
Dynamic Programming Approaches for the

Traveling Salesman Problem with Drone

Paul Bouman

Erasmus School of Economics, Erasmus University, The Netherlands

Niels Agatz and Marie Schmidt

Rotterdam School of Management, Erasmus University, The Netherlands

Email:bouman@ese.eur.nl

Abstract

A promising new delivery model involves the use of a delivery truck that collaborates

with a drone to make deliveries. Effectively combining a truck and a drone gives rise to

a new planning problem that is known as the Traveling Salesman Problem with Drone

(TSP-D). This paper presents exact solution approaches for the TSP-D based on dynamic

programming and provides an experimental comparison of these approach. Our numerical

experiments show that our approach can solve larger problems than the mathematical

programming approaches that have been presented in the literature thus far. Moreover,

we show that restrictions on the number of locations the truck can visit while the drone is

away can help significantly reduce the solution times while having relatively little impact

on the overall solution quality.

Keywords: Traveling salesman problem, Vehicle routing, Drones, Dynamic Programming

1 Introduction

Several Internet retailers and logistics service providers including Amazon, Singapore post

and DHL are experimenting with the use of drones to support the delivery of parcels

and mail. One promising new operating model is the use of a regular delivery truck that

collaborates with a drone to make deliveries. This way, the high capacity and long range

of the truck can be combined with the speed and flexibility of a drone.

Together with the University of Cincinnati, Amp Electric Vehicles supports this new

operating model by developing a drone that deploys from a compartment in the roof of

an electric delivery truck. A new Mercedes Benz concept vehicle called ‘Vision Van’ also
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includes roof-top drones (Condliffe, 2016) and UPS recently tested launching a drone from

the roof of a delivery van (Steward, 2017).

Effectively combining a drone and a truck gives rise to a new planning problem that

we call the Traveling Salesman Problem with Drone (TSP-D). The problem aims to find

a route for both the delivery vehicle and the drone that minimizes the total joint time to

serve all delivery tasks. Due to its limited capacity, the drone has to return to the vehicle

to pick up the parcel before each new delivery. For this reason, the route of the drone

needs to be synchronized with that of the truck. Figure 1 shows an example solution of

the TSP-D.

depot

truck node

drone node

fly arc

drive arc

Figure 1: An example TSP-D solution (Agatz et al., 2017)

The problem has only recently started to receive some attention from the transporta-

tion optimization community. Wang et al. (2016) and Poikonen et al. (2017) analyze the

theoretical benefits of using one or more drones together with one or more delivery vehicles

to make deliveries. Agatz et al. (2017) experimentally analyze the time savings of using

truck and drone instead of using truck only. Carlsson and Song (2017) use continuous

approximation to derive analytical formulas to estimate the expected delivery costs in this

setting. Table 1 provides an overview of the different solution approaches that have been

proposed in the literature for several variants of the problem. We see that up to now,

most research has primarily focused on heuristic approaches. Exact solution approaches

based on mathematical programming so far are only capable of solving small instances of

the problem, i.e., up to ten locations (Agatz et al., 2017). In this contribution, we propose

an exact approach based on dynamic programming that is able to solve larger instances.

For the classic Traveling Salesman Problem (TSP), dynamic programming approaches

were first proposed in Held and Karp (1962); Bellman (1962). For the general TSP with-

out additional assumptions, this is the exact algorithm with the best known worst-case

running time to this day (Applegate et al., 2011). Dynamic programming approaches

have been proposed for various variants of the TSP, including the single vehicle dial-a-ride

problem (Psaraftis, 1980), the time-dependent TSP (Malandraki and Daskin, 1992) and

the TSP with time window and precedence constraints (Mingozzi et al., 1997). Dynamic
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Type of approach Solution procedure

Exact methods Integer linear programming (Agatz et al., 2017)

Dynamic programming (this paper)

Approximation algorithms Improvements starting from TSP-tour (Agatz et al., 2017)

Heuristic methods Simple heuristics (Murray and Chu, 2015; Ha et al., 2015)

Genetic algorithms (Ferrandez et al., 2016)

Simulated annealing (Ponza, 2016)

Table 1: Solution procedures proposed for the TSP-D

programming approaches also have been used as the basis for heuristics for various TSP

and VRP problems (Malandraki and Dial, 1996; Kok et al., 2010).

In this paper, we introduce a 3-pass dynamic programming approach to solve the TSP-

D problem and extend the last pass of this approach to an A* algorithm. Furthermore,

we apply these exact algorithms to the problem where we restrict the number of locations

the truck may visit while separated from the drone. These restrictions result in shorter

computation times, but come at the cost of potentially removing the optimal solution from

the solution space. We evaluate the different approaches in an extensive computational

study comparing run times and solution quality.

The remainder of this paper is organized as follows. In Section 2, we formally define

the TSP-D. In Section 3, we develop a dynamic programming algorithm for the TSP-D

and also present two ways to speed up the algorithm. Section 4 presents the results of an

extensive numerical study. Finally, in Section 5, we offer some final remarks and directions

for future research.

2 Problem description

The TSP-D can be modeled as a set V of n locations, which include a depot v0 and n-1

customer locations. Furthermore, two cost functions c, cd : V 2 → R model distances or

travel times between the locations. We generally assume that c(v, w) stands for the driving

time of the truck driving from v to w, and cd(v, w) stands for the time it takes the drone

to fly from v to w, but other types of non-negative cost functions can be considered as

well.

The objective of the TSP-D is to find the minimum cost tour which serves all customer

locations by either the truck or the drone. We assume that the drone has unit-capacity

and has to pick up a new parcel at the truck after each delivery. Moreover, the pickup of

parcels from the truck can only take place at the customer locations, i.e., the drone can

only land on and depart from the truck while it is located at a node. This assumption is

common in the literature, and can be justified by the fact that a) launching and receiving
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drones on a moving truck is technologically still very challenging (Orphanides, 2016) and

b) parking at intermediate points on the route may not always be possible.

We define a constant α, that relates the speed of the drone and the speed of the truck

to each other such that the drone can be at most α times faster than the truck for a pair

of locations. Formally, we say that α is the minimum value for which αcd(v, w) ≥ c(v, w)

for every pair of locations v, w ∈ V . The special case where cd(v, w) = αc(v, w) for any

pair of locations can be interpreted as a situation where the drone and truck travel via

the same network, but the drone is a factor α faster than the truck.

For a given tour, we distinguish between the following types of nodes:

Drone node: a node that is visited by the drone separated from the truck

Truck node: a node that is visited by the truck separated from the drone

Combined node: a node that is visited by both truck and drone

To compute the time needed for a tour, we have to consider that the two vehicles need

to be synchronized, i.e., they have to wait for each other at the combined nodes. Hence,

we decompose the tour into a sequence of operations (o1, o2, . . . , ol).

An operation ok consists of two combined nodes, called start node and end node, at

most one drone node, and potentially several truck nodes. If the operation contains a

drone node, the drone departs from the truck at the start node, then serves the drone

node and meets up with the truck again at the end node. The truck can travel directly

from the start node to the end node or can visit any number of truck nodes in between.

When the start node is identical to the end node and the operation does not contain any

truck nodes, the truck waits at the start/end node for the drone to deliver the package

and return. If the operation does not contain a drone node, the drone travels on the truck

directly from start node to end node.

Figure 2 provides an example of an operation (Agatz et al., 2017). We obtain the time

duration t(o) of an operation o as the maximum over the truck driving time needed to

drive between the nodes as described above, and the drone flying time from start node to

drone node to end node.

To compute the time duration of the full tour, we simply sum up the time durations

of all operations it contains.

3 Solution approaches

In this section we present dynamic programming approaches for the TSP-D based on the

well-known Bellman-Held-Karp dynamic programming algorithm for the TSP (Held and

Karp, 1962; Bellman, 1962). Dynamic Programming can be used to find optimal solutions

to problems, if the optimal solutions have an optimal substructure, i.e., if they can be
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Figure 2: An operation with a combined node serving as start node (1), a combined node

serving as end node (4), a drone node (3) and a truck node (2)

split up in an optimal solution to a smaller sub-problem and some contribution that is

independent from the solution to the smaller subproblem.

Our approaches consist of the following three passes.

1. Enumerate the shortest paths for the truck for every start node, end node, and set

of truck nodes covered by the path.

2. Combine these truck paths with drone nodes to obtain efficient operations, i.e., op-

erations that represent the least costly way to cover a set of nodes with an operation.

3. Compute the optimal sequence of these operations such that all locations are covered

and the sequence start and ends at the depot.

We now first summarize the the well-known Bellman-Held-Karp dynamic programming

algorithm for the TSP (Held and Karp, 1962; Bellman, 1962) in Section 3.1.

Afterwards, we describe how we modify this procedure to execute the three passes.

The first and second pass are described in Sections 3.2 and 3.3. For the third pass, we

describe the general idea in Section 3.4 and two different variants of how to implement it

in Sections 3.4.1 and 3.4.2. Furthermore, we discuss to restrict the number of nodes in an

operation in Section 3.5.

3.1 Dynamic programming approach for the standard TSP

The optimal solution for the regular TSP can be considered as a path that starts at an

arbitrary origin point v, visits all locations in V and ends at v. The costs of the final

solution, which can be distance, time, emissions, or anything else that can be modelled as

the sum of individual steps, is denoted as DTSP(V, v)

For a set S ⊂ V that contains v and a node w ∈ S \ {v} let DTSP(S,w) be the costs

of the shortest path that starts at the origin point, visits all locations in S and ends at

location w. The shortest path of this sub-problem consists of two parts: the last arc on

the path that goes from some location u ∈ S to w, and a shortest path that starts at the
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origin point v, visits all locations in S \ {w}, and ends in u. If the path for the full set

S does not contain the shortest sub-path for S \ {w}, we can obtain a better solution by

replacing this sub-path with the shortest one, contradicting the fact that the path for S

was shortest. As a consequence, the sub-problem DTSP(S,w) can be solved by considering

all arcs (u,w) : u ∈ S \ {w}, and adding each of those arcs to the solution for the smaller

sub-problem DTSP(S \ {w}, u).

This structure, in which the optimal solution of a sub-problem can be expressed in

terms of smaller sub-problems can be formalized by means of a recursive formula as follows:

DTSP(S,w) =


∞ if w /∈ S
c(v, w) if S = {w}

min
u∈S

DTSP(S \ {w}, u) + c(u,w) otherwise

(1)

As there 2n possible subsets of V and n locations in v, we can see that there are at

most n ·2n sub-problems to solve here. For each sub-problem in the recurrence relation we

only consider at most n smaller sub-problems, and as a result this algorithm can be run

in O(n2 · 2n) time. A possible implementation of an algorithm that exploits this structure

in a bottom up fashion is presented in Algorithm 1.

3.2 First pass

As the first pass of our three-pass approach, we adapt the dynamic programming approach

for the regular TSP to find the shortest path for the truck for every start node v, end

node w, and set of truck nodes S covered by the path. Each of these sub-problems can be

solved based on smaller sub-problems using the same idea as for the regular TSP:

Dt(S, v, w) =


∞ if w /∈ S
c(v, w) if S = {w}
min
u∈S
{Dt(S \ {w}, v, u) + c(u,w)} otherwise

(2)

The number of sub-problems we need to solve to compute table DT is 2n · n2. By

extending the approach presented in Algorithm 1, the computation of the table can be

performed in O(2n · n3) time.

3.3 Second pass

In the second pass, we combine the truck paths with drone nodes to obtain efficient

operations, that is operations that represent the least costly way to cover a set of nodes S

with an operation for given start node v and end node w. An optimal TSP-D tour can be

6



Algorithm 1: Dynamic Programming algorithm for the original TSP

Data: A set of locations V , an arbitrary location v ∈ V and cost function c

Result: A shortest tour that visits all locations in V

1 Initialize DTSP with values ∞ ;

2 Initialize a table P to retain predecessor locations ;

3 Initialize v as an arbitrary location in V ;

4 foreach w ∈ V do

5 DTSP({w}, w)← c(v, w) ;

6 P({w}, w)← v ;

7 for i = 2, . . . , |V | do
8 for S ⊆ V where |S| = i do

9 foreach w ∈ S do

10 foreach u ∈ S do

11 z ← DTSP(S \ {w}, u) + c(u,w) ;

12 if z < DTSP(S,w) then

13 DTSP(S,w)← z ;

14 P (S,w)← u ;

15 return path obtained by backtracking over locations in P starting at P (V, v) ;
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constructed using efficient operations only as a TSP-D tour will not become longer when

an inefficient operation is replaced by an efficient operation.

To find efficient operations associated with every triplet (S, v, w), where the operation

starts at location v, ends at location w and visits all locations in S, we expand the table of

truck paths to create a table of operations, by adding the drone movement on top of the

truck paths. The problem of finding an efficient operation that starts in v, ends in w and

visits all locations in S can be broken down into the problem of selecting a single drone

node d from S \ {v, w} and combining the flight of the drone via this location with the

shortest truck path that starts in v, ends in w and visits all locations in S \ {d}. As the

sub-problem of finding a shortest truck path was already solved when we constructed table

DT, the table Dop containing the value of an efficient operation for every triplet (S, v, w)

can be computed as follows:

Dop(S, v, w) =


∞ if w /∈ S
Dt(S, v, w) if S = {w}

min
d∈S\{v,w}

max
{
cd(v, d) + cd(d,w), Dt(S \ {d}, v, w)

}
otherwise

(3)

When we assume that all truck tours Dt have been computed prior to the construction

of Dop, we can compute the Dop table in O(2n · n3) time, as there are at most 2n · n2

sub-problems, that all can be solved in O(n) time.

3.4 Third pass

In the third pass, we compute the optimal sequence of efficient operations that covers all

locations and starts and ends at the depot. To do this, we iteratively solve the subproblem

of finding the best sequence of operations starting at the depot, covering set of nodes S,

and ending in node w. That is: w is the end node of the last operation in the sequence,

we call it sequence end node in the following.

In Sections 3.4.1 and 3.4.2 we present two variants of this approach which we compare

later in our numerical experiments. These variants can be considered as different methods

to find a shortest path from source to sink in a so-called state-graph. In a state-graph,

vertices represent subproblems (called states) and the arcs correspond to dependencies

between states in the computation.

Thus, in the third pass of our algorithm, each vertex corresponds to a pair (S,w) of

locations already covered in our sequence of operations and sequence end location w. We

aim to find a shortest path from the source state ({v0}, v0) where we have not covered

any locations yet and start from the depot v0 to the sink state (V, v0) which covers all

locations and ends in the depot v0.
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The arcs of the graph represent going from one state to another by executing one more

operation. That is, state (S1, w1) is connected to state (S2, w2) by an arc if S1 ( S2. The

cost of the arc is the cost of an efficient operation with start node w1, end node w2 covering

nodes S2 \S1. This cost is given by DOP (S2 \S1, w1, w2) which we compute in the second

pass. The structure of this state-graph is visualized in greater detail in Section 3.5, where

we consider how restrictions of the number of truck-only nodes in an operation affect the

structure of the state-graph.

Finding an optimal TSP-D tour now corresponds to finding a shortest path from source

({v0}, v0) to sink (V, v0) in this state-graph with respect to the described arc costs. We

present two different approaches to find such a shortest path. The first implementation

corresponds to a ‘standard’ dynamic programming approach, while the second one corre-

sponds to a A∗ algorithm Hart et al. (1968, 1972). We describe these two approaches in

more detail below.

3.4.1 Standard dynamic programming implementation of third pass

We compute the costs of all states using a table D. To compute the costs of a state

(subproblem) D(S,w) we look for a minimum cost sequence of efficient operations that

starts at v0, ends at w and visits all locations in S. This is specified in (4), where we

compute the cost of a state as the minimum over the cost of possible preceding states

plus the arc costs of the connecting arc connecting the two states (which is the cost of the

corresponding efficient operation).

D(S,w) =


∞ if w /∈ S
c(v0, w) if S = {w}
min
T⊂S

min
u∈S

D(S \ (T \ {u}), u) +Dop(T, u, w) otherwise

(4)

A straightforward analysis of the runtime of this algorithm tells us that there are at

most 2n ·n sub-problems and that we have to do at most 2n ·n work to solve a sub-problem

(assuming the smaller sub-problems have been solved), resulting in a runtime of O(4n ·n2).
However, with a more careful analysis we can see the algorithm actually performs better.

To prove this, we apply the binomial theorem, which reads:

Theorem 3.1 (Binomial Theorem, folklore)

(x+ y)r =

r∑
k=0

(
r

k

)
xkyr−k (5)

Theorem 3.2 The TSP-D with n locations can be solved in O(3nn2) time using dynamic

programming.
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Algorithm 2: Algorithm to compute an optimal solution to the TSP-D

Data: A set of locations V and a depot v0 Result: A table D(S, v) with optimal

TSP-D paths that starts at the depot v0, end at location v and covers all

locations in S.

1 D ←∞ ;

2 D(∅, v0)← 0 ;

3 Precompute Dop

4 ;

5 for i = 1, . . . , |V | do
6 for U ⊆ V where |U | = i do

7 for T ⊆ V \ U do

8 for (u,w) ∈ U × V do

9 z ← D(U, u) +Dop(T ∪ {w}, u, w) ;

10 if z < D(U ∪ {u,w} ∪ T,w) then

11 D(U ∪ {u,w} ∪ T,w)← z ;

12 return D ;

Proof In Equation 4 we can see that there are O(
(
n
1

)
· n) sub-problems where |S| = 1,

O(
(
n
2

)
· n) sub-problems where |S| = 2 and in general at most O(

(
n
i

)
· n) sub-problems

where |S| = i. If we know that a certain sub-problem has an S with |S| = i, we can see

that the amount of work we need to do to solve it is O(n · 2i) as there are 2i possible

subsets T of S and O(n) possible choices for u ∈ S. As there are O(
(
n
i

)
· n) sub-problems

for a particular i, and each of those requires O(2i · n) work to solve, we can solve all

sub-problems for a particular i in O(
(
n
i

)
2in2) time. In order to solve all sub-problems, we

need to solve the sub-problems for every i from 1 to n. Since we over-estimate the number

of sub-problems when we let i range from 0 to n rather than 1 to n, we can safely apply

the binonial theorem:

O

(
n∑
i=0

(
n

i

)
2in2

)
= O

(
n2

n∑
i=0

(
n

i

)
2i · 1n−i

)
(6)

= O(3n · n2) (7)

Here we first include a factor 1n−i in the analysis, which allows us to apply the binomial

theorem to the result. We have three passes needed to compute the final TSP-D tour,

where the first pass and second pass both take O(2n · n3) time. However, we can rewrite

O(3n) as O(2n ·
(
3
2

)n
). As a factor n grows asymptotically slower than

(
3
2

)n
, the O(3nn2)

running time is the dominant one among the three passes. Pseudo code that implements

this approach in a bottom-up fashion is presented in Algorithm 2

10



3.4.2 A∗ implementation of third pass

One possible disadvantage of the approach described in Section 3.4.1 is that even if an

instance has many sub-problems that are clearly not relevant to the optimal solution,

they are still solved. For this reason, we also consider an approach that attempts to skip

irrelevant sub-problems, based on ideas from informed search. By only generating states

that seem relevant to finding a good solution, it may not be necessary to solve all 2n · n
sub-problems, but significantly less. The idea is to estimate how good a partial solution is,

and guide the search towards the optimal path. This way, we potentially limit the number

of sub-problems that needs to be considered in the third pass of the algorithm.

We do this by executing an A∗ algorithm Hart et al. (1968, 1972) to find a shortest

path from source ({v0}, v0) to sink (V, v0) on the state-graph.

The key idea of A∗ is to introduce a function that estimates the distance from a given

state to the sink state. By only expanding states for which the sum of the path to that

state and the value of the function is minimal, the algorithm does not generate states that

are far from the optimal path to the sink state. It was proven by Dechter and Pearl (1985)

that if the function never over-estimates the distance to the goal state, this approach finds

an optimal solution. This is the case with the function that we use in our approach.

To obtain a lower bound on the path from a given state to the goal state, we compute
1

2+α times the length of a minimum spanning tree connecting the last location visited in

our current state, the locations that are not covered yet, and the depot. In Agatz et al.

(2017), we show that in instances where distances fulfill the triangle inequality, a solution

(R,R) to the TSP-D, consisting of a TSP tour R constructed with the minimum spanning

tree heuristic, is a (2 + α)-approximation for the TSP-D. Here, α denotes the minimum

value for which αcd(v, w) ≥ c(v, w) for every pair of locations v, w ∈ V , as introduced

earlier.

3.5 Restricting the number of operations

Instead of creating all possible drone operations, we may limit the set of operations to

reduce the number of sub-problems we need to consider in the first and second passes.

This directly influences memory requirements and the running times of the algorithm. In

particular, we consider restricting the maximum number of truck-only nodes per operation

to k. This helps reduce the amount of required work in all passes of the algorithm.

In the small example given in Figure 3, the number of additional arcs that are intro-

duced when we increase k from 0 to 1 and 2 is quite small. Solid arcs are included when

k ≥ 0, dashed arcs are included when k ≥ 1 and the dotted arc is included when k ≥ 2.

For larger instances, however, the number of introduced arcs increases rapidly. This can

be observed from Table 2, where we can see that the number of arcs for an instance with

9 locations and k = 2 is already larger than the number of arcs for an instance with 10
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Algorithm 3: Outline of the A* algorithm for the TSP-D

Data: A set of locations V , a depot v0, a precomputed table Dk
op, a restriction on

truck-only nodes k, a lower bound function l

Result: The optimal TSP-D tour that can be constructed using only the operation

in Dk
op

1 Q← new Priority Queue ;

2 P ← ∅ ;

3 Add state ({v0}, v0) with costs 0 and key l(V ) to Q ;

4 while Q not empty do

5 Remove state (S, u) with costs c and minimum key from Q ;

6 Add (S, u) to P ;

7 if S = V ∧ u = v0 then

8 return Backtrack path of operations to state (S, u)

9 foreach w ∈ V do

10 foreach operation o ∈ Dk
op starting in w ending in u with no truck-only or

drone-only nodes in S, costs co and covering nodes Vo do

11 s′ ← (S ∪ Vo ∪ {w}, w) ;

12 if s’ not in P then

13 Add s′ with costs c+ co and key c+ co + l(s′) to Q ;

Table 2: The number of arcs in the state-graph when for different values of n and different

values of k

Number of arcs

n k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

n = 3 20 21 21 21 21 21 21 21 21

n = 4 138 159 160 160 160 160 160 160 160

n = 5 672 912 944 945 945 945 945 945 945

n = 6 2630 4200 4670 4715 4716 4716 4716 4716 4716

n = 7 8976 16566 20206 21016 21076 21077 21077 21077 21077

n = 8 27986 58625 78820 86065 87346 87423 87424 87424 87424

n = 9 81920 191904 283744 329104 342096 344000 344096 344097 344097

n = 10 228942 592722 959214 1188660 1279254 1300842 1303542 1303659 1303660
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D({0},0)

D({0, 1},1)
({1},0,1)

D({0, 1},0)

({0, 1},0,0)

D({0, 1, 2},2)({1, 2},0,2)

D({0, 1, 2},1)

({1, 2},0,1)

D({0, 1, 2},0)
({0, 1, 2},0,0)

D({0, 1, 2, 3},0)

({0, 1, 2, 3},0,0)

({2},1,2)

({1, 2},1,1)

({0, 2},1,0)

({0, 2, 3},1,0)
({2},0,2)

({1, 2},0,1)

({0, 2},0,0)

({0, 2, 3},0,0)

({0, 3},2,0)

({0, 3},1,0)

({0, 3},0,0)

Figure 3: Small part of the state-graph for an instance with four locations. The arcs

correspond to operations. The dotted arcs are only included the state-graph when k ≥ 2,

the dashed arcs are only included when k ≥ 1 and the solid arcs are always included.

locations and k = 0.

It is relatively straightforward to adopt our approaches to take into account these

restrictions, as we need to consider only truck paths of at most 2 + k, as the start and

end nodes of an operation do not count as truck nodes. Thus, we need to only compute

the solution to the sub-problems DT(S, v, w) where |S| ≤ k + 1, as drone nodes are added

in the second phase and we have by convention v /∈ S and w ∈ S. When we compute the

table Dop(S, v, w), we must take care to consider only the sub-problems where |S| ≤ k + 2

if v 6= w and |S| ≤ k + 1 otherwise.

This implies that for the first two passes we get O(
∑k+2

i=1 i
2
(
n
k

)
) sub-problems rather

than O(n2 · 2n) for the unrestricted case. For the third pass, we unfortunately still need

to consider all O(2n ·n) sub-problems, but the amount of work required to solve each sub-

problem can be reduced: instead of considering all subsets of S we only need to consider

subsets T of size k + 2, rather than all subsets of S. This implies that every sub-problem

can be solved in O(nk+1) time and thus all solutions can be computed in O(2n · nk+2)

time, rather than in O(3nn2) time. If we for example forbid truck-only nodes and thus

have k = 0, we get an O(2n · n3) algorithm.

Since A∗ often performs best when the branching factor is small, we expect this ap-

proach to be most advantageous when we restrict the number of nodes in an operation

(small k), given the growth behavior of the number of arcs observed in Table 2. That is,

while both the DP-algorithm and A∗ benefit from the fact that fewer arcs are evaluated

when k is small, the A∗ algorithm additionally can take advantage of the fact that fewer
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states are expanded in each iteration when k is small.

It seems reasonable to assume that the number of truck nodes per operation in most

good solutions for most instances will be relatively small. This is especially the case if the

drone travels faster than the truck. That is, fewer truck nodes per operation implies that

more work is preformed by the drone and thus the advantage of parallelization is greater.

Unfortunately, restrictions on the number of truck nodes may prevent finding an op-

timal solution. That is, it is not difficult to construct a problem instance in which the

optimal solution consists of just one operation with many truck nodes. This is for example

the case if all but one node (the designated drone node) are close to the depot, while the

designated drone node is located sufficiently far from all other nodes.

Theorem 3.3 For any instance of the TSP-D with symmetric drone costs, i.e., cd(v, w) =

cd(w, v), there is a TSP-D tour without truck nodes (that is, every operation consists of a

start node, an end node, and possibly a drone node), whose time duration is at most twice

the time duration of the optimal TSP-D tour for that instance.

Proof Let Ô = (ô1, ô2, . . . , ôl) be an optimal TSP-D tour for the considered instance. We

construct a TSP-D tour without truck nodes from Ô by replacing each operation o = ôi

for i = 1, . . . , l by a sequence of operations without truck nodes with at most double

completion time.

Let o be an operation with k truck nodes v1, . . . , vk, start node v0, end node vk+1, and

drone node vd. If cd(v0, vd) ≤ cd(vd, vk+1), we replace o by the sequence (o0, o1, o2, . . . , ok+1)

where in operation o0 the drone flies from v0 to vd while the truck stays at v0 and in oj

for j = 1, . . . , k+ 1 the truck drives from vj−1 to vj (without the drone leaving the truck).

Otherwise, we replace o by the sequence (o1, o2, . . . , ok+1, o0) where in operation o0 the

drone flies from vk+1 to vd while the truck stays at vk+1 and oj for j = 1, . . . , k + 1 as

above. In both cases we obtain

k+1∑
j=0

t(oj) = 2 ·min
{
cd(v0, vd), c

d(vd, vk+1)
}

︸ ︷︷ ︸
≤cd(o)

+
k+1∑
j=0

c(vj−1, vj)︸ ︷︷ ︸
=c(o)

≤ 2·max{c(o), cd(o)} = 2t(o).

We can see that this bound is tight from the example in Figure 4, where we have a

depot and two customers v1 and v2. In this example, we assume that the speed of the

drone is equal to the speed of the truck and both customers have the same travel time

from the depot. In the optimal solution, one node is served by the drone and one by the

truck as both vehicles start and end at the depot. As the drone and the truck can serve

the nodes simultaneously, this gives a solution value of 2. In case truck nodes are not

allowed in an operation, it is not possible to parallelize the deliveries. This means that
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in the optimal restricted solution, we either serve the nodes sequentially with either one

of the vehicles or the truck has to wait for the drone at one of the locations. Both cases

result in a solution value of 4. In the first case the round trip time from the depot to either

one of the locations is 2 and both locations are visited sequentially. In the second case,

both vehicle travel to one location together in one time unit. At that location, the drone

travels from the location to the other location in two time units, after which both vehicle

travel to the depot in parallel during the fourth and final time unit. In the numerical

experiments in Section 4, we evaluate the impact of these restrictions in more practical

instances than the presented example.

v1 v2
1 1

Figure 4: Two customers (circles) that need to be served from the depot (rectangle).

Assuming that the truck and drone are equally fast, the optimal solution in case no truck-

only nodes are allowed has twice the costs of a solution without restrictions.

4 Numerical experiments

Using the instances presented in Agatz et al. (2017) and several new ones generated using

the same approach, we conduct various experiments. The first set of instances consist of

points uniformly distributed in a 100× 100 two dimensional square with the depot at one

of the corners, while the 1-center and 2-center instances have locations that are clustered

around one and two centers, respectively and we take the Euclidian distance between pairs

of locations. As a consequence the triangle inequality holds, so we can use the minimum

spanning tree lower bound for the A* algorithm.

With these instances, we assess our two implementations of the exact dynamic pro-

gramming approach: the standard dynamic programming approach (DP) and the A*.

Moreover, we also evaluate the impact of restricting the number of truck nodes per oper-

ation k, i.e., 0, 1, 2, 4. We will refer to the unrestricted case as k = ∞. Unless stated

otherwise, we assume that the drone is twice as fast as the truck (α = 2).

Experiments were executed on the Lisa computer cluster of SURFsara. During each

run, 10 instances were solved in parallel by a cluster node equipped with an Intel R© Xeon R©

E5-2650 v2 CPU. Depending on the size of the instances solved, nodes with either 32GB

or 64GB of RAM were used, with either 2GB or 6GB of RAM assigned per instance. The

computer cluster runs on Debian Linux. The algorithms were implemented in Java, and

executed using the Oracle JDK version 1.8.0 40 on the cluster. We compare the solution

times of our approaches to the time needed to solve the integer linear program (IP) from

(Agatz et al., 2017). The IP was solved using CPLEX 12.6.3. Minimum spanning trees
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Figure 5: Solution times for different approaches and different number of allowed truck

nodes per operation k. Averages over 10 instances with 10 nodes.

were computed using Kruskal’s algorithm on the Delaunay triangulation of the geometric

instances. The Delaunay triangulations were computed using the Java Topology Suite

version 1.13.

In the first set of experiments, we compare the running times of the two different

variants of the dynamic programming approach DP and A* for different restrictions on

the number of truck nodes k. As an additional benchmark, we also compare the results

from the IP as presented in Agatz et al. (2017). This IP uses binary decision variables

for each feasible drone operation and constraints that ensure that the associated TSP-

D tour covers all nodes. These constraints include sub-tour elimination constraints for

every subset of locations. In the unrestricted case k = ∞, a variable for all efficient

operations must be added, all of which can be generated by the first two passes of our

dynamic programming case. For restricted cases, many operations are considered and thus

fewer variables need to be added to the model. Unfortunately, the number of sub-tour

elimination constraints does not decrease when the number of truck nodes is restricted as

they are generated for every subset V , independent of the number of operations.

4.1 Comparing running times

Figure 5 provides the running times of the different algorithms for the uniform instances

with ten nodes from Agatz et al. (2017). We see that the dynamic programming approaches

consistently outperform the IP. The main reason for this bad performance is that the IP

contains not only an exponential number of variables, obtained by passes one and two of

the dynamic programming approach, but also an exponential number of constraints (n ·2n

to be precise). This results in a large IP, even if the number of operations is reduced.
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Comparing the running times of the dynamic programming approaches, we see that

the DP is faster than the A∗. This suggests that savings of potentially finding the optimal

solution faster do not offset the costs for the numerous additional lower bound calculations

in the A∗ for these instances.

Table 3 presents the running times for larger instances of up to 20 nodes. As expected,

the results show that restricting the number of allowed truck nodes per operation k signif-

icantly reduces the running times. In all but one set of instances, we see that the running

times strictly increase with k. As an example, we see that it takes less than 30 minutes

to solve the n = 20 instances with k = 0 while it takes more than ten hours to solve the

same instances with k = 2.

For the instance with ten nodes, however, the unrestricted cases (k =∞) have slightly

smaller running times, on average, than the approaches with k = 4. The reason for this

is that our implementation uses different data structures to build the table of operations

created in passes one and two depending on whether or not restrictions are in place.

For the unrestricted case it is relatively straightforward to work with an arrays indexed

by bitwise representations of the sets. In case of restrictions this approach breaks down

and hash-based sparse data structures were used. These sparse data structures have more

overhead and as the restrictions do not eliminate many operations in the smaller instances,

the savings obtained from building fewer operations are less than the additional costs due

to the overhead of the hash-based data structure.

Comparing between the different exact approaches, we see that the DP is faster for

smaller instances and A∗ is faster for larger instances in all cases with restrictions. How-

ever, in the unrestricted k = ∞ cases the DP always outperforms the A∗. A possible

explanation for this, is that without restrictions there is already an exponential number

of operations (O(2nn)) to consider in the first step. As a consequence, all relevant sub-

problems are immediately generated. Furthermore, the lower bound for each subproblem

is immediately computed, resulting in a lot of overhead compared to the DP. For cases

with restrictions, fewer search states are reachable from the initial search state and as a

result, we observe that A∗ performs better than DP starting at instances of size 14 with

k = 0, while it is already faster for instances of size 11 with k = 4.

4.2 Impact of restrictions

Table 4 shows the impact of the restrictions on the solution quality for the uniform

instances. Therefore, we compare the optimal solutions of the approaches that allow at

most k truck nodes per operation Zk with the optimal solution for the problem without

restrictions Z∞, i.e., Zk−Z∞

Z∞ × 100. We provide the following three measures for the

solution quality:

• ∆ %: the average relative deviation from the optimal solution Z∞
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k algo 10 11 12 13 14 15 16 17 18 19 20

0 DP 1 1 2 5 14 37 1:36 4:15 11:02 28:40 1:12:36

0 A* 3 3 6 7 11 29 1:15 1:35 4:59 10:39 27:29

1 DP 2 2 5 15 44 2:12 6:22 18:23 52:21 2:26:32 6:42:34

1 A* 2 5 8 16 27 1:32 4:21 6:28 21:28 55:34 2:08:04

2 DP 1 4 10 34 1:50 6:12 20:12 1:04:54 3:23:13 10:21:06 *

2 A* 3 5 10 27 1:00 4:21 13:47 24:40 1:24:06 4:14:57 10:35:26

4 DP 2 7 22 1.34 6:57 31:33 2:17:29 9:45:32 * * *

4 A* 4 8 19 1:14 3:47 22:05 1:33:51 4:10:13 10:13:05 * *

∞ DP 1 4 12 56 5:06 26:08 2:38:28 * * * *

∞ A* 4 8 25 1:59 8:43 1:13:39 8:00:01 * * * *

* the algorithm did not find a solution within 12 hours

The grey cells indicate the smallest average running time for a specific set of instances

Table 3: Solution times (hours:minutes:seconds) for different solution approaches for dif-

ferent numbers of allowed truck nodes per operation k, uniformly distributed, α = 2,

averages over ten instances

• max %: the max relative deviation from the optimal solution Z∞

• # opt: the number of times that the algorithm with restrictions finds the optimal

solution Z∞

As expected, we see that the solution quality improves with k. The worse performance

is associated with the approach that does not allow any truck nodes (k = 0). In this

case, the average optimality gap ranges from 2.4 percent to 5.9 percent with a maximum

gap of 11 percent. While this is a substantial gap, it is much better than the theoretical

worse-case gap of 50 percent from Theorem 3.5. We see that the maximum optimality gap

quickly goes down to 5.6 percent for k = 1 and only 2.8 percent for k = 2. For k = 4, we

find the optimal solution in 69 of the 70 instances and have a maximum gap of less than

1 percent.

Moreover, we see that the performance is not that sensitive to the size of the instance

n. This suggests that the costs of not allowing large operations with many truck nodes is

relatively small, even for larger instances. One potential explanation for this is that while

the larger instances may potentially involve larger operations, there are also many more

good solutions possible with less truck nodes.

Next, we consider the impact of the restrictions on the solution quality for different

relative drones speeds (α) and different types of instances. Figure 6 shows that limiting

k has a larger negative impact at lower drone speeds. Especially the difference between
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k = 0 k = 1 k = 2 k = 4

n ∆ % max % # opt ∆ % max % # opt ∆ % max % # opt ∆ % max % # opt

10 2.4 6.4 2/10 0.4 2.7 6/10 0.0 0.2 9/10 0.0 0.0 10/10

11 3.1 10.1 3/10 1.1 5.6 7/10 0.0 0.0 10/10 0.0 0.0 10/10

12 4.8 10.3 1/10 7.0 3.8 2/10 0.4 2.2 6/10 0.0 0.0 10/10

13 3.3 6.0 0/10 1.3 1.1 7/10 0.0 0.0 10/10 0.0 0.0 10/10

14 3.6 7.7 1/10 0.2 3.5 3/10 0.1 0.6 9/10 0.0 0.0 10/10

15 4.7 10.3 0/10 1.0 3.6 5/10 0.2 1.7 8/10 0.1 0.6 9/10

16 5.9 11.0 0/10 1.0 2.8 3/10 0.4 2.8 7/10 0.0 0.0 10/10

Table 4: Solution quality for different numbers of allowed truck nodes per operation k,

uniformly distributed, α = 2, averages over ten instances

k = 0 and k = 1 is substantial. This is intuitive as it is more beneficial for the truck to

visit additional nodes separated from the drone when the drone is relatively slow. This

suggests that the restrictions are most suitable in situations where the drone is faster than

the truck.

Figure 7 shows a similar trend as the performance at lower k-values is worse for the

clustered instances than the uniform instances. In clustered instances, it is beneficial to

have the truck serve the clustered nodes in the centers while the drone visits the outliers.

However, this is not possible when we restrict the number of truck nodes in an operation.

To provide more insight into the characteristics of the solutions for different truck node

restrictions, we compare the total number of drone and truck nodes in the solutions as

a percentage of the total number of nodes n in the instance in Figure 8. Looking at the

impact of k, we see that the number of drone nodes increases when allowing less truck

nodes. This is intuitive as larger operations with one drone and several truck nodes are

replaced by several smaller operations in the case with restrictions. As noted before, the

figure shows that this effect is more pronounced in the clustered instances, i.e., 1-center

and 2-center. In line with this observation, we see relative more drone nodes in the uniform

instances than the clustered instances in the unrestricted cases.

Figure 9 provides a different way of looking at this behavior. Here, we see the total

waiting times (summed over all operations) of the truck and the drone relative to the

total time required to serve all nodes. The results show that, without restrictions, the

drone generally incurs more waiting time than the truck. This is related to the fact that

our drone is faster than the truck. As expected, we see that the waiting time of the

truck decreases with the maximum number of allowed truck nodes per operation. When

comparing the different instance types, we see that the waiting times for the drone are
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Figure 8: Number of drone and truck nodes in the optimal solutions for different maximum

numbers of truck nodes per operation k for different types of instances, averages over 60

instances of size (n) 10 to 15

longer in the uniform instances than the clustered instances. A potential reason for this

is that the drone makes shorter flights in the uniform case which together with its higher

speed leads to more waiting.

5 Conclusions and future research

We show that by using dynamic programming, we can solve larger problems than with the

mathematical programming approaches that have been presented in the literature so far.

Moreover, we show that restrictions on the number of operations can help significantly

reduce the solution times while having relatively little impact on the overall solution

quality.

While we have considered restricting the number of truck nodes per operation to re-

duce the running times of our algorithm, future research could investigate and develop

extensions of this approach. One promising direction for future research is to study differ-

ent ways to identify ‘bad’ operations upfront, e.g., in which either the drone or the truck

incurs a lot of waiting time.

Also, we have considered simple operations with at most one drone. If we assume that

all drones in an operation must start and end at the same node, it is straightforward to

include multi-drone operations in the second pass of our dynamic programming approach.

However, it is not that clear how to incorporate multiple drones if each drone can start

and end at different nodes. This is an interesting area for future research.

Furthermore, it would be interesting to investigate to what extent the techniques de-

veloped for the TSP-D could be extended for a problem version in which drones can depart
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Figure 9: Waiting time of truck and drone in the optimal solutions for different maximum

numbers of truck nodes per operation k, averages over 60 instances of size (n) 10 to 15

an any part of the route, or at specific locations (which do not need to be restricted to

customer locations).
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