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Abstract

A promising new delivery model involves the use of a delivery truck that collab-

orates with a drone to make deliveries. Effectively combining a truck and a drone

gives rise to a new planning problem that is known as the traveling salesman problem

with drone (TSP-D). This paper presents exact solution approaches for the TSP-D

based on dynamic programming and provides an experimental comparison of these

approaches. Our numerical experiments show that our approach can solve larger

problems than the mathematical programming approaches that have been presented

in the literature thus far. Moreover, we show that restrictions on the number of loca-

tions the truck can visit while the drone is away can help significantly reduce the

solution times while having relatively little impact on the overall solution quality.
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1 INTRODUCTION

Several Internet retailers and logistics service providers including Amazon, Singapore post and DHL are experimenting with the

use of drones to support the delivery of parcels and mail. One promising new operating model is the use of a regular delivery

truck that collaborates with a drone to make deliveries. This way, the high capacity and long range of the truck can be combined

with the speed and flexibility of a drone.

Together with the University of Cincinnati, Amp Electric Vehicles supports this new operating model by developing a drone

that deploys from a compartment in the roof of an electric delivery truck. A new Mercedes Benz concept vehicle called “Vision

Van” also includes roof-top drones [5] and UPS recently tested launching a drone from the roof of a delivery van [21].

Effectively combining a drone and a truck gives rise to a new planning problem that we call the traveling salesman problem

with drone (TSP-D). The problem aims to find a route for both the delivery vehicle and the drone that minimizes the total joint

time to serve all delivery tasks. Due to its limited capacity, the drone has to return to the vehicle to pick up the parcel before

each new delivery. For this reason, the route of the drone needs to be synchronized with that of the truck. Figure 1 shows an

example solution of the TSP-D.

The problem has only recently started to receive some attention from the transportation optimization community. Wang et al.

[22] and Poikonen et al. [18] analyze the theoretical benefits of using one or more drones together with one or more delivery

vehicles to make deliveries. Agatz et al. [1] experimentally analyze the time savings of using truck and drone instead of using

truck only. Carlsson and Song [4] use continuous approximation to derive analytical formulas to estimate the expected delivery
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FIGURE 1 An example TSP-D solution [1]

TABLE 1 Solution procedures proposed for the TSP-D

Type of approach Solution procedure

Exact methods Integer linear programming [1]

Dynamic programming (this paper)

Approximation algorithms Improvements starting from TSP-tour [1]

Heuristic methods Simple heuristics [7, 16]

Genetic algorithms [15]

Simulated annealing [19]

costs in this setting. Table 1 provides an overview of the different solution approaches that have been proposed in the literature

for several variants of the problem. We see that up to now, most research has primarily focused on heuristic approaches. Exact

solution approaches based on mathematical programming so far are only capable of solving small instances of the problem,

that is, up to 10 locations [1]. In this contribution, we propose an exact approach based on dynamic programming that is able

to solve larger instances.

For the classic traveling salesman problem (TSP), dynamic programming approaches were first proposed in Held and Karp

[10] and Bellman [3]. For the general TSP without additional assumptions, this is the exact algorithm with the best known

worst-case running time to this day [2]. Dynamic programming approaches have been proposed for various variants of the

TSP, including the single vehicle dial-a-ride problem [20], the time-dependent TSP [12] and the TSP with time window and

precedence constraints [14]. Dynamic programming approaches also have been used as the basis for heuristics for various TSP

and VRP problems [11, 13].

In this paper, we introduce a 3-pass dynamic programming approach to solve the TSP-D problem and extend the last pass of

this approach to an A* algorithm. Furthermore, we apply these exact algorithms to the problem where we restrict the number of

locations the truck may visit while separated from the drone. These restrictions result in shorter computation times, but come

at the cost of potentially removing the optimal solution from the solution space. We evaluate the different approaches in an

extensive computational study comparing run times and solution quality.

The remainder of this paper is organized as follows. In Section 2, we formally define the TSP-D. In Section 3, we develop

a dynamic programming algorithm for the TSP-D and also present two ways to speed up the algorithm. Section 4 presents the

results of an extensive numerical study. Finally, in Section 5, we offer some final remarks and directions for future research.

2 PROBLEM DESCRIPTION

The TSP-D can be modeled as a set V of n locations, which include a depot v0 and n − 1 customer locations. Furthermore, two

cost functions c, cd : V2
→R model distances or travel times between the locations. We generally assume that c(v, w) stands for

the driving time of the truck driving from v to w, and cd(v, w) stands for the time it takes the drone to fly from v to w, but other

types of nonnegative cost functions can be considered as well.

The objective of the TSP-D is to find the minimum cost tour which serves all customer locations by either the truck or the

drone. We assume that the drone has unit-capacity and has to pick up a new parcel at the truck after each delivery. Moreover,

the pickup of parcels from the truck can only take place at the customer locations, that is, the drone can only land on and depart

from the truck while it is located at a node. This assumption is common in the literature, and can be justified by the fact that (1)

launching and receiving drones on a moving truck is technologically still very challenging [17] and (2) parking at intermediate

points on the route may not always be possible.
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FIGURE 2 An operation with a combined node serving as start node (1), a combined node serving as end node (4), a drone node (3), and a truck node (2)

We define a constant �, that relates the speed of the drone and the speed of the truck to each other such that the drone can

be at most � times faster than the truck for a pair of locations. Formally, we say that � is the minimum value for which �cd(v,

w)≥ c(v, w) for every pair of locations v, w ∈ V . The special case where cd(v, w)= �c(v, w) for any pair of locations can be

interpreted as a situation where the drone and truck travel via the same network, but the drone is a factor � faster than the truck.

For a given tour, we distinguish between the following types of nodes:

Drone node: a node that is visited by the drone separated from the truck

Truck node: a node that is visited by the truck separated from the drone

Combined node: a node that is visited by both truck and drone

To compute the time needed for a tour, we have to consider that the two vehicles need to be synchronized, that is, they have

to wait for each other at the combined nodes. Hence, we decompose the tour into a sequence of operations (o1, o2, …, ol).

An operation ok consists of two combined nodes, called start node and end node, at most one drone node, and potentially

several truck nodes. If the operation contains a drone node, the drone departs from the truck at the start node, then serves the

drone node and meets up with the truck again at the end node. The truck can travel directly from the start node to the end node

or can visit any number of truck nodes in between. When the start node is identical to the end node and the operation does not

contain any truck nodes, the truck waits at the start/end node for the drone to deliver the package and return. If the operation

does not contain a drone node, the drone travels on the truck directly from start node to end node.

Figure 2 provides an example of an operation [1]. We obtain the time duration t(o) of an operation o as the maximum over

the truck driving time needed to drive between the nodes as described above, and the drone flying time from start node to drone

node to end node.

To compute the time duration of the full tour, we simply sum up the time durations of all operations it contains.

3 SOLUTION APPROACHES

In this section we present dynamic programming approaches for the TSP-D based on the well-known Bellman-Held-Karp

dynamic programming algorithm for the TSP [3, 10]. Dynamic Programming can be used to find optimal solutions to problems,

if the optimal solutions have an optimal substructure, that is, if they can be split up in an optimal solution to a smaller subproblem

and some contribution that is independent from the solution to the smaller subproblem.

Our approaches consist of the following three passes:

1. Enumerate the shortest paths for the truck for every start node, end node, and set of truck nodes covered by the path.

2. Combine these truck paths with drone nodes to obtain efficient operations, that is, operations that represent the least

costly way to cover a set of nodes with an operation.

3. Compute the optimal sequence of these operations such that all locations are covered and the sequence start and ends at

the depot.

We now first summarize the well-known Bellman-Held-Karp dynamic programming algorithm for the TSP [3, 10] in

Section 3.1.

Afterwards, we describe how we modify this procedure to execute the three passes. The first and second passes are described

in Sections 3.2 and 3.3. For the third pass, we describe the general idea in Section 3.4 and two different variants of how to

implement it in Sections 3.4.1 and 3.4.2. Furthermore, we discuss to restrict the number of nodes in an operation in Section 3.5.

3.1 Dynamic programming approach for the standard TSP

The optimal solution for the regular TSP can be considered as a path that starts at an arbitrary origin point v, visits all locations

in V and ends at v. The costs of the final solution, which can be distance, time, emissions, or anything else that can be modeled

as the sum of individual steps, is denoted as DTSP(V , v).
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For a set S⊂V that contains v and a node w ∈ S⧵{v} let DTSP(S, w) be the costs of the shortest path that starts at the origin

point, visits all locations in S and ends at location w. The shortest path of this subproblem consists of two parts: the last arc

on the path that goes from some location u ∈ S to w, and a shortest path that starts at the origin point v, visits all locations in

S⧵{w}, and ends in u. If the path for the full set S does not contain the shortest subpath for S⧵{w}, we can obtain a better solution

by replacing this subpath with the shortest one, contradicting the fact that the path for S was shortest. As a consequence, the

subproblem DTSP(S, w) can be solved by considering all arcs (u, w): u ∈ S⧵{w}, and adding each of those arcs to the solution

for the smaller subproblem DTSP(S⧵{w}, u).

This structure, in which the optimal solution of a subproblem can be expressed in terms of smaller subproblems can be

formalized by means of a recursive formula as follows:

DTSP(S,w) =

⎧
⎪⎨⎪⎩

∞ if w ∉ S

c(v,w) if S = {w}

minu∈SDTSP(S∖{w}, u) + c(u,w) otherwise

(1)

As there 2n possible subsets of V and n locations in v, we can see that there are at most n ⋅ 2n subproblems to solve here.

For each subproblem in the recurrence relation we only consider at most n smaller subproblems, and as a result this algorithm

can be run in O(n2
⋅ 2n) time. A possible implementation of an algorithm that exploits this structure in a bottom up fashion is

presented in Algorithm 1.

3.2 First pass

As the first pass of our three-pass approach, we adapt the dynamic programming approach for the regular TSP to find the shortest

path for the truck for every start node v, end node w, and set of truck nodes S covered by the path. Each of these subproblems

can be solved based on smaller subproblems using the same idea as for the regular TSP:

DT(S, v,w) =

⎧
⎪⎨⎪⎩

∞ if w ∉ S

c(v,w) if S = {w}

min
u∈S

{DT(S∖{w}, v, u) + c(u,w)} otherwise

(2)



BOUMAN ET AL. 5

The number of subproblems we need to solve to compute table DT is 2n
⋅ n2. By extending the approach presented in

Algorithm 1, the computation of the table can be performed in O(2n
⋅ n3) time.

3.3 Second pass

In the second pass, we combine the truck paths with drone nodes to obtain efficient operations, that is operations that represent

the least costly way to cover a set of nodes S with an operation for given start node v and end node w. An optimal TSP-D tour can

be constructed using efficient operations only as a TSP-D tour will not become longer when an inefficient operation is replaced

by an efficient operation.

To find efficient operations associated with every triplet (S, v, w), where the operation starts at location v, ends at location

w and visits all locations in S, we expand the table of truck paths to create a table of operations, by adding the drone movement

on top of the truck paths. The problem of finding an efficient operation that starts in v, ends in w and visits all locations in S

can be broken down into the problem of selecting a single drone node d from S⧵{v, w} and combining the flight of the drone

via this location with the shortest truck path that starts in v, ends in w and visits all locations in S⧵{d}. As the subproblem of

finding a shortest truck path was already solved when we constructed table DT, the table DOP containing the value of an efficient

operation for every triplet (S, v, w) can be computed as follows:

DOP(S, v,w) =

⎧
⎪⎨⎪⎩

∞ if w ∉ S

DT(S, v,w) if S = {w}

min
d∈S∖{v,w}

max{cd(v, d) + cd(d,w),DT(S∖{d}, v,w)} otherwise

(3)

When we assume that all truck tours DT have been computed prior to the construction of DOP, we can compute the DOP table

in O(2n
⋅ n3) time, as there are at most 2n

⋅ n2 subproblems, that all can be solved in O(n) time.

3.4 Third pass

In the third pass, we compute the optimal sequence of efficient operations that covers all locations and starts and ends at the

depot. To do this, we iteratively solve the subproblem of finding the best sequence of operations starting at the depot, covering

set of nodes S, and ending in node w. That is: w is the end node of the last operation in the sequence, we call it sequence end

node in the following.

In Sections 3.4.1 and 3.4.2 we present two variants of this approach which we compare later in our numerical experiments.

These variants can be considered as different methods to find a shortest path from source to sink in a so-called state-graph.

In a state-graph, vertices represent subproblems (called states) and the arcs correspond to dependencies between states in the

computation.

Thus, in the third pass of our algorithm, each vertex corresponds to a pair (S, w) of locations already covered in our sequence

of operations and sequence end location w. We aim to find a shortest path from the source state ({v0}, v0) where we have

not covered any locations yet and start from the depot v0 to the sink state (V , v0) which covers all locations and ends in the

depot v0.

The arcs of the graph represent going from one state to another by executing one more operation. That is, state (S1, w1) is

connected to state (S2, w2) by an arc if S1 ⊊ S2. The cost of the arc is the cost of an efficient operation with start node w1, end

node w2 covering nodes S2⧵S1. This cost is given by DOP(S2⧵S1, w1, w2) which we compute in the second pass. The structure

of this state-graph is visualized in greater detail in Section 3.5, where we consider how restrictions of the number of truck-only

nodes in an operation affect the structure of the state-graph.

Finding an optimal TSP-D tour now corresponds to finding a shortest path from source ({v0}, v0) to sink (V , v0) in this

state-graph with respect to the described arc costs. We present two different approaches to find such a shortest path. The

first implementation corresponds to a “standard” dynamic programming approach, while the second one corresponds to a A*

algorithm Hart et al. [8, 9]. We describe these two approaches in more detail below.

3.4.1 Standard dynamic programming implementation of third pass

We compute the costs of all states using a table D. To compute the costs of a state (subproblem) D(S, w) we look for a minimum

cost sequence of efficient operations that starts at v0, ends at w and visits all locations in S. This is specified in (4), where we

compute the cost of a state as the minimum over the cost of possible preceding states plus the arc costs of the connecting arc
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connecting the two states (which is the cost of the corresponding efficient operation).

D(S,w) =

⎧⎪⎨⎪⎩

∞ if w ∉ S

c(v0,w) if S = {w}

minT⊂Sminu∈SD(S ⧵ (T ⧵ {u}), u) + DOP(T , u,w) otherwise

(4)

A straightforward analysis of the runtime of this algorithm tells us that there are at most 2n
⋅ n subproblems and that we have

to do at most 2n
⋅ n work to solve a subproblem (assuming the smaller subproblems have been solved), resulting in a runtime

of O(4n
⋅ n2). However, with a more careful analysis we can see the algorithm actually performs better. To prove this, we apply

the binomial theorem, which reads:

Theorem 3.1. (Binomial Theorem, folklore)

(x + y)r =

r∑
k=0

(
r
k

)
xkyr−k (5)

Theorem 3.2. The TSP-D with n locations can be solved in O(3nn2) time using dynamic programming.

Proof . In Equation 4 we can see that there are O

((
n
1

)
⋅ n

)
subproblems where |S|= 1, O

((
n
2

)
⋅ n

)
subproblems where

|S|= 2 and in general at most O

((
n
i

)
⋅ n

)
subproblems where |S|= i. If we know that a certain subproblem has an S with

|S|= i, we can see that the amount of work we need to do to solve it is O(n ⋅ 2i) as there are 2i possible subsets T of S and O(n)

possible choices for u ∈ S. As there are O

((
n
i

)
⋅ n

)
subproblems for a particular i, and each of those requires O(2i

⋅ n) work

to solve, we can solve all subproblems for a particular i in O

((
n
i

)
2in2

)
time. In order to solve all subproblems, we need to

solve the subproblems for every i from 1 to n. Since we overestimate the number of subproblems when we let i range from 0 to

n rather than 1 to n, we can safely apply the binomial theorem:

O

(
n∑

i=0

(
n
i

)
2in2

)
= O

(
n2

n∑
i=0

(
n
i

)
2i
⋅ 1n−i

)
(6)

= O(3n
⋅ n2) (7)

Here we first include a factor 1n−i in the analysis, which allows us to apply the binomial theorem to the result. We have three

passes needed to compute the final TSP-D tour, where the first pass and second pass both take O(2n
⋅ n3) time. However, we can

rewrite O(3n) as O
(

2n
⋅

(
3

2

)n)
. As a factor n grows asymptotically slower than

(
3

2

)n

, the O(3nn2) running time is the dominant

one among the three passes. Pseudo code that implements this approach in a bottom-up fashion is presented in Algorithm 2.

3.4.2 A* implementation of third pass

One possible disadvantage of the approach described in Section 3.4.1 is that even if an instance has many subproblems that are

clearly not relevant to the optimal solution, they are still solved. For this reason, we also consider an approach that attempts

to skip irrelevant subproblems, based on ideas from informed search. By only generating states that seem relevant to finding a

good solution, it may not be necessary to solve all 2n
⋅ n subproblems, but significantly less. The idea is to estimate how good

a partial solution is, and guide the search towards the optimal path. This way, we potentially limit the number of subproblems

that needs to be considered in the third pass of the algorithm.

We do this by executing an A* algorithm [8,9] to find a shortest path from source ({v0}, v0) to sink (V , v0) on the state-graph.

The key idea of A* is to introduce a function that estimates the distance from a given state to the sink state. By only expanding

states for which the sum of the path to that state and the value of the function is minimal, the algorithm does not generate states

that are far from the optimal path to the sink state. It was proven by Dechter and Pearl [6] that if the function never overestimates

the distance to the goal state, this approach finds an optimal solution. This is the case with the function that we use in our

approach.

To obtain a lower bound on the path from a given state to the goal state, we compute
1

2+�
times the length of a minimum

spanning tree connecting the last location visited in our current state, the locations that are not covered yet, and the depot.

In Agatz et al. [1], we show that in instances where distances fulfill the triangle inequality, a solution (,) to the TSP-D,
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consisting of a TSP tour  constructed with the minimum spanning tree heuristic, is a (2 + �)-approximation for the TSP-D.

Here, � denotes the minimum value for which �cd(v, w)≥ c(v, w) for every pair of locations v, w ∈ V , as introduced earlier.

3.5 Restricting the number of operations

Instead of creating all possible drone operations, we may limit the set of operations to reduce the number of subproblems we

need to consider in the first and second passes. This directly influences memory requirements and the running times of the

algorithm. In particular, we consider restricting the maximum number of truck-only nodes per operation to k. This helps reduce

the amount of required work in all passes of the algorithm.

In the small example given in Figure 3, the number of additional arcs that are introduced when we increase k from 0 to 1

and 2 is quite small. Solid arcs are included when k ≥ 0, dashed arcs are included when k ≥ 1 and the dotted arc is included

when k ≥ 2. For larger instances, however, the number of introduced arcs increases rapidly. This can be observed from Table 2,

where we can see that the number of arcs for an instance with 9 locations and k = 2 is already larger than the number of arcs

for an instance with 10 locations and k = 0.

It is relatively straightforward to adopt our approaches to take into account these restrictions, as we need to consider only

truck paths of at most 2 + k, as the start and end nodes of an operation do not count as truck nodes. Thus, we need to only

compute the solution to the subproblems DT(S, v, w) where |S|≤ k + 1, as drone nodes are added in the second phase and we have

by convention v ∉ S and w ∈ S. When we compute the table DOP(S, v, w), we must take care to consider only the subproblems

where |S|≤ k + 2 if v ≠ w and |S|≤ k + 1 otherwise.

This implies that for the first two passes we get O

(∑k+2
i=1 i2

(
n
k

))
subproblems rather than O(n2

⋅ 2n) for the unrestricted

case. For the third pass, we unfortunately still need to consider all O(2n
⋅ n) subproblems, but the amount of work required to

solve each subproblem can be reduced: instead of considering all subsets of S we only need to consider subsets T of size k + 2,

rather than all subsets of S. This implies that every subproblem can be solved in O(nk+1) time and thus all solutions can be

computed in O(2n
⋅ nk+2) time, rather than in O(3nn2) time. If we for example forbid truck-only nodes and thus have k = 0, we

get an O(2n
⋅ n3) algorithm.

Since A* often performs best when the branching factor is small, we expect this approach to be most advantageous when

we restrict the number of nodes in an operation (small k), given the growth behavior of the number of arcs observed in Table 2.

That is, while both the DP-algorithm and A* benefit from the fact that fewer arcs are evaluated when k is small, the A* algorithm

additionally can take advantage of the fact that fewer states are expanded in each iteration when k is small.

It seems reasonable to assume that the number of truck nodes per operation in most good solutions for most instances

will be relatively small. This is especially the case if the drone travels faster than the truck. That is, fewer truck nodes

per operation implies that more work is performed by the drone and thus the advantage of parallelization is greater.
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Unfortunately, restrictions on the number of truck nodes may prevent finding an optimal solution. That is, it is not difficult

to construct a problem instance in which the optimal solution consists of just one operation with many truck nodes. This is for

example the case if all but one node (the designated drone node) are close to the depot, while the designated drone node is

located sufficiently far from all other nodes.

Theorem 3.3. For any instance of the TSP-D with symmetric drone costs, that is, cd(v, w) = cd(w, v), there is a TSP-D

tour without truck nodes (i.e., every operation consists of a start node, an end node, and possibly a drone node), whose

time duration is at most twice the time duration of the optimal TSP-D tour for that instance.

Proof . Let Ô = (ô1, ô2,… , ôl) be an optimal TSP-D tour for the considered instance. We construct a TSP-D tour without

truck nodes from Ô by replacing each operation o = ôi for i = 1, …, l by a sequence of operations without truck nodes with at

most double completion time.

TABLE 2 The number of arcs in the state-graph for different values of n and different values of k

Number of arcs

n k= 0 k= 1 k= 2 k= 3 k= 4 k= 5 k= 6 k= 7 k= 8

n = 3 20 21 21 21 21 21 21 21 21

n = 4 138 159 160 160 160 160 160 160 160

n = 5 672 912 944 945 945 945 945 945 945

n = 6 2630 4200 4670 4715 4716 4716 4716 4716 4716

n = 7 8976 16 566 20 206 21 016 21 076 21 077 21 077 21 077 21 077

n = 8 27 986 58 625 78 820 86 065 87 346 87 423 87 424 87 424 87 424

n = 9 81 920 191 904 283 744 329 104 342 096 344 000 344 096 344 097 344 097

n = 10 228 942 592 722 959 214 1 188 660 1 279 254 1 300 842 1 303 542 1 303 659 1 303 660
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FIGURE 3 Small part of the state-graph for an instance with four locations. The arcs correspond to operations. The dotted arcs are only included the

state-graph when k≥ 2, the dashed arcs are only included when k≥ 1 and the solid arcs are always included

v1

1 1
v2

FIGURE 4 Two customers (circles) that need to be served from the depot (rectangle). Assuming that the truck and drone are equally fast, the optimal

solution in case no truck-only nodes are allowed has twice the costs of a solution without restrictions

Let o be an operation with k truck nodes v1, …, vk, start node v0, end node vk+1, and drone node vd. If cd(v0, vd)≤ cd(vd,

vk+1), we replace o by the sequence (o0, o1, o2, …, ok+1) where in operation o0 the drone flies from v0 to vd while the truck stays

at v0 and in oj for j = 1, …, k + 1 the truck drives from vj−1 to vj (without the drone leaving the truck). Otherwise, we replace

o by the sequence (o1, o2, …, ok+1, o0) where in operation o0 the drone flies from vk+1 to vd while the truck stays at vk+1 and oj

for j = 1, …, k + 1 as above. In both cases we obtain:

k+1∑
j=0

t(oj) = 2 ⋅ min{cd(v0, vd), c
d(vd, vk+1)}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤cd(o)

+

k+1∑
j=0

c(vj−1, vj)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=c(o)

≤ 2 ⋅ max{c(o), cd(o)} = 2t(o).

We can see that this bound is tight from the example in Figure 4, where we have a depot and two customers v1 and v2. In

this example, we assume that the speed of the drone is equal to the speed of the truck and both customers have the same travel

time from the depot. In the optimal solution, one node is served by the drone and one by the truck as both vehicles start and

end at the depot. As the drone and the truck can serve the nodes simultaneously, this gives a solution value of 2. In case truck

nodes are not allowed in an operation, it is not possible to parallelize the deliveries. This means that in the optimal restricted

solution, we either serve the nodes sequentially with either one of the vehicles or the truck has to wait for the drone at one of

the locations. Both cases result in a solution value of 4. In the first case the round trip time from the depot to either one of the

locations is 2 and both locations are visited sequentially. In the second case, both vehicles travel to one location together in one

time unit. At that location, the drone travels from the location to the other location in two time units, after which both vehicles

travel to the depot in parallel during the fourth and final time unit. In the numerical experiments in Section 4, we evaluate the

impact of these restrictions in more practical instances than the presented example.

4 NUMERICAL EXPERIMENTS

Using the instances presented in Agatz et al. [1] and several new ones generated using the same approach, we conduct various

experiments. The first set of instances consist of points uniformly distributed in a 100× 100 two-dimensional square with the

depot at one of the corners, while the 1-center and 2-center instances have locations that are clustered around one and two
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FIGURE 5 Solution times for different approaches and different number of allowed truck nodes per operation k. Averages over 10 instances with 10 nodes

centers, respectively, and we take the Euclidian distance between pairs of locations. As a consequence the triangle inequality

holds, so we can use the minimum spanning tree lower bound for the A* algorithm.

With these instances, we assess our two implementations of the exact dynamic programming approach: the standard dynamic

programming approach (DP) and the A*. Moreover, we also evaluate the impact of restricting the number of truck nodes per

operation k, that is, 0, 1, 2, 4. We will refer to the unrestricted case as k=∞. Unless stated otherwise, we assume that the drone

is twice as fast as the truck (� = 2).

Experiments were executed on the Lisa computer cluster of SURFsara. During each run, 10 instances were solved in parallel

by a cluster node equipped with an Intel Xeon E5-2650 v2 CPU (Intel, Santa Clara, California). Depending on the size of the

instances solved, nodes with either 32 GB or 64 GB of RAM were used, with either 2 GB or 6 GB of RAM assigned per instance.

The computer cluster runs on Debian Linux. The algorithms were implemented in Java, and executed using the Oracle JDK

version 1.8.0_40 (Oracle Corporation, Armonk, New York) on the cluster. We compare the solution times of our approaches

to the time needed to solve the integer linear program (IP) from [1]. The IP was solved using CPLEX 12.6.3 (IBM, Armonk,

New York). Minimum spanning trees were computed using Kruskal’s algorithm on the Delaunay triangulation of the geometric

instances. The Delaunay triangulations were computed using the Java Topology Suite version 1.13 (Eclipse Foundation, Ottawa,

Ontario, Canada).

In the first set of experiments, we compare the running times of the two different variants of the dynamic programming

approach DP and A* for different restrictions on the number of truck nodes k. As an additional benchmark, we also compare the

results from the IP as presented in Agatz et al. [1]. This IP uses binary decision variables for each feasible drone operation and

constraints that ensure that the associated TSP-D tour covers all nodes. These constraints include subtour elimination constraints

for every subset of locations. In the unrestricted case k=∞, a variable for all efficient operations must be added, all of which

can be generated by the first two passes of our dynamic programming case. For restricted cases, many operations are considered

and thus fewer variables need to be added to the model. Unfortunately, the number of subtour elimination constraints does not

decrease when the number of truck nodes is restricted as they are generated for every subset V , independent of the number of

operations.

4.1 Comparing running times

Figure 5 provides the running times of the different algorithms for the uniform instances with 10 nodes from Agatz et al. [1].

We see that the dynamic programming approaches consistently outperform the IP. The main reason for this bad performance is

that the IP contains not only an exponential number of variables, obtained by passes one and two of the dynamic programming

approach, but also an exponential number of constraints (n ⋅ 2n to be precise). This results in a large IP, even if the number of

operations is reduced.

Comparing the running times of the dynamic programming approaches, we see that the DP is faster than the A*. This

suggests that savings of potentially finding the optimal solution faster do not offset the costs for the numerous additional lower

bound calculations in the A* for these instances.
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TABLE 3 Solution times (hours:minutes:seconds) for different solution approaches for different numbers of allowed truck nodes per
operation k, uniformly distributed, � = 2, averages over 10 instances

k Algo 10 11 12 13 14 15 16 17 18 19 20

0 DP 1 1 2 5 14 37 1:36 4:15 11:02 28:40 1:12:36

0 A* 3 3 6 7 11 29 1:15 1:35 4:59 10:39 27:29

1 DP 2 2 5 15 44 2:12 6:22 18:23 52:21 2:26:32 6:42:34

1 A* 2 5 8 16 27 1:32 4:21 6:28 21:28 55:34 2:08:04

2 DP 1 4 10 34 1:50 6:12 20:12 1:04:54 3:23:13 10:21:06 a

2 A* 3 5 10 27 1:00 4:21 13:47 24:40 1:24:06 4:14:57 10:35:26

4 DP 2 7 22 1.34 6:57 31:33 2:17:29 9:45:32 a a a

4 A* 4 8 19 1:14 3:47 22:05 1:33:51 4:10:13 10:13:05 a a

∞ DP 1 4 12 56 5:06 26:08 2:38:28 a a a a

∞ A* 4 8 25 1:59 8:43 1:13:39 8:00:01 a a a a

Bold indicates the smallest average running time for a specific set of instances.
aThe algorithm did not find a solution within 12 h.

Table 3 presents the running times for larger instances of up to 20 nodes. As expected, the results show that restricting the

number of allowed truck nodes per operation k significantly reduces the running times. In all but one set of instances, we see that

the running times strictly increase with k. As an example, we see that it takes less than 30 minutes to solve the n = 20 instances

with k = 0 while it takes more than 10 hours to solve the same instances with k = 2.

For the instance with 10 nodes, however, the unrestricted cases (k=∞) have slightly smaller running times, on average,

than the approaches with k = 4. The reason for this is that our implementation uses different data structures to build the table

of operations created in passes one and two depending on whether or not restrictions are in place. For the unrestricted case it

is relatively straightforward to work with an arrays indexed by bitwise representations of the sets. In case of restrictions this

approach breaks down and hash-based sparse data structures were used. These sparse data structures have more overhead and as

the restrictions do not eliminate many operations in the smaller instances, the savings obtained from building fewer operations

are less than the additional costs due to the overhead of the hash-based data structure.

Comparing between the different exact approaches, we see that the DP is faster for smaller instances and A* is faster for

larger instances in all cases with restrictions. However, in the unrestricted k=∞ cases the DP always outperforms the A*.

A possible explanation for this, is that without restrictions there is already an exponential number of operations (O(2nn)) to

consider in the first step. As a consequence, all relevant subproblems are immediately generated. Furthermore, the lower bound

for each subproblem is immediately computed, resulting in a lot of overhead compared to the DP. For cases with restrictions,

fewer search states are reachable from the initial search state and as a result, we observe that A* performs better than DP starting

at instances of size 14 with k = 0, while it is already faster for instances of size 11 with k = 4.

4.2 Impact of restrictions

Table 4 shows the impact of the restrictions on the solution quality for the uniform instances. Therefore, we compare the optimal

solutions of the approaches that allow at most k truck nodes per operation Zk with the optimal solution for the problem without

restrictions Z∞, i.e.,
Zk−Z∞

Z∞
× 100. We provide the following three measures for the solution quality:

• Δ (%): the average relative deviation from the optimal solution Z∞

• Max (%): the maximum relative deviation from the optimal solution Z∞

• # opt: the number of times that the algorithm with restrictions finds the optimal solution Z∞

As expected, we see that the solution quality improves with k. The worse performance is associated with the approach that

does not allow any truck nodes (k = 0). In this case, the average optimality gap ranges from 2.4% to 5.9% with a maximum gap

of 11%. While this is a substantial gap, it is much better than the theoretical worse-case gap of 50% from Theorem 3.5. We see

that the maximum optimality gap quickly goes down to 5.6% for k = 1 and only 2.8% for k = 2. For k = 4, we find the optimal

solution in 69 of the 70 instances and have a maximum gap of less than 1%.

Moreover, we see that the performance is not that sensitive to the size of the instance n. This suggests that the costs of not

allowing large operations with many truck nodes is relatively small, even for larger instances. One potential explanation for this

is that while the larger instances may potentially involve larger operations, there are also many more good solutions possible

with less truck nodes.
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TABLE 4 Solution quality for different numbers of allowed truck nodes per operation k, uniformly distributed, � = 2, averages over 10 instances

k= 0 k= 1 k= 2 k= 4

n � (%) Max (%) # opt � (%) Max (%) # opt � (%) Max (%) # opt � (%) Max (%) # opt

10 2.4 6.4 2/10 0.4 2.7 6/10 0.0 0.2 9/10 0.0 0.0 10/10

11 3.1 10.1 3/10 1.1 5.6 7/10 0.0 0.0 10/10 0.0 0.0 10/10

12 4.8 10.3 1/10 7.0 3.8 2/10 0.4 2.2 6/10 0.0 0.0 10/10

13 3.3 6.0 0/10 1.3 1.1 7/10 0.0 0.0 10/10 0.0 0.0 10/10

14 3.6 7.7 1/10 0.2 3.5 3/10 0.1 0.6 9/10 0.0 0.0 10/10

15 4.7 10.3 0/10 1.0 3.6 5/10 0.2 1.7 8/10 0.1 0.6 9/10

16 5.9 11.0 0/10 1.0 2.8 3/10 0.4 2.8 7/10 0.0 0.0 10/10
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FIGURE 6 Solution quality for different drone speeds � and different numbers of allowed truck nodes per operation k. Averages over 10 uniform instances

with 10 nodes

Next, we consider the impact of the restrictions on the solution quality for different relative drones speeds (�) and different

types of instances. Figure 6 shows that limiting k has a larger negative impact at lower drone speeds. Especially the difference

between k = 0 and k = 1 is substantial. This is intuitive as it is more beneficial for the truck to visit additional nodes separated

from the drone when the drone is relatively slow. This suggests that the restrictions are most suitable in situations where the

drone is faster than the truck.

Figure 7 shows a similar trend as the performance at lower k-values is worse for the clustered instances than the uniform

instances. In clustered instances, it is beneficial to have the truck serve the clustered nodes in the centers while the drone visits

the outliers. However, this is not possible when we restrict the number of truck nodes in an operation.

To provide more insight into the characteristics of the solutions for different truck node restrictions, we compare the total

number of drone and truck nodes in the solutions as a percentage of the total number of nodes n in the instance in Figure 8.

Looking at the impact of k, we see that the number of drone nodes increases when allowing less truck nodes. This is intuitive as

larger operations with one drone and several truck nodes are replaced by several smaller operations in the case with restrictions.

As noted before, the figure shows that this effect is more pronounced in the clustered instances, that is, 1-center and 2-center.

In line with this observation, we see relative more drone nodes in the uniform instances than the clustered instances in the

unrestricted cases.

Figure 9 provides a different way of looking at this behavior. Here, we see the total waiting times (summed over all opera-

tions) of the truck and the drone relative to the total time required to serve all nodes. The results show that, without restrictions,

the drone generally incurs more waiting time than the truck. This is related to the fact that our drone is faster than the truck. As

expected, we see that the waiting time of the truck decreases with the maximum number of allowed truck nodes per operation.

When comparing the different instance types, we see that the waiting times for the drone are longer in the uniform instances
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FIGURE 7 Solution quality for different instance types and different numbers of allowed truck nodes per operation k. Averages over 10 instances with 10 nodes
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FIGURE 8 Number of drone and truck nodes in the optimal solutions for different maximum numbers of truck nodes per operation k for different types of

instances, averages over 60 instances of size (n) 10–15

than the clustered instances. A potential reason for this is that the drone makes shorter flights in the uniform case which together

with its higher speed leads to more waiting.

5 CONCLUSIONS AND FUTURE RESEARCH

We show that by using dynamic programming, we can solve larger problems than with the mathematical programming

approaches that have been presented in the literature so far. Moreover, we show that restrictions on the number of operations

can help significantly reduce the solution times while having relatively little impact on the overall solution quality.

While we have considered restricting the number of truck nodes per operation to reduce the running times of our algorithm,

future research could investigate and develop extensions of this approach. One promising direction for future research is to

study different ways to identify “bad” operations upfront, for example, in which either the drone or the truck incurs a lot of

waiting time.
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FIGURE 9 Waiting time of truck and drone in the optimal solutions for different maximum numbers of truck nodes per operation k, averages over 60

instances of size (n) 10–15

Also, we have considered simple operations with at most one drone. If we assume that all drones in an operation must start

and end at the same node, it is straightforward to include multi-drone operations in the second pass of our dynamic programming

approach. However, it is not that clear how to incorporate multiple drones if each drone can start and end at different nodes.

This is an interesting area for future research.

Furthermore, it would be interesting to investigate to what extent the techniques developed for the TSP-D could be extended

for a problem version in which drones can depart an any part of the route, or at specific locations (which do not need to be

restricted to customer locations).
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