pikj(u)



g(ik, u, j) + α
∑

y∈A

φjyRk(y)



 ,

(6.169)
where γk is a diminishing positive stepsize, and leaves all the other com-
ponents of R unchanged:

Rk+1(x) = Rk(x), if x 6= xk.

This algorithm can be viewed as an asynchronous stochastic approximation
version of value iteration. Its convergence mechanism and justification are
very similar to the ones to be given for Q-learning in Section 6.5.1. It is
often recommended to use a stepsize γk that depends on the state xk being
iterated on, such as for example γk = 1/

(

1 + n(xk)
)

, where n(xk) is the
number of times the state xk has been generated in the simulation up to
time k.

Multistep Aggregation

The aggregation methodology of this section can be generalized by con-
sidering a multistep aggregation-based dynamical system. This system,
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illustrated in Fig. 6.4.2, is specified by disaggregation and aggregation prob-
abilities as before, but involves k > 1 transitions between original system
states in between transitions from and to aggregate states.

φjyQdxi

Originalal System States

s Aggregate States

Disaggregation

on Probabilities
Aggregation

on Probabilities

pij(u), pij(u), pij(u),

i

x y

j1 j2 jk

k Stages

Figure 6.4.2 The transition mechanism for multistep aggregation. It is based on
a dynamical system involving aggregate states, and k transitions between original
system states in between transitions from and to aggregate states.

We introduce vectors J̃0, J̃1, . . . , J̃k, and R∗ where:

R∗(x) is the optimal cost-to-go from aggregate state x.

J̃0(i) is the optimal cost-to-go from original system state i that has
just been generated from an aggregate state (left side of Fig. 6.4.2).

J̃1(j1) is the optimal cost-to-go from original system state j that has
just been generated from an original system state i.

J̃m(jm), m = 2, . . . , k, is the optimal cost-to-go from original system
state jm that has just been generated from an original system state
jm−1.

These vectors satisfy the following Bellman’s equations:

R∗(x) =
n
∑

i=1

dxiJ̃0(i), x ∈ A,

J̃0(i) = min
u∈U(i)

n
∑

j1=1

pij1(u)
(

g(i, u, j1) + αJ̃1(j1)
)

, i = 1, . . . , n, (6.170)

J̃m(jm) = min
u∈U(jm)

n
∑

jm+1=1

pjmjm+1(u)
(

g(jm, u, jm+1) + αJ̃m+1(jm+1)
)

,

jm = 1, . . . , n, m = 1, . . . , k − 1,
(6.171)
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J̃k(jk) =
∑

y∈A

φjkyR∗(y), jk = 1, . . . , n. (6.172)

By combining these equations, we obtain an equation for R∗:

R∗(x) = (FR∗)(x), x ∈ A,

where F is the mapping defined by

FR = DT k(ΦR),

where T is the usual DP mapping of the problem. As earlier, it can be seen
that F is a sup-norm contraction, but its contraction modulus is αk rather
than α.

There is a similar mapping corresponding to a fixed policy and it
can be used to implement a policy iteration algorithm, which evaluates a
policy through calculation of a corresponding vector R and then improves
it. However, there is a major difference from the single-step aggregation
case: a policy involves a set of k control functions {µ0, . . . , µk−1}, and
while a known policy can be easily simulated, its improvement involves
multistep lookahead using the minimizations of Eqs. (6.170)-(6.172), and
may be costly. Thus multistep aggregation is a useful idea only for problems
where the cost of this multistep lookahead minimization (for a single given
starting state) is not prohibitive. On the other hand, note that from the
theoretical point of view, a multistep scheme provides a means of better
approximation of the true optimal cost vector J∗, independent of the use
of a large number of aggregate states. This can be seen from Eqs. (6.170)-
(6.172), which by classical value iteration convergence results, show that
J̃0(i) → J∗(i) as k → ∞, regardless of the choice of aggregate states.

Asynchronous Distributed Aggregation

Let us now discuss the distributed solution of large-scale discounted DP
problems using cost function approximation based on hard aggregation.
We partition the original system states into aggregate states/subsets x ∈
A = {x1, . . . , xm}, and we envision a network of processors, each updating
asynchronously a detailed/exact local cost function, defined on a single ag-
gregate state/subset. Each processor also maintains an aggregate cost for
its aggregate state, which is the weighted average detailed cost of the (orig-
inal system) states in the processor’s subset, weighted by the corresponding
disaggregation probabilities. These aggregate costs are communicated be-
tween processors and are used to perform the local updates.

In a synchronous value iteration method of this type, each proces-
sor a = 1, . . . ,m, maintains/updates a (local) cost J(i) for every original
system state i ∈ xa, and an aggregate cost

R(a) =
∑

i∈xa

dxaiJ(i),
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with dxai being the corresponding disaggregation probabilities. We generi-
cally denote by J andR the vectors with components J(i), i = 1, . . . , n, and
R(a), a = 1, . . . ,m, respectively. These components are updated according
to

Jk+1(i) = min
u∈U(i)

Ha(i, u, Jk, Rk), ∀ i ∈ xa, (6.173)

with
Rk(a) =

∑

i∈xa

dxaiJk(i), ∀ a = 1, . . . ,m, (6.174)

where the mapping Ha is defined for all a = 1, . . . ,m, i ∈ xa, u ∈ U(i),
and J ∈ ℜn, R ∈ ℜm, by

Ha(i, u, J,R) =
n
∑

j=1

pij(u)g(i, u, j)+α
∑

j∈xa

pij(u)J(j)+α
∑

j /∈xa

pij(u)R
(

x(j)
)

,

(6.175)
and where for each original system state j, we denote by x(j) the subset
to which i belongs [i.e., j ∈ x(j)]. Thus the iteration (6.173) is the same as
ordinary value iteration, except that the aggregate costs R

(

x(j)
)

are used
for states j whose costs are updated by other processors.

It is possible to show that the iteration (6.173)-(6.174) involves a
sup-norm contraction mapping of modulus α, so it converges to the unique
solution of the system of equations in (J,R)

J(i) = min
u∈U(i)

Ha(i, u, J,R), R(a) =
∑

i∈xa

dxaiJ(i),

∀ i ∈ xa, a = 1, . . . ,m;

(6.176)

This follows from the fact that {dxai | i = 1, . . . , n} is a probability distri-
bution. We may view the equations (6.176) as a set of Bellman equations
for an “aggregate” DP problem, which similar to our earlier discussion,
involves both the original and the aggregate system states. The difference
from the Bellman equations (6.159)-(6.161) is that the mapping (6.175)
involves J(j) rather than R

(

x(j)
)

for j ∈ xa.
In the algorithm (6.173)-(6.174), all processors a must be updating

their local costs J(i) and aggregate costs R(a) synchronously, and commu-
nicate the aggregate costs to the other processors before a new iteration
may begin. This is often impractical and time-wasting. In a more prac-
tical asynchronous version of the method, the aggregate costs R(a) may
be outdated to account for communication “delays” between processors.
Moreover, the costs J(i) need not be updated for all i; it is sufficient that
they are updated by each processor a only for a (possibly empty) subset of
Ia,k ∈ xa. In this case, the iteration (6.173)-(6.174) is modified to take the
form

Jk+1(i) = min
u∈U(i)

Ha

(

i, u, Jk, Rτ1,k
(1), . . . , Rτm,k

(m)
)

, ∀ i ∈ Ia,k,

(6.177)
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with 0 ≤ τa,k ≤ k for a = 1, . . . ,m, and

Rτ (a) =
∑

i∈xa

dxaiJτ (i), ∀ a = 1, . . . ,m. (6.178)

The differences k−τa,k, a = 1, . . . ,m, in Eq. (6.177) may be viewed as “de-
lays” between the current time k and the times τa,k when the corresponding
aggregate costs were computed at other processors. For convergence, it is
of course essential that every i ∈ xa belongs to Ia,k for infinitely many k (so
each cost component is updated infinitely often), and limk→∞ τa,k = ∞ for
all a = 1, . . . ,m (so that processors eventually communicate more recently
computed aggregate costs to other processors).

Asynchronous distributed DP methods of this type have been pro-
posed and analyzed by the author in [Ber82]. Their convergence, based on
the sup-norm contraction property of the mapping underlying Eq. (6.176),
has been established in [Ber82] (see also [Ber83]). The monotonicity prop-
erty is also sufficient to establish convergence, and this may be useful in
the convergence analysis of related algorithms for other nondiscounted DP
models. We also mention that asynchronous distributed policy iteration
methods have been developed recently (see [BeY10b]).

6.5 Q-LEARNING

We now introduce another method for discounted problems, which is suit-
able for cases where there is no explicit model of the system and the cost
structure (a model-free context). The method is related to value itera-
tion and can be used directly in the case of multiple policies. Instead of
approximating the cost function of a particular policy, it updates the Q-
factors associated with an optimal policy, thereby avoiding the multiple
policy evaluation steps of the policy iteration method.

In the discounted problem, the Q-factors are defined, for all pairs
(i, u) with u ∈ U(i), by

Q∗(i, u) =

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ∗(j)
)

.

Using Bellman’s equation, we see that the Q-factors satisfy for all (i, u),

Q∗(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
v∈U(j)

Q∗(j, v)

)

, (6.179)

and can be shown to be the unique solution of this set of equations. The
proof is essentially the same as the proof of existence and uniqueness of
the solution of Bellman’s equation. In fact, by introducing a system whose
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states are the original states 1, . . . , n, together with all the pairs (i, u),
the above set of equations can be seen to be a special case of Bellman’s
equation (see Fig. 6.5.1). The Q-factors can be obtained by the value
iteration Qk+1 = FQk, where F is the mapping defined by

(FQ)(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + α min
v∈U(j)

Q(j, v)

)

, ∀ (i, u).

(6.180)
Since F is a sup-norm contraction with modulus α (it corresponds to Bell-
man’s equation for an α-discounted problem), this iteration converges from
every starting point Q0.

State-Control Pairs

) States

s (i, u)

s j

pij(u)

g(i, u, j)

v

s (j, v)

) States

s (i, u)

s j

pij(u)

g(i, u, j)

µ(j)

(

j, µ(j)
)

State-Control Pairs: Fixed Policy Case

Figure 6.5.1 Modified problem where the state-control pairs (i, u) are viewed
as additional states. The bottom figure corresponds to a fixed policy µ. The
transitions from (i, u) to j are according to transition probabilities pij(u) and
incur a cost g(i, u, j). Once the control v is chosen, the transitions from j to (j, v)
occur with probability 1 and incur no cost.

The Q-learning algorithm is an approximate version of value itera-
tion, whereby the expected value in Eq. (6.180) is suitably approximated
by sampling and simulation. In particular, an infinitely long sequence of
state-control pairs {(ik, uk)} is generated according to some probabilistic
mechanism. Given the pair (ik, uk), a state jk is generated according to
the probabilities pikj(uk). Then the Q-factor of (ik, uk) is updated using a
stepsize γk > 0 while all other Q-factors are left unchanged:

Qk+1(i, u) =

{

(1 − γk)Qk(i, u) + γk(FkQk)(i, u) if (i, u) = (ik, uk),
Qk(i, u) if (i, u) = (ik, uk),
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where
(FkQk)(ik, uk) = g(ik, uk, jk) + α min

v∈U(jk)
Qk(jk, v).

Equivalently,

Qk+1(i, u) = (1 − γk)Qk(i, u) + γk(FkQk)(i, u), ∀ (i, u), (6.181)

where

(FkQk)(i, u) =

{

g(ik, uk, jk) + αminv∈U(jk)Qk(jk, v) if (i, u) = (ik, uk),
Qk(i, u) if (i, u) 6= (ik, uk).

(6.182)

To guarantee the convergence of the algorithm (6.181)-(6.182) to the
optimal Q-factors, some conditions must be satisfied. Chief among them
are that all state-control pairs (i, u) must be generated infinitely often
within the infinitely long sequence {(ik, uk)}, and that the successor states
j must be independently sampled at each occurrence of a given state-control
pair. Furthermore, the stepsize γk should be diminishing to 0 at an appro-
priate rate, as we will discuss shortly.

Q-Learning and Aggregation

Let us also consider the use of Q-learning in conjunction with aggregation,
involving a set A of aggregate states, disaggregation probabilities dix and
aggregation probabilities φjy . The Q-factors Q̂(x, u), x ∈ A, u ∈ U , of the
aggregate problem of Section 6.4.1 are the unique solution of the Q-factor
equation

Q̂(x, u) = ĝ(x, u) + α
∑

y∈A

p̂xy(u)min
v∈U

Q̂(y, v)

=

n
∑

i=1

dxi

n
∑

j=1

pij(u)



g(i, u, j) + α
∑

y∈A

φjy min
v∈U

Q̂(y, v)



 ,

(6.183)
[cf. Eq. (6.158)]. We may apply Q-learning to solve this equation. In par-
ticular, we generate an infinitely long sequence of pairs {(xk, uk)} ⊂ A×U
according to some probabilistic mechanism. For each (xk, uk), we generate
an original system state ik according to the disaggregation probabilities
dxki, and then a successor state jk according to probabilities pikjk

(uk). We
finally generate an aggregate system state yk using the aggregation prob-
abilities φjky. Then the Q-factor of (xk, uk) is updated using a stepsize
γk > 0 while all other Q-factors are left unchanged [cf. Eqs. (6.181)-(6.182)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.184)
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where the vector FkQ̂k is defined by

(FkQ̂k)(x, u) =

{

g(ik, uk, jk) + αminv∈U Q̂k(yk, v) if (x, u) = (xk, uk),
Q̂k(x, u) if (x, u) 6= (xk, uk).

Note that the probabilistic mechanism by which the pairs {(xk, uk)} are
generated is arbitrary, as long as all possible pairs are generated infinitely
often. In practice, one may wish to use the aggregation and disaggregation
probabilities, and the Markov chain transition probabilities in an effort to
ensure that “important” state-control pairs are not underrepresented in the
simulation.

After solving for the Q-factors Q̂, the Q-factors of the original problem
are approximated by

Q̃(j, v) =
∑

y∈A

φjyQ̂(y, v), j = 1, . . . , n, v ∈ U. (6.185)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ A (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, v), y ∈ A, v ∈ U (so we have in effect a
lookup table representation with respect to v). The optimal cost-to-go
function of the original problem is approximated by

J̃(j) = min
v∈U

Q̃(j, v), j = 1, . . . , n,

and the corresponding one-step lookahead suboptimal policy is obtained as

µ̃(i) = argmin
u∈U

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

, i = 1, . . . , n.

Note that the preceding minimization requires knowledge of the transition
probabilities pij(u), which is unfortunate since a principal motivation of
Q-learning is to deal with model-free situations where the transition prob-
abilities are not explicitly known. The alternative is to obtain a suboptimal
control at j by minimizing over v ∈ U the Q-factor Q̃(j, v) given by Eq.
(6.185). This is less discriminating in the choice of control; for example in
the case of hard aggregation, it applies the same control at all states j that
belong to the same aggregate state y.

6.5.1 Convergence Properties of Q-Learning

We will explain the convergence properties of Q-learning, by viewing it as
an asynchronous value iteration algorithm, where the expected value in the
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definition (6.180) of the mapping F is approximated via a form of Monte
Carlo averaging. In the process we will derive some variants of Q-learning
that may offer computational advantages in some situations.†

In particular we will relate the Q-learning algorithm (6.181)-(6.182)
to an (idealized) value iteration-type algorithm, which is defined by the
same infinitely long sequence {(ik, uk)}, and is given by

Qk+1(i, u) =

{

(FQk)(ik, uk) if (i, u) = (ik, uk),
Qk(i, u) if (i, u) 6= (ik, uk),

(6.186)

where F is the mapping (6.180). Compared to the Q-learning algorithm
(6.181)-(6.182), we note that this algorithm:

(a) Also updates at iteration k only the Q-factor corresponding to the pair
(ik, uk), while it leaves all the other Q-factors are left unchanged.

(b) Involves the mapping F in place of Fk and a stepsize equal to 1 instead
of γk.

We can view the algorithm (6.186) as a special case of an asyn-
chronous value iteration algorithm of the type discussed in Section 1.3.
Using the analysis of Gauss-Seidel value iteration and related methods
given in that section, it can be shown that the algorithm (6.186) converges
to the optimal Q-factor vector provided all state-control pairs (i, u) are
generated infinitely often within the sequence {(ik, uk)}.†

† Much of the theory of Q-learning can be generalized to problems with post-
decision states, where pij(u) is of the form q

(

f(i, u), j
)

(cf. Section 6.1.4). In
particular, for such problems one may develop similar asynchronous simulation-
based versions of value iteration for computing the optimal cost-to-go function
V ∗ of the post-decision states m = f(i, u): the mapping F of Eq. (6.180) is
replaced by the mapping H given by

(HV )(m) =

n
∑

j=1

q(m, j) min
u∈U(j)

[

g(j, u) + αV
(

f(j, u)
)]

, ∀ m,

[cf. Eq. (6.11)]. Q-learning corresponds to the special case where f(i, u) = (i, u).

† Generally, iteration with a mapping that is either a contraction with re-

spect to a weighted sup-norm, or has some monotonicity properties and a fixed

point, converges when executed asynchronously (i.e., with different frequencies

for different components, and with iterates that are not up-to-date). One or

both of these properties are present in discounted and stochastic shortest path

problems. As a result, there are strong asynchronous convergence guarantees for

value iteration for such problems, as shown in [Ber82]. A general convergence

theory of distributed asynchronous algorithms was developed in [Ber83] and has

formed the basis for the convergence analysis of totally asynchronous algorithms

in the book [BeT89].
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Suppose now that we replace the expected value in the definition
(6.180) of F , with a Monte Carlo estimate based on all the samples up to
time k that involve (ik, uk). Letting nk be the number of times the current
state control pair (ik, uk) has been generated up to and including time k,
and

Tk =
{

t | (it, ut) = (ik, uk), 0 ≤ t ≤ k
}

be the set of corresponding time indexes, we obtain the following algorithm:

Qk+1(i, u) = (F̃kQk)(i, u), ∀ (i, u), (6.187)

where F̃kQk is defined by

(F̃kQk)(ik, uk) =
1

nk

∑

t∈Tk

(

g(it, ut, jt) + α min
v∈U(jt)

Qk(jt, v)

)

, (6.188)

(F̃kQk)(i, u) = Qk(i, u), ∀ (i, u) 6= (ik, uk). (6.189)

Comparing the preceding equations and Eq. (6.180), and using the law of
large numbers, it is clear that for each (i, u), we have with probability 1

lim
k→∞, k∈T (i,u)

(F̃kQk)(i, u) = (FQk)(i, u),

where T (i, u) =
{

k | (ik, uk) = (i, u)
}

. From this, the sup-norm contrac-
tion property of F , and the attendant asynchronous convergence properties
of the value iteration algorithm Q := FQ, it can be shown that the algo-
rithm (6.187)-(6.189) converges with probability 1 to the optimal Q-factors
[assuming again that all state-control pairs (i, u) are generated infinitely
often within the sequence {(ik, uk)}].

From the point of view of convergence rate, the algorithm (6.187)-
(6.189) is quite satisfactory, but unfortunately it may have a significant
drawback: it requires excessive overhead per iteration to calculate the
Monte Carlo estimate (F̃kQk)(ik, uk) using Eq. (6.189). In particular, while
the term 1

nk

∑

t∈Tk
g(it, ut, jt), in this equation can be recursively updated

with minimal overhead, the term

1

nk

∑

t∈Tk

min
v∈U(jt)

Qk(jt, v) (6.190)
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must be completely recomputed at each iteration k, using the current vector
Qk. This may be impractical, since the above summation may potentially
involve a very large number of terms.†

Motivated by the preceding concern, let us modify the algorithm and
replace the offending term (6.190) in Eq. (6.189) with

1

nk

∑

t∈Tk

min
v∈U(jt)

Qt(jt, v), (6.192)

which can be computed recursively, with minimal extra overhead. This is
the algorithm (6.187), but with the Monte Carlo average (F̃kQk)(ik, uk)
of Eq. (6.189) approximated by replacing the term (6.190) with the term
(6.192), which depends on all the iterates Qt, t ∈ Tk. This algorithm has
the form

Qk+1(ik, uk) =
1

nk

∑

t∈Tk

(

g(it, ut, jt) + α min
v∈U(jt)

Qt(jt, v)

)

, ∀ (i, u),

(6.193)
and

Qk+1(i, u) = Qk(i, u), ∀ (i, u) 6= (ik, uk). (6.194)

† We note a special type of problem where the overhead involved in updating
the term (6.190) may be manageable. This is the case where for each pair (i, u)
the set S(i, u) of possible successor states j [the ones with pij(u) > 0] has small
cardinality. Then for each (i, u), we may maintain the numbers of times that each
successor state j ∈ S(i, u) has occurred up to time k, and use them to compute
efficiently the troublesome term (6.190). In particular, we may implement the
algorithm (6.187)-(6.189) as

Qk+1(ik, uk) =
∑

j∈S(ik,uk)

nk(j)

nk

(

g(ik, uk, j) + α min
v∈U(j)

Qk(j, v)

)

, (6.191)

where nk(j) is the number of times the transition (ik, j), j ∈ S(ik, uk), occurred
at state ik under uk, in the simulation up to time k, i.e., nk(j) is the cardinality
of the set

{jt = j | t ∈ Tk}, j ∈ S(ik, uk).

Note that this amounts to replacing the probabilities pikj(uk) in the mapping

(6.180) with their Monte Carlo estimates
nk(j)

nk
. While the minimization term in

Eq. (6.191), minv∈U(j) Qk(j, v), has to be computed for all j ∈ S(ik, uk) [rather

than for just jk as in the Q-learning algorithm algorithm (6.181)-(6.182)] the

extra computation is not excessive if the cardinalities of S(ik, uk) and U(j),

j ∈ S(ik, uk), are small. This approach can be strengthened if some of the

probabilities pikj(uk) are known, in which case they can be used directly in Eq.

(6.191). Generally, any estimate of pikj(uk) can be used in place of nk(j)/nk, as

long as the estimate converges to pikj(uk) as k → ∞.
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We now show that this (approximate) value iteration algorithm is essen-
tially the Q-learning algorithm (6.181)-(6.182).†

Indeed, let us observe that the iteration (6.193) can be written as

Qk+1(ik, uk) =
nk − 1

nk
Qk(ik, uk)+

1

nk

(

g(ik, uk, jk) + α min
v∈U(jk)

Qk(jk, v)

)

,

or

Qk+1(ik, uk) =

(

1 − 1

nk

)

Qk(ik, uk) +
1

nk
(FkQk)(ik, uk),

where (FkQk)(ik, uk) is given by the expression (6.182) used in the Q-
learning algorithm. Thus the algorithm (6.193)-(6.194) is the Q-learning
algorithm (6.181)-(6.182) with a stepsize γk = 1/nk. It can be similarly
shown that the algorithm (6.193)-(6.194), equipped with a stepsize param-
eter, is equivalent to the Q-learning algorithm with a different stepsize,
say

γk =
γ

nk
,

where γ is a positive constant.
The preceding analysis provides a view of Q-learning as an approxi-

mation to asynchronous value iteration (updating one component at a time)
that uses Monte Carlo sampling in place of the exact expected value in the
mapping F of Eq. (6.180). It also justifies the use of a diminishing stepsize
that goes to 0 at a rate proportional to 1/nk, where nk is the number of
times the pair (ik, uk) has been generated up to time k. However, it does
not constitute a convergence proof because the Monte Carlo estimate used

† A potentially more effective algorithm is to introduce a window of size
m ≥ 0, and consider a more general scheme that calculates the last m terms
of the sum in Eq. (6.190) exactly and the remaining terms according to the
approximation (6.192). This algorithm, a variant of Q-learning, replaces the
offending term (6.190) by

1

nk





∑

t∈Tk, t≤k−m

min
v∈U(jt)

Qt+m(jt, v) +
∑

t∈Tk, t>k−m

min
v∈U(jt)

Qk(jt, v)



 , (6.195)

which may also be updated recursively. The algorithm updates at time k the val-

ues of minv∈U(jt)
Q(jt, v) to minv∈U(jt)

Qk(jt, v) for all t ∈ Tk within the window

k−m ≤ t ≤ k, and fixes them at the last updated value for t outside this window.

For m = 0, it reduces to the algorithm (6.193)-(6.194). For moderate values of

m it involves moderate additional overhead, and it is likely a more accurate ap-

proximation to the term (6.190) than the term (6.192) [minv∈U(jt)
Qt+m(jt, v)

presumably approximates better than minv∈U(jt)
Qt(jt, v) the “correct” term

minv∈U(jt)
Qk(jt, v)].
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to approximate the expected value in the definition (6.180) of F is accu-
rate only in the limit, if Qk converges. We refer to Tsitsiklis [Tsi94] for
a rigorous proof of convergence of Q-learning, which uses the theoretical
machinery of stochastic approximation algorithms.

In practice, despite its theoretical convergence guaranties, Q-learning
has some drawbacks, the most important of which is that the number
of Q-factors/state-control pairs (i, u) may be excessive. To alleviate this
difficulty, we may introduce a state aggregation scheme. Alternatively, we
may introduce a linear approximation architecture for the Q-factors, similar
to the policy evaluation schemes of Section 6.3. This is the subject of the
next subsection.

6.5.2 Q-Learning and Approximate Policy Iteration

We will now consider Q-learning methods with linear Q-factor approxima-
tion. As we discussed earlier (cf. Fig. 6.5.1), we may view Q-factors as
optimal costs of a certain discounted DP problem, whose states are the
state-control pairs (i, u). We may thus apply the TD/approximate policy
iteration methods of Section 6.3. For this, we need to introduce a linear
parametric architecture Q̃(i, u, r),

Q̃(i, u, r) = φ(i, u)′r, (6.196)

where φ(i, u) is a feature vector that depends on both state and control.
At the typical iteration, given the current policy µ, these methods find

an approximate solution Q̃µ(i, u, r) of the projected equation for Q-factors
corresponding to µ, and then obtain a new policy µ by

µ(i) = arg min
u∈U(i)

Q̃µ(i, u, r).

For example, similar to our discussion in Section 6.3.4, LSTD(0) with a
linear parametric architecture of the form (6.196) generates a trajectory
{

(i0, u0), (i1, u1), . . .
}

using the current policy [ut = µ(it)], and finds at
time k the unique solution of the projected equation [cf. Eq. (6.53)]

k
∑

t=0

φ(it, ut)qk,t = 0,

where qk,t are the corresponding TD

qk,t = φ(it, ut)′rk − αφ(it+1, ut+1)′rk − g(it, ut, it+1), (6.197)

[cf. Eq. (6.54)]. Also, LSPE(0) is given by [cf. Eq. (6.72)]

rk+1 = rk − γ

k + 1
Gk

k
∑

t=0

φ(it, ut)qk,t, (6.198)
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where γ is a positive stepsize, Gk is a positive definite matrix, such as

Gk =

(

β

k + 1
I +

1

k + 1

k
∑

t=0

φ(it, ut)φ(it, ut)′

)−1

,

with β > 0, or a diagonal approximation thereof.
There are also optimistic approximate policy iteration methods based

on LSPE(0), LSTD(0), and TD(0), similar to the ones we discussed earlier.
As an example, let us consider the extreme case of TD(0) that uses a single
sample between policy updates. At the start of iteration k, we have the
current parameter vector rk, we are at some state ik, and we have chosen
a control uk. Then:

(1) We simulate the next transition (ik, ik+1) using the transition proba-
bilities pikj(uk).

(2) We generate the control uk+1 from the minimization

uk+1 = arg min
u∈U(ik+1)

Q̃(ik+1, u, rk). (6.199)

(3) We update the parameter vector via

rk+1 = rk − γkφ(ik, uk)qk,k, (6.200)

where γk is a positive stepsize, and qk,k is the TD

qk,k = φ(ik, uk)′rk − αφ(ik+1, uk+1)′rk − g(ik, uk, ik+1);

[cf. Eq. (6.197)].

The process is now repeated with rk+1, ik+1, and uk+1 replacing rk, ik,
and uk, respectively.

Exploration

In simulation-based methods, a major concern is the issue of exploration in
the approximate policy evaluation step, to ensure that state-control pairs
(i, u) 6=

(

i, µ(i)
)

are generated sufficiently often in the simulation. For this,
the exploration-enhanced schemes discussed in Section 6.3.7 may be used in
conjunction with LSTD. As an example, given the current policy µ, we may
use any exploration-enhanced transition mechanism to generate a sequence
{

(i0, u0), (i1, u1), . . .
}

, and then use LSTD(0) with extra transitions

(ik, uk) →
(

jk, µ(jk)
)

,

where jk is generated from (ik, uk) using the transition probabilities pikj(uk)
(cf. Section 6.3.7). Because LSTD(0) does not require that the under-
lying mapping ΠT be a contraction, we may design a single sequence
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{

(ik, uk, jk)
}

that is appropriately exploration-enhanced, and reuse it for
all policies generated during policy iteration. This scheme results in sub-
stantial economies in simulation overhead. However, it can be used only for
λ = 0, since the simulation samples of multistep policy evaluation methods
must depend on the policy.

Alternatively, for λ > 0, we may use an exploration scheme based on
LSTD(λ) with modified temporal differences (cf. Section 6.3.7). In such a
scheme, we generate a sequence of state-control pairs

{

(i0, u0), (i1, u1), . . .
}

according to transition probabilities

pikik+1
(uk)ν(uk+1 | ik+1),

where ν(u | i) is a probability distribution over the control constraint set
U(i), which provides a mechanism for exploration. Note that in this case
the probability ratios in the modified temporal difference of Eq. (6.124)
have the form

pikik+1
(uk)δ

(

uk+1 = µ(ik+1)
)

pikik+1
(uk)ν(uk+1 | ik+1)

=
δ
(

uk+1 = µ(ik+1)
)

ν(uk+1 | ik+1)
,

and do not depend on the transitions probabilities pikik+1
(uk). Generally,

in the context of Q-learning, the required amount of exploration is likely to
be substantial, so the underlying mapping ΠT may not be a contraction,
in which case the validity of LSPE(λ) or TD(λ) comes into doubt (unless
λ is very close to 1), as discussed in Section 6.3.7.

As in other forms of policy iteration, the behavior of all the algorithms
described is very complex, involving for example near-singular matrix in-
version (cf. Section 6.3.4) or policy oscillations (cf. Section 6.3.8), and there
is no guarantee of success (except for general error bounds for approximate
policy iteration methods). However, Q-learning with approximate policy
iteration is often tried because of its model-free character [it does not re-
quire knowledge of pij(u)].

6.5.3 Q-Learning for Optimal Stopping Problems

The policy evaluation algorithms of Section 6.3, such as TD(λ), LSPE(λ),
and LSTD(λ), apply when there is a single policy to be evaluated in the
context of approximate policy iteration. We may try to extend these meth-
ods to the case of multiple policies, by aiming to solve by simulation the
projected equation

Φr = ΠT (Φr),

where T is a DP mapping that now involves minimization over multiple
controls. However, there are some difficulties:

(a) The mapping ΠT is nonlinear, so a simulation-based approximation
approach like LSTD breaks down.
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(b) ΠT may not in general be a contraction with respect to any norm, so
the PVI iteration

Φrk+1 = ΠT (Φrk)

[cf. Eq. (6.42)] may diverge and simulation-based LSPE-like approx-
imations may also diverge.

(c) Even if ΠT is a contraction, so the above PVI iteration converges,
the simulation-based LSPE-like approximations may not admit an
efficient recursive implementation because T (Φrk) is a nonlinear func-
tion of rk.

In this section we discuss the extension of iterative LSPE-type ideas for
the special case of an optimal stopping problem where the last two diffi-
culties noted above can be largely overcome. Optimal stopping problems
are a special case of DP problems where we can only choose whether to
terminate at the current state or not. Examples are problems of search, se-
quential hypothesis testing, and pricing of derivative financial instruments
(see Section 4.4 of Vol. I, and Section 3.4 of the present volume).

We are given a Markov chain with state space {1, . . . , n}, described
by transition probabilities pij . We assume that the states form a single
recurrent class, so that the steady-state distribution vector ξ = (ξ1, . . . , ξn)
satisfies ξi > 0 for all i, as in Section 6.3. Given the current state i, we
assume that we have two options: to stop and incur a cost c(i), or to
continue and incur a cost g(i, j), where j is the next state (there is no
control to affect the corresponding transition probabilities). The problem
is to minimize the associated α-discounted infinite horizon cost.

We associate a Q-factor with each of the two possible decisions. The
Q-factor for the decision to stop is equal to c(i). The Q-factor for the
decision to continue is denoted by Q(i), and satisfies Bellman’s equation

Q(i) =

n
∑

j=1

pij

(

g(i, j) + αmin
{

c(j), Q(j)
}

)

. (6.201)

The Q-learning algorithm generates an infinitely long sequence of states
{i0, i1, . . .}, with all states generated infinitely often, and a corresponding
sequence of transitions

{

(ik, jk)
}

, generated according to the transition
probabilities pikj . It updates the Q-factor for the decision to continue as
follows [cf. Eqs. (6.181)-(6.182)]:

Qk+1(i) = (1 − γk)Qk(i) + γk(FkQk)(i), ∀ i,

where the components of the mapping Fk are defined by

(FkQ)(ik) = g(ik, jk) + αmin
{

c(jk), Q(jk)
}

,

and
(FkQ)(i) = Q(i), ∀ i 6= ik.
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The convergence of this algorithm is addressed by the general the-
ory of Q-learning discussed earlier. Once the Q-factors are calculated, an
optimal policy can be implemented by stopping at state i if and only if
c(i) ≤ Q(i). However, when the number of states is very large, the algo-
rithm is impractical, which motivates Q-factor approximations.

Let us introduce the mapping F : ℜn 7→ ℜn given by

(FQ)(i) =

n
∑

j=1

pij

(

g(i, j) + αmin
{

c(j), Q(j)
}

)

.

This mapping can be written in more compact notation as

FQ = g + αPf(Q),

where g is the vector whose ith component is

n
∑

j=1

pijg(i, j), (6.202)

and f(Q) is the function whose jth component is

fj(Q) = min
{

c(j), Q(j)
}

. (6.203)

We note that the (exact) Q-factor for the choice to continue is the unique
fixed point of F [cf. Eq. (6.201)].

Let ‖ ·‖ξ be the weighted Euclidean norm associated with the steady-
state probability vector ξ. We claim that F is a contraction with respect
to this norm. Indeed, for any two vectors Q and Q, we have

∣

∣(FQ)(i) − (FQ)(i)
∣

∣ ≤ α

n
∑

j=1

pij

∣

∣fj(Q) − fj(Q)
∣

∣ ≤ α

n
∑

j=1

pij

∣

∣Q(j) −Q(j)
∣

∣,

or
|FQ− FQ| ≤ αP |Q−Q|,

where we use the notation |x| to denote a vector whose components are the
absolute values of the components of x. Hence,

‖FQ− FQ‖ξ ≤ α
∥

∥P |Q−Q|
∥

∥

ξ
≤ α‖Q−Q‖ξ,

where the last step follows from the inequality ‖PJ‖ξ ≤ ‖J‖ξ, which holds
for every vector J (cf. Lemma 6.3.1). We conclude that F is a contraction
with respect to ‖ · ‖ξ, with modulus α.

We will now consider Q-factor approximations, using a linear approx-
imation architecture

Q̃(i, r) = φ(i)′r,
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where φ(i) is an s-dimensional feature vector associated with state i. We
also write the vector

(

Q̃(1, r), . . . , Q̃(n, r)
)′

in the compact form Φr, where as in Section 6.3, Φ is the n × s matrix
whose rows are φ(i)′, i = 1, . . . , n. We assume that Φ has rank s, and we
denote by Π the projection mapping with respect to ‖ · ‖ξ on the subspace
S = {Φr | r ∈ ℜs}.

Because F is a contraction with respect to ‖ · ‖ξ with modulus α, and
Π is nonexpansive, the mapping ΠF is a contraction with respect to ‖ · ‖ξ

with modulus α. Therefore, the algorithm

Φrk+1 = ΠF (Φrk) (6.204)

converges to the unique fixed point of ΠF . This is the analog of the PVI
algorithm (cf. Section 6.3.2).

As in Section 6.3.2, we can write the PVI iteration (6.204) as

rk+1 = arg min
r∈ℜs

∥

∥Φr −
(

g + αPf(Φrk)
)∥

∥

2

ξ
, (6.205)

where g and f are defined by Eqs. (6.202) and (6.203). By setting to 0 the
gradient of the quadratic function in Eq. (6.205), we see that the iteration
is written as

rk+1 = rk − (Φ′ΞΦ)−1
(

C(rk) − d
)

,

where
C(rk) = Φ′Ξ

(

Φrk − αPf(Φrk)
)

, d = Φ′Ξg.

Similar to Section 6.3.3, we may implement a simulation-based ap-
proximate version of this iteration, thereby obtaining an analog of the
LSPE(0) method. In particular, we generate a single infinitely long sim-
ulated trajectory (i0, i1, . . .) corresponding to an unstopped system, i.e.,
using the transition probabilities pij . Following the transition (ik, ik+1),
we update rk by

rk+1 = rk −
(

k
∑

t=0

φ(it)φ(it)′

)−1 k
∑

t=0

φ(it)qk,t, (6.206)

where qk,t is the TD,

qk,t = φ(it)′rk − αmin
{

c(it+1), φ(it+1)′rk
}

− g(it, it+1). (6.207)

Similar to the calculations involving the relation between PVI and LSPE,
it can be shown that rk+1 as given by this iteration is equal to the iterate
produced by the iteration Φrk+1 = ΠF (Φrk) plus a simulation-induced
error that asymptotically converges to 0 with probability 1 (see the paper
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by Yu and Bertsekas [YuB07], to which we refer for further analysis). As
a result, the generated sequence {Φrk} asymptotically converges to the
unique fixed point of ΠF . Note that similar to discounted problems, we
may also use a scaled version of the PVI algorithm,

rk+1 = rk − γG
(

C(rk) − d
)

, (6.208)

where γ is a positive stepsize, and G is a scaling matrix. If G is positive
definite symmetric can be shown that this iteration converges to the unique
solution of the projected equation if γ is sufficiently small. [The proof of
this is somewhat more complicated than the corresponding proof of Section
6.3.2 because C(rk) depends nonlinearly on rk. It requires algorithmic
analysis using the theory of variational inequalities; see [Ber09b], [Ber11a].]
We may approximate the scaled PVI algorithm (6.208) by a simulation-
based scaled LSPE version of the form

rk+1 = rk − γ

k + 1
Gk

k
∑

t=0

φ(it)qk,t,

where Gk is a positive definite symmetric matrix and γ is a sufficiently
small positive stepsize. For example, we may use a diagonal approximation
to the inverse in Eq. (6.206).

In comparing the Q-learning iteration (6.206)-(6.207) with the al-
ternative optimistic LSPE version (6.198), we note that it has consider-
ably higher computation overhead. In the process of updating rk+1 via

Eq. (6.206), we can compute the matrix
∑k

t=0 φ(it)φ(it)′ and the vector
∑k

t=0 φ(it)qk,t iteratively as in the LSPE algorithms of Section 6.3. How-
ever, the terms

min
{

c(it+1), φ(it+1)′rk
}

in the TD formula (6.207) need to be recomputed for all the samples it+1,
t ≤ k. Intuitively, this computation corresponds to repartitioning the states
into those at which to stop and those at which to continue, based on the
current approximate Q-factors Φrk. By contrast, in the corresponding
optimistic LSPE version (6.198), there is no repartitioning, and these terms
are replaced by w̃(it+1, rk), given by

w̃(it+1, rk) =

{

c(it+1) if t ∈ T ,
φ(it+1)′rk if t /∈ T ,

where

T =
{

t | c(it+1) ≤ φ(it+1)′rt
}

is the set of states to stop based on the approximate Q-factors Φrt, calcu-
lated at time t (rather than the current time k). In particular, the term
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k
∑

t=0

φ(it)min
{

c(it+1), φ(it+1)′rk
}

in Eqs. (6.206), (6.207) is replaced by

k
∑

t=0

φ(it)w̃(it+1, rk) =
∑

t≤k, t∈T

φ(it)c(it+1) +





∑

t≤k, t/∈T

φ(it)φ(it+1)′



 rk,

(6.209)

which can be efficiently updated at each time k. It can be seen that the
optimistic algorithm that uses the expression (6.209) (no repartitioning)
can only converge to the same limit as the nonoptimistic version (6.206).
However, there is no convergence proof of this algorithm at present.

Another variant of the algorithm, with a more solid theoretical foun-
dation, is obtained by simply replacing the term φ(it+1)′rk in the TD
formula (6.207) by φ(it+1)′rt, thereby eliminating the extra overhead for
repartitioning. The idea is that for large k and t, these two terms are close
to each other, so convergence is still maintained. The convergence analysis
of this algorithm and some variations is based on the theory of stochastic
approximation methods, and is given in the paper by Yu and Bertsekas
[YuB07] to which we refer for further discussion.

Constrained Policy Iteration and Optimal Stopping

It is natural in approximate DP to try to exploit whatever prior information
is available about J∗. In particular, if it is known that J∗ belongs to a
subset J of ℜn, we may try to find an approximation Φr that belongs to
J . This leads to projected equations involving projection on a restricted
subset of the approximation subspace S. Corresponding analogs of the
LSTD and LSPE-type methods for such projected equations involve the
solution of linear variational inequalities rather linear systems of equations.
The details of this are beyond our scope, and we refer to [Ber09b], [Ber11a]
for a discussion.

In the practically common case where an upper bound of J∗ is avail-
able, a simple possibility is to modify the policy iteration algorithm. In
particular, suppose that we know a vector J̄ with J̄(i) ≥ J∗(i) for all i.
Then the approximate policy iteration method can be modified to incorpo-
rate this knowledge as follows. Given a policy µ, we evaluate it by finding
an approximation Φr̃µ to the solution J̃µ of the equation

J̃µ(i) =

n
∑

j=1

pij

(

µ(i)
)

(

g(i, µ(i), j)+αmin
{

J̄(j), J̃µ(j)
}

)

, i = 1, . . . , n,

(6.210)
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followed by the (modified) policy improvement

µ̄(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αmin
{

J̄(j), φ(j)′ r̃µ
}

)

,

i = 1, . . . , n,

(6.211)

where φ(j)′ is the row of Φ that corresponds to state j.
Note that Eq. (6.210) is Bellman’s equation for the Q-factor of an

optimal stopping problem that involves the stopping cost J̄(i) at state i
[cf. Eq. (6.201)]. Under the assumption J̄(i) ≥ J∗(i) for all i, and a lookup
table representation (Φ = I), it can be shown that the method (6.210)-
(6.211) yields J∗ in a finite number of iterations, just like the standard
(exact) policy iteration method (Exercise 6.17). When a compact feature-
based representation is used (Φ 6= I), the approximate policy evaluation
based on Eq. (6.210) can be performed using the Q-learning algorithms de-
scribed earlier in this section. The method may exhibit oscillatory behavior
and is subject to chattering, similar to its unconstrained policy iteration
counterpart (cf. Section 6.3.8).

6.5.4 Finite-Horizon Q-Learning

We will now briefly discuss Q-learning and related approximations for finite-
horizon problems. We will emphasize on-line algorithms that are suitable
for relatively short horizon problems. Such problems are additionally im-
portant because they arise in the context of multistep lookahead and rolling
horizon schemes, possibly with cost function approximation at the end of
the horizon.

One may develop extensions of the Q-learning algorithms of the pre-
ceding sections to deal with finite horizon problems, with or without cost
function approximation. For example, one may easily develop versions
of the projected Bellman equation, and corresponding LSTD and LSPE-
type algorithms (see the end-of-chapter exercises). However, with a finite
horizon, there are a few alternative approaches, with an on-line character,
which resemble rollout algorithms. In particular, at state-time pair (ik, k),
we may compute approximate Q-factors

Q̃k(ik, uk), uk ∈ Uk(ik),

and use on-line the control ũk ∈ Uk(ik) that minimizes Q̃k(ik, uk) over
uk ∈ Uk(ik). The approximate Q-factors have the form

Q̃k(ik, uk) =

nk
∑

ik+1=1

pikik+1
(uk)

{

g(ik, uk, ik+1)

+ min
uk+1∈Uk+1(ik+1)

Q̂k+1(ik+1, uk+1)

}

,

(6.212)
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where Q̂k+1 may be computed in a number of ways:

(1) Q̂k+1 may be the cost function J̃k+1 of a base heuristic (and is thus
independent of uk+1), in which case Eq. (6.212) takes the form

Q̃k(ik, uk) =

nk
∑

ik+1=1

pikik+1
(uk)

(

g(ik, uk, ik+1) + J̃k+1(ik+1)
)

.

(6.213)
This is the rollout algorithm discussed at length in Chapter 6 of Vol. I.
A variation is when multiple base heuristics are used and J̃k+1 is the
minimum of the cost functions of these heuristics. These schemes may
also be combined with a rolling and/or limited lookahead horizon.

(2) Q̂k+1 is an approximately optimal cost function J̃k+1 [independent
of uk+1 as in Eq. (6.213)], which is computed by (possibly multistep
lookahead or rolling horizon) DP based on limited sampling to ap-
proximate the various expected values arising in the DP algorithm.
Thus, here the function J̃k+1 of Eq. (6.213) corresponds to a (finite-
horizon) near-optimal policy in place of the base policy used by roll-
out. These schemes are well suited for problems with a large (or
infinite) state space but only a small number of controls per state,
and may also involve selective pruning of the control constraint set
to reduce the associated DP computations. The book by Chang, Fu,
Hu, and Marcus [CFH07] has extensive discussions of approaches of
this type, including systematic forms of adaptive sampling that aim
to reduce the effects of limited simulation (less sampling for controls
that seem less promising at a given state, and less sampling for future
states that are less likely to be visited starting from the current state
ik).

(3) Q̂k+1 is computed using a linear parametric architecture of the form

Q̂k+1(ik+1, uk+1) = φ(ik+1, uk+1)′rk+1, (6.214)

where rk+1 is a parameter vector. In particular, Q̂k+1 may be ob-
tained by a least-squares fit/regression or interpolation based on val-
ues computed at a subset of selected state-control pairs (cf. Section
6.4.3 of Vol. I). These values may be computed by finite horizon
rollout, using as base policy the greedy policy corresponding to the
preceding approximate Q-values in a backwards (off-line) Q-learning
scheme:

µ̃i(xi) = arg min
ui∈Ui(xi)

Q̂i(xi, ui), i = k + 2, . . . , N − 1. (6.215)

Thus, in such a scheme, we first compute

Q̃N−1(iN−1, uN−1) =

nN
∑

iN =1

piN−1iN (uN−1)
{

g(iN−1, uN−1, iN )

+ JN (iN )
}
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by the final stage DP computation at a subset of selected state-control
pairs (iN−1, uN−1), followed by a least squares fit of the obtained
values to obtain Q̂N−1 in the form (6.214); then we compute Q̃N−2

at a subset of selected state-control pairs (iN−2, uN−2) by rollout
using the base policy {µ̃N−1} defined by Eq. (6.215), followed by a
least squares fit of the obtained values to obtain Q̂N−2 in the form
(6.214); then compute Q̃N−3 at a subset of selected state-control pairs
(iN−3, uN−3) by rollout using the base policy {µ̃N−2, µ̃N−1} defined
by Eq. (6.215), etc.

One advantage of finite horizon formulations is that convergence is-
sues of the type arising in policy or value iteration methods do not play a
significant role, so anomalous behavior does not arise. This is, however, a
mixed blessing as it may mask poor performance and/or important quali-
tative differences between alternative approaches.

6.6 STOCHASTIC SHORTEST PATH PROBLEMS

In this section we consider policy evaluation for finite-state stochastic short-
est path (SSP) problems (cf. Chapter 2). We assume that there is no dis-
counting (α = 1), and that the states are 0, 1, . . . , n, where state 0 is a
special cost-free termination state. We focus on a fixed proper policy µ,
under which all the states 1, . . . , n are transient.

There are natural extensions of the LSTD(λ) and LSPE(λ) algo-
rithms. We introduce a linear approximation architecture of the form

J̃(i, r) = φ(i)′r, i = 0, 1, . . . , n,

and the subspace
S = {Φr | r ∈ ℜs},

where, as in Section 6.3, Φ is the n × s matrix whose rows are φ(i)′, i =
1, . . . , n. We assume that Φ has rank s. Also, for notational convenience
in the subsequent formulas, we define φ(0) = 0.

The algorithms use a sequence of simulated trajectories, each of the
form (i0, i1, . . . , iN), where iN = 0, and it 6= 0 for t < N . Once a trajectory
is completed, an initial state i0 for the next trajectory is chosen according
to a fixed probability distribution q0 =

(

q0(1), . . . , q0(n)
)

, where

q0(i) = P (i0 = i), i = 1, . . . , n, (6.216)

and the process is repeated.
For a trajectory i0, i1, . . ., of the SSP problem consider the probabil-

ities
qt(i) = P (it = i), i = 1, . . . , n, t = 0, 1, . . .
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Note that qt(i) diminishes to 0 as t → ∞ at the rate of a geometric pro-
gression (cf. Section 2.1), so the limits

q(i) =

∞
∑

t=0

qt(i), i = 1, . . . , n,

are finite. Let q be the vector with components q(1), . . . , q(n). We assume
that q0(i) are chosen so that q(i) > 0 for all i [a stronger assumption is
that q0(i) > 0 for all i]. We introduce the norm

‖J‖q =

√

√

√

√

n
∑

i=1

q(i)
(

J(i)
)2
,

and we denote by Π the projection onto the subspace S with respect to
this norm. In the context of the SSP problem, the projection norm ‖ · ‖q

plays a role similar to the one played by the steady-state distribution norm
‖ · ‖ξ for discounted problems (cf. Section 6.3).

Let P be the n × n matrix with components pij , i, j = 1, . . . , n.
Consider also the mapping T : ℜn 7→ ℜn given by

TJ = g + PJ,

where g is the vector with components
∑n

j=0 pijg(i, j), i = 1, . . . , n. For
λ ∈ [0, 1), define the mapping

T (λ) = (1 − λ)

∞
∑

t=0

λtT t+1

[cf. Eq. (6.84)]. Similar to Section 6.3, we have

T (λ)J = P (λ)J + (I − λP )−1g,

where

P (λ) = (1 − λ)

∞
∑

t=0

λtP t+1 (6.217)

[cf. Eq. (6.85)].
We will now show that ΠT (λ) is a contraction, so that it has a unique

fixed point.

Proposition 6.6.1: For all λ ∈ [0, 1), ΠT (λ) is a contraction with
respect to some norm.
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Proof: Let λ > 0. We will show that T (λ) is a contraction with respect
to the projection norm ‖ · ‖q, so the same is true for ΠT (λ), since Π is
nonexpansive. Let us first note that with an argument like the one in the
proof of Lemma 6.3.1, we can show that

‖PJ‖q ≤ ‖J‖q, J ∈ ℜn.

Indeed, we have q =
∑∞

t=0 qt and q′t+1 = q′tP , so

q′P =

∞
∑

t=0

q′tP =

∞
∑

t=1

q′t = q′ − q′0,

or
n
∑

i=1

q(i)pij = q(j) − q0(j), ∀ j.

Using this relation, we have for all J ∈ ℜn,

‖PJ‖2
q =

n
∑

i=1

q(i)





n
∑

j=1

pijJ(j)





2

≤
n
∑

i=1

q(i)

n
∑

j=1

pijJ(j)2

=

n
∑

j=1

J(j)2
n
∑

i=1

q(i)pij

=

n
∑

j=1

(

q(j) − q0(j)
)

J(j)2

≤ ‖J‖2
q.

(6.218)

From the relation ‖PJ‖q ≤ ‖J‖q it follows that

‖P tJ‖q ≤ ‖J‖q, J ∈ ℜn, t = 0, 1, . . .

Thus, by using the definition (6.217) of P (λ), we also have

‖P (λ)J‖q ≤ ‖J‖q, J ∈ ℜn.

Since limt→∞ P tJ = 0 for any J ∈ ℜn, it follows that ‖P tJ‖q < ‖J‖q for
all J 6= 0 and t sufficiently large. Therefore,

‖P (λ)J‖q < ‖J‖q, for all J 6= 0. (6.219)

We now define
β = max

{

‖P (λ)J‖q | ‖J‖q = 1
}
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and note that since the maximum in the definition of β is attained by the
Weierstrass Theorem (a continuous function attains a maximum over a
compact set), we have β < 1 in view of Eq. (6.219). Since

‖P (λ)J‖q ≤ β‖J‖q, J ∈ ℜn,

it follows that P (λ) is a contraction of modulus β with respect to ‖ · ‖q.
Let λ = 0. We use a different argument because T is not necessarily

a contraction with respect to ‖ · ‖q. [An example is given following Prop.
6.8.2. Note also that if q0(i) > 0 for all i, from the calculation of Eq.
(6.218) it follows that P and hence T is a contraction with respect to
‖ · ‖q.] We show that ΠT is a contraction with respect to a different norm
by showing that the eigenvalues of ΠP lie strictly within the unit circle.†
Indeed, with an argument like the one used to prove Lemma 6.3.1, we
have ‖PJ‖q ≤ ‖J‖q for all J , which implies that ‖ΠPJ‖q ≤ ‖J‖q, so the
eigenvalues of ΠP cannot be outside the unit circle. Assume to arrive at
a contradiction that ν is an eigenvalue of ΠP with |ν| = 1, and let ζ be
a corresponding eigenvector. We claim that Pζ must have both real and
imaginary components in the subspace S. If this were not so, we would
have Pζ 6= ΠPζ, so that

‖Pζ‖q > ‖ΠPζ‖q = ‖νζ‖q = |ν| ‖ζ‖q = ‖ζ‖q,

which contradicts the fact ‖PJ‖q ≤ ‖J‖q for all J . Thus, the real and
imaginary components of Pζ are in S, which implies that Pζ = ΠPζ = νζ,
so that ν is an eigenvalue of P . This is a contradiction because |ν| = 1
while the eigenvalues of P are strictly within the unit circle, since the policy
being evaluated is proper. Q.E.D.

The preceding proof has shown that ΠT (λ) is a contraction with re-
spect to ‖·‖q when λ > 0. As a result, similar to Prop. 6.3.5, we can obtain
the error bound

‖Jµ − Φr∗λ‖q ≤ 1
√

1 − α2
λ

‖Jµ − ΠJµ‖q, λ > 0,

† We use here the fact that if a square matrix has eigenvalues strictly within
the unit circle, then there exists a norm with respect to which the linear mapping
defined by the matrix is a contraction. Also in the following argument, the
projection Πz of a complex vector z is obtained by separately projecting the real
and the imaginary components of z on S. The projection norm for a complex
vector x + iy is defined by

‖x + iy‖q =
√

‖x‖2
q + ‖y‖2

q .
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where Φr∗λ and αλ are the fixed point and contraction modulus of ΠT (λ),
respectively. When λ = 0, we have

‖Jµ − Φr∗0‖ ≤ ‖Jµ − ΠJµ‖ + ‖ΠJµ − Φr∗0‖
= ‖Jµ − ΠJµ‖ + ‖ΠTJµ − ΠT (Φr∗0)‖
= ‖Jµ − ΠJµ‖ + α0‖Jµ − Φr∗0‖,

where ‖ · ‖ is the norm with respect to which ΠT is a contraction (cf. Prop.
6.6.1), and Φr∗0 and α0 are the fixed point and contraction modulus of ΠT .
We thus have the error bound

‖Jµ − Φr∗0‖ ≤ 1

1 − α0
‖Jµ − ΠJµ‖.

Similar to the discounted problem case, the projected equation can
be written as a linear equation of the form Cr = d. The correspond-
ing LSTD and LSPE algorithms use simulation-based approximations Ck

and dk. This simulation generates a sequence of trajectories of the form
(i0, i1, . . . , iN), where iN = 0, and it 6= 0 for t < N . Once a trajectory is
completed, an initial state i0 for the next trajectory is chosen according to
a fixed probability distribution q0 =

(

q0(1), . . . , q0(n)
)

. The LSTD method

approximates the solution C−1d of the projected equation by C−1
k dk, where

Ck and dk are simulation-based approximations to C and d, respectively.
The LSPE algorithm and its scaled versions are defined by

rk+1 = rk − γGk(Ckrk − dk),

where γ is a sufficiently small stepsize and Gk is a scaling matrix. The
derivation of the detailed equations is straightforward but somewhat te-
dious, and will not be given (see also the discussion in Section 6.8).

Regarding exploration, let us note that the ideas of Sections 6.3.6
and 6.3.7 apply to policy iteration methods for SSP problems. However,
because the distribution q0 for the initial state of the simulated trajectories
can be chosen arbitrarily, the problem of exploration may be far less acute
in SSP problems than in discounted problems, particularly when simulated
trajectories tend to be short. In this case, one may explore various parts
of the state space naturally through the restart mechanism, similar to the
exploration-enhanced LSPE(λ) and LSTD(λ) methods.

6.7 AVERAGE COST PROBLEMS

In this section we consider average cost problems and related approxima-
tions: policy evaluation algorithms such as LSTD(λ) and LSPE(λ), ap-
proximate policy iteration, and Q-learning. We assume throughout the
finite state model of Section 4.1, with the optimal average cost being the
same for all initial states (cf. Section 4.2).
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6.7.1 Approximate Policy Evaluation

Let us consider the problem of approximate evaluation of a stationary pol-
icy µ. As in the discounted case (Section 6.3), we consider a stationary
finite-state Markov chain with states i = 1, . . . , n, transition probabilities
pij , i, j = 1, . . . , n, and stage costs g(i, j). We assume that the states form
a single recurrent class. An equivalent way to express this assumption is
the following.

Assumption 6.7.1: The Markov chain has a steady-state proba-
bility vector ξ = (ξ1, . . . , ξn) with positive components, i.e., for all
i = 1, . . . , n,

lim
N→∞

1

N

N
∑

k=1

P (ik = j | i0 = i) = ξj > 0, j = 1, . . . , n.

From Section 4.2, we know that under Assumption 6.7.1, the average
cost, denoted by η, is independent of the initial state

η = lim
N→∞

1

N
E

{

N−1
∑

k=0

g
(

xk, xk+1

)

∣

∣

∣
x0 = i

}

, i = 1, . . . , n, (6.220)

and satisfies

η = ξ′g,

where g is the vector whose ith component is the expected stage cost
∑n

j=1 pijg(i, j). (In Chapter 4 we denoted the average cost by λ, but
in the present chapter, with apologies to the readers, we reserve λ for use
in the TD, LSPE, and LSTD algorithms, hence the change in notation.)

Together with a differential cost vector h =
(

h(1), . . . , h(n)
)′

, the average
cost η satisfies Bellman’s equation

h(i) =
n
∑

j=1

pij

(

g(i, j) − η + h(j)
)

, i = 1, . . . , n.

The solution is unique up to a constant shift for the components of h, and
can be made unique by eliminating one degree of freedom, such as fixing
the differential cost of a single state to 0 (cf. Prop. 4.2.4).

We consider a linear architecture for the differential costs of the form

h̃(i, r) = φ(i)′r, i = 1, . . . , n.
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where r ∈ ℜs is a parameter vector and φ(i) is a feature vector associated
with state i. These feature vectors define the subspace

S = {Φr | r ∈ ℜs},

where as in Section 6.3, Φ is the n × s matrix whose rows are φ(i)′, i =
1, . . . , n. We will thus aim to approximate h by a vector in S, similar to
Section 6.3, which dealt with cost approximation in the discounted case.

We introduce the mapping F : ℜn 7→ ℜn defined by

FJ = g − ηe+ PJ,

where P is the transition probability matrix and e is the unit vector. Note
that the definition of F uses the exact average cost η, as given by Eq.
(6.220). With this notation, Bellman’s equation becomes

h = Fh,

so if we know η, we can try to find or approximate a fixed point of F .
Similar to Section 6.3, we introduce the projected equation

Φr = ΠF (Φr),

where Π is projection on the subspace S with respect to the norm ‖ · ‖ξ.
An important issue is whether ΠF is a contraction. For this it is necessary
to make the following assumption.

Assumption 6.7.2: The columns of the matrix Φ together with the
unit vector e = (1, . . . , 1)′ form a linearly independent set of vectors.

Note the difference with the corresponding Assumption 6.3.2 for the
discounted case in Section 6.3. Here, in addition to Φ having rank s, we
require that e does not belong to the subspace S. To get a sense why this
is needed, observe that if e ∈ S, then ΠF cannot be a contraction, since
any scalar multiple of e when added to a fixed point of ΠF would also be
a fixed point.

We also consider multistep versions of the projected equation of the
form

Φr = ΠF (λ)(Φr), (6.221)

where

F (λ) = (1 − λ)

∞
∑

t=0

λtF t+1.
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In matrix notation, the mapping F (λ) can be written as

F (λ)J = (1 − λ)

∞
∑

t=0

λtP t+1J +

∞
∑

t=0

λtP t(g − ηe),

or more compactly as

F (λ)J = P (λ)J + (I − λP )−1(g − ηe), (6.222)

where the matrix P (λ) is defined by

P (λ) = (1 − λ)

∞
∑

t=0

λtP t+1 (6.223)

[cf. Eq. (6.85)]. Note that for λ = 0, we have F (0) = F and P (0) = P .
We wish to delineate conditions under which the mapping ΠF (λ) is a

contraction. The following proposition relates to the composition of general
linear mappings with Euclidean projections, and captures the essence of our
analysis.

Proposition 6.7.1: Let S be a subspace of ℜn and let L : ℜn 7→ ℜn

be a linear mapping,
L(x) = Ax+ b,

where A is an n × n matrix and b is a vector in ℜn. Let ‖ · ‖ be
a weighted Euclidean norm with respect to which L is nonexpansive,
and let Π denote projection onto S with respect to that norm.

(a) ΠL has a unique fixed point if and only if either 1 is not an
eigenvalue of A, or else the eigenvectors corresponding to the
eigenvalue 1 do not belong to S.

(b) If ΠL has a unique fixed point, then for all γ ∈ (0, 1), the mapping

Hγ = (1 − γ)I + γΠL

is a contraction, i.e., for some scalar ργ ∈ (0, 1), we have

‖Hγx−Hγy‖ ≤ ργ‖x− y‖, ∀ x, y ∈ ℜn.

Proof: (a) Assume that ΠL has a unique fixed point, or equivalently (in
view of the linearity of L) that 0 is the unique fixed point of ΠA. If 1 is
an eigenvalue of A with a corresponding eigenvector z that belongs to S,
then Az = z and ΠAz = Πz = z. Thus, z is a fixed point of ΠA with
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z 6= 0, a contradiction. Hence, either 1 is not an eigenvalue of A, or else
the eigenvectors corresponding to the eigenvalue 1 do not belong to S.

Conversely, assume that either 1 is not an eigenvalue of A, or else the
eigenvectors corresponding to the eigenvalue 1 do not belong to S. We will
show that the mapping Π(I −A) is one-to-one from S to S, and hence the
fixed point of ΠL is the unique vector x∗ ∈ S satisfying Π(I −A)x∗ = Πb.
Indeed, assume the contrary, i.e., that Π(I −A) has a nontrivial nullspace
in S, so that some z ∈ S with z 6= 0 is a fixed point of ΠA. Then, either
Az = z (which is impossible since then 1 is an eigenvalue of A, and z is a
corresponding eigenvector that belongs to S), or Az 6= z, in which case Az
differs from its projection ΠAz and

‖z‖ = ‖ΠAz‖ < ‖Az‖ ≤ ‖A‖ ‖z‖,

so that 1 < ‖A‖ (which is impossible since L is nonexpansive, and therefore
‖A‖ ≤ 1), thereby arriving at a contradiction.

(b) If z ∈ ℜn with z 6= 0 and z 6= aΠAz for all a ≥ 0, we have

‖(1 − γ)z + γΠAz‖ < (1 − γ)‖z‖ + γ‖ΠAz‖ ≤ (1 − γ)‖z‖ + γ‖z‖ = ‖z‖,
(6.224)

where the strict inequality follows from the strict convexity of the norm,
and the weak inequality follows from the non-expansiveness of ΠA. If on
the other hand z 6= 0 and z = aΠAz for some a ≥ 0, we have ‖(1 − γ)z +
γΠAz‖ < ‖z‖ because then ΠL has a unique fixed point so a 6= 1, and ΠA
is nonexpansive so a < 1. If we define

ργ = sup{‖(1 − γ)z + γΠAz‖ | ‖z‖ ≤ 1},

and note that the supremum above is attained by the Weierstrass Theorem
(a continuous function attains a minimum over a compact set), we see that
Eq. (6.224) yields ργ < 1 and

‖(1 − γ)z + γΠAz‖ ≤ ργ‖z‖, z ∈ ℜn.

By letting z = x− y, with x, y ∈ ℜn, and by using the definition of Hγ , we
have

Hγx−Hγy = Hγ(x− y) = (1−γ)(x− y)+γΠA(x− y) = (1−γ)z+γΠAz,

so by combining the preceding two relations, we obtain

‖Hγx−Hγy‖ ≤ ργ‖x− y‖, x, y ∈ ℜn.

Q.E.D.

We can now derive the conditions under which the mapping underly-
ing the LSPE iteration is a contraction with respect to ‖ · ‖ξ.
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Proposition 6.7.2: The mapping

Fγ,λ = (1 − γ)I + γΠF (λ)

is a contraction with respect to ‖ · ‖ξ if one of the following is true:

(i) λ ∈ (0, 1) and γ ∈ (0, 1],

(ii) λ = 0 and γ ∈ (0, 1).

Proof: Consider first the case, γ = 1 and λ ∈ (0, 1). Then F (λ) is a linear
mapping involving the matrix P (λ). Since 0 < λ and all states form a single
recurrent class, all entries of P (λ) are positive. Thus P (λ) can be expressed
as a convex combination

P (λ) = (1 − β)I + βP̄

for some β ∈ (0, 1), where P̄ is a stochastic matrix with positive entries.
We make the following observations:

(i) P̄ corresponds to a nonexpansive mapping with respect to the norm
‖ · ‖ξ. The reason is that the steady-state distribution of P̄ is ξ [as
can be seen by multiplying the relation P (λ) = (1− β)I + βP̄ with ξ,
and by using the relation ξ′ = ξ′P (λ) to verify that ξ′ = ξ′P̄ ]. Thus,
we have ‖P̄ z‖ξ ≤ ‖z‖ξ for all z ∈ ℜn (cf. Lemma 6.3.1), implying
that P̄ has the nonexpansiveness property mentioned.

(ii) Since P̄ has positive entries, the states of the Markov chain corre-
sponding to P̄ form a single recurrent class. If z is an eigenvector of
P̄ corresponding to the eigenvalue 1, we have z = P̄ kz for all k ≥ 0,
so z = P̄ ∗z, where

P̄ ∗ = lim
N→∞

(1/N)
N−1
∑

k=0

P̄ k

(cf. Prop. 4.1.2). The rows of P̄ ∗ are all equal to ξ′ since the steady-
state distribution of P̄ is ξ, so the equation z = P̄ ∗z implies that z
is a nonzero multiple of e. Using Assumption 6.7.2, it follows that z
does not belong to the subspace S, and from Prop. 6.7.1 (with P̄ in
place of C, and β in place of γ), we see that ΠP (λ) is a contraction
with respect to the norm ‖ · ‖ξ. This implies that ΠF (λ) is also a
contraction.

Consider next the case, γ ∈ (0, 1) and λ ∈ (0, 1). Since ΠF (λ) is a
contraction with respect to ‖ ·‖ξ, as just shown, we have for any J, J̄ ∈ ℜn,

‖Fγ,λJ − Fγ,λJ̄‖ξ ≤ (1 − γ)‖J − J̄‖ξ + γ
∥

∥ΠF (λ)J − ΠF (λ)J̄
∥

∥

ξ

≤ (1 − γ + γβ)‖J − J̄‖ξ,
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where β is the contraction modulus of F (λ). Hence, Fγ,λ is a contraction.
Finally, consider the case γ ∈ (0, 1) and λ = 0. We will show that

the mapping ΠF has a unique fixed point, by showing that either 1 is not
an eigenvalue of P , or else the eigenvectors corresponding to the eigenvalue
1 do not belong to S [cf. Prop. 6.7.1(a)]. Assume the contrary, i.e., that
some z ∈ S with z 6= 0 is an eigenvector corresponding to 1. We then have
z = Pz. From this it follows that z = P kz for all k ≥ 0, so z = P ∗z, where

P ∗ = lim
N→∞

(1/N)

N−1
∑

k=0

P k

(cf. Prop. 4.1.2). The rows of P ∗ are all equal to ξ′, so the equation z = P ∗z
implies that z is a nonzero multiple of e. Hence, by Assumption 6.7.2, z
cannot belong to S - a contradiction. Thus ΠF has a unique fixed point,
and the contraction property of Fγ,λ for γ ∈ (0, 1) and λ = 0 follows from
Prop. 6.7.1(b). Q.E.D.

Error Estimate

We have shown that for each λ ∈ [0, 1), there is a vector Φr∗λ, the unique
fixed point of ΠFγ,λ, γ ∈ (0, 1), which is the limit of LSPE(λ) (cf. Prop.
6.7.2). Let h be any differential cost vector, and let βγ,λ be the modulus of
contraction of ΠFγ,λ, with respect to ‖ · ‖ξ. Similar to the proof of Prop.
6.3.2 for the discounted case, we have

‖h− Φr∗λ‖2
ξ = ‖h− Πh‖2

ξ + ‖Πh− Φr∗λ‖2
ξ

= ‖h− Πh‖2
ξ +

∥

∥ΠFγ,λh− ΠFγ,λ(Φr∗λ)
∥

∥

2

ξ

≤ ‖h− Πh‖2
ξ + βγ,λ ‖h− Φr∗λ‖2

ξ.

It follows that

‖h− Φr∗λ‖ξ ≤ 1
√

1 − β2
γ,λ

‖h− Πh‖ξ, λ ∈ [0, 1), γ ∈ (0, 1), (6.225)

for all differential cost vector vectors h.
This estimate is a little peculiar because the differential cost vector

is not unique. The set of differential cost vectors is

D =
{

h∗ + γe | γ ∈ ℜ},

where h∗ is the bias of the policy evaluated (cf. Section 4.1, and Props.
4.1.1 and 4.1.2). In particular, h∗ is the unique h ∈ D that satisfies ξ′h = 0
or equivalently P ∗h = 0, where

P ∗ = lim
N→∞

1

N

N−1
∑

k=0

P k.
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Usually, in average cost policy evaluation, we are interested in obtaining
a small error (h − Φr∗λ) with the choice of h being immaterial (see the
discussion of the next section on approximate policy iteration). It follows
that since the estimate (6.225) holds for all h ∈ D, a better error bound
can be obtained by using an optimal choice of h in the left-hand side and
an optimal choice of γ in the right-hand side. Indeed, Tsitsiklis and Van
Roy [TsV99a] have obtained such an optimized error estimate. It has the
form

min
h∈D

‖h−Φr∗λ‖ξ =
∥

∥h∗− (I−P ∗)Φr∗λ
∥

∥

ξ
≤ 1
√

1 − α2
λ

‖Π∗h∗−h∗‖ξ, (6.226)

where h∗ is the bias vector, Π∗ denotes projection with respect to ‖ · ‖ξ

onto the subspace
S∗ =

{

(I − P ∗)y | y ∈ S
}

,

and αλ is the minimum over γ ∈ (0, 1) of the contraction modulus of the
mapping Π∗Fγ,λ:

αλ = min
γ∈(0,1)

max
‖y‖ξ=1

‖Π∗Pγ,λ y‖ξ,

where Pγ,λ = (1 − γ)I + γΠ∗P (λ). Note that this error bound has similar
form with the one for discounted problems (cf. Prop. 6.3.5), but S has
been replaced by S∗ and Π has been replaced by Π∗. It can be shown that
the scalar αλ decreases as λ increases, and approaches 0 as λ ↑ 1. This
is consistent with the corresponding error bound for discounted problems
(cf. Prop. 6.3.5), and is also consistent with empirical observations, which
suggest that smaller values of λ lead to larger approximation errors.

Figure 6.7.1 illustrates and explains the projection operation Π∗, the
distance of the bias h∗ from its projection Π∗h∗, and the other terms in
the error bound (6.226).

LSTD(λ) and LSPE(λ)

The LSTD(λ) and LSPE(λ) algorithms for average cost are straightforward
extensions of the discounted versions, and will only be summarized. The
LSTD(λ) algorithm is given by

r̂k = C−1
k dk.

There is also a regression-based version that is well-suited for cases where
Ck is nearly singular (cf. Section 6.3.4). The LSPE(λ) iteration can be
written (similar to the discounted case) as

rk+1 = rk − γGk(Ckrk − dk), (6.227)
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Figure 6.7.1 Illustration of the estimate (6.226). Consider the subspace

E∗ =
{

(I − P ∗)y | y ∈ ℜn
}

.

Let Ξ be the diagonal matrix with ξ1, . . . , ξn on the diagonal. Note that:

(a) E∗ is the subspace that is orthogonal to the unit vector e in the scaled
geometry of the norm ‖ · ‖ξ, in the sense that e′Ξz = 0 for all z ∈ E∗.
Indeed we have

e′Ξ(I − P ∗)y = 0, for all y ∈ ℜn,

because e′Ξ = ξ′ and ξ′(I − P ∗) = 0 as can be easily verified from the fact
that the rows of P ∗ are all equal to ξ′.

(b) Projection onto E∗ with respect to the norm ‖ · ‖ξ is simply multiplication
with (I − P ∗) (since P ∗y = ξ′ye, so P ∗y is orthogonal to E∗ in the scaled
geometry of the norm ‖ · ‖ξ). Thus, S∗ is the projection of S onto E∗.

(c) We have h∗ ∈ E∗ since (I − P ∗)h∗ = h∗ in view of P ∗h∗ = 0.

(d) The equation

min
h∈D

‖h − Φr∗λ‖ξ = ‖h∗ − (I − P ∗)Φr∗λ‖ξ

is geometrically evident from the figure. Also, the term ‖Π∗h∗−h∗‖ξ of the
error bound is the minimum possible error given that h∗ is approximated
with an element of S∗.

(e) The estimate (6.226), is the analog of the discounted estimate of Prop.
6.3.5, with E∗ playing the role of the entire space, and with the “geometry
of the problem” projected onto E∗. Thus, S∗ plays the role of S, h∗ plays
the role of Jµ, (I − P ∗)Φr∗

λ
plays the role of Φr∗

λ
, and Π∗ plays the role

of Π. Finally, αλ is the best possible contraction modulus of Π∗Fγ,λ over
γ ∈ (0, 1) and within E∗ (see the paper [TsV99a] for a detailed analysis).
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where γ is a positive stepsize and

Ck =
1

k + 1

k
∑

t=0

zt

(

φ(it)′−φ(it+1)′
)

, Gk =

(

1

k + 1

k
∑

t=0

φ(it)φ(it)′

)−1

,

dk =
1

k + 1

k
∑

t=0

zt

(

g(it, it+1) − ηt

)

, zt =

t
∑

m=0

λt−mφ(im).

Scaled versions of this algorithm, where Gk is a scaling matrix are also
possible.

The matrices Ck, Gk, and vector dk can be shown to converge to
limits:

Ck → Φ′Ξ(I − P (λ))Φ, Gk → Φ′ΞΦ, dk → Φ′Ξ g(λ), (6.228)

where the matrix P (λ) is defined by Eq. (6.223), g(λ) is given by

g(λ) =
∞
∑

ℓ=0

λℓP ℓ(g − ηe),

and Ξ is the diagonal matrix with diagonal entries ξ1, . . . , ξn:

Ξ = diag(ξ1, . . . , ξn),

[cf. Eqs. (6.85) and (6.86)].

6.7.2 Approximate Policy Iteration

Let us consider an approximate policy iteration method that involves ap-
proximate policy evaluation and approximate policy improvement. We
assume that all stationary policies are unichain, and a special state s is
recurrent in the Markov chain corresponding to each stationary policy. As
in Section 4.3.1, we consider the stochastic shortest path problem obtained
by leaving unchanged all transition probabilities pij(u) for j 6= s, by setting
all transition probabilities pis(u) to 0, and by introducing an artificial ter-
mination state t to which we move from each state i with probability pis(u).
The one-stage cost is equal to g(i, u) − η, where η is a scalar parameter.
We refer to this stochastic shortest path problem as the η-SSP.

The method generates a sequence of stationary policies µk, a corre-
sponding sequence of gains ηµk , and a sequence of cost vectors hk. We
assume that for some ǫ > 0, we have

max
i=1,...,n

∣

∣hk(i) − hµk ,ηk
(i)
∣

∣ ≤ ǫ, k = 0, 1, . . . ,
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where
ηk = min

m=0,1,...,k
ηµm ,

hµk,ηk
(i) is the cost-to-go from state i to the reference state s for the ηk-

SSP under policy µk, and ǫ is a positive scalar quantifying the accuracy of
evaluation of the cost-to-go function of the ηk-SSP. Note that we assume
exact calculation of the gains ηµk . Note also that we may calculate ap-

proximate differential costs h̃k(i, r) that depend on a parameter vector r
without regard to the reference state s. These differential costs may then
be replaced by

hk(i) = h̃k(i, r) − h̃(s, r), i = 1, . . . , n.

We assume that policy improvement is carried out by approximate
minimization in the DP mapping. In particular, we assume that there exists
a tolerance δ > 0 such that for all i and k, µk+1(i) attains the minimum in
the expression

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + hk(j)
)

,

within a tolerance δ > 0.
We now note that since ηk is monotonically nonincreasing and is

bounded below by the optimal gain η∗, it must converge to some scalar η.
Since ηk can take only one of the finite number of values ηµ corresponding
to the finite number of stationary policies µ, we see that ηk must converge
finitely to η; that is, for some k, we have

ηk = η, k ≥ k.

Let hη(s) denote the optimal cost-to-go from state s in the η-SSP. Then,
by using Prop. 2.4.1, we have

lim sup
k→∞

(

hµk ,η(s) − hη(s)
)

≤ n(1 − ρ+ n)(δ + 2ǫ)

(1 − ρ)2
, (6.229)

where
ρ = max

i=1,...,n, µ
P
(

ik 6= s, k = 1, . . . , n | i0 = i, µ
)

,

and ik denotes the state of the system after k stages. On the other hand,
as can also be seen from Fig. 6.7.2, the relation

η ≤ ηµk

implies that
hµk ,η(s) ≥ hµk,η

µk
(s) = 0.
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Figure 6.7.2 Relation of the costs of stationary policies for the η-SSP in the
approximate policy iteration method. Here, Nµ is the expected number of stages
to return to state s, starting from s and using µ. Since ηµk ≥ η, we have

hµk,η(s) ≥ hµk,η
µk

(s) = 0.

Furthermore, if µ∗ is an optimal policy for the η∗-SSP, we have

hη(s) ≤ hµ∗,η(s) = (η∗ − η)Nµ∗ .

It follows, using also Fig. 6.7.2, that

hµk,η(s) − hη(s) ≥ −hη(s) ≥ −hµ∗,η(s) = (η − η∗)Nµ∗ , (6.230)

where µ∗ is an optimal policy for the η∗-SSP (and hence also for the original
average cost per stage problem) and Nµ∗ is the expected number of stages
to return to state s, starting from s and using µ∗. Thus, from Eqs. (6.229)
and (6.230), we have

η − η∗ ≤ n(1 − ρ+ n)(δ + 2ǫ)

Nµ∗(1 − ρ)2
. (6.231)

This relation provides an estimate on the steady-state error of the approx-
imate policy iteration method.
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We finally note that optimistic versions of the preceding approximate
policy iteration method are harder to implement than their discounted cost
counterparts. The reason is our assumption that the gain ηµ of every gen-
erated policy µ is exactly calculated; in an optimistic method the current
policy µ may not remain constant for sufficiently long time to estimate
accurately ηµ. One may consider schemes where an optimistic version of
policy iteration is used to solve the η-SSP for a fixed η. The value of η
may occasionally be adjusted downward by calculating “exactly” through
simulation the gain ηµ of some of the (presumably most promising) gener-
ated policies µ, and by then updating η according to η := min{η, ηµ}. An
alternative is to approximate the average cost problem with a discounted
problem, for which an optimistic version of approximate policy iteration
can be readily implemented.

6.7.3 Q-Learning for Average Cost Problems

To derive the appropriate form of the Q-learning algorithm, we form an
auxiliary average cost problem by augmenting the original system with one
additional state for each possible pair (i, u) with u ∈ U(i). Thus, the states
of the auxiliary problem are those of the original problem, i = 1, . . . , n,
together with the additional states (i, u), i = 1, . . . , n, u ∈ U(i). The
probabilistic transition mechanism from an original state i is the same as
for the original problem [probability pij(u) of moving to state j], while the
probabilistic transition mechanism from a state (i, u) is that we move only
to states j of the original problem with corresponding probabilities pij(u)
and costs g(i, u, j).

It can be seen that the auxiliary problem has the same optimal average
cost per stage η as the original, and that the corresponding Bellman’s
equation is

η + h(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + h(j)
)

, i = 1, . . . , n, (6.232)

η +Q(i, u) =

n
∑

j=1

pij(u)
(

g(i, u, j) + h(j)
)

, i = 1, . . . , n, u ∈ U(i),

(6.233)
where Q(i, u) is the differential cost corresponding to (i, u). Taking the
minimum over u in Eq. (6.233) and comparing with Eq. (6.232), we obtain

h(i) = min
u∈U(i)

Q(i, u), i = 1, . . . , n.

Substituting the above form of h(i) in Eq. (6.233), we obtain Bellman’s
equation in a form that exclusively involves the Q-factors:

η+Q(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + min
v∈U(j)

Q(j, v)

)

, i = 1, . . . , n, u ∈ U(i).
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Let us now apply to the auxiliary problem the following variant of
the relative value iteration

hk+1 = Thk − hk(s)e,

where s is a special state. We then obtain the iteration [cf. Eqs. (6.232)
and (6.233)]

hk+1(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + hk(j)
)

− hk(s), i = 1, . . . , n,

Qk+1(i, u) =

n
∑

j=1

pij(u)
(

g(i, u, j)+hk(j)
)

−hk(s), i = 1, . . . , n, u ∈ U(i).

(6.234)
From these equations, we have that

hk(i) = min
u∈U(i)

Qk(i, u), i = 1, . . . , n,

and by substituting the above form of hk in Eq. (6.234), we obtain the
following relative value iteration for the Q-factors

Qk+1(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + min
v∈U(j)

Qk(j, v)

)

− min
v∈U(s)

Qk(s, v).

The sequence of values minu∈U(s)Qk(s, u) is expected to converge to the
optimal average cost per stage and the sequences of values minu∈U(i)Q(i, u)
are expected to converge to differential costs h(i).

An incremental version of the preceding iteration that involves a pos-
itive stepsize γ is given by

Q(i, u) := (1 − γ)Q(i, u) + γ

(

n
∑

j=1

pij(u)

(

g(i, u, j) + min
v∈U(j)

Q(j, v)

)

− min
v∈U(s)

Q(s, v)

)

.

The natural form of the Q-learning method for the average cost problem
is an approximate version of this iteration, whereby the expected value is
replaced by a single sample, i.e.,

Q(i, u) := Q(i, u) + γ
(

g(i, u, j) + min
v∈U(j)

Q(j, v) − min
v∈U(s)

Q(s, v)

−Q(i, u)
)

,

where j and g(i, u, j) are generated from the pair (i, u) by simulation. In
this method, only the Q-factor corresponding to the currently sampled pair
(i, u) is updated at each iteration, while the remaining Q-factors remain
unchanged. Also the stepsize should be diminishing to 0. A convergence
analysis of this method can be found in the paper by Abounadi, Bertsekas,
and Borkar [ABB01].
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Q-Learning Based on the Contracting Value Iteration

We now consider an alternative Q-learning method, which is based on the
contracting value iteration method of Section 4.3. If we apply this method
to the auxiliary problem used above, we obtain the following algorithm

hk+1(i) = min
u∈U(i)







n
∑

j=1

pij(u)g(i, u, j) +
n
∑

j=1
j 6=s

pij(u)hk(j)






− ηk, (6.235)

Qk+1(i, u) =

n
∑

j=1

pij(u)g(i, u, j) +

n
∑

j=1
j 6=s

pij(u)hk(j) − ηk, (6.236)

ηk+1 = ηk + αkhk+1(s).

From these equations, we have that

hk(i) = min
u∈U(i)

Qk(i, u),

and by substituting the above form of hk in Eq. (6.236), we obtain

Qk+1(i, u) =

n
∑

j=1

pij(u)g(i, u, j) +

n
∑

j=1
j 6=s

pij(u) min
v∈U(j)

Qk(j, v) − ηk,

ηk+1 = ηk + αk min
v∈U(s)

Qk+1(s, v).

A small-stepsize version of this iteration is given by

Q(i, u) := (1 − γ)Q(i, u) + γ

(

n
∑

j=1

pij(u)g(i, u, j)

+

n
∑

j=1
j 6=s

pij(u) min
v∈U(j)

Q(j, v) − η

)

,

η := η + α min
v∈U(s)

Q(s, v),

where γ and α are positive stepsizes. A natural form of Q-learning based
on this iteration is obtained by replacing the expected values by a single
sample, i.e.,

Q(i, u) := (1 − γ)Q(i, u) + γ
(

g(i, u, j) + min
v∈U(j)

Q̂(j, v) − η
)

, (6.237)
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η := η + α min
v∈U(s)

Q(s, v), (6.238)

where

Q̂(j, v) =

{

Q(j, v) if j 6= s,
0 otherwise,

and j and g(i, u, j) are generated from the pair (i, u) by simulation. Here
the stepsizes γ and α should be diminishing, but α should diminish “faster”
than γ; i.e., the ratio of the stepsizes α/γ should converge to zero. For
example, we may use γ = C/k and α = c/k log k, where C and c are positive
constants and k is the number of iterations performed on the corresponding
pair (i, u) or η, respectively.

The algorithm has two components: the iteration (6.237), which is
essentially a Q-learning method that aims to solve the η-SSP for the current
value of η, and the iteration (6.238), which updates η towards its correct
value η∗. However, η is updated at a slower rate than Q, since the stepsize
ratio α/γ converges to zero. The effect is that the Q-learning iteration
(6.237) is fast enough to keep pace with the slower changing η-SSP. A
convergence analysis of this method can also be found in the paper [ABB01].

6.8 SIMULATION-BASED SOLUTION OF LARGE SYSTEMS

We have focused so far in this chapter on approximating the solution of
Bellman equations within a subspace of basis functions in a variety of con-
texts. We have seen common analytical threads across discounted, SSP,
and average cost problems, as well as differences in formulations, imple-
mentation details, and associated theoretical results. In this section we
will aim for a more general view of simulation-based solution of large sys-
tems within which the methods and analysis so far can be understood and
extended. The benefit of this analysis is a deeper perspective, and the
ability to address more general as well as new problems in DP and beyond.

For most of this section we consider simulation-based methods for
solving the linear fixed point equation

x = b+Ax,

where A is an n× n matrix and b is an n-dimensional vector, with compo-
nents denoted aij and bi, respectively. These methods are divided in two
major categories, which are based on distinctly different philosophies and
lines of analysis:

(a) Stochastic approximation methods , which have the form

xk+1 = (1 − γk)xk + γk(b +Axk + wk),
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where wk is zero-mean noise. Here the term b + Axk + wk may be
viewed as a simulation sample of b + Ax, and γk is a diminishing
positive stepsize (γk ↓ 0). These methods were discussed briefly in
Section 6.1.6. A prime example within our context is TD(λ), which
is a stochastic approximation method for solving the (linear) multi-
step projected equation C(λ)r = d(λ) corresponding to evaluation of a
single policy (cf. Section 6.3.6). The Q-learning algorithm of Section
6.5.1 is also a stochastic approximation method, but it solves a non-
linear fixed point problem - Bellman’s equation for multiple policies.

(b) Monte-Carlo estimation methods, which obtain Monte-Carlo estimates
Am and bm, based on m samples, and use them in place of A and b
in various deterministic methods. Thus an approximate fixed point
may be obtained by matrix inversion,

x̂ = (I −Am)−1bm,

or iteratively by

xk+1 = (1 − γ)xk + γ(bm +Amxk), k = 0, 1, . . . , (6.239)

where γ is a constant positive stepsize. In a variant of the iterative
approach the estimates Am and bm are updated as the simulation
samples are collected, in which case the method (6.239) takes the
form

xk+1 = (1 − γ)xk + γ(bk +Akxk), k = 0, 1, . . . .

The LSTD-type methods are examples of the matrix inversion ap-
proach, while the LSPE-type methods are examples of the iterative
approach.

Stochastic approximation methods, generally speaking, tend to be
simpler but slower. They are simpler partly because they involve a single
vector sample rather than matrix-vector estimates that are based on many
samples. They are slower because their iterations involve more noise per
iteration (a single sample rather than a Monte-Carlo average), and hence
require a diminishing stepsize. Basically, stochastic approximation meth-
ods combine the iteration and Monte-Carlo estimation processes, while
methods such as Eq. (6.239) separate the two processes to a large extent.

We should also mention that the fixed point problem x = b + Ax
may involve approximations or multistep mappings (cf. Section 6.3.6). For
example it may result from a projected equation approach or from an ag-
gregation approach.

In this section, we will focus on Monte-Carlo estimation methods
where x is approximated within a subspace S = {Φr | r ∈ ℜs}. In the spe-
cial case where Φ = I, we obtain lookup table-type methods, where there
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is no subspace approximation. We start with the projected equation ap-
proach, we continue with the related Bellman equation error methods, and
finally we consider aggregation approaches. On occasion we discuss various
extensions, involving for example nonlinear fixed point problems. We do
not provide a rigorous discussion of stochastic approximation methods, as
this would require the use of mathematics that are beyond our scope. We
refer to the extensive literature on the subject (see the discussion of Section
6.1.6).

6.8.1 Projected Equations - Simulation-Based Versions

We first focus on general linear fixed point equations x = T (x), where

T (x) = b +Ax, (6.240)

A is an n× n matrix, and b ∈ ℜn is a vector. We consider approximations
of a solution by solving a projected equation

Φr = ΠT (Φr) = Π(b +AΦr),

where Π denotes projection with respect to a weighted Euclidean norm
‖ · ‖ξ on a subspace

S = {Φr | r ∈ ℜs}.
We assume throughout that the columns of the n× s matrix Φ are linearly
independent basis functions.

Examples are Bellman’s equation for policy evaluation, in which case
A = αP , where P is a transition matrix (discounted and average cost), or
P is a substochastic matrix (row sums less than or equal to 0, as in SSP),
and α = 1 (SSP and average cost), or α < 1 (discounted). Other examples
in DP include the semi-Markov problems discussed in Chapter 5. However,
for the moment we do not assume the presence of any stochastic structure
in A. Instead, we assume throughout that I −ΠA is invertible, so that the
projected equation has a unique solution denoted r∗.

We will derive extensions of LSTD(0), LSPE(0), and TD(0) methods
of Section 6.3 (the latter two under the assumption that ΠT is a con-
traction). References [BeY07] and [BeY09], where these methods were
first developed, provide extensions of LSTD(λ), LSPE(λ), and TD(λ) for
λ ∈ (0, 1); the later two are convergent when ΠT (λ) is a contraction on S,
where

T (λ) = (1 − λ)

∞
∑

ℓ=0

λℓT ℓ+1,

and T has the general form T (x) = b+Ax of Eq. (6.240) (cf. Section 6.3.6).
Even if T or ΠT are not contractions, we can obtain an error bound

that generalizes some of the bounds obtained earlier. We have

x∗−Φr∗ = x∗−Πx∗+ΠTx∗−ΠTΦr∗ = x∗−Πx∗+ΠA(x∗−Φr∗), (6.241)
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from which
x∗ − Φr∗ = (I − ΠA)−1(x∗ − Πx∗).

Thus, for any norm ‖ · ‖ and fixed point x∗ of T ,

‖x∗ − Φr∗‖ ≤
∥

∥(I − ΠA)−1
∥

∥ ‖x∗ − Πx∗
∥

∥, (6.242)

so the approximation error ‖x∗ − Φr∗‖ is proportional to the distance of
the solution x∗ from the approximation subspace. If ΠT is a contraction
mapping of modulus α ∈ (0, 1) with respect to ‖ · ‖, from Eq. (6.241), we
have

‖x∗−Φr∗‖ ≤ ‖x∗−Πx∗‖+‖ΠT (x∗)−ΠT (Φr∗)‖ ≤ ‖x∗−Πx∗‖+α‖x∗−Φr∗‖,

so that

‖x∗ − Φr∗‖ ≤ 1

1 − α
‖x∗ − Πx∗‖. (6.243)

We first introduce an equivalent form of the projected equation Φr =
Π(b+AΦr), which generalizes the matrix form (6.40)-(6.41) for discounted
DP problems. Let us assume that the positive probability distribution
vector ξ is given. By the definition of projection with respect to ‖ · ‖ξ, the
unique solution r∗ of this equation satisfies

r∗ = arg min
r∈ℜs

∥

∥Φr − (b+AΦr∗)
∥

∥

2

ξ
.

Setting to 0 the gradient with respect to r, we obtain the corresponding
orthogonality condition

Φ′Ξ
(

Φr∗ − (b +AΦr∗)
)

= 0,

where Ξ is the diagonal matrix with the probabilities ξ1, . . . , ξn along the
diagonal. Equivalently,

Cr∗ = d,

where
C = Φ′Ξ(I −A)Φ, d = Φ′Ξb, (6.244)

and Ξ is the diagonal matrix with the components of ξ along the diagonal
[cf. Eqs. (6.40)-(6.41)].

We will now develop a simulation-based approximation to the system
Cr∗ = d, by using corresponding estimates of C and d. We write C and d
as expected values with respect to ξ:

C =

n
∑

i=1

ξiφ(i)



φ(i) −
n
∑

j=1

aijφ(j)





′

, d =

n
∑

i=1

ξiφ(i)bi. (6.245)
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j0 j1 jk jk+1

i0 i1 ik ik+1 !!!!!!

Row Sampling According to ξ

(May Use Markov Chain Q)

s Column Sampling
g According to

Markov Chain

P ∼ |A|

Figure 6.8.1 The basic simulation methodology consists of (a) generating a
sequence of indices {i0, i1, . . .} according to the distribution ξ (a Markov chain Q

may be used for this, but this is not a requirement), and (b) generating a sequence

of transitions
{

(i0, j0), (i1, j1), . . .
}

using a Markov chain P . It is possible that
jk = ik+1, but this is not necessary.

As in Section 6.3.3, we approximate these expected values by simulation-
obtained sample averages, however, here we do not have a Markov chain
structure by which to generate samples. We must therefore design a sam-
pling scheme that can be used to properly approximate the expected values
in Eq. (6.245). In the most basic form of such a scheme, we generate a se-
quence of indices {i0, i1, . . .}, and a sequence of transitions between indices
{

(i0, j0), (i1, j1), . . .
}

. We use any probabilistic mechanism for this, subject
to the following two requirements (cf. Fig. 6.8.1):

(1) Row sampling: The sequence {i0, i1, . . .} is generated according to
the distribution ξ, which defines the projection norm ‖ · ‖ξ, in the
sense that with probability 1,

lim
k→∞

∑k
t=0 δ(it = i)

k + 1
= ξi, i = 1, . . . , n, (6.246)

where δ(·) denotes the indicator function [δ(E) = 1 if the event E has
occurred and δ(E) = 0 otherwise].

(2) Column sampling: The sequence
{

(i0, j0), (i1, j1), . . .
}

is generated
according to a certain stochastic matrix P with transition probabili-
ties pij that satisfy

pij > 0 if aij 6= 0, (6.247)

in the sense that with probability 1,

lim
k→∞

∑k
t=0 δ(it = i, jt = j)
∑k

t=0 δ(it = i)
= pij , i, j = 1, . . . , n. (6.248)
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At time k, we approximate C and d with

Ck =
1

k + 1

k
∑

t=0

φ(it)

(

φ(it) −
aitjt

pitjt

φ(jt)

)′

, dk =
1

k + 1

k
∑

t=0

φ(it)bit .

(6.249)
To show that this is a valid approximation, similar to the analysis of Section
6.3.3, we count the number of times an index occurs and after collecting
terms, we write Eq. (6.249) as

Ck =

n
∑

i=1

ξ̂i,kφ(i)



φ(i) −
n
∑

j=1

p̂ij,k
aij

pij
φ(j)





′

, dk =

n
∑

i=1

ξ̂i,kφ(i)bi,

(6.250)
where

ξ̂i,k =

∑k
t=0 δ(it = i)

k + 1
, p̂ij,k =

∑k
t=0 δ(it = i, jt = j)
∑k

t=0 δ(it = i)
;

(cf. the calculations in Section 6.3.3). In view of the assumption

ξ̂i,k → ξi, p̂ij,k → pij , i, j = 1, . . . , n,

[cf. Eqs. (6.246) and (6.248)], by comparing Eqs. (6.245) and (6.250), we see
that Ck → C and dk → d. Since the solution r∗ of the system (6.245) exists
and is unique, the same is true for the system (6.250) for all t sufficiently
large. Thus, with probability 1, the solution of the system (6.249) converges
to r∗ as k → ∞.

A comparison of Eqs. (6.245) and (6.250) indicates some considera-
tions for selecting the stochastic matrix P . It can be seen that “important”
(e.g., large) components aij should be simulated more often (pij : large).
In particular, if (i, j) is such that aij = 0, there is an incentive to choose
pij = 0, since corresponding transitions (i, j) are “wasted” in that they
do not contribute to improvement of the approximation of Eq. (6.245) by
Eq. (6.250). This suggests that the structure of P should match in some
sense the structure of the matrix A, to improve the efficiency of the simu-
lation (the number of samples needed for a given level of simulation error
variance). On the other hand, the choice of P does not affect the limit of
Φr̂k, which is the solution Φr∗ of the projected equation. By contrast, the
choice of ξ affects the projection Π and hence also Φr∗.

Note that there is a lot of flexibility for generating the sequence
{i0, i1, . . .} and the transition sequence

{

(i0, j0), (i1, j1), . . .
}

to satisfy Eqs.
(6.246) and (6.248). For example, to satisfy Eq. (6.246), the indices it do
not need to be sampled independently according to ξ. Instead, it may be
convenient to introduce an irreducible Markov chain with transition matrix
Q, states 1, . . . , n, and ξ as its steady-state probability vector, and to start
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at some state i0 and generate the sequence {i0, i1, . . .} as a single infinitely
long trajectory of the chain. For the transition sequence, we may option-
ally let jk = ik+1 for all k, in which case P would be identical to Q, but in
general this is not essential.

Let us discuss two possibilities for constructing a Markov chain with
steady-state probability vector ξ. The first is useful when a desirable distri-
bution ξ is known up to a normalization constant. Then we can construct
such a chain using techniques that are common in Markov chain Monte
Carlo (MCMC) methods (see e.g., Liu [Liu01], Rubinstein and Kroese
[RuK08]).

The other possibility, which is useful when there is no particularly
desirable ξ, is to specify first the transition matrix Q of the Markov chain
and let ξ be its steady-state probability vector. Then the requirement
(6.246) will be satisfied if the Markov chain is irreducible, in which case ξ
will be the unique steady-state probability vector of the chain and will have
positive components. An important observation is that explicit knowledge
of ξ is not required; it is just necessary to know the Markov chain and to
be able to simulate its transitions. The approximate DP applications of
Sections 6.3, 6.6, and 6.7, where Q = P , fall into this context. In the next
section, we will discuss favorable methods for constructing the transition
matrix Q from A, which result in ΠT being a contraction so that iterative
methods are applicable.

Note that multiple simulated sequences can be used to form the equa-
tion (6.249). For example, in the Markov chain-based sampling schemes,
we can generate multiple infinitely long trajectories of the chain, starting at
several different states, and for each trajectory use jk = ik+1 for all k. This
will work even if the chain has multiple recurrent classes, as long as there
are no transient states and at least one trajectory is started from within
each recurrent class. Again ξ will be a steady-state probability vector of
the chain, and need not be known explicitly. Note also that using multiple
trajectories may be interesting even if there is a single recurrent class, for
at least two reasons:

(a) The generation of trajectories may be parallelized among multiple
processors, resulting in significant speedup.

(b) The empirical frequencies of occurrence of the states may approach
the steady-state probabilities more quickly; this is particularly so for
large and “stiff” Markov chains.

We finally note that the option of using distinct Markov chains Q and
P for row and column sampling is important in the DP/policy iteration
context. In particular, by using a distribution ξ that is not associated with
P , we may resolve the issue of exploration (see Section 6.3.7).
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6.8.2 Matrix Inversion and Regression-Type Methods

Given simulation-based estimates Ck and dk of C and d, respectively, we
may approximate r∗ = C−1d with

r̂k = C−1
k dk,

in which case we have r̂k → r∗ with probability 1 (this parallels the LSTD
method of Section 6.3.4). An alternative, which is more suitable for the case
where Ck is nearly singular, is the regression/regularization-based estimate

r̂k = (C′
kΣ−1Ck + βI)−1(C′

kΣ−1dk + βr̄), (6.251)

[cf. Eq. (6.58) in Section 6.3.4], where r̄ is an a priori estimate of r∗ =
C−1d, β is a positive scalar, and Σ is some positive definite symmetric
matrix. The error estimate given by Prop. 6.3.4 applies to this method.
In particular, the error ‖r̂k − r∗‖ is bounded by the sum of two terms:
one due to simulation error (which is larger when C is nearly singular,
and decreases with the amount of sampling used), and the other due to
regularization error (which depends on the regularization parameter β and
the error ‖r̄ − r∗‖); cf. Eq. (6.60).

To obtain a confidence interval for the error ‖r̂k − r∗‖, we view all
variables generated by simulation to be random variables on a common
probability space. Let Σ̂k be the covariance of (dk − Ckr∗), and let

b̂k = Σ̂
−1/2
k (dk − Ckr∗).

Note that b̂k has covariance equal to the identity. Let P̂k be the cumulative
distribution function of ‖b̂k‖2, and note that

‖b̂k‖ ≤
√

P̂−1
k (1 − θ) (6.252)

with probability (1−θ), where P̂−1
k (1−θ) is the threshold value v at which

the probability that ‖b̂k‖2 takes value greater than v is θ. We denote by
P(E) the probability of an event E.
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Proposition 6.8.1: We have

P
(

‖r̂k − r∗‖ ≤ σk(Σ, β)
)

≥ 1 − θ,

where

σk(Σ, β) = max
i=1,...,s

{

λi

λ2
i + β

}

∥

∥

∥Σ−1/2Σ̂
1/2
k

∥

∥

∥

√

P̂−1
k (1 − θ)

+ max
i=1,...,s

{

β

λ2
i + β

}

‖r̄ − r∗‖,
(6.253)

and λ1, . . . , λs are the singular values of Σ−1/2Ck.

Proof: Let bk = Σ−1/2(dk − Ckr∗). Following the notation and proof of

Prop. 6.3.4, and using the relation b̂k = Σ̂
−1/2
k Σ1/2bk, we have

r̂k − r∗ = V (Λ2 + βI)−1ΛU ′bk + β V (Λ2 + βI)−1V ′(r̄ − r∗)

= V (Λ2 + βI)−1ΛU ′ Σ−1/2Σ̂
1/2
k b̂k + β V (Λ2 + βI)−1V ′(r̄ − r∗).

From this, we similarly obtain

‖r̂k−r∗‖ ≤ max
i=1,...,s

{

λi

λ2
i + β

}

∥

∥

∥Σ−1/2Σ̂
1/2
k

∥

∥

∥ ‖b̂k‖+ max
i=1,...,s

{

β

λ2
i + β

}

‖r̄−r∗‖.

Since Eq. (6.252) holds with probability (1− θ), the desired result follows.
Q.E.D.

Using a form of the central limit theorem, we may assume that for
a large number of samples, b̂k asymptotically becomes a Gaussian random
s-dimensional vector, so that the random variable

‖b̂k‖2 = (dk − Ckr∗)′Σ̂
−1
k (dk − Ckr∗)

can be treated as a chi-square random variable with s degrees of freedom
(since the covariance of b̂k is the identity by definition). Assuming this, the
distribution P̂−1

k (1 − θ) in Eq. (6.253) is approximately equal and may be
replaced by P−1(1 − θ; s), the threshold value v at which the probability
that a chi-square random variable with s degrees of freedom takes value
greater than v is θ. Thus in a practical application of Prop. 6.8.1, one may
replace P̂−1

k (1 − θ) by P−1(1 − θ; s), and also replace Σ̂k with an estimate
of the covariance of (dk −Ckr∗); the other quantities in Eq. (6.253) (Σ, λi,
β, and r) are known.
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6.8.3 Iterative/LSPE-Type Methods

In this section, we will consider iterative methods for solving the projected
equation Cr = d [cf. Eq. (6.245)], using simulation-based estimates Ck and
dk. We first consider the fixed point iteration

Φrk+1 = ΠT (Φrk), k = 0, 1, . . . , (6.254)

which generalizes the PVI method of Section 6.3.2. For this method to
be valid and to converge to r∗ it is essential that ΠT is a contraction with
respect to some norm. In the next section, we will provide tools for verifying
that this is so.

Similar to the analysis of Section 6.3.3, the simulation-based approx-
imation (LSPE analog) is

rk+1 =

(

k
∑

t=0

φ(it)φ(it)′

)−1 k
∑

t=0

φ(it)

(

aitjt

pitjt

φ(jt)′rk + bit

)

. (6.255)

Here again {i0, i1, . . .} is an index sequence and {(i0, j0), (i1, j1), . . .} is a
transition sequence satisfying Eqs. (6.246)-(6.248).

A generalization of this iteration, written in more compact form and
introducing scaling with a matrix Gk, is given by

rk+1 = rk − γGk(Ckrk − dk), (6.256)

where Ck and dk are given by Eq. (6.249) [cf. Eq. (6.71)]. As in Section
6.3.4, this iteration can be equivalently written in terms of generalized
temporal differences as

rk+1 = rk − γ

k + 1
Gk

k
∑

t=0

φ(it)qk,t

where
qk,t = φ(it)′rk − aitjt

pitjt

φ(jt)′rk − bit

[cf. Eq. (6.72)]. The scaling matrix Gk should converge to an appropriate
matrix G.

For the scaled LSPE-type method (6.256) to converge to r∗, we must
have Gk → G, Ck → C, and G, C, and γ must be such that I − γGC is a
contraction. Noteworthy special cases where this is so are:

(a) The case of iteration (6.255), where γ = 1 and

Gk =

(

k
∑

t=0

φ(it)φ(it)′

)−1

,
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under the assumption that ΠT is a contraction. The reason is that
this iteration asymptotically becomes the fixed point iteration Φrk+1 =
ΠT (Φrk) [cf. Eq. (6.254)].

(b) C is positive definite, G is symmetric positive definite, and γ is suf-
ficiently small. This case arises in various DP contexts, e.g., the
discounted problem where A = αP (cf. Section 6.3).

(c) C is positive definite, γ = 1, and G has the form

G = (C + βI)−1,

where β is a positive scalar (cf. Section 6.3.4). The corresponding
iteration (6.256) takes the form

rk+1 = rk − (Ck + βI)−1(Ckrk − dk)

[cf. Eq. (6.77)].

(d) C is invertible, γ = 1, and G has the form

G = (C′Σ−1C + βI)−1C′Σ−1,

where Σ is some positive definite symmetric matrix, and β is a positive
scalar. The corresponding iteration (6.256) takes the form

rk+1 = (C′
kΣ−1

k Ck + βI)−1(C′
kΣ−1

k dk + βrk)

[cf. Eq. (6.76)]. As shown in Section 6.3.2, the eigenvalues of GC are
λi/(λi + β), where λi are the eigenvalues of C′Σ−1C, so I −GC has
real eigenvalues in the interval (0, 1). This iteration also works if C
is not invertible.

The Analog of TD(0)

Let us also note the analog of the TD(0) method. It is similar to Eq.
(6.256), but uses only the last sample:

rk+1 = rk − γkφ(ik)qk,k,

where the stepsize γk must be diminishing to 0. It was shown in [BeY07]
and [BeY09] that if ΠT is a contraction on S with respect to ‖ · ‖ξ, then
the matrix C of Eq. (6.244) is negative definite, which is what is essentially
needed for convergence of the method to the solution of the projected
equation Cr = d.
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Contraction Properties

We will now derive conditions for ΠT to be a contraction, which facilitates
the use of the preceding iterative methods. We assume that the index
sequence {i0, i1, . . .} is generated as an infinitely long trajectory of a Markov
chain whose steady-state probability vector is ξ. We denote by Q the
corresponding transition probability matrix and by qij the components of
Q. As discussed earlier, Q may not be the same as P , which is used
to generate the transition sequence

{

(i0, j0), (i1, j1), . . .
}

to satisfy Eqs.
(6.246) and (6.248). It seems hard to guarantee that ΠT is a contraction
mapping, unless |A| ≤ Q [i.e., |aij | ≤ qij for all (i, j)]. The following
propositions assume this condition.

Proposition 6.8.2: Assume that Q is irreducible and that |A| ≤
Q. Then T and ΠT are contraction mappings under any one of the
following three conditions:

(1) For some scalar α ∈ (0, 1), we have |A| ≤ αQ.

(2) There exists an index i such that |aij | < qij for all j = 1, . . . , n.

(3) There exists an index i such that
∑n

j=1 |aij | < 1.

Proof: For any vector or matrix X , we denote by |X | the vector or matrix
that has as components the absolute values of the corresponding compo-
nents of X . Let ξ be the steady-state probability vector of Q. Assume
condition (1). Since Π is nonexpansive with respect to ‖ · ‖ξ, it will suffice
to show that A is a contraction with respect to ‖ · ‖ξ. We have

|Az| ≤ |A| |z| ≤ αQ|z|, ∀ z ∈ ℜn. (6.257)

Using this relation, we obtain

‖Az‖ξ ≤ α‖Q|z|‖ξ ≤ α‖z‖ξ, ∀ z ∈ ℜn, (6.258)

where the last inequality follows since ‖Qx‖ξ ≤ ‖x‖ξ for all x ∈ ℜn (see
Lemma 6.3.1). Thus, A is a contraction with respect to ‖ ·‖ξ with modulus
α.

Assume condition (2). Then, in place of Eq. (6.257), we have

|Az| ≤ |A| |z| ≤ Q|z|, ∀ z ∈ ℜn,

with strict inequality for the row corresponding to i when z 6= 0, and in
place of Eq. (6.258), we obtain

‖Az‖ξ < ‖Q|z|‖ξ ≤ ‖z‖ξ, ∀ z 6= 0.



Sec. 6.8 Simulation-Based Solution of Large Systems 489

It follows that A is a contraction with respect to ‖ · ‖ξ, with modulus
max‖z‖ξ≤1 ‖Az‖ξ.

Assume condition (3). It will suffice to show that the eigenvalues of
ΠA lie strictly within the unit circle.† Let Q̄ be the matrix which is identical
to Q except for the ith row which is identical to the ith row of |A|. From
the irreducibility of Q, it follows that for any i1 6= i it is possible to find a
sequence of nonzero components Q̄i1i2 , . . . , Q̄ik−1ik , Q̄iki that “lead” from

i1 to i. Using a well-known result, we have Q̄t → 0. Since |A| ≤ Q̄, we
also have |A|t → 0, and hence also At → 0 (since |At| ≤ |A|t). Thus, all
eigenvalues of A are strictly within the unit circle. We next observe that
from the proof argument under conditions (1) and (2), we have

‖ΠAz‖ξ ≤ ‖z‖ξ, ∀ z ∈ ℜn,

so the eigenvalues of ΠA cannot lie outside the unit circle.
Assume to arrive at a contradiction that ν is an eigenvalue of ΠA

with |ν| = 1, and let ζ be a corresponding eigenvector. We claim that Aζ
must have both real and imaginary components in the subspace S. If this
were not so, we would have Aζ 6= ΠAζ, so that

‖Aζ‖ξ > ‖ΠAζ‖ξ = ‖νζ‖ξ = |ν| ‖ζ‖ξ = ‖ζ‖ξ,

which contradicts the fact ‖Az‖ξ ≤ ‖z‖ξ for all z, shown earlier. Thus,
the real and imaginary components of Aζ are in S, which implies that
Aζ = ΠAζ = νζ, so that ν is an eigenvalue of A. This is a contradiction
because |ν| = 1, while the eigenvalues of A are strictly within the unit
circle. Q.E.D.

Note that the preceding proof has shown that under conditions (1)
and (2) of Prop. 6.8.2, T and ΠT are contraction mappings with respect
to the specific norm ‖ · ‖ξ, and that under condition (1), the modulus of
contraction is α. Furthermore, Q need not be irreducible under these con-
ditions – it is sufficient that Q has no transient states (so that it has a
steady-state probability vector ξ with positive components). Under condi-
tion (3), T and ΠT need not be contractions with respect to ‖ · ‖ξ. For a
counterexample, take ai,i+1 = 1 for i = 1, . . . , n− 1, and an,1 = 1/2, with
every other entry of A equal to 0. Take also qi,i+1 = 1 for i = 1, . . . , n− 1,

† In the following argument, the projection Πz of a complex vector z is
obtained by separately projecting the real and the imaginary components of z on
S. The projection norm for a complex vector x + iy is defined by

‖x + iy‖ξ =
√

‖x‖2
ξ + ‖y‖2

ξ .
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and qn,1 = 1, with every other entry of Q equal to 0, so ξi = 1/n for all i.
Then for z = (0, 1, . . . , 1)′ we have Az = (1, . . . , 1, 0)′ and ‖Az‖ξ = ‖z‖ξ,
so A is not a contraction with respect to ‖ · ‖ξ. Taking S to be the entire
space ℜn, we see that the same is true for ΠA.

When the row sums of |A| are no greater than one, one can construct
Q with |A| ≤ Q by adding another matrix to |A|:

Q = |A| +Diag(e− |A|e)R, (6.259)

where R is a transition probability matrix, e is the unit vector that has
all components equal to 1, and Diag(e− |A|e) is the diagonal matrix with
1−∑n

m=1 |aim|, i = 1, . . . , n, on the diagonal. Then the row sum deficit of
the ith row of A is distributed to the columns j according to fractions rij ,
the components of R.

The next proposition uses different assumptions than Prop. 6.8.2, and
applies to cases where there is no special index i such that

∑n
j=1 |aij | < 1. In

fact A may itself be a transition probability matrix, so that I−A need not
be invertible, and the original system may have multiple solutions; see the
subsequent Example 6.8.2. The proposition suggests the use of a damped
version of the T mapping in various methods (compare with Section 6.7
and the average cost case for λ = 0).

Proposition 6.8.3: Assume that there are no transient states corre-
sponding to Q, that ξ is a steady-state probability vector of Q, and
that |A| ≤ Q. Assume further that I − ΠA is invertible. Then the
mapping ΠTγ , where

Tγ = (1 − γ)I + γT,

is a contraction with respect to ‖ · ‖ξ for all γ ∈ (0, 1).

Proof: The argument of the proof of Prop. 6.8.2 shows that the condition
|A| ≤ Q implies that A is nonexpansive with respect to the norm ‖ · ‖ξ.
Furthermore, since I − ΠA is invertible, we have z 6= ΠAz for all z 6= 0.
Hence for all γ ∈ (0, 1) and z ∈ ℜn,

‖(1−γ)z+γΠAz‖ξ < (1−γ)‖z‖ξ+γ‖ΠAz‖ξ ≤ (1−γ)‖z‖ξ+γ‖z‖ξ = ‖z‖ξ,
(6.260)

where the strict inequality follows from the strict convexity of the norm,
and the weak inequality follows from the nonexpansiveness of ΠA. If we
define

ργ = sup
{

‖(1 − γ)z + γΠAz‖ξ | ‖z‖ ≤ 1
}

,
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and note that the supremum above is attained by Weierstrass’ Theorem,
we see that Eq. (6.260) yields ργ < 1 and

‖(1 − γ)z + γΠAz‖ξ ≤ ργ‖z‖ξ, ∀ z ∈ ℜn.

From the definition of Tγ , we have for all x, y ∈ ℜn,

ΠTγx− ΠTγy = ΠTγ(x− y) = (1 − γ)Π(x − y) + γΠA(x− y)

= (1 − γ)Π(x− y) + γΠ
(

ΠA(x− y)
)

,

so defining z = x − y, and using the preceding two relations and the non-
expansiveness of Π, we obtain

‖ΠTγx− ΠTγy‖ξ = ‖(1 − γ)Πz + γΠ(ΠAz)‖ξ ≤ ‖(1 − γ)z + γΠAz‖ξ

≤ ργ‖z‖ξ = ργ‖x− y‖ξ,

for all x, y ∈ ℜn. Q.E.D.

Note that the mappings ΠTγ and ΠT have the same fixed points, so
under the assumptions of Prop. 6.8.3, there is a unique fixed point Φr∗ of
ΠT . We now discuss examples of choices of ξ and Q in some special cases.

Example 6.8.1 (Discounted DP Problems and Exploration)

Bellman’s equation for the cost vector of a stationary policy in an n-state
discounted DP problem has the form x = T (x), where

T (x) = αPx + g,

g is the vector of single-stage costs associated with the n states, P is the
transition probability matrix of the associated Markov chain, and α ∈ (0, 1)
is the discount factor. If P is an irreducible Markov chain, and ξ is chosen
to be its unique steady-state probability vector, the matrix inversion method
based on Eq. (6.249) becomes LSTD(0). The methodology of the present
section also allows row sampling/state sequence generation using a Markov
chain P other than P , with an attendant change in ξ, as discussed in the
context of exploration-enhanced methods in Section 6.3.7.

Example 6.8.2 (Undiscounted DP Problems)

Consider the equation x = Ax + b, for the case where A is a substochastic
matrix (aij ≥ 0 for all i, j and

∑n

j=1
aij ≤ 1 for all i). Here 1 −

∑n

j=1
aij

may be viewed as a transition probability from state i to some absorbing
state denoted 0. This is Bellman’s equation for the cost vector of a stationary
policy of a SSP. If the policy is proper in the sense that from any state i 6= 0



492 Approximate Dynamic Programming Chap. 6

there exists a path of positive probability transitions from i to the absorbing
state 0, the matrix

Q = |A| + Diag(e − |A|e)R

[cf. Eq. (6.259)] is irreducible, provided R has positive components. As a
result, the conditions of Prop. 6.8.2 under condition (2) are satisfied, and T
and ΠT are contractions with respect to ‖ · ‖ξ. It is also possible to use a
matrix R whose components are not all positive, as long as Q is irreducible,
in which case Prop. 6.8.2 under condition (3) applies (cf. Prop. 6.7.1).

Consider also the equation x = Ax + b for the case where A is an ir-
reducible transition probability matrix, with steady-state probability vector
ξ. This is related to Bellman’s equation for the differential cost vector of a
stationary policy of an average cost DP problem involving a Markov chain
with transition probability matrix A. Then, if the unit vector e is not con-
tained in the subspace S spanned by the basis functions, the matrix I−ΠA is
invertible, as shown in Section 6.7. As a result, Prop. 6.8.3 applies and shows
that the mapping (1− γ)I + γA, is a contraction with respect to ‖ · ‖ξ for all
γ ∈ (0, 1) (cf. Section 6.7, Props. 6.7.1, 6.7.2).

The projected equation methodology of this section applies to gen-
eral linear fixed point equations, where A need not have a probabilistic
structure. A class of such equations where ΠA is a contraction is given in
the following example, an important case in the field of numerical meth-
ods/scientific computation where iterative methods are used for solving
linear equations.

Example 6.8.3 (Weakly Diagonally Dominant Systems)

Consider the solution of the system

Cx = d,

where d ∈ ℜn and C is an n × n matrix that is weakly diagonally dominant,
i.e., its components satisfy

cii 6= 0,
∑

j 6=i

|cij | ≤ |cii|, i = 1, . . . , n. (6.261)

By dividing the ith row by cii, we obtain the equivalent system x = Ax + b,
where the components of A and b are

aij =

{

0 if i = j,
− cij

cii
if i 6= j, bi =

di

cii

, i = 1, . . . , n.

Then, from Eq. (6.261), we have

n
∑

j=1

|aij | =
∑

j 6=i

|cij |
|cii|

≤ 1, i = 1, . . . , n,
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so Props. 6.8.2 and 6.8.3 may be used under the appropriate conditions. In
particular, if the matrix Q given by Eq. (6.259) has no transient states and
there exists an index i such that

∑n

j=1
|a

ij
| < 1, Prop. 6.8.2 applies and shows

that ΠT is a contraction.
Alternatively, instead of Eq. (6.261), assume the somewhat more re-

strictive condition

|1 − cii| +
∑

j 6=i

|cij | ≤ 1, i = 1, . . . , n, (6.262)

and consider the equivalent system x = Ax + b, where

A = I − C, b = d.

Then, from Eq. (6.262), we have

n
∑

j=1

|aij | = |1 − cii| +
∑

j 6=i

|cij | ≤ 1, i = 1, . . . , n,

so again Props. 6.8.2 and 6.8.3 apply under appropriate conditions.

Let us finally address the question whether it is possible to find Q
such that |A| ≤ Q and the corresponding Markov chain has no transient
states or is irreducible. To this end, assume that

∑n
j=1 |aij | ≤ 1 for all i.

If A is itself irreducible, then any Q such that |A| ≤ Q is also irreducible.
Otherwise, consider the set

I =







i

∣

∣

∣

∣

∣

n
∑

j=1

|aij | < 1







,

and assume that it is nonempty (otherwise the only possibility is Q = |A|).
Let Ĩ be the set of i such that there exists a sequence of nonzero components
aij1 , aj1j2 , . . . , ajmi such that i ∈ I, and let Î = {i | i /∈ I∪Ĩ} (we allow here

the possibility that Ĩ or Î may be empty). Note that the square submatrix
of |A| corresponding to Î is a transition probability matrix, and that we
have aij = 0 for all i ∈ Î and j /∈ Î. Then it can be shown that there exists
Q with |A| ≤ Q and no transient states if and only if the Markov chain
corresponding to Î has no transient states. Furthermore, there exists an
irreducible Q with |A| ≤ Q if and only if Î is empty.

6.8.4 Multistep Methods

We now consider the possibility of replacing T with a multistep mapping
that has the same fixed point, such as T ℓ with ℓ > 1, or T (λ) given by

T (λ) = (1 − λ)

∞
∑

ℓ=0

λℓT ℓ+1,
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where λ ∈ (0, 1). For example, the LSTD(λ), LSPE(λ), and TD(λ) meth-
ods for approximate policy evaluation are based on this possibility. The
key idea in extending these methods to general linear systems is that the
ith component (Amb)(i) of a vector of the form Amb, where b ∈ ℜn, can
be computed by averaging over properly weighted simulation-based sample
values.

In multistep methods, it turns out that for technical efficiecy reasons
it is important to use the same probabilistic mechanism for row and for col-
umn sampling. In particular, we generate the index sequence {i0, i1, . . .}
and the transition sequence

{

(i0, i1), (i1, i2), . . .
}

by using the same irre-
ducible transition matrix P , so ξ is the steady-state probability distribution
of P . We then form the average of wk,mbik+m

over all indices k such that
ik = i, where

wk,m =

{ aikik+1
pikik+1

aik+1ik+2
pik+1ik+2

· · ·
aik+m−1ik+m

pik+m−1ik+m

if m ≥ 1,

1 if m = 0.
(6.263)

We claim that the following is a valid approximation of (Amb)(i):

(Amb)(i) ≈
∑t

k=0 δ(ik = i)wk,mbik+m
∑t

k=0 δ(ik = i)
. (6.264)

The justification is that by the irreducibility of the associated Markov chain,
we have

lim
t→∞

∑t
k=0 δ(ik = i, ik+1 = j1, . . . , ik+m = jm)

∑t
k=0 δ(ik = i)

= pij1pj1j2 · · · pjm−1jm ,

(6.265)
and the limit of the right-hand side of Eq. (6.264) can be written as

lim
t→∞

∑t

k=0
δ(ik = i)wk,mbik+m
∑t

k=0
δ(ik = i)

= lim
t→∞

∑t

k=0

∑n

j1=1
· · ·
∑n

jm=1
δ(ik = i, ik+1 = j1, . . . , ik+m = jm)wk,mbik+m
∑t

k=0
δ(ik = i)

=

n
∑

j1=1

· · ·
n
∑

jm=1

lim
t→∞

∑t

k=0
δ(ik = i, ik+1 = j1, . . . , ik+m = jm)

∑t

k=0
δ(ik = i)

wk,mbik+m

=

n
∑

j1=1

· · ·
n
∑

jm=1

aij1aj1j2 · · · ajm−1jmbjm

= (Amb)(i),

where the third equality follows using Eqs. (6.263) and (6.265).
By using the approximation formula (6.264), it is possible to construct

complex simulation-based approximations to formulas that involve powers



Sec. 6.8 Simulation-Based Solution of Large Systems 495

of A. As an example that we have not encountered so far in the DP context,
we may obtain by simulation the solution x∗ of the linear system x = b+Ax,
which can be expressed as

x∗ = (I −A)−1b =
∞
∑

ℓ=0

Aℓb,

assuming the eigenvalues of A are all within the unit circle. Historically,
this is the first method for simulation-based matrix inversion and solution of
linear systems, due to von Neumann and Ulam (unpublished but described
by Forsythe and Leibler [FoL50]).

λ-Methods

We will now summarize extensions of LSTD(λ), LSPE(λ), and TD(λ) to
solve the general fixed point problem x = b + Ax. The underlying idea is
the approximation of Eq. (6.264). We refer to [BeY09], [Ber11a], [Yu10a],
and [Yu10b] for detailed derivations and analysis. Similar to Section 6.3.6,
these methods aim to solve the λ-projected equation

Φr = ΠT (λ)(Φr),

or equivalently
C(λ)r = d(λ),

where
C(λ) = Φ′Ξ

(

I −A(λ)
)

Φ, d(λ) = Φ′Ξb(λ),

with

A(λ) = (1 − λ)

∞
∑

ℓ=0

λℓAℓ+1, b(λ) =

∞
∑

ℓ=0

λℓAℓb,

by using simulation-based approximations, and either matrix inversion or
iteration.

As in Sections 7.3.1, the simulation is used to construct approxima-

tions C
(λ)
k and d

(λ)
k of C(λ) and d(λ), respectively. Given the simulated

sequence {i0, i1, . . .} obtained by row/column sampling using transition

probabilities pij , C
(λ)
k and d

(λ)
k are generated by

C
(λ)
k = (1 − δk)C

(λ)
k−1 + δkzk

(

φ(ik) −
aikik+1

pikik+1

φ(ik+1)

)′

,

d
(λ)
k = (1 − δk)d

(λ)
k−1 + δkzkg(ik, ik+1),

where zk are modified eligibility vectors given by

zk = λ
aik−1ik

pik−1ik

zk−1 + φ(ik), (6.266)
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the initial conditions are z−1 = 0, C
(λ)
−1 = 0, d

(λ)
−1 = 0, and

δk =
1

k + 1
, k = 0, 1, . . . .

The matrix inversion/LSTD(λ) analog is to solve the equationC
(λ)
k r =

d
(λ)
k , while the iterative/LSPE(λ) analog is

rk+1 = rk − γGk(C
(λ)
k rk − d

(λ)
k ),

where Gk is a positive definite scaling matrix and γ is a positive stepsize.
There is also a generalized version of the TD(λ) method. It has the form

rk+1 = rk + γkzkqk(ik),

where γk is a diminishing positive scalar stepsize, zk is given by Eq. (6.266),
and qk(ik) is the temporal difference analog given by

qk(ik) = bik +
aik−1ik

pik−1ik

φ(ik+1)′rk − φ(ik)′rk.

6.8.5 Extension of Q-Learning for Optimal Stopping

If the mapping T is nonlinear (as for example in the case of multiple poli-
cies) the projected equation Φr = ΠT (Φr) is also nonlinear, and may have
one or multiple solutions, or no solution at all. On the other hand, if ΠT
is a contraction, there is a unique solution. We have seen in Section 6.5.3
a nonlinear special case of projected equation where ΠT is a contraction,
namely optimal stopping. This case can be generalized as we now show.

Let us consider a system of the form

x = T (x) = Af(x) + b, (6.267)

where f : ℜn 7→ ℜn is a mapping with scalar function components of the
form f(x) =

(

f1(x1), . . . , fn(xn)
)

. We assume that each of the mappings
fi : ℜ 7→ ℜ is nonexpansive in the sense that

∣

∣fi(xi) − fi(x̄i)
∣

∣ ≤ |xi − x̄i|, ∀ i = 1, . . . , n, xi, x̄i ∈ ℜ. (6.268)

This guarantees that T is a contraction mapping with respect to any norm
‖ · ‖ with the property

‖y‖ ≤ ‖z‖ if |yi| ≤ |zi|, ∀ i = 1, . . . , n,

whenever A is a contraction with respect to that norm. Such norms include
weighted l1 and l∞ norms, the norm ‖ · ‖ξ, as well as any scaled Euclidean
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norm ‖x‖ =
√
x′Dx, where D is a positive definite symmetric matrix with

nonnegative components. Under the assumption (6.268), the theory of
Section 6.8.2 applies and suggests appropriate choices of a Markov chain
for simulation so that ΠT is a contraction.

As an example, consider the equation

x = T (x) = αPf(x) + b,

where P is an irreducible transition probability matrix with steady-state
probability vector ξ, α ∈ (0, 1) is a scalar discount factor, and f is a
mapping with components

fi(xi) = min{ci, xi}, i = 1, . . . , n, (6.269)

where ci are some scalars. This is the Q-factor equation corresponding
to a discounted optimal stopping problem with states i = 1, . . . , n, and a
choice between two actions at each state i: stop at a cost ci, or continue
at a cost bi and move to state j with probability pij . The optimal cost
starting from state i is min{ci, x∗i }, where x∗ is the fixed point of T . As a
special case of Prop. 6.8.2, we obtain that ΠT is a contraction with respect
to ‖ · ‖ξ. Similar results hold in the case where αP is replaced by a matrix
A satisfying condition (2) of Prop. 6.8.2, or the conditions of Prop. 6.8.3.

A version of the LSPE-type algorithm for solving the system (6.267),
which extends the method of Section 6.5.3 for optimal stopping, may be
used when ΠT is a contraction. In particular, the iteration

Φrk+1 = ΠT (Φrk), k = 0, 1, . . . ,

takes the form

rk+1 =

(

n
∑

i=1

ξi φ(i)φ(i)′

)−1 n
∑

i=1

ξi φ(i)





n
∑

j=1

aijfj

(

φ(j)′rk
)

+ bi



 ,

and is approximated by

rk+1 =

(

k
∑

t=0

φ(it)φ(it)′

)−1 k
∑

t=0

φ(it)

(

aitjt

pitjt

fjt

(

φ(jt)′rk
)

+ bit

)

. (6.270)

Here, as before, {i0, i1, . . .} is a state sequence, and {(i0, j0), (i1, j1), . . .} is
a transition sequence satisfying Eqs. (6.246) and (6.248) with probability
1. The justification of this approximation is very similar to the ones given
so far, and will not be discussed further. Diagonally scaled versions of this
iteration are also possible.

A difficulty with iteration (6.270) is that the terms fjt

(

φ(jt)′rk
)

must
be computed for all t = 0, . . . , k, at every step k, thereby resulting in
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significant overhead. The methods to bypass this difficulty in the case of
optimal stopping, discussed at the end of Section 6.5.3, can be extended to
the more general context considered here.

Let us finally consider the case where instead of A = αP , the matrix
A satisfies condition (2) of Prop. 6.8.2, or the conditions of Prop. 6.8.3. The
case where

∑n
j=1 |aij | < 1 for some index i, and 0 ≤ A ≤ Q, where Q is an

irreducible transition probability matrix, corresponds to an undiscounted
optimal stopping problem where the stopping state will be reached from all
other states with probability 1, even without applying the stopping action.
In this case, from Prop. 6.8.2 under condition (3), it follows that ΠA is
a contraction with respect to some norm, and hence I − ΠA is invertible.
Using this fact, it can be shown by modifying the proof of Prop. 6.8.3 that
the mapping ΠTγ , where

Tγ(x) = (1 − γ)x+ γT (x)

is a contraction with respect to ‖ · ‖ξ for all γ ∈ (0, 1). Thus, ΠTγ has a
unique fixed point, and must be also the unique fixed point of ΠT (since
ΠT and ΠTγ have the same fixed points).

In view of the contraction property of Tγ , the “damped” PVI iteration

Φrk+1 = (1 − γ)Φrk + γΠT (Φrk),

converges to the unique fixed point of ΠT and takes the form

rk+1 = (1−γ)rk+γ

(

n
∑

i=1

ξi φ(i)φ(i)′

)−1 n
∑

i=1

ξi φ(i)





n
∑

j=1

aijfj

(

φ(j)′rk
)

+ bi





As earlier, it can be approximated by the LSPE iteration

rk+1 = (1−γ)rk+γ

(

k
∑

t=0

φ(it)φ(it)′

)−1 k
∑

t=0

φ(it)

(

aitjt

pitjt

fjt

(

φ(jt)′rk
)

+ bit

)

[cf. Eq. (6.270)].

6.8.6 Bellman Equation Error-Type Methods

We will now consider an alternative approach for approximate solution of
the linear equation x = T (x) = b + Ax, based on finding a vector r that
minimizes

‖Φr − T (Φr)‖2
ξ,

or
n
∑

i=1

ξi



φ(i)′r −
n
∑

j=1

aijφ(j)′r − bi





2

,
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where ξ is a distribution with positive components. In the DP context
where the equation x = T (x) is the Bellman equation for a fixed policy, this
is known as the Bellman equation error approach (see [BeT96], Section 6.10
for a detailed discussion of this case, and the more complicated nonlinear
case where T involves minimization over multiple policies). We assume
that the matrix (I −A)Φ has rank s, which guarantees that the vector r∗

that minimizes the weighted sum of squared errors is unique.
We note that the equation error approach is related to the projected

equation approach. To see this, consider the case where ξ is the uniform
distribution, so the problem is to minimize

∥

∥Φr − (b+AΦr)
∥

∥

2
, (6.271)

where ‖ · ‖ is the standard Euclidean norm. By setting the gradient to 0,
we see that a necessary and sufficient condition for optimality is

Φ′(I − A)′
(

Φr∗ − T (Φr∗)
)

= 0,

or equivalently,
Φ′
(

Φr∗ − T̂ (Φr∗)
)

= 0,

where
T̂ (x) = T (x) +A′

(

x− T (x)
)

.

Thus minimization of the equation error (6.271) is equivalent to solving the
projected equation

Φr = ΠT̂ (Φr),

where Π denotes projection with respect to the standard Euclidean norm. A
similar conversion is possible when ξ is a general distribution with positive
components.

Error bounds analogous to the projected equation bounds of Eqs.
(6.242) and (6.243) can be developed for the equation error approach, as-
suming that I−A is invertible and x∗ is the unique solution. In particular,
let r̃ minimize ‖Φr − T (Φr)‖2

ξ. Then

x∗ − Φr̃ = Tx∗ − T (Φr̃) + T (Φr̃) − Φr̃ = A(x∗ − Φr̃) + T (Φr̃) − Φr̃,

so that
x∗ − Φr̃ = (I −A)−1

(

T (Φr̃) − Φr̃
)

.

Thus, we obtain

‖x∗ − Φr̃‖ξ ≤
∥

∥(I − A)−1
∥

∥

ξ
‖Φr̃ − T (Φr̃)‖ξ

≤
∥

∥(I − A)−1
∥

∥

ξ

∥

∥Πx∗ − T (Πx∗)
∥

∥

ξ

=
∥

∥(I − A)−1
∥

∥

ξ

∥

∥Πx∗ − x∗ + Tx∗ − T (Πx∗)
∥

∥

ξ

=
∥

∥(I − A)−1
∥

∥

ξ

∥

∥(I −A)(Πx∗ − x∗)
∥

∥

ξ

≤
∥

∥(I − A)−1
∥

∥

ξ
‖I −A‖ξ‖x∗ − Πx∗‖ξ,
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where the second inequality holds because r̃ minimizes ‖Φr− T (Φr)‖2
ξ. In

the case where T is a contraction mapping with respect to the norm ‖ · ‖ξ,
with modulus α ∈ (0, 1), a similar calculation yields

‖x∗ − Φr̃‖ξ ≤ 1 + α

1 − α
‖x∗ − Πx∗‖ξ.

The vector r∗ that minimizes ‖Φr−T (Φr)‖2
ξ satisfies the correspond-

ing necessary optimality condition

n
∑

i=1

ξi



φ(i) −
n
∑

j=1

aijφ(j)







φ(i) −
n
∑

j=1

aijφ(j)





′

r∗

=

n
∑

i=1

ξi



φ(i) −
n
∑

j=1

aijφ(j)



 bi.

(6.272)

To obtain a simulation-based approximation to Eq. (6.272), without re-
quiring the calculation of row sums of the form

∑n
j=1 aijφ(j), we intro-

duce an additional sequence of transitions {(i0, j′0), (i1, j′1), . . .} (see Fig.
6.8.2), which is generated according to the transition probabilities pij of the
Markov chain, and is “independent” of the sequence {(i0, j0), (i1, j1), . . .}
in the sense that with probability 1,

lim
t→∞

∑t
k=0 δ(ik = i, jk = j)
∑t

k=0 δ(ik = i)
= lim

t→∞

∑t
k=0 δ(ik = i, j′k = j)
∑t

k=0 δ(ik = i)
= pij , (6.273)

for all i, j = 1, . . . , n, and

lim
t→∞

∑t
k=0 δ(ik = i, jk = j, j′k = j′)

∑t
k=0 δ(ik = i)

= pijpij′ , (6.274)

for all i, j, j′ = 1, . . . , n. At time t, we form the linear equation

t
∑

k=0

(

φ(ik) − aikjk

pikjk

φ(jk)

)

(

φ(ik) −
aikj′

k

pikj′
k

φ(j′k)

)′

r

=

t
∑

k=0

(

φ(ik) − aikjk

pikjk

φ(jk)

)

bik .

(6.275)

Similar to our earlier analysis, it can be seen that this is a valid approxi-
mation to Eq. (6.272).

Note a disadvantage of this approach relative to the projected equa-
tion approach (cf. Section 6.8.1). It is necessary to generate two sequences
of transitions (rather than one). Moreover, both of these sequences enter
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j′
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j′
k+1

j0 j1 jk jk+1

i0 i1 ik ik+1 !!!!!!

Figure 6.8.2 A possible simulation mechanism for minimizing the equation er-
ror norm [cf. Eq. (6.275)]. We generate a sequence of states {i0, i1, . . .} according
to the distribution ξ, by simulating a single infinitely long sample trajectory of
the chain. Simultaneously, we generate two independent sequences of transitions,
{(i0, j0), (i1, j1), . . .} and {(i0, j′0), (i1, j′1), . . .}, according to the transition prob-
abilities pij , so that Eqs. (6.273) and (6.274) are satisfied.

Eq. (6.275), which thus contains more simulation noise than its projected
equation counterpart [cf. Eq. (6.249)].

Let us finally note that the equation error approach can be general-
ized to yield a simulation-based method for solving the general linear least
squares problem

min
r

n
∑

i=1

ξi



ci −
m
∑

j=1

qijφ(j)′r





2

,

where qij are the components of an n×m matrix Q, and ci are the compo-
nents of a vector c ∈ ℜn. In particular, one may write the corresponding
optimality condition [cf. Eq. (6.272)] and then approximate it by simulation
[cf. Eq. (6.275)]; see [BeY09], and [WPB09], [PWB09], which also discuss
a regression-based approach to deal with nearly singular problems (cf. the
regression-based LSTD method of Section 6.3.4). Conversely, one may con-
sider a selected set I of states of moderate size, and find r∗ that minimizes
the sum of squared Bellman equation errors only for these states:

r∗ ∈ arg min
r∈ℜs

∑

i∈I

ξi



φ(i)′r −
n
∑

j=1

aijφ(j)′r − bi





2

.

This least squares problem may be solved by conventional (non-simulation)
methods.
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An interesting question is how the approach of this section compares
with the projected equation approach in terms of approximation error. No
definitive answer seems possible, and examples where one approach gives
better results than the other have been constructed. Reference [Ber95]
shows that in the example of Exercise 6.9, the projected equation approach
gives worse results. For an example where the projected equation approach
may be preferable, see Exercise 6.11.

Approximate Policy Iteration with Bellman Equation
Error Evaluation

When the Bellman equation error approach is used in conjunction with
approximate policy iteration in a DP context, it is susceptible to chattering
and oscillation just as much as the projected equation approach (cf. Section
6.3.8). The reason is that both approaches operate within the same greedy
partition, and oscillate when there is a cycle of policies µk, µk+1, . . . , µk+m

with

rµk ∈ Rµk+1 , rµk+1 ∈ Rµk+2 , . . . , rµk+m−1 ∈ Rµk+m , rµk+m ∈ Rµk

(cf. Fig. 6.3.4). The only difference is that the weight vector rµ of a policy
µ is calculated differently (by solving a least-squares Bellman error problem
versus solving a projected equation). In practice the weights calculated by
the two approaches may differ somewhat, but generally not enough to cause
dramatic changes in qualitative behavior. Thus, much of our discussion of
optimistic policy iteration in Sections 6.3.5-6.3.6 applies to the Bellman
equation error approach as well.

Example 6.3.2 (continued)

Let us return to Example 6.3.2 where chattering occurs when rµ is evaluated
using the projected equation. When the Bellman equation error approach
is used instead, the greedy partition remains the same (cf. Fig. 6.3.6), the
weight of policy µ is rµ = 0 (as in the projected equation case), and for p ≈ 1,
the weight of policy µ∗ can be calculated to be

rµ∗ ≈ c

(1 − α)
(

(1 − α)2 + (2 − α)2
)

[which is almost the same as the weight c/(1 − α) obtained in the projected
equation case]. Thus with both approaches we have oscillation between µ
and µ∗ in approximate policy iteration, and chattering in optimistic versions,
with very similar iterates.



Sec. 6.8 Simulation-Based Solution of Large Systems 503

6.8.7 Oblique Projections

Some of the preceding methodology regarding projected equations can be
generalized to the case where the projection operator Π is oblique (i.e., it
is not a projection with respect to the weighted Euclidean norm, see e.g.,
Saad [Saa03]). Such projections have the form

Π = Φ(Ψ′ΞΦ)−1Ψ′Ξ, (6.276)

where as before, Ξ is the diagonal matrix with the components ξ1, . . . , ξn of
a positive distribution vector ξ along the diagonal, Φ is an n× s matrix of
rank s, and Ψ is an n× s matrix of rank s. The earlier case corresponds to
Ψ = Φ. Two characteristic properties of Π as given by Eq. (6.276) are that
its range is the subspace S = {Φr | r ∈ ℜs} and that it is idempotent, i.e.,
Π2 = Π. Conversely, a matrix Π with these two properties can be shown
to have the form (6.276) for some n× s matrix Ψ of rank s and a diagonal
matrix Ξ with the components ξ1, . . . , ξn of a positive distribution vector
ξ along the diagonal. Oblique projections arise in a variety of interesting
contexts, for which we refer to the literature.

Let us now consider the generalized projected equation

Φr = ΠT (Φr) = Π(b +AΦr). (6.277)

Using Eq. (6.276) and the fact that Φ has rank s, it can be written as

r = (Ψ′ΞΦ)−1Ψ′Ξ(b+AΦr),

or equivalently Ψ′ΞΦr = Ψ′Ξ(b+AΦr), which can be finally written as

Cr = d,

where
C = Ψ′Ξ(I −A)Φ, d = Ψ′Ξb. (6.278)

These equations should be compared to the corresponding equations for
the Euclidean projection case where Ψ = Φ [cf. Eq. (6.244)].

It is clear that row and column sampling can be adapted to provide
simulation-based estimates Ck and dk of C and d, respectively. The corre-
sponding equations have the form [cf. Eq. (6.249)]

Ck =
1

k + 1

k
∑

t=0

ψ(it)

(

φ(it) −
aitjt

pitjt

φ(jt)

)′

, dk =
1

k + 1

k
∑

t=0

ψ(it)bit ,

(6.279)
where ψ′(i) is the ith row of Ψ. The sequence of vectors C−1

k dk converges
with probability one to the solution C−1d of the projected equation, as-
suming that C is nonsingular. For cases where Ck is nearly singular, the



504 Approximate Dynamic Programming Chap. 6

regression/regularization-based estimate (6.251) may be used. The corre-
sponding iterative method is

rk+1 = (C′
kΣ−1

k Ck + βI)−1(C′
kΣ−1

k dk + βrk),

and can be shown to converge with probability one to C−1d.
An example where oblique projections arise in DP is aggregation/dis-

cretization with a coarse grid [cases (c) and (d) in Section 6.4, with the ag-
gregate states corresponding some distinct representative states {x1, . . . , xs}
of the original problem; also Example 6.4.1]. Then the aggregation equa-
tion for a discounted problem has the form

Φr = ΦD(b + αPΦr), (6.280)

where the rows of D are unit vectors (have a single component equal to
1, corresponding to a representative state, and all other components equal
to 0), and the rows of Φ are probability distributions, with the rows corre-
sponding to the representative states xk having a single unit component,
Φxkxk

= 1, k = 1, . . . , s. Then the matrix DΦ can be seen to be the
identity, so we have ΦD · ΦD = ΦD and it follows that ΦD is an oblique
projection. The conclusion is that the aggregation equation (6.280) in the
special case of coarse grid discretization is the projected equation (6.277),
with the oblique projection Π = ΦD.

6.8.8 Generalized Aggregation by Simulation

We will finally discuss the simulation-based iterative solution of a general
system of equations of the form

r = DT (Φr), (6.281)

where T : ℜn 7→ ℜm is a (possibly nonlinear) mapping, D is an s × m
matrix, and Φ is an n × s matrix. In the case m = n, we can regard the
system (6.281) as an approximation to a system of the form

x = T (x). (6.282)

In particular, the variables xi of the system (6.282) are approximated by
linear combinations of the variables rj of the system (6.281), using the rows
of Φ. Furthermore, the components of the mapping DT are obtained by
linear combinations of the components of T , using the rows of D. Thus
we may view the system (6.281) as being obtained by aggregation/linear
combination of the variables and the equations of the system (6.282).

We have encountered equations of the form (6.281) in our discussion
of aggregation (Section 6.4) and Q-learning (Section 6.5). For example, the
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aggregation mapping

(FR)(x) =

n
∑

i=1

dxi min
u∈U(i)

n
∑

j=1

pij(u)



g(i, u, j) + α
∑

y∈S

φjyR(y)



 , x ∈ S,

(6.283)
[cf. Eq. (6.162)] is of the form (6.281), where r = R, the dimension s is
equal to the number of aggregate states x, m = n is the number of states
i, and the matrices D and Φ consist of the disaggregation and aggregation
probabilities, respectively.

As another example the Q-learning mapping

(FQ)(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
v∈U(j)

Q(j, v)

)

, ∀ (i, u),

(6.284)
[cf. Eq. (6.180)] is of the form (6.281), where r = Q, the dimensions s and
n are equal to the number of state-control pairs (i, u), the dimension m
is the number of state-control-next state triples (i, u, j), the components
of D are the appropriate probabilities pij(u), Φ is the identity, and T is
the nonlinear mapping that transforms Q to the vector with a component
g(i, u, j) + αminv∈U(j)Q(j, v) for each (i, u, j).

As a third example, consider the following Bellman’s equation over
the space of post-decision states m [cf. Eq. (6.11)]:

V (m) =

n
∑

j=1

q(m, j) min
u∈U(j)

[

g(j, u) + αV
(

f(j, u)
)

]

, ∀ m. (6.285)

This equation is of the form (6.281), where r = V , the dimension s is equal
to the number of post-decision states x, m = n is the number of (pre-
decision) states i, the matrix D consists of the probabilities q(m, j), and Φ
is the identity matrix.

There are also versions of the preceding examples, which involve eval-
uation of a single policy, in which case there is no minimization in Eqs.
(6.284)-(6.285), and the corresponding mapping T is linear. We will now
consider separately cases where T is linear and where T is nonlinear. For
the linear case, we will give an LSTD-type method, while for the nonlinear
case (where the LSTD approach does not apply), we will discuss iterative
methods under some contraction assumptions on T , D, and Φ.

The Linear Case

Let T be linear, so the equation r = DT (Φr) has the form

r = D(b +AΦr), (6.286)
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where A is an m× n matrix, and b ∈ ℜs. We can thus write this equation
as

Er = f,

where

E = I −DAΦ, f = Db.

To interpret the system (6.286), note that the matrix AΦ is obtained by
replacing the n columns of A by s weighted sums of columns of A, with the
weights defined by the corresponding columns of Φ. The matrix DAΦ is
obtained by replacing the m rows of AΦ by s weighted sums of rows of AΦ,
with the weights defined by the corresponding rows of D. The simplest
case is to form DAΦ by discarding n− s columns and m− s rows of A.

As in the case of projected equations (cf. Section 6.8.1), we can use
low-dimensional simulation to approximate E and f based on row and
column sampling. One way to do this is to introduce for each index i =
1, . . . , n, a distribution {pij | j = 1, . . . ,m} with the property

pij > 0 if aij 6= 0,

and to obtain a sample sequence
{

(i0, j0), (i1, j1), . . .
}

. We do so by first
generating a sequence of row indices {i0, i1, . . .} through sampling according
to some distribution {ξi | i = 1, . . . ,m}, and then by generating for each t
the column index jt by sampling according to the distribution {pitj | j =
1, . . . , n}. There are also alternative schemes, in which we first sample rows
of D and then generate rows of A, along the lines discussed in Section 6.4.2
(see also Exercise 6.14).

Given the first k + 1 samples, we form the matrix Êk and vector f̂k

given by

Êk = I − 1

k + 1

k
∑

t=0

aitjt

ξitpitjt

d(it)φ(jt)′, f̂k =
1

k + 1

k
∑

t=0

1

ξit
d(it)bt,

where d(i) is the ith column of D and φ(j)′ is the jth row of Φ. By using
the expressions

E = I −
m
∑

i=1

n
∑

j=1

aijd(i)φ(j)′, f =
m
∑

i=1

d(i)bi,

and law of large numbers arguments, it can be shown that Êk → E and
f̂k → f , similar to the case of projected equations. In particular, we can
write

fk =

m
∑

i=1

∑k
t=0 δ(it = i)

k + 1

1

ξi
d(i)bi,
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and since
k
∑

t=0

δ(it = i)

k + 1
→ ξi,

we have

fk →
m
∑

i=1

d(i)bi = Db.

Similarly, we can write

1

k + 1

k
∑

t=0

aitjt

pitjt

d(it)φ(jt)′ = m

m
∑

i=1

n
∑

j=1

∑k
t=0 δ(it = i, jt = j)

k + 1

aij

ξipij
d(i)φ(j)′,

and since
∑k

t=0 δ(it = i, jt = j)

k + 1
→ ξipij ,

we have

Ek →
m
∑

i=1

n
∑

j=1

aijd(i)φ(j)′ = E.

The convergence Êk → E and f̂k → f implies in turn that Ê−1
k f̂k converges

to the solution of the equation r = D(b+AΦr). There is also a regression-
based version of this method that is suitable for the case where Êk is nearly
singular (cf. Section 6.3.4), and an iterative LSPE-type method that works
even when Êk is singular [cf. Eq. (6.76)].

The Nonlinear Case

Consider now the case where T is nonlinear and has the contraction prop-
erty

‖T (x) − T (x)‖∞ ≤ α‖x− x‖∞, ∀ x ∈ ℜm,

where α is a scalar with 0 < α < 1 and ‖ · ‖∞ denotes the sup-norm.
Furthermore, let the components of the matrices D and Φ satisfy

m
∑

i=1

|dℓi| ≤ 1, ∀ ℓ = 1, . . . , s,

and
s
∑

ℓ=1

|φjℓ| ≤ 1, ∀ j = 1, . . . , n.

These assumptions imply that D and Φ are nonexpansive in the sense that

‖Dx‖∞ ≤ ‖x‖∞, ∀ x ∈ ℜn,
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‖Φy‖∞ ≤ ‖y‖∞, ∀ y ∈ ℜs,

so that DTΦ is a sup-norm contraction with modulus α, and the equation
r = DT (Φr) has a unique solution, denoted r∗.

The ideas underlying the Q-learning algorithm and its analysis (cf.
Section 6.5.1) can be extended to provide a simulation-based algorithm for
solving the equation r = DT (Φr). This algorithm contains as a special case
the iterative aggregation algorithm (6.169), as well as other algorithms of
interest in DP, such as for example Q-learning and aggregation-type algo-
rithms for stochastic shortest path problems, and for problems involving
post-decision states.

As in Q-learning, the starting point of the algorithm is the fixed point
iteration

rk+1 = DT (Φrk).

This iteration is guaranteed to converge to r∗, and the same is true for asyn-
chronous versions where only one component of r is updated at each itera-
tion (this is due to the sup-norm contraction property of DTΦ). To obtain
a simulation-based approximation of DT , we introduce an s×m matrix D
whose rows are m-dimensional probability distributions with components
dℓi satisfying

dℓi > 0 if dℓi 6= 0, ℓ = 1, . . . , s, i = 1, . . . ,m.

The ℓth component of the vector DT (Φr) can be written as an expected
value with respect to this distribution:

m
∑

i=1

dℓiTi(Φr) =
m
∑

i=1

dℓi

(

dℓi

dℓi

Ti(Φr)

)

, (6.287)

where Ti is the ith component of T . This expected value is approximated
by simulation in the algorithm that follows.

The algorithm generates a sequence of indices {ℓ0, ℓ1, . . .} according
to some mechanism that ensures that all indices ℓ = 1, . . . , s, are generated
infinitely often. Given ℓk, an index ik ∈ {1, . . . ,m} is generated according
to the probabilities dℓki, independently of preceding indices. Then the com-
ponents of rk, denoted rk(ℓ), ℓ = 1, . . . , s, are updated using the following
iteration:

rk+1(ℓ) =

{

(1 − γk)rk(ℓ) + γk
dℓik

dℓik

Tik(Φrk) if ℓ = ℓk,

rk(ℓ) if ℓ 6= ℓk,

where γk > 0 is a stepsize that diminishes to 0 at an appropriate rate. Thus
only the ℓkth component of rk is changed, while all other components are
left unchanged. The stepsize could be chosen to be γk = 1/nk, where as in
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Section 6.5.1, nk is the number of times that index ℓk has been generated
within the sequence {ℓ0, ℓ1, . . .} up to time k.

The algorithm is similar and indeed contains as a special case the
Q-learning algorithm (6.181)-(6.182). The justification of the algorithm
follows closely the one given for Q-learning in Section 6.5.1. Basically, we
replace the expected value in the expression (6.287) of the ℓth component of
DT , with a Monte Carlo estimate based on all the samples up to time k that
involve ℓk, and we then simplify the hard-to-calculate terms in the resulting
method [cf. Eqs. (6.190) and (6.192)]. A rigorous convergence proof requires
the theoretical machinery of stochastic approximation algorithms.

6.9 APPROXIMATION IN POLICY SPACE

Our approach so far in this chapter has been to use an approximation ar-
chitecture for some cost function, differential cost, or Q-factor. Sometimes
this is called approximation in value space, to indicate that a cost or value
function is being approximated. In an important alternative, called ap-
proximation in policy space, we parameterize the set of policies by a vector
r = (r1, . . . , rs) and we optimize the cost over this vector. In particular, we
consider randomized stationary policies of a given parametric form µ̃u(i, r),
where µ̃u(i, r) denotes the probability that control u is applied when the
state is i. Each value of r defines a randomized stationary policy, which
in turn defines the cost of interest as a function of r. We then choose r to
minimize this cost.

In an important special case of this approach, the parameterization of
the policies is indirect, through an approximate cost function. In particu-
lar, a cost approximation architecture parameterized by r, defines a policy
dependent on r via the minimization in Bellman’s equation. For example,
Q-factor approximations Q̃(i, u, r), define a parameterization of policies by
letting µ̃u(i, r) = 1 for some u that minimizes Q̃(i, u, r) over u ∈ U(i),
and µ̃u(i, r) = 0 for all other u. This parameterization is discontinuous in
r, but in practice is it smoothed by replacing the minimization operation
with a smooth exponential-based approximation; we refer to the literature
for the details. Also in a more abstract and general view of approxima-
tion in policy space, rather than parameterizing policies or Q-factors, we
can simply parameterize by r the problem data (stage costs and transition
probabilities), and optimize the corresponding cost function over r. Thus,
in this more general formulation, we may aim to select some parameters of
a given system to optimize performance.

Once policies are parameterized in some way by a vector r, the cost
function of the problem, over a finite or infinite horizon, is implicitly pa-
rameterized as a vector J̃(r). A scalar measure of performance may then
be derived from J̃(r), e.g., the expected cost starting from a single initial
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state, or a weighted sum of costs starting from a selected set of states. The
method of optimization may be any one of a number of possible choices,
ranging from random search to gradient methods. This method need not
relate to DP, although DP calculations may play a significant role in its
implementation. Traditionally, gradient-type methods have received most
attention within this context, but they often tend to be slow and to have
difficulties with local minima. On the other hand, random search methods,
such as the cross-entropy method [RuK04], are often very easy to imple-
ment and on occasion have proved surprisingly effective (see the literature
cited in Section 6.10).

In this section, we will focus on the finite spaces average cost problem
and gradient-type methods. Let the cost per stage vector and transition
probability matrix be given as functions of r: G(r) and P (r), respectively.
Assume that the states form a single recurrent class under each P (r), and
let ξ(r) be the corresponding steady-state probability vector. We denote
by Gi(r), Pij(r), and ξi(r) the components of G(r), P (r), and ξ(r), respec-
tively. Each value of r defines an average cost η(r), which is common for
all initial states (cf. Section 4.2), and the problem is to find

min
r∈ℜs

η(r).

Assuming that η(r) is differentiable with respect to r (something that must
be independently verified), one may use a gradient method for this mini-
mization:

rk+1 = rk − γk∇η(rk),

where γk is a positive stepsize. This is known as a policy gradient method .

6.9.1 The Gradient Formula

We will now show that a convenient formula for the gradients ∇η(r) can
be obtained by differentiating Bellman’s equation

η(r) + hi(r) = Gi(r) +

n
∑

j=1

Pij(r)hj(r), i = 1, . . . , n, (6.288)

with respect to the components of r, where hi(r) are the differential costs.
Taking the partial derivative with respect to rm, we obtain for all i and m,

∂η

∂rm
+
∂hi

∂rm
=
∂Gi

∂rm
+

n
∑

j=1

∂Pij

∂rm
hj +

n
∑

j=1

Pij
∂hj

∂rm
.

(In what follows we assume that the partial derivatives with respect to
components of r appearing in various equations exist. The argument at
which they are evaluated, is often suppressed to simplify notation.) By
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multiplying this equation with ξi(r), adding over i, and using the fact
∑n

i=1 ξi(r) = 1, we obtain

∂η

∂rm
+

n
∑

i=1

ξi
∂hi

∂rm
=

n
∑

i=1

ξi
∂Gi

∂rm
+

n
∑

i=1

ξi

n
∑

j=1

∂Pij

∂rm
hj +

n
∑

i=1

ξi

n
∑

j=1

Pij
∂hj

∂rm
.

The last summation on the right-hand side cancels the last summation on
the left-hand side, because from the defining property of the steady-state
probabilities, we have

n
∑

i=1

ξi

n
∑

j=1

Pij
∂hj

∂rm
=

n
∑

j=1

(

n
∑

i=1

ξiPij

)

∂hj

∂rm
=

n
∑

j=1

ξj
∂hj

∂rm
.

We thus obtain

∂η(r)

∂rm
=

n
∑

i=1

ξi(r)





∂Gi(r)

∂rm
+

n
∑

j=1

∂Pij(r)

∂rm
hj(r)



 , m = 1, . . . , s,

(6.289)
or in more compact form

∇η(r) =

n
∑

i=1

ξi(r)



∇Gi(r) +

n
∑

j=1

∇Pij(r)hj(r)



 , (6.290)

where all the gradients are column vectors of dimension s.

6.9.2 Computing the Gradient by Simulation

Despite its relative simplicity, the gradient formula (6.290) involves formida-
ble computations to obtain ∇η(r) at just a single value of r. The reason
is that neither the steady-state probability vector ξ(r) nor the bias vector
h(r) are readily available, so they must be computed or approximated in
some way. Furthermore, h(r) is a vector of dimension n, so for large n,
it can only be approximated either through its simulation samples or by
using a parametric architecture and an algorithm such as LSPE or LSTG
(see the references cited at the end of the chapter).

The possibility to approximate h using a parametric architecture ush-
ers a connection between approximation in policy space and approximation
in value space. It also raises the question whether approximations intro-
duced in the gradient calculation may affect the convergence guarantees
of the policy gradient method. Fortunately, however, gradient algorithms
tend to be robust and maintain their convergence properties, even in the
presence of significant error in the calculation of the gradient.
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In the literature, algorithms where both µ and h are parameterized
are sometimes called actor-critic methods. Algorithms where just µ is
parameterized and h is not parameterized but rather estimated explicitly
or implicitly by simulation, are called actor-only methods, while algorithms
where just h is parameterized and µ is obtained by one-step lookahead
minimization, are called critic-only methods.

We will now discuss some possibilities of using simulation to approx-
imate ∇η(r). Let us introduce for all i and j such that Pij(r) > 0, the
function

Lij(r) =
∇Pij(r)

Pij(r)
.

Then, suppressing the dependence on r, we write the partial derivative
formula (6.290) in the form

∇η =

n
∑

i=1

ξi



∇Gi +

n
∑

j=1

PijLijhj



 . (6.291)

We assume that for all states i and possible transitions (i, j), we can cal-
culate ∇Gi and Lij . Suppose now that we generate a single infinitely long
simulated trajectory (i0, i1, . . .). We can then estimate the average cost η
as

η̃ =
1

k

k−1
∑

t=0

Git ,

where k is large. Then, given an estimate η̃, we can estimate the bias
components hj by using simulation-based approximations to the formula

hi0 = lim
N→∞

E

{

N
∑

t=0

(Git − η)

}

,

[which holds from general properties of the bias vector when P (r) is ape-
riodic – see the discussion following Prop. 4.1.2]. Alternatively, we can
estimate hj by using the LSPE or LSTD algorithms of Section 6.7.1 [note
here that if the feature subspace contains the bias vector, the LSPE and
LSTD algorithms will find exact values of hj in the limit, so with a suffi-
ciently rich set of features, an asymptotically exact calculation of hj , and
hence also ∇η(r), is possible]. Finally, given estimates η̃ and h̃j, we can
estimate the gradient ∇η with a vector δη given by

δη =
1

k

k−1
∑

t=0

(

∇Git + Litit+1 h̃it+1

)

. (6.292)

This can be seen by a comparison of Eqs. (6.291) and (6.292): if we replace
the expected values of ∇Gi and Lij by empirical averages, and we replace
hj by h̃j , we obtain the estimate δη.
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The estimation-by-simulation procedure outlined above provides a
conceptual starting point for more practical gradient estimation methods.
For example, in such methods, the estimation of η and hj may be done
simultaneously with the estimation of the gradient via Eq. (6.292), and
with a variety of different algorithms. We refer to the literature cited at
the end of the chapter.

6.9.3 Essential Features of Critics

We will now develop an alternative (but mathematically equivalent) expres-
sion for the gradient ∇η(r) that involves Q-factors instead of differential
costs. Let us consider randomized policies where µ̃u(i, r) denotes the prob-
ability that control u is applied at state i. We assume that µ̃u(i, r) is
differentiable with respect to r for each i and u. Then the corresponding
stage costs and transition probabilities are given by

Gi(r) =
∑

u∈U(i)

µ̃u(i, r)
n
∑

j=1

pij(u)g(i, u, j), i = 1, . . . , n,

Pij(r) =
∑

u∈U(i)

µ̃u(i, r)pij(u), i, j = 1, . . . , n.

Differentiating these equations with respect to r, we obtain

∇Gi(r) =
∑

u∈U(i)

∇µ̃u(i, r)
n
∑

j=1

pij(u)g(i, u, j), (6.293)

∇Pij(r) =
∑

u∈U(i)

∇µ̃u(i, r)pij(u), i, j = 1, . . . , n. (6.294)

Since
∑

u∈U(i) µ̃u(i, r) = 1 for all r, we have
∑

u∈U(i) ∇µ̃u(i, r) = 0, so Eq.

(6.293) yields

∇Gi(r) =
∑

u∈U(i)

∇µ̃u(i, r)





n
∑

j=1

pij(u)g(i, u, j)− η(r)



 .

Also, by multiplying with hj(r) and adding over j, Eq. (6.294) yields

n
∑

j=1

∇Pij(r)hj(r) =
n
∑

j=1

∑

u∈U(i)

∇µ̃u(i, r)pij(u)hj(r).
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By using the preceding two equations to rewrite the gradient formula
(6.290), we obtain

∇η(r) =

n
∑

i=1

ξi(r)



∇Gi(r) +

n
∑

j=1

∇Pij(r)hj(r)





=

n
∑

i=1

ξi(r)
∑

u∈U(i)

∇µ̃u(i, r)

n
∑

j=1

pij(u)
(

g(i, u, j)− η(r) + hj(r)
)

,

and finally

∇η(r) =

n
∑

i=1

∑

u∈U(i)

ξi(r)Q̃(i, u, r)∇µ̃u(i, r), (6.295)

where Q̃(i, u, r) are the approximate Q-factors corresponding to r:

Q̃(i, u, r) =

n
∑

j=1

pij(u)
(

g(i, u, j)− η(r) + hj(r)
)

.

Let us now express the formula (6.295) in a way that is amenable to
proper interpretation. In particular, by writing

∇η(r) =

n
∑

i=1

∑

{u∈U(i)|µ̃u(i,r)>0}

ξi(r)µ̃u(i, r)Q̃(i, u, r)
∇µ̃u(i, r)

µ̃u(i, r)
,

and by introducing the function

ψr(i, u) =
∇µ̃u(i, r)

µ̃u(i, r)
,

we obtain

∇η(r) =

n
∑

i=1

∑

{u∈U(i)|µ̃u(i,r)>0}

ζr(i, u)Q̃(i, u, r)ψr(i, u), (6.296)

where ζr(i, u) are the steady-state probabilities of the pairs (i, u) under r:

ζr(i, u) = ξi(r)µ̃u(i, r).

Note that for each (i, u), ψr(i, u) is a vector of dimension s, the dimension
of the parameter vector r. We denote by ψm

r (i, u), m = 1, . . . , s, the
components of this vector.

Equation (6.296) can form the basis for policy gradient methods that
estimate Q̃(i, u, r) by simulation, thereby leading to actor-only algorithms.
An alternative suggested by Konda and Tsitsiklis [KoT99], [KoT03], is to
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interpret the formula as an inner product, thereby leading to a different set
of algorithms. In particular, for a given r, we define the inner product of
two real-valued functions Q1, Q2 of (i, u), by

〈Q1, Q2〉r =
n
∑

i=1

∑

{u∈U(i)|µ̃u(i,r)>0}

ζr(i, u)Q1(i, u)Q2(i, u).

With this notation, we can rewrite Eq. (6.296) as

∂η(r)

∂rm
= 〈Q̃(·, ·, r), ψm

r (·, ·)〉r , m = 1, . . . , s.

An important observation is that although ∇η(r) depends on Q̃(i, u, r),
which has a number of components equal to the number of state-control
pairs (i, u), the dependence is only through its inner products with the s
functions ψm

r (·, ·), m = 1, . . . , s.
Now let ‖ · ‖r be the norm induced by this inner product, i.e.,

‖Q‖2
r = 〈Q,Q〉r.

Let also Sr be the subspace that is spanned by the functions ψm
r (·, ·),

m = 1, . . . , s, and let Πr denote projection with respect to this norm onto
Sr. Since

〈Q̃(·, ·, r), ψm
r (·, ·)〉r = 〈ΠrQ̃(·, ·, r), ψm

r (·, ·)〉r, m = 1, . . . , s,

it is sufficient to know the projection of Q̃(·, ·, r) onto Sr in order to compute
∇η(r). Thus Sr defines a subspace of essential features, i.e., features the
knowledge of which is essential for the calculation of the gradient ∇η(r).
As discussed in Section 6.1, the projection of Q̃(·, ·, r) onto Sr can be done
in an approximate sense with TD(λ), LSPE(λ), or LSTD(λ) for λ ≈ 1. We
refer to the papers by Konda and Tsitsiklis [KoT99], [KoT03], and Sutton,
McAllester, Singh, and Mansour [SMS99] for further discussion.

6.9.4 Approximations in Policy and Value Space

Let us now provide a comparative assessment of approximation in policy
and value space. We first note that in comparing approaches, one must bear
in mind that specific problems may admit natural parametrizations that
favor one type of approximation over the other. For example, in inventory
control problems, it is natural to consider policy parametrizations that
resemble the (s, S) policies that are optimal for special cases, but also
make intuitive sense in a broader context.

Policy gradient methods for approximation in policy space are sup-
ported by interesting theory and aim directly at finding an optimal policy
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within the given parametric class (as opposed to aiming for policy evalua-
tion in the context of an approximate policy iteration scheme). However,
they suffer from a drawback that is well-known to practitioners of non-
linear optimization: slow convergence, which unless improved through the
use of effective scaling of the gradient (with an appropriate diagonal or
nondiagonal matrix), all too often leads to jamming (no visible progress)
and complete breakdown. Unfortunately, there has been no proposal of
a demonstrably effective scheme to scale the gradient in policy gradient
methods (see, however, Kakade [Kak02] for an interesting attempt to ad-
dress this issue, based on the work of Amari [Ama98]). Furthermore, the
performance and reliability of policy gradient methods are susceptible to
degradation by large variance of simulation noise. Thus, while policy gradi-
ent methods are supported by convergence guarantees in theory, attaining
convergence in practice is often challenging. In addition, gradient methods
have a generic difficulty with local minima, the consequences of which are
not well-understood at present in the context of approximation in policy
space.

A major difficulty for approximation in value space is that a good
choice of basis functions/features is often far from evident. Furthermore,
even when good features are available, the indirect approach of TD(λ),
LSPE(λ), and LSTD(λ) may neither yield the best possible approxima-
tion of the cost function or the Q-factors of a policy within the feature
subspace, nor yield the best possible performance of the associated one-
step-lookahead policy. In the case of a fixed policy, LSTD(λ) and LSPE(λ)
are quite reliable algorithms, in the sense that they ordinarily achieve their
theoretical guarantees in approximating the associated cost function or Q-
factors: they involve solution of systems of linear equations, simulation
(with convergence governed by the law of large numbers), and contraction
iterations (with favorable contraction modulus when λ is not too close to
0). However, within the multiple policy context of an approximate policy
iteration scheme, TD methods have additional difficulties: the need for ad-
equate exploration, the issue of policy oscillation and the related chattering
phenomenon, and the lack of convergence guarantees for both optimistic
and nonoptimistic schemes. When an aggregation method is used for pol-
icy evaluation, these difficulties do not arise, but the cost approximation
vectors Φr are restricted by the requirements that the rows of Φ must be
aggregation probability distributions.

6.10 NOTES, SOURCES, AND EXERCISES

There has been intensive interest in simulation-based methods for approx-
imate DP since the early 90s, in view of their promise to address the dual
curses of DP: the curse of dimensionality (the explosion of the computa-
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tion needed to solve the problem as the number of states increases), and the
curse of modeling (the need for an exact model of the system’s dynamics).
We have used the name approximate dynamic programming to collectively
refer to these methods. Two other popular names are reinforcement learn-
ing and neuro-dynamic programming. The latter name, adopted by Bert-
sekas and Tsitsiklis [BeT96], comes from the strong connections with DP
as well as with methods traditionally developed in the field of neural net-
works, such as the training of approximation architectures using empirical
or simulation data.

Two books were written on the subject in the mid-90s, one by Sutton
and Barto [SuB98], which reflects an artificial intelligence viewpoint, and
another by Bertsekas and Tsitsiklis [BeT96], which is more mathematical
and reflects an optimal control/operations research viewpoint. We refer
to the latter book for a broader discussion of some of the topics of this
chapter [including rigorous convergence proofs of TD(λ) and Q-learning],
for related material on approximation architectures, batch and incremental
gradient methods, and neural network training, as well as for an extensive
overview of the history and bibliography of the subject up to 1996. More
recent books are Cao [Cao07], which emphasizes a sensitivity approach and
policy gradient methods, Chang, Fu, Hu, and Marcus [CFH07], which em-
phasizes finite-horizon/limited lookahead schemes and adaptive sampling,
Gosavi [Gos03], which emphasizes simulation-based optimization and rein-
forcement learning algorithms, Powell [Pow07], which emphasizes resource
allocation and the difficulties associated with large control spaces, and Bu-
soniu et. al. [BBD10], which focuses on function approximation methods
for continuous space systems. The book by Haykin [Hay08] discusses ap-
proximate DP within the broader context of neural networks and learning.
The book by Borkar [Bor08] is an advanced monograph that addresses rig-
orously many of the convergence issues of iterative stochastic algorithms
in approximate DP, mainly using the so called ODE approach (see also
Borkar and Meyn [BoM00]). The book by Meyn [Mey07] is broader in its
coverage, but touches upon some of the approximate DP algorithms that
we have discussed.

Several survey papers in the volume by Si, Barto, Powell, and Wun-
sch [SBP04], and the special issue by Lewis, Liu, and Lendaris [LLL08]
describe recent work and approximation methodology that we have not
covered in this chapter: linear programming-based approaches (De Farias
and Van Roy [DFV03], [DFV04a], De Farias [DeF04]), large-scale resource
allocation methods (Powell and Van Roy [PoV04]), and deterministic op-
timal control approaches (Ferrari and Stengel [FeS04], and Si, Yang, and
Liu [SYL04]). An influential survey was written, from an artificial intelli-
gence/machine learning viewpoint, by Barto, Bradtke, and Singh [BBS95].
Some recent surveys are Borkar [Bor09] (a methodological point of view
that explores connections with other Monte Carlo schemes), Lewis and
Vrabie [LeV09] (a control theory point of view), and Szepesvari [Sze09] (a
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machine learning point of view), Bertsekas [Ber10a] (which focuses on roll-
out algorithms for discrete optimization), and Bertsekas [Ber10b] (which
focuses on policy iteration and elaborates on some of the topics of this
chapter). The reader is referred to these sources for a broader survey of
the literature of approximate DP, which is very extensive and cannot be
fully covered here.

Direct approximation methods and the fitted value iteration approach
have been used for finite horizon problems since the early days of DP. They
are conceptually simple and easily implementable, and they are still in wide
use for approximation of either optimal cost functions or Q-factors (see
e.g., Gordon [Gor99], Longstaff and Schwartz [LoS01], Ormoneit and Sen
[OrS02], and Ernst, Geurts, and Wehenkel [EGW06]). The simplifications
mentioned in Section 6.1.4 are part of the folklore of DP. In particular, post-
decision states have sporadically appeared in the literature since the early
days of DP. They were used in an approximate DP context by Van Roy,
Bertsekas, Lee, and Tsitsiklis [VBL97] in the context of inventory control
problems. They have been recognized as an important simplification in
the book by Powell [Pow07], which pays special attention to the difficulties
associated with large control spaces. For a recent application, see Simao
et. al. [SDG09].

Temporal differences originated in reinforcement learning, where they
are viewed as a means to encode the error in predicting future costs, which
is associated with an approximation architecture. They were introduced
in the works of Samuel [Sam59], [Sam67] on a checkers-playing program.
The papers by Barto, Sutton, and Anderson [BSA83], and Sutton [Sut88]
proposed the TD(λ) method, on a heuristic basis without a convergence
analysis. The method motivated a lot of research in simulation-based DP,
particularly following an early success with the backgammon playing pro-
gram of Tesauro [Tes92]. The original papers did not discuss mathematical
convergence issues and did not make the connection of TD methods with
the projected equation. Indeed for quite a long time it was not clear which
mathematical problem TD(λ) was aiming to solve! The convergence of
TD(λ) and related methods was considered for discounted problems by sev-
eral authors, including Dayan [Day92], Gurvits, Lin, and Hanson [GLH94],
Jaakkola, Jordan, and Singh [JJS94], Pineda [Pin97], Tsitsiklis and Van
Roy [TsV97], and Van Roy [Van98]. The proof of Tsitsiklis and Van Roy
[TsV97] was based on the contraction property of ΠT (cf. Lemma 6.3.1 and
Prop. 6.3.1), which is the starting point of our analysis of Section 6.3. The
scaled version of TD(0) [cf. Eq. (6.80)] as well as a λ-counterpart were pro-
posed by Choi and Van Roy [ChV06] under the name Fixed Point Kalman
Filter. The books by Bertsekas and Tsitsiklis [BeT96], and Sutton and
Barto [SuB98] contain a lot of material on TD(λ), its variations, and its
use in approximate policy iteration.

Generally, projected equations are the basis for Galerkin methods,
which are popular in scientific computation (see e.g., [Kra72], [Fle84]).
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These methods typically do not use Monte Carlo simulation, which is es-
sential for the DP context. However, Galerkin methods apply to a broad
range of problems, far beyond DP, which is in part the motivation for our
discussion of projected equations in more generality in Section 6.8.

The LSTD(λ) algorithm was first proposed by Bradtke and Barto
[BrB96] for λ = 0, and later extended by Boyan [Boy02] for λ > 0. For

λ > 0, the convergence C
(λ)
k → C(λ) and d

(λ)
k → d(λ) is not as easy to

demonstrate as in the case λ = 0. An analysis of the law-of-large-numbers
convergence issues associated with LSTD for discounted problems was given
by Nedić and Bertsekas [NeB03]. The more general two-Markov chain
sampling context that can be used for exploration-related methods is an-
alyzed by Bertsekas and Yu [BeY09], and by Yu [Yu10a,b], which shows
convergence under the most general conditions. The analysis of [BeY09]
and [Yu10a,b] also extends to simulation-based solution of general pro-
jected equations. The rate of convergence of LSTD was analyzed by Konda
[Kon02], who showed that LSTD has optimal rate of convergence within a
broad class of temporal difference methods. The regression/regularization
variant of LSTD is due to Wang, Polydorides, and Bertsekas [WPB09].
This work addresses more generally the simulation-based approximate so-
lution of linear systems and least squares problems, and it applies to LSTD
as well as to the minimization of the Bellman equation error as special cases.

The LSPE(λ) algorithm, was first proposed for stochastic shortest
path problems by Bertsekas and Ioffe [BeI96], and was applied to a chal-
lenging problem on which TD(λ) failed: learning an optimal strategy to
play the game of tetris (see also Bertsekas and Tsitsiklis [BeT96], Section
8.3). The convergence of the method for discounted problems was given
in [NeB03] (for a diminishing stepsize), and by Bertsekas, Borkar, and
Nedić [BBN04] (for a unit stepsize). In the paper [BeI96] and the book
[BeT96], the LSPE method was related to the λ-policy iteration of Sec-
tion 6.3.9. The paper [BBN04] compared informally LSPE and LSTD for
discounted problems, and suggested that they asymptotically coincide in
the sense described in Section 6.3. Yu and Bertsekas [YuB06b] provided a
mathematical proof of this for both discounted and average cost problems.
The scaled versions of LSPE and the associated convergence analysis were
developed more recently, and within a more general context in Bertsekas
[Ber09b], [Ber11a], which are based on a connection between general pro-
jected equations and variational inequalities. Some other iterative methods
were given by Yao and Liu [YaL08]. The research on policy or Q-factor
evaluation methods was of course motivated by their use in approximate
policy iteration schemes. There has been considerable experimentation
with such schemes, see e.g., [BeI96], [BeT96], [SuB98], [LaP03], [JuP07],
[BED09]. However, the relative practical advantages of optimistic versus
nonoptimistic schemes, in conjunction with LSTD, LSPE, and TD(λ), are
not yet clear. The exploration-enhanced versions of LSPE(λ) and LSTD(λ)
of Section 6.3.6 are new and were developed as alternative implementations
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of the λ-policy iteration method [Ber11b].
Policy oscillations and chattering were first described by the author

at an April 1996 workshop on reinforcement learning [Ber96], and were sub-
sequently discussed in Section 6.4.2 of [BeT96]. The size of the oscillations
is bounded by the error bound of Prop. 1.3.6, which is due to [BeT96].
An alternative error bound that is based on the Euclidean norm has been
derived by Munos [Mun03], and by Scherrer [Sch07] who considered the
λ-policy iteration algorithm of Section 6.3.9. Feature scaling and its effect
on LSTD(λ), LSPE(λ), and TD(λ) (Section 6.3.6) was discussed in Bert-
sekas [Ber11a]. The conditions for policy convergence of Section 6.3.8 were
derived in Bertsekas [Ber10b] and [Ber10c].

The exploration scheme with extra transitions (Section 6.3.7) was
given in the paper by Bertsekas and Yu [BeY09], Example 1. The LSTD(λ)
algorithm with exploration and modified temporal differences (Section 6.3.7)
was given by Bertsekas and Yu [BeY07], and a convergence with probabil-
ity 1 proof was provided under the condition λαpij ≤ pij for all (i, j) in
[BeY09], Prop. 4. The idea of modified temporal differences stems from the
techniques of importance sampling, which have been introduced in various
DP-related contexts by a number of authors: Glynn and Iglehart [GlI89]
(for exact cost evaluation), Precup, Sutton, and Dasgupta [PSD01] [for
TD(λ) with exploration and stochastic shortest path problems], Ahamed,
Borkar, and Juneja [ABJ06] (in adaptive importance sampling schemes
for cost vector estimation without approximation), and Bertsekas and Yu
[BeY07], [BeY09] (in the context of the generalized projected equation
methods of Section 6.8.1).

The λ-policy iteration algorithm discussed in Section 6.3.9 was first
proposed by Bertsekas and Ioffe [BeI96], and it was used as the basis for
the original development of LSPE and its application to the tetris problem
(see also [BeT96], Sections 2.3.1 and 8.3). The name “LSPE” was first
used in the subsequent paper by Nedić and Bertsekas [NeB03] to describe
a specific iterative implementation of the λ-PI method with cost function
approximation for discounted MDP (essentially the implementation devel-
oped in [BeI96] and [BeT96], and used for a tetris case study). The second
simulation-based implementation described in this section, which views the
policy evaluation problem in the context of a stopping problem, is new
(see Bertsekas [Ber11b]). The third simulation-based implementation in
this section, was proposed by Thierry and Scherrer [ThS10a], [ThS10b],
who proposed various associated optimistic policy iteration implementa-
tions that relate to both LSPE and LSTD.

The aggregation approach has a long history in scientific computa-
tion and operations research. It was introduced in the simulation-based
approximate DP context, mostly in the form of value iteration; see Singh,
Jaakkola, and Jordan [SJJ94], [SJJ95], Gordon [Gor95], Tsitsiklis and Van
Roy [TsV96], and Van Roy [Van06]. Bounds on the error between the opti-
mal cost-to-go vector J∗ and the limit of the value iteration method in the
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case of hard aggregation are given under various assumptions in [TsV96]
(see also Exercise 6.12 and Section 6.7.4 of [BeT96]). Related error bounds
are given by Munos and Szepesvari [MuS08]. A more recent work that
focuses on hard aggregation is Van Roy [Van06]. The analysis given here,
which follows the lines of Section 6.3.4 of Vol. I and emphasizes the impor-
tance of convergence in approximate policy iteration, is somewhat different
from alternative developments in the literature.

Multistep aggregation does not seem to have been considered in the
literature, but it may have some important practical applications in prob-
lems where multistep lookahead minimizations are feasible. Also asyn-
chronous distributed aggregation has not been discussed earlier. It is worth
emphasizing that while both projected equation and aggregation methods
produce basis function approximations to costs or Q-factors, there is an
important qualitative difference that distinguishes the aggregation-based
policy iteration approach: assuming sufficiently small simulation error, it
is not susceptible to policy oscillation and chattering like the projected
equation or Bellman equation error approaches. The price for this is the
restriction of the type of basis functions that can be used in aggregation.

Q-learning was proposed by Watkins [Wat89], who explained the
essence of the method, but did not provide a rigorous convergence analy-
sis; see also Watkins and Dayan [WaD92]. A convergence proof was given
by Tsitsiklis [Tsi94]. For SSP problems with improper policies, this proof
required the assumption of nonnegative one-stage costs (see also [BeT96],
Prop. 5.6). This assumption was relaxed by Abounadi, Bertsekas, and
Borkar [ABB02], under some conditions and using an alternative line of
proof, based on the so-called ODE approach. The proofs of these references
include the assumption that either the iterates are bounded or other related
restrictions. It was shown by Yu and Bertsekas [YuB11] that the Q-learning
iterates are naturally bounded for SSP problems, even with improper poli-
cies, so the convergence of Q-learning for SSP problems was established
under no more restrictive assumptions than for discounted MDP.

A variant of Q-learning is the method of advantage updating , devel-
oped by Baird [Bai93], [Bai94], [Bai95], and Harmon, Baird, and Klopf
[HBK94]. In this method, instead of aiming to compute Q(i, u), we com-
pute

A(i, u) = Q(i, u) − min
u∈U(i)

Q(i, u).

The function A(i, u) can serve just as well as Q(i, u) for the purpose of com-
puting corresponding policies, based on the minimization minu∈U(i) A(i, u),
but may have a much smaller range of values than Q(i, u), which may be
helpful in contexts involving basis function approximation. When using a
lookup table representation, advantage updating is essentially equivalent to
Q-learning, and has the same type of convergence properties. With func-
tion approximation, the convergence properties of advantage updating are
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not well-understood (similar to Q-learning). We refer to the book [BeT96],
Section 6.6.2, for more details and some analysis.

Another variant of Q-learning, also motivated by the fact that we
are really interested in Q-factor differences rather than Q-factors, has been
discussed in Section 6.4.2 of Vol. I, and is aimed at variance reduction of
Q-factors obtained by simulation. A related variant of approximate policy
iteration and Q-learning, called differential training, has been proposed by
the author in [Ber97] (see also Weaver and Baxter [WeB99]). It aims to
compute Q-factor differences in the spirit of the variance reduction ideas
of Section 6.4.2 of Vol. I.

Approximation methods for the optimal stopping problem (Section
6.5.3) were investigated by Tsitsiklis and Van Roy [TsV99b], [Van98], who
noted that Q-learning with a linear parametric architecture could be ap-
plied because the associated mapping F is a contraction with respect to
the norm ‖·‖ξ. They proved the convergence of a corresponding Q-learning
method, and they applied it to a problem of pricing financial derivatives.
The LSPE algorithm given in Section 6.5.3 for this problem is due to Yu
and Bertsekas [YuB07], to which we refer for additional analysis. An alter-
native algorithm with some similarity to LSPE as well as TD(0) is given
by Choi and Van Roy [ChV06], and is also applied to the optimal stopping
problem. We note that approximate dynamic programming and simulation
methods for stopping problems have become popular in the finance area,
within the context of pricing options; see Longstaff and Schwartz [LoS01],
who consider a finite horizon model in the spirit of Section 6.5.4, and Tsit-
siklis and Van Roy [TsV01], and Li, Szepesvari, and Schuurmans [LSS09],
whose works relate to the LSPE method of Section 6.5.3. The constrained
policy iteration method of Section 6.5.3 is closely related to the paper by
Bertsekas and Yu [BeY10a].

Recently, an approach to Q-learning with exploration, called enhanced
policy iteration, has been proposed (Bertsekas and Yu [BeY10a]). Instead
of policy evaluation by solving a linear system of equations, this method
requires (possibly inexact) solution of Bellman’s equation for an optimal
stopping problem. It is based on replacing the standard Q-learning map-
ping used for evaluation of a policy µ with the mapping

(FJ,νQ)(i, u) =

n
∑

j=1

pij(u)



g(i, u, j) + α
∑

v∈U(j)

ν(v | j)min
{

J(j), Q(j, v)
}





which depends on a vector J ∈ ℜn, with components denoted J(i), and
on a randomized policy ν, which for each state i defines a probability
distribution

{

ν(u | i) | u ∈ U(i)
}

over the feasible controls at i, and may depend on the “current policy” µ.
The vector J is updated using the equation J(i) = minu∈U(i)Q(i, u), and
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the “current policy” µ is obtained from this minimization. Finding a fixed
point of the mapping FJ,ν is an optimal stopping problem [a similarity with
the constrained policy iteration (6.210)-(6.211)]. The policy ν may be cho-
sen arbitrarily at each iteration. It encodes aspects of the “current policy”
µ, but allows for arbitrary and easily controllable amount of exploration.
For extreme choices of ν and a lookup table representation, the algorithms
of [BeY10a] yield as special cases the classical Q-learning/value iteration
and policy iteration methods. Together with linear cost/Q-factor approx-
imation, the algorithms may be combined with the TD(0)-like method of
Tsitsiklis and Van Roy [TsV99b], which can be used to solve the associ-
ated stopping problems with low overhead per iteration, thereby resolving
the issue of exploration. Reference [BeY10a] also provides optimistic asyn-
chronous policy iteration versions of Q-learning, which have guaranteed
convergence properties and lower overhead per iteration over the classical
Q-learning algorithm.

The contraction mapping analysis (Prop. 6.6.1) for SSP problems
in Section 6.6 is based on the convergence analysis for TD(λ) given in
Bertsekas and Tsitsiklis [BeT96], Section 6.3.4. The LSPE algorithm was
first proposed for SSP problems in [BeI96] as an implementation of the
λ-policy iteration method of Section 6.3.9 (see also [Ber11b]).

The TD(λ) algorithm was extended to the average cost problem, and
its convergence was proved by Tsitsiklis and Van Roy [TsV99a] (see also
[TsV02]). The average cost analysis of LSPE in Section 6.7.1 is due to Yu
and Bertsekas [YuB06b]. An alternative to the LSPE and LSTD algorithms
of Section 6.7.1 is based on the relation between average cost and SSP
problems, and the associated contracting value iteration method discussed
in Section 4.4.1. The idea is to convert the average cost problem into a
parametric form of SSP, which however converges to the correct one as the
gain of the policy is estimated correctly by simulation. The SSP algorithms
of Section 6.6 can then be used with the estimated gain of the policy ηk

replacing the true gain η.
While the convergence analysis of the policy evaluation methods of

Sections 6.3 and 6.6 is based on contraction mapping arguments, a different
line of analysis is necessary for Q-learning algorithms for average cost prob-
lems (as well as for SSP problems where there may exist some improper
policies). The reason is that there may not be an underlying contraction,
so the nonexpansive property of the DP mapping must be used instead. As
a result, the analysis is more complicated, and a different method of proof
has been employed, based on the so-called ODE approach; see Abounadi,
Bertsekas, and Borkar [ABB01], [ABB02], and Borkar and Meyn [BeM00].
In particular, the Q-learning algorithms of Section 6.7.3 were proposed and
analyzed in these references. They are also discussed in the book [BeT96]
(Section 7.1.5). Alternative algorithms of the Q-learning type for average
cost problems were given without convergence proof by Schwartz [Sch93b],
Singh [Sin94], and Mahadevan [Mah96]; see also Gosavi [Gos04].
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The framework of Sections 6.8.1-6.8.6 on generalized projected equa-
tion and Bellman error methods is based on Bertsekas and Yu [BeY07],
[BeY09], which also discuss in greater detail multistep methods, and sev-
eral other variants of the methods given here (see also Bertsekas [Ber09b]).
The regression-based method and the confidence interval analysis of Prop.
6.8.1 is due to Wang, Polydorides, and Bertsekas [WPB09]. The material of
Section 6.8.7 on oblique projections and the connections to aggregation/dis-
cretization with a coarse grid is based on unpublished collaboration with H.
Yu. The generalized aggregation methodology of Section 6.8.8 is new in the
form given here, but is motivated by the development of aggregation-based
approximate DP given in Section 6.4.

The paper by Yu and Bertsekas [YuB08] derives error bounds which
apply to generalized projected equations and sharpen the rather conserva-
tive bound

‖Jµ − Φr∗‖ξ ≤ 1√
1 − α2

‖Jµ − ΠJµ‖ξ, (6.297)

given for discounted DP problems (cf. Prop. 6.3.2) and the bound

‖x∗ − Φr∗‖ ≤
∥

∥(I − ΠA)−1
∥

∥ ‖x∗ − Πx∗
∥

∥,

for the general projected equation Φr = Π(AΦr + b) [cf. Eq. (6.242)]. The
bounds of [YuB08] apply also to the case where A is not a contraction and
have the form

‖x∗ − Φr∗‖ξ ≤ B(A, ξ, S) ‖x∗ − Πx∗
∥

∥

ξ
,

where B(A, ξ, S) is a scalar that [contrary to the scalar 1/
√

1 − α2 in Eq.
(6.297)] depends on the approximation subspace S and the structure of
the matrix A. The scalar B(A, ξ, S) involves the spectral radii of some
low-dimensional matrices and may be computed either analytically or by
simulation (in the case where x has large dimension). One of the scalars
B(A, ξ, S) given in [YuB08] involves only the matrices that are computed as
part of the simulation-based calculation of the matrix Ck via Eq. (6.249), so
it is simply obtained as a byproduct of the LSTD and LSPE-type methods
of Section 6.8.1. Among other situations, such bounds can be useful in cases
where the “bias” ‖Φr∗ − Πx∗

∥

∥

ξ
(the distance between the solution Φr∗ of

the projected equation and the best approximation of x∗ within S, which
is Πx∗) is very large [cf., the example of Exercise 6.9, mentioned earlier,
where TD(0) produces a very bad solution relative to TD(λ) for λ ≈ 1]. A
value of B(A, ξ, S) that is much larger than 1 strongly suggests a large bias
and motivates corrective measures (e.g., increase λ in the approximate DP
case, changing the subspace S, or changing ξ). Such an inference cannot
be made based on the much less discriminating bound (6.297), even if A is
a contraction with respect to ‖ · ‖ξ.
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The Bellman equation error approach was initially suggested by Sch-
weitzer and Seidman [ScS85], and simulation-based algorithms based on
this approach were given later by Harmon, Baird, and Klopf [HBK94],
Baird [Bai95], and Bertsekas [Ber95], including the two-sample simulation-
based method for policy evaluation based on minimization of the Bellman
equation error (Section 6.8.5 and Fig. 6.8.2). For some recent develop-
ments, see Ormoneit and Sen [OrS02], Szepesvari and Smart [SzS04], An-
tos, Szepesvari, and Munos [ASM08], Bethke, How, and Ozdaglar [BHO08],
and Scherrer [Sch10].

There is a large literature on policy gradient methods for average cost
problems. The formula for the gradient of the average cost has been given
in different forms and within a variety of different contexts: see Cao and
Chen [CaC97], Cao and Wan [CaW98], Cao [Cao99], [Cao05], Fu and Hu
[FuH94], Glynn [Gly87], Jaakkola, Singh, and Jordan [JSJ95], L’Ecuyer
[L’Ec91], and Williams [Wil92]. We follow the derivations of Marbach and
Tsitsiklis [MaT01]. The inner product expression of ∂η(r)/∂rm was used to
delineate essential features for gradient calculation by Konda and Tsitsiklis
[KoT99], [KoT03], and Sutton, McAllester, Singh, and Mansour [SMS99].

Several implementations of policy gradient methods, some of which
use cost approximations, have been proposed: see Cao [Cao04], Grudic and
Ungar [GrU04], He [He02], He, Fu, and Marcus [HFM05], Kakade [Kak02],
Konda [Kon02], Konda and Borkar [KoB99], Konda and Tsitsiklis [KoT99],
[KoT03], Marbach and Tsitsiklis [MaT01], [MaT03], Sutton, McAllester,
Singh, and Mansour [SMS99], and Williams [Wil92].

Approximation in policy space can also be carried out very simply
by a random search method in the space of policy parameters. There has
been considerable progress in random search methodology, and the cross-
entropy method (see Rubinstein and Kroese [RuK04], [RuK08], de Boer
et al [BKM05]) has gained considerable attention. A noteworthy success
with this method has been attained in learning a high scoring strategy in
the game of tetris (see Szita and Lorinz [SzL06], and Thiery and Scherrer
[ThS09]); surprisingly this method outperformed in terms of scoring perfor-
mance methods based on approximate policy iteration, approximate linear
programming, and policy gradient by more than an order of magnitude
(see the discussion of policy oscillations and chattering in Section 6.3.8).
Other random search algorithms have also been suggested; see Chang, Fu,
Hu, and Marcus [CFH07], Ch. 3. Additionally, statistical inference meth-
ods have been adapted for approximation in policy space in the context of
some special applications, with the policy parameters viewed as the param-
eters in a corresponding inference problem; see Attias [Att03], Toussaint
and Storey [ToS06], and Verma and Rao [VeR06].

Approximate DP methods for partially observed Markov decision
problems (POMDP) are not as well-developed as their perfect observa-
tion counterparts. Approximations obtained by aggregation/interpolation
schemes and solution of finite-spaces discounted or average cost problems



526 Approximate Dynamic Programming Chap. 6

have been proposed by Zhang and Liu [ZhL97], Zhou and Hansen [ZhH01],
and Yu and Bertsekas [YuB04] (see Example 6.4.1); see also Zhou, Fu,
and Marcus [ZFM10]. Alternative approximation schemes based on finite-
state controllers are analyzed in Hauskrecht [Hau00], Poupart and Boutilier
[PoB04], and Yu and Bertsekas [YuB06a]. Policy gradient methods of the
actor-only type have been given by Baxter and Bartlett [BaB01], and Ab-
erdeen and Baxter [AbB00]. An alternative method, which is of the actor-
critic type, has been proposed by Yu [Yu05]. See also Singh, Jaakkola, and
Jordan [SJJ94], and Moazzez-Estanjini, Li, and Paschalidis [ELP09].

Many problems have special structure, which can be exploited in ap-
proximate DP. For some representative work, see Guestrin et al. [GKP03],
and Koller, and Parr [KoP00].
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E X E R C I S E S

6.1

Consider a fully connected network with n nodes, and the problem of finding a
travel strategy that takes a traveller from node 1 to node n in no more than a
given number m of time periods, while minimizing the expected travel cost (sum
of the travel costs of the arcs on the travel path). The cost of traversing an arc
changes randomly and independently at each time period with given distribution.
For any node i, the current cost of traversing the outgoing arcs (i, j), j 6= i, will
become known to the traveller upon reaching i, who will then either choose the
next node j on the travel path, or stay at i (waiting for smaller costs of outgoing
arcs at the next time period) at a fixed (deterministic) cost per period. Derive
a DP algorithm in a space of post-decision variables and compare it to ordinary
DP.

6.2 (Multiple State Visits in Monte Carlo Simulation)

Argue that the Monte Carlo simulation formula

Jµ(i) = lim
M→∞

1

M

M
∑

m=1

c(i, m)

is valid even if a state may be revisited within the same sample trajectory. Note:
If only a finite number of trajectories is generated, in which case the number
M of cost samples collected for a given state i is finite and random, the sum
1
M

∑M

m=1
c(i, m) need not be an unbiased estimator of Jµ(i). However, as the

number of trajectories increases to infinity, the bias disappears. See [BeT96],
Sections 5.1, 5.2, for a discussion and examples. Hint : Suppose the M cost
samples are generated from N trajectories, and that the kth trajectory involves
nk visits to state i and generates nk corresponding cost samples. Denote mk =
n1 + · · · + nk. Write

lim
M→∞

1

M

M
∑

m=1

c(i, m) = lim
N→∞

1
N

∑N

k=1

∑mk
m=mk−1+1

c(i, m)

1
N

(n1 + · · · + nN )

=
E
{

∑mk
m=mk−1+1

c(i, m)
}

E{nk}
,

and argue that

E







mk
∑

m=mk−1+1

c(i, m)







= E{nk}Jµ(i),

(or see Ross [Ros83b], Cor. 7.2.3 for a closely related result).
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6.3 (Viewing Q-Factors as Optimal Costs)

Consider the stochastic shortest path problem under Assumptions 2.1.1 and 2.1.2.
Show that the Q-factors Q(i, u) can be viewed as state costs associated with a
modified stochastic shortest path problem. Use this fact to show that the Q-
factors Q(i, u) are the unique solution of the system of equations

Q(i, u) =
∑

j

pij(u)

(

g(i, u, j) + min
v∈U(j)

Q(j, v)

)

.

Hint : Introduce a new state for each pair (i, u), with transition probabilities
pij(u) to the states j = 1, . . . , n, t.

6.4

This exercise provides a counterexample to the convergence of PVI for discounted
problems when the projection is with respect to a norm other than ‖·‖ξ . Consider
the mapping TJ = g+αPJ and the algorithm Φrk+1 = ΠT (Φrk), where P and Φ
satisfy Assumptions 6.3.1 and 6.3.2. Here Π denotes projection on the subspace
spanned by Φ with respect to the weighted Euclidean norm ‖J‖v =

√
J ′V J ,

where V is a diagonal matrix with positive components. Use the formula Π =
Φ(Φ′V Φ)−1Φ′V to show that in the single basis function case (Φ is an n × 1
vector) the algorithm is written as

rk+1 =
Φ′V g

Φ′V Φ
+

αΦ′V PΦ

Φ′V Φ
rk.

Construct choices of α, g, P , Φ, and V for which the algorithm diverges.

6.5 (LSPE(0) for Average Cost Problems [YuB06b])

Show the convergence of LSPE(0) for average cost problems with unit stepsize,
assuming that P is aperiodic, by showing that the eigenvalues of the matrix ΠF
lie strictly within the unit circle.

6.6 (Relation of Discounted and Average Cost Approximations
[TsV02])

Consider the finite-state α-discounted and average cost frameworks of Sections
6.3 and 6.7 for a fixed stationary policy with cost per stage g and transition
probability matrix P . Assume that the states form a single recurrent class, let
Jα be the α-discounted cost vector, let (η∗, h∗) be the gain-bias pair, let ξ be
the steady-state probability vector, let Ξ be the diagonal matrix with diagonal
elements the components of ξ, and let

P ∗ = lim
N→∞

N−1
∑

k=0

P k.
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Show that:

(a) η∗ = (1 − α)ξ′Jα and P ∗Jα = (1 − α)−1η∗e.

(b) h∗ = limα→1(I −P ∗)Jα. Hint : Use the Laurent series expansion of Jα (cf.
Prop. 4.1.2).

(c) Consider the subspace

E∗ =
{

(I − P ∗)y | y ∈ ℜn
}

,

which is orthogonal to the unit vector e in the scaled geometry where x
and y are orthogonal if x′Ξy = 0 (cf. Fig. 6.7.1). Verify that Jα can be
decomposed into the sum of two vectors that are orthogonal (in the scaled
geometry): P ∗Jα, which is the projection of Jα onto the line defined by e,
and (I −P ∗)Jα, which is the projection of Jα onto E∗ and converges to h∗

as α → 1.

(d) Use part (c) to show that the limit r∗λ,α of PVI(λ) for the α-discounted
problem converges to the limit r∗λ of PVI(λ) for the average cost problem
as α → 1.

6.7 (Conversion of SSP to Average Cost Policy Evaluation)

We have often used the transformation of an average cost problem to an SSP
problem (cf. Section 4.3.1, and Chapter 7 of Vol. I). The purpose of this exercise
(unpublished collaboration of H. Yu and the author) is to show that a reverse
transformation is possible, from SSP to average cost, at least in the case where
all policies are proper. As a result, analysis, insights, and algorithms for average
cost policy evaluation can be applied to policy evaluation of a SSP problem.

Consider the SSP problem, a single proper stationary policy µ, and the
probability distribution q0 =

(

q0(1), . . . , q0(n)
)

used for restarting simulated tra-
jectories [cf. Eq. (6.216)]. Let us modify the Markov chain by eliminating the
self-transition from state 0 to itself, and substituting instead transitions from 0
to i with probabilities q0(i),

p̃0i = q0(i),

each with a fixed transition cost β, where β is a scalar parameter. All other
transitions and costs remain the same (cf. Fig. 6.10.1). We call the corresponding
average cost problem β-AC. Denote by Jµ the SSP cost vector of µ, and by ηβ

and hβ(i) the average and differential costs of β-AC, respectively.

(a) Show that ηβ can be expressed as the average cost per stage of the cycle
that starts at state 0 and returns to 0, i.e.,

ηβ =
β +

∑n

i=1
q0(i)Jµ(i)

T
,

where T is the expected time to return to 0 starting from 0.

(b) Show that for the special value

β∗ = −
n
∑

i=1

q0(i)Jµ(i),
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Figure 6.10.1 Transformation of a SSP problem to an average cost problem.
The transitions from 0 to each i = 1, . . . , n, have cost β.

we have ηβ∗ = 0, and

Jµ(i) = hβ∗(i) − hβ∗(0), i = 1, . . . , n.

Hint : Since the states of β-AC form a single recurrent class, we have from
Bellman’s equation

ηβ + hβ(i) =

n
∑

j=0

pij

(

g(i, j) + hβ(j)
)

, i = 1, . . . , n, (6.298)

ηβ + hβ(0) = β +

n
∑

i=1

q0(i)hβ(i). (6.299)

From Eq. (6.298) it follows that if β = β∗, we have ηβ∗ = 0, and

δ(i) =

n
∑

j=0

pijg(i, j) +

n
∑

j=1

pijδ(j), i = 1, . . . , n, (6.300)

where

δ(i) = hβ∗(i) − hβ∗(0), i = 1, . . . , n.

Since Eq. (6.300) is Bellman’s equation for the SSP problem, we see that
δ(i) = Jµ(i) for all i.

(c) Derive a transformation to convert an average cost policy evaluation prob-
lem into another average cost policy evaluation problem where the transi-
tion probabilities out of a single state are modified in any way such that
the states of the resulting Markov chain form a single recurrent class. The
two average cost problems should have the same differential cost vectors,
except for a constant shift. Note: This conversion may be useful if the
transformed problem has more favorable properties.
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6.8 (Projected Equations for Finite-Horizon Problems)

Consider a finite-state finite-horizon policy evaluation problem with the cost vec-
tor and transition matrices at time m denoted by gm and Pm, respectively. The
DP algorithm/Bellman’s equation takes the form

Jm = gm + PmJm+1, m = 0, . . . , N − 1,

where Jm is the cost vector of stage m for the given policy, and JN is a given
terminal cost vector. Consider a low-dimensional approximation of Jm that has
the form

Jm ≈ Φmrm, m = 0, . . . , N − 1,

where Φm is a matrix whose columns are basis functions. Consider also a pro-
jected equation of the form

Φmrm = Πm(gm + PmΦm+1rm+1), m = 0, . . . , N − 1,

where Πm denotes projection onto the space spanned by the columns of Φm with
respect to a weighted Euclidean norm with weight vector ξm.

(a) Show that the projected equation can be written in the equivalent form

Φ′
mΞm(Φmrm − gm − PmΦm+1rm+1) = 0, m = 0, . . . , N − 2,

Φ′
N−1ΞN−1(ΦN−1rN−1 − gN−1 − PN−1JN ) = 0,

where Ξm is the diagonal matrix having the vector ξm along the diagonal.
Abbreviated solution: The derivation follows the one of Section 6.3.1 [cf. the
analysis leading to Eqs. (6.40) and (6.41)]. The solution {r∗0 , . . . , r∗

N−1} of
the projected equation is obtained as

r∗m = arg min
r0,...,rN−1

{

N−2
∑

m=0

∥

∥Φmrm − (gm + PmΦm+1r
∗
m+1)

∥

∥

2

ξm

+
∥

∥ΦN−1rN−1 − (gN−1 + PN−1JN )
∥

∥

2

ξN−1

}

.

The minimization can be decomposed into N minimizations, one for each
m, and by setting to 0 the gradient with respect to rm, we obtain the
desired form.

(b) Consider a simulation scheme that generates a sequence of trajectories of
the system, similar to the case of a stochastic shortest path problem (cf.
Section 6.6). Derive corresponding LSTD and (scaled) LSPE algorithms.

(c) Derive appropriate modifications of the algorithms of Section 6.5.3 to ad-
dress a finite horizon version of the optimal stopping problem.
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6.9 (Approximation Error of TD Methods [Ber95])

This exercise illustrates how the value of λ may significantly affect the approxi-
mation quality in TD methods. Consider a problem of the SSP type, but with a
single policy. The states are 0, 1, . . . , n, with state 0 being the termination state.
Under the given policy, the system moves deterministically from state i ≥ 1 to
state i − 1 at a cost gi. Consider a linear approximation of the form

J̃(i, r) = i r

for the cost-to-go function, and the application of TD methods. Let all simulation
runs start at state n and end at 0 after visiting all the states n − 1, n − 2, . . . , 1
in succession.

(a) Derive the corresponding projected equation Φr∗λ = ΠT (λ)(Φr∗λ) and show
that its unique solution r∗λ satisfies

n
∑

k=1

(gk − r∗λ)
(

λn−kn + λn−k−1(n − 1) + · · · + k
)

= 0.

(b) Plot J̃(i, r∗λ) with λ from 0 to 1 in increments of 0.2, for the following two
cases:

(1) n = 50, g1 = 1 and gi = 0 for all i 6= 1.

(2) n = 50, gn = −(n − 1) and gi = 1 for all i 6= n.

Figure 6.10.2 gives the results for λ = 0 and λ = 1.

6.11

This exercise provides an example of comparison of the projected equation ap-
proach of Section 6.8.1 and the least squares approach of Section 6.8.2. Consider
the case of a linear system involving a vector x with two block components,
x1 ∈ ℜk and x2 ∈ ℜm. The system has the form

x1 = A11x1 + b1, x2 = A21x1 + A22x2 + b2,

so x1 can be obtained by solving the first equation. Let the approximation
subspace be ℜk×S2, where S2 is a subspace of ℜm. Show that with the projected
equation approach, we obtain the component x∗

1 of the solution of the original
equation, but with the least squares approach, we do not.

6.12 (Error Bounds for Hard Aggregation [TsV96])

Consider the hard aggregation case of Section 6.4.2, and denote i ∈ x if the
original state i belongs to aggregate state x. Also for every i denote by x(i) the
aggregate state x with i ∈ x. Consider the corresponding mapping F defined by

(FR)(x) =

n
∑

i=1

dxi min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αR
(

x(j)
)

)

, x ∈ A,
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Figure 6.10.2 Form of the cost-to-go function J(i), and the linear representations
J̃(i, r∗

λ
) in Exercise 6.9, for the case

g1 = 1, gi = 0, ∀ i 6= 1

(figure on the left), and the case.

gn = −(n − 1), gi = 1, ∀ i 6= n

(figure on the right).

[cf. Eq. (6.162)], and let R∗ be the unique fixed point of this mapping. Show that

R∗(x) − ǫ

1 − α
≤ J∗(i) ≤ R∗(x) +

ǫ

1 − α
, ∀ x ∈ A, i ∈ x,

where

ǫ = max
x∈A

max
i,j∈x

∣

∣J∗(i) − J∗(j)
∣

∣.

Abbreviated Proof : Let the vector R be defined by

R(x) = min
i∈x

J∗(i) +
ǫ

1 − α
, x ∈ A.
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We have for all x ∈ A,

(FR)(x) =

n
∑

i=1

dxi min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αR
(

x(j)
)

)

≤
n
∑

i=1

dxi min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ∗(j) +
αǫ

1 − α

)

=

n
∑

i=1

dxi

(

J∗(i) +
αǫ

1 − α

)

≤ min
i∈x

(

J∗(i) + ǫ
)

+
αǫ

1 − α

= min
i∈x

J∗(i) +
ǫ

1 − α

= R(x).

Thus, FR ≤ R, from which it follows that R∗ ≤ R (since R∗ = limk→∞ F kR and
F is monotone). This proves the left-hand side of the desired inequality. The
right-hand side follows similarly.

6.13 (Hard Aggregation as a Projected Equation Method)

Consider a fixed point equation of the form

r = DT (Φr),

where T : ℜn 7→ ℜn is a (possibly nonlinear) mapping, and D and Φ are s × n
and n × s matrices, respectively, and Φ has rank s. Writing this equation as

Φr = ΦDT (Φr),

we see that it is a projected equation if ΦD is a projection onto the subspace
S = {Φr | r ∈ ℜs} with respect to a weighted Euclidean norm. The purpose of
this exercise is to prove that this is the case in hard aggregation schemes, where
the set of indices {1, . . . , n} is partitioned into s disjoint subsets I1, . . . , Is and:

(1) The ℓth column of Φ has components that are 1 or 0 depending on whether
they correspond to an index in Iℓ or not.

(2) The ℓth row of D is a probability distribution (dℓ1, . . . , dℓn) whose compo-
nents are positive depending on whether they correspond to an index in Iℓ

or not, i.e.,
∑n

i=1
dℓi = 1, dℓi > 0 if i ∈ Iℓ, and dℓi = 0 if i /∈ Iℓ.

Show in particular that ΦD is given by the projection formula

ΦD = Φ(Φ′ΞΦ)−1Φ′Ξ,

where Ξ is the diagonal matrix with the nonzero components of D along the
diagonal, normalized so that they form a probability distribution, i.e.,

ξi =
dℓi

∑s

k=1

∑n

j=1
dkj

, ∀ i ∈ Iℓ, ℓ = 1, . . . , s.
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Notes: (1) Based on the preceding result, if T is a contraction mapping with
respect to the projection norm, the same is true for ΦDT . In addition, if T is
a contraction mapping with respect to the sup-norm, the same is true for DTΦ
(since aggregation and disaggregation matrices are nonexpansive with respect to
the sup-norm); this is true for all aggregation schemes, not just hard aggregation.
(2) For ΦD to be a weighted Euclidean projection, we must have ΦDΦD = ΦD.
This implies that if DΦ is invertible and ΦD is a weighted Euclidean projection,
we must have DΦ = I (since if DΦ is invertible, Φ has rank s, which implies
that DΦD = D and hence DΦ = I , since D also has rank s). From this it can
be seen that out of all possible aggregation schemes with DΦ invertible and D
having nonzero columns, only hard aggregation has the projection property of
this exercise.

6.14 (Simulation-Based Implementation of Linear Aggregation
Schemes)

Consider a linear system Ax = b, where A is an n × n matrix and b is a column
vector in ℜn. In a scheme that generalizes the aggregation approach of Section
6.5, we introduce an n×s matrix Φ, whose columns are viewed as basis functions,
and an s × n matrix D. We find a solution r∗ of the s × s system

DAΦr = Db,

and we view Φr∗ as an approximate solution of Ax = b. An approximate imple-
mentation is to compute by simulation approximations C̃ and d̃ of the matrices
C = DAΦ and d = Db, respectively, and then solve the system C̃r = d̃. The
purpose of the exercise is to provide a scheme for doing this.

Let D and A be matrices of dimensions s×n and n×n, respectively, whose
rows are probability distributions, and are such that their components satisfy

Gℓi > 0 if Gℓi 6= 0, ℓ = 1, . . . , s, i = 1, . . . , n,

Aij > 0 if Aij 6= 0, i = 1, . . . , n, j = 1, . . . , n.

We approximate the (ℓm)th component Cℓm of C as follows. We generate a
sequence

{

(it, jt) | t = 1, 2, . . .
}

by independently generating each it according

to the distribution {Gℓi | i = 1, . . . , n}, and then by independently generating jt

according to the distribution {Aitj | j = 1, . . . , n}. For k = 1, 2, . . ., consider the
scalar

Ck
ℓm =

1

k

k
∑

t=1

Gℓit

Gℓit

Aitjt

Aitjt

Φjtm,

where Φjm denotes the (jm)th component of Φ. Show that with probability 1
we have

lim
k→∞

Ck
ℓm = Cℓm.

Derive a similar scheme for approximating the components of d.
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6.15 (Approximate Policy Iteration Using an Approximate
Problem)

Consider the discounted problem of Section 6.3 (referred to as DP) and an ap-
proximation to this problem (this is a different discounted problem referred to
as AP). This exercise considers an approximate policy iteration method where
the policy evaluation is done through AP, but the policy improvement is done
through DP – a process that is patterned after the aggregation-based policy iter-
ation method of Section 6.4.2. In particular, we assume that the two problems,
DP and AP, are connected as follows:

(1) DP and AP have the same state and control spaces, and the same policies.

(2) For any policy µ, its cost vector in AP, denoted J̃µ, satisfies

‖J̃µ − Jµ‖∞ ≤ δ,

i.e., policy evaluation using AP, rather than DP, incurs an error of at most
δ in sup-norm.

(3) The policy µ obtained by exact policy iteration in AP satisfies the equation

T J̃µ = TµJ̃µ.

This is true in particular if the policy improvement process in AP is iden-
tical to the one in DP.

Show the error bound

‖Jµ − J∗‖∞ ≤ 2αδ

1 − α
e

[cf. Eq. (6.135)]. Hint : Follow the derivation of the error bound (6.135).

6.16 (Approximate Policy Iteration and Newton’s Method)

Consider the discounted problem, and a policy iteration method that uses func-
tion approximation over a subspace S = {Φr | r ∈ ℜs}, and operates as follows:
Given a vector rk ∈ ℜs, define µk to be a policy such that

Tµk
(Φrk) = T (Φrk), (6.301)

and let rk+1 satisfy
rk+1 = Lk+1Tµk

(Φrk+1),

where Lk+1 is an s×n matrix. Show that if µk is the unique policy satisfying Eq.
(6.301), then rk+1 is obtained from rk by a Newton step for solving the equation

r = Lk+1T (Φr),

(cf. Exercise 1.10).
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6.17 (Projected Equations for Approximation of Cost Function
Differences)

Let x∗ be the unique solution of an equation of the form x = b + Ax. Suppose
that we are interested in approximating within a subspace S = {Φr | r ∈ ℜs} the
vector y∗ = Dx∗, where D is an invertible matrix.

(a) Show that y∗ is the unique solution of y = c + By, where

B = DAD−1, c = Db.

(b) Consider the projected equation approach of approximating y∗ by Φr∗,
obtained by solving Φr = Π(c + BΦr) (cf. Section 6.8.1), and the spe-
cial case where D is the matrix that maps

(

x(1), . . . , x(n)
)

to the vector
(

y(1), . . . , y(n)
)

, with y consisting of component differences of x: y(i) =
x(i)− x(n), i = 1, . . . , n − 1, and y(n) = x(n). Calculate D, B, and c, and
develop a simulation-based matrix inversion approach for this case.

6.18 (Constrained Projected Equations [Ber09b], [Ber11a])

Consider the projected equation J = ΠTJ , where the projection Π is done on a
closed convex subset Ŝ of the approximation subspace S = {Φr | r ∈ ℜs} (rather
than on S itself).

(a) Show that the projected equation is equivalent to finding r∗ ∈ ℜs such that

f(Φr∗)′Φ(r − r∗) ≥ 0, ∀ r ∈ R̂,

where

f(J) = Ξ(J − TJ), R̂ = {r | Φr ∈ Ŝ}.

Note: This type of inequality is known as a variational inequality .

(b) Consider the special case where Φ is partitioned as [φ1 Φ̂] where φ1 is the
first column of Φ and Φ̂ is the n× (s− 1) matrix comprising the remaining
(s − 1) columns. Let Ŝ be the affine subset of S given by

Ŝ = {β + Φ̂r̂ | r̂ ∈ ℜs−1},

where β is a fixed multiple of the vector φ1. Let TJ = g + AJ where A is
an n×n matrix. Show that the projected equation is equivalent to finding
r̂ ∈ ℜs−1 that solves the equation Ĉr̂ = d̂, where

Ĉ = Φ̂′Ξ(I − A)Φ̂, d̂ = Φ̂′Ξ(g + Aφ1 − φ1).

Derive an LSTD-type algorithm to obtain simulation-based approximations
to Ĉ and d̂, and corresponding approximation to r̂.



538 Approximate Dynamic Programming Chap. 6

6.19 (Policy Gradient Formulas for SSP)

Consider the SSP context, and let the cost per stage and transition probabil-
ity matrix be given as functions of a parameter vector r. Denote by gi(r),
i = 1, . . . , n, the expected cost starting at state i, and by pij(r) the transi-
tion probabilities. Each value of r defines a stationary policy, which is assumed
proper. For each r, the expected costs starting at states i are denoted by Ji(r).
We wish to calculate the gradient of a weighted sum of the costs Ji(r), i.e.,

J̄(r) =

n
∑

i=1

q(i)Ji(r),

where q =
(

q(1), . . . , q(n)
)

is some probability distribution over the states. Con-
sider a single scalar component rm of r, and differentiate Bellman’s equation to
show that

∂Ji

∂rm

=
∂gi

∂rm

+

n
∑

j=1

∂pij

∂rm

Jj +

n
∑

j=1

pij
∂Jj

∂rm

, i = 1, . . . , n,

where the argument r at which the partial derivatives are computed is suppressed.
Interpret the above equation as Bellman’s equation for a SSP problem.
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