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Abstract. This work presents a behavior preserving Adversarial payload framework against static Windows malware scanners.
The framework uses Dynamic Programming to decide on the sequence of static code transformation actions to transform a
Windows payload to its adversarial state. In an empirical evaluation with Windows payloads from Metasploit Framework in a
black-box settings, static machine learning based and majority of commercial antivirus scanners can still be evaded by these
transformations. The potency of these generated Adversarial payload capable of breaching commercial antivirus on users’
devices was demonstrated. The experimental results show a generated Adversarial Backdoor Trojan evade static and also evade
its offline dynamic detector and establish a backdoor on the users’ device.

Keywords: Adversarial Payload , Antivirus Evasion, Dynamic Programming, Malware Transferability, Shellcode

1. Introduction

Adversarial attacks have been investigated in the area of image, audios, texts and recently in Windows
executable files classification exercise and a number of successful attacks examples in image, audios
and texts have been generated to cause misclassification [1–7]. The principal reason for the success
in image, audios and texts is that their feature-space is comparatively fixed, an image or text can be
formatted as a three-dimensional array of pixels with each pixel value as a three-dimensional RGB
(red, green, blue) vector value ranged from 0 to 255, thus, is feasible to find an exact function that is
differentiable, therefore, a feature-space attack built on gradients can instantly apply on text or images
to create adversarial attack examples. When generating Adversarial payload in Windows environment,
the circumstance is substituted by the more challenging requirement that perturbations do not imperil
the payload behavior chased by the adversary. Identifying efficient means to perturbing payload files
to invade detectors without compromising their behavior has become a challenging task. The feature-
space of Windows payload files is not fixed and can take various forms of feature engineering. This
characteristic almost makes the payload feature-space impracticable to discover an approximate or exact
function that is differentiable [8–13].
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Initial observations from literature [5, 8, 9, 12–16], point out that code transformation actions such as;
appending semantic nop no instructions, insertion of jump instructions and replace existing instructions,
when applied on a software or an execuatble file can obfuscate the file against pirating or lower the file’s
true positive rate. In this work, we enhanced these aforementioned code transformation actions with
Dynamic Programming based search method-a reinforcement learning algorithm, to increase their eva-
sive potency against static malware scanners whiles satisfying the behavior preserving criteria. The code
transformation actions are actions that will manipulate the representation of a malicious file, utilizing
the technicalities and redundancies of shellcode format, while not disrupting its behavior at run-time.

The experimentation results show that, the generated adversarial payload managed to invade two popu-
lar Machine learning based detectors: EMBER ([17]) and ClamAV, in addition to some static commercial
antivirus systems on VirusTotal. The potency of the attack capable of breaching commercial antivirus
detectors that employ static engine was tested. The test results show an adversarial Trojan payload gen-
erated using our attack framework maintained it behavior, evade static and its offline dynamic detector
and establish a backdoor connection to the attackers machine. Our contribution is mainly reflected as
follows:

• We present a adversarial payload samples generation framework that used Dynamic Programming
search algorithm to find optimal code transformations techniques that will led to evasive payload.

• We show that these transformations successfully leads to a behavior-preserving adversarial attack
that can evade static Windows based machine learning malware scanners and commercial static AV
engines.

• The generated adversarial payload can invade both static and offline dynamic detectors on user’s
machine.

The rest of this paper is organized as follows: Section 2 introduces the related background of our
approach and Section 3 presents the behavior preserving adversarial attack framework. Section 4, deals
with experiments and results. Section 5 looks at summary, and conclusions.

2. Related Background

2.1. The Attack Framework

Given an input payload X, the payload classifier returns a 2-dimensional vector H(X) = [H1(X),H−1(X)],
where H1(X) represent the probability that the input sample is a benign, H−1(X) represent the probabil-
ity that the input sample is a malware, and satisfies the constraint H1(X)+H−1(X) = 1 and H represent
the objective function. We aim to apply a transformation on X to cause a misclassification by a classifier.

2.2. Code Transformation Actions

The code transformations are common actions deployed by malware developers to hide all or parts
of their implementation by appending semantic nop no instructions, injecting benign files, insertion of
jump instructions, replacing existing instructions, encryption, packing and unpacking, manipulating exe-
cutable file section names, etc on the original malware file while avoiding rapid analysis and detection by
conventional static and signature-based techniques. MAB-Malware[8], used micro and macro transfor-
mations that tries to modify the PE file and applied Genetic Algorithm search on these transformations.
Similar to MAB-Malware, Secml-Malware[16] also generated the adversarial malware by respectively
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transforming the DOS header, through an extending and shifting transformation of the first section and

applied Genetic Algorithm to find the optimal transformation that will lead to an evasion. Another work

by [18] used these transformations in conjunction with Genetic Algorithm. Gym-Malware[5] used code

transformation techniques optimized by Reinforcement Learning to write agents that learn to transform

PE files based on a reward provided by taking specific transformation actions. Their code transfor-

mation process first define a set of actions performed on Windows PE header such as insert overlay

bytes, packing and unpacking. MERLIN[14] and Pesidious[15] used actions techniques optimized by

Reinforcement Learning algorithms to write agents that learn to manipulate PE files based on a reward

provided by taking specific manipulation actions. Their code manipulation process first define a set of

actions performed on Windows portable executable(PE) header such as insert overlay bytes, packing and

unpacking, etc.

Fig. 1. Overview the attack framework.

3. Methodology

3.1. Overview

Figure 1, shows the overview of behavior preserving adversarial payload generation framework. The

framework consist of an Action, Transformer and a Classifier. The agent’s goal is to learn an optimal

policy that maximizes the expected cumulative reward over time by taking the best possible action in

each state. The Agent and the Transformer work together to mutate the payload sample based on a

sequence of actions. These actions are code transformations that an agent can take in its environment.

The mutated payload is sent to Classifier to retrieve a reward. The reward for each action is determined

by the Classifier’s score which is calculated as the difference in the score of the original payload and

the mutated payload after every action. Details of the Classifier is presented in Sec 3.3. In Algorithm 1,

given a well-trained Agent, when a payload is fed to the Agent, it constructs the best possible action

sequence to maximize the cumulative reward. The action sequence is then followed by the Transformer

(see Sect 3.4) to edit the payload and change it into a adversarial state.
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Algorithm 1 Adversarial Windows Payload Generator

Require: Given X payload, πx optimal policy for payload x ∈ X, alg the Agent’s method for generating

action sequences, x′ the adversarial payload.

for x ∈ X do

πx ←− Agent(x, alg);

x′ ←− Transformer(x, πx);

end for

3.2. Agent

Agent incorporates dynamic programming to search for an optimal code transformations when applied

on x, can reduce the likelihood of the modified x being seen as malware and also preserve the original

functionality of the input payload file with minimum number of bytes added.

3.2.1. Dynamic Programming

Dynamic programming-a class of the reinforcement learning algorithms, is used in this work to com-

pute optimal policies given a perfect model of the environment as a Markov decision process (MDP).

An MDP is a mathematical framework that models a sequential decision-making problem in a stochastic

environment. In an MDP, an agent interacts with an environment by taking actions, receiving rewards,

and transitioning from one state to another according to a set of transition probabilities. In the case of

adversarial payload generation, the agent is a program that generates payload samples, and the environ-

ment is the antivirus classifier that the payload is trying to evade. The dynamic programming is used

to find the optimal policy for the agent that maximizes the expected cumulative reward over time. The

optimal policy is defined as the sequence of code transformations that leads to the highest expected cu-

mulative reward, given the current state of the environment. Dynamic programming algorithm typically

involve iteratively computing a value function for each state in the MDP. The value function represents

the expected cumulative reward that can be obtained by following a particular policy from a given state.

The value function is typically denoted as V(s), where s is the current state. The specific steps from the

DP algorithm employed in our work are as follows:

(1) Initialize the value function: The algorithm starts by initializing the value function V(s) for all

states s ∈ S to 0. This is the initial guess for the value function. Here, s the payload and its

adversarial variants.

(2) Iterate until convergence: The algorithm then iterates until the value function converges to an opti-

mal solution. The convergence is guaranteed if a discount factor γ is less than one.

(3) Compute the new value function: For each state s ∈ S , the algorithm computes a new value func-

tion V ′(s) using the Bellman optimality equation. The Bellman optimality equation states that the

optimal value function satisfies the following equation:

V(s) = maxaR(s, a) + gamma ∗ sum′

sP(s, a, s′) ∗ V(s′),

where R(s, a) is the expected reward for taking action a in state s, P(s, a, s′) is the probability of

transitioning to state s′ when taking action a ∈ s, γ is the discount factor that determines the

importance of future rewards, and maxa denotes the maximum over all possible actions a. The

reward strategy is motivated by [5].
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(4) Compute the maximum difference: The algorithm then computes the maximum difference between
the old value function V(s) and the new value function V ′(s) for all states s ∈ S . This difference
is denoted by ρ.

(5) Update the value function: If ρ is less than a certain threshold, the algorithm stops iterating and
returns the converged value function V(s). Otherwise, the algorithm updates the value function by
setting V(s) = V ′(s) for all states s ∈ S and repeats the iteration. In this work, the iterating ends
once the score goes below a threshold of 80% as advised in Gym-Malware [5].

(6) Derive the optimal policy: Once the value function has converged, the algorithm derives the optimal
policy by choosing the action with the maximum expected value for each state s ∈ S . The optimal
policy is denoted by π ∗ (s) and is computed using the following equation:

π ∗ (s) = argmaxaR(s, a) + γ ∗
∑

s′

P(s, a, s′) ∗ V(s′),

where argmaxa denotes the action that maximizes the expression inside the brackets. The optimal
policy is the agent’s action sequence that results in the final adversarial payload example.

3.3. Classifier

Creating adversarial payload in situations where access to a detection model’s weights is restricted will
always be necessary. In these circumstances, we evaluate our payload on MalConv [19], an end-to-end
deep learning for malicious Windows portable executable file (PE) detection. The MalConv implemen-
tation and training in this work is based on the work [19]. We train MalConv on the Metasploit payloads.
A successful transformation is achieved when MalConv classifier’s an adversarial payload as benign.

3.4. Transformer

By using the strategies offered by Agent, Transformer controls the process of creating examples of
adversarial payload. The Transformer iterates over actions in sequence and performs the corresponding
action on the malware. After a series of editing, the original payload/malware is transformed into its
adversarial version. In our context, these actions are: insert semantic nop no instructions, insert jump
instruction and replace existing instructions inside the input payload file.

Nop no instructions insertion. Formally, this transformation is defined as x∗ = {δ1, δ2, b1, b2, .., bn, δN},
b represent the bytes in the payload file and δ a perturbation in a form of nop no instructions. The
transformation considers nop no instructions as it is the simplest dead code instruction available. The
no-operation instruction is an assemble language instruction that does nothing but yet does not affect the
program logic.

Insert Jump Instruction. This transformation changes the execution flow of the code using the con-
cept of jump instruction insertion. For example, given an instruction in a shellcode, the jump instruction
concept camouflages the instruction by two other normal instructions like MOV, ADD, PUSH, etc. The
key factor is that the camouflaging instruction(s) should have size equal to or more than that of the jump
instruction. This is to ensure that there are enough bytes in the program that can be modified to re-
construct the jump instruction during runtime. The number of additional jump instruction increases with
the number of lines that are permuted, leading to different signatures and different memory mappings.

Replace Existing Instructions. This transformation recreates existing instructions in the payload
file as different instructions with random and unique equivalents while preserving the original malicious
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behavior and also making sure that no static data is left behind to trigger detection. For example, if a MOV

instruction in a payload file with 0xB8 opcode is not changed the file can be detected just by looking
for a 0xB8 opcodes. The transformation will convert each MOV instruction into several ADD, SUB or
XOR instructions that will perform computation of the original immediate value. After replacement, the
instruction is now completely different, but still after the last instruction is executed the original will still
have its value as before.

4. Experiments

The experiment is conducted in a black-box setting and on a Kali GNU/Linux Rolling machine, ver-
sion 2020.4, with Intel Core i5 and a 8GB of RAM. All scripts in our attack framework are implemented
in Python. This experimentation answers three questions:

(1) Can a Dynamic programming search method based static codes transformation attack successfully
leads to a behavior-preserving adversarial attack and evade static Windows based machine learning
(ML) malware scanners?

(2) How transferable is the attack on different static commercial AV engines?
(3) Given that these commercial AVs installed on end users machines frequently use both offline dy-

namic and static detectors, how harmful are these attack to the end user?

4.1. Dataset

For this work, 100 staged Windows payload from Metasploit Framework are used. Due to Metasploit
Framework popularity all if not majority of commercial antivirus systems and machine learning based
detectors are well familiar with their payloads and so prepare their solutions accordingly with signatures
that detect these payload families before they can cause damage.

4.2. Data representation, Transformation methods and Parameters

Nop no instructions insertion, Insert Jump Instruction, and Replace Existing Instructions are three
transformation techniques used in this work. This, we take into account a restricted search space in our
experimental investigation since a bigger search field can result in adversarial payloads that have poorer
evasion rate as could signal malware scanners and search engines to recognize the created adversarial
payload example or might leads to breakages [5, 8, 15, 18]. To that we also limit the length of transfor-
mation sequence to 3 passes, we noticed in the experimentation that beyond the 3rd transformation pass,
the duration of the process increases dramatically.

We believe that in order to achieve a high evasion rate there should be a complete transformation
of the payload file. The transformations in this work can achieve this obfuscation, however, not on the
raw portable executable (PE) file, a practice adopted in state-of-the art attacks; Secml-Malware [16],
MAB-Malware [8], Gym-Malware [5], etc. PE file structure is not flexible, therefore, we conduct our
transformations in a raw shellcode environment. Shellcode format is malleable and can easily support
complete transformation. Usually, Metasploit payloads are scripts, we convert these scripts into raw
shellcode format. If any executable files were also used in our experimentation, they were also converted
to raw shellcode format. A bit of disassembly was used to fingerprint several instruction types in the
shellcode (i.e. particularly when performing the actions such as insert jump instruction and replace
existing instructions inside the input payload file), for that purpose diStorm3 disassembler library was
used.
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Evasive (Er) Insert nop no Instruction Replace Existing Bytes Insert Jump Instruction

ClamAV 94.73% 9/10 9/10 10/10

EMBER 88.98% 6/10 8/10 10/10

Table 1

The evasion rate results under each classifier on 100 staged Windows payloads and the number of evasive adversarial payload
for each classifier under each actions on ten (10) randomly selected samples.

4.3. Evaluation Results

In this section, we report our evaluation results in terms of detection rate and evasive rate: the lower
the detection rate and the higher the evasive rate, the better the proposed method performs because the
adversarial payload produced can better evade detection.

4.3.1. Transferability: evading other Static ML Classifiers

If the generated adversarial payload are transferable, then evading one classifier also imperils the
other one. Here, this transformations are tested if they can pose a threat to other Machine learning based
detectors; ClamAV and EMBER[17]. The performances on the EMBER is evaluated using the same
Evasion Rate (Er) presented in [9, 13]. ClamAV returns benign (0) or malicious (1). Table 1 shows the
evasion strength of the adversarial example on the two popular AI-based classifiers. From the table it
can be seen that, the evasion rate under ClamAV is the highest at 94.73%. The transformation performed
on the payload file achieved high transferability rate on both classifiers.

To reveal which particular action is responsible for majority of the evasion, it is needed to break
the transformation process into several micro-actions: insert nop no instruction, replace existing bytes,
and insert jump instruction. For ClamAV, a simple action like injecting random bytes into the payload
file is an effective action for fooling the classifier. Ember classifier recorded the highest detection rate
compared to ClamAV, detecting 4 out of the 10 malicious samples as shown in Table 1. According to
our experiments, inserting jump instruction and replacing existing bytes, resulted in majority of evasive
samples. These results demonstrate that using these two is sufficient for generating effective adversarial
examples. These classifiers are mostly created to work on specific problem sets, under the presumption
that their training and test data are created from the same statistical distribution. Nevertheless, this pre-
sumption is often dangerously contravene in practical high-stake applications, where our transformation
techniques violates these statistical assumption leading to the evasion rate recorded from these detectors.

4.3.2. Transferability: evading other static commercial scanners

Here, we test the evading capabilities of our attack framework on other commercial Antivirus scan-
ners from VirusTotal.com, a popular online interface for many threat scanners. It is expected that most
of the commercial Antivirus scanners will not be affected by such attacks. A test using five (5) random
malicious samples were performed. We used limited samples for testing since analysis of a file on Virus-
Total API takes time which slowed down the process and the analysis must reflect real-world scenario
as possible. We assume that if our attack framework can successfully obfuscate few samples then the
possibility of it obfuscating many should be high. Figure 2, shows the results of this experiment. From
the table, figures in circle represents the number of antivirus these adversarial examples were able to
bypass. It can be seen that the adversarial example AdvP1 and AdvP4 have the highest evasion rate to
other classifiers with only 14 out of 69 antivirus were able to detect them, even the least AdvP2 scores
29 out of 69 antivirus. VirusTotal does not show the full detection platform for vendors in VirusTotal,
nevertheless, these scanners manifest a weakness against transformations used for this investigation.
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(a) Original1 (b) AdvP1

(c) Original2 (d) AdvP2

(e) Original3 (f) AdvP3

(g) Original4 (h) AdvP4

(i) Original5 (j) AdvP5

Fig. 2. VirusTotal scanned results for five (5) original payloads and their adversarial counterparts.

4.3.3. Functionality Verification

The Cuckoo sandbox is used to verify the behavior of the adversarial example. Cuckoo sandbox gath-

ers sample behavior from the payload and transforms it into understandable descriptive signatures. Each

signature is a text string that encapsulates a particular sample behavior. The behaviors of the transformed

Trojan are compared with the original one, if a transformed Trojan has the same behavior as the original

one, it is considered as an evasive example. The behavior similarity between two example is defined

as the two example sharing the same behavioral functions. Otherwise, it is considered that the trans-

formation has changed the behaviors of the original Trojan making it non-functional. In Figure 3, each

signature in (a) is checked and search to see if the same signature exists in (b). It can be seen that the

adversarial Trojan shares the same behavioral function (i.e NtAllocateMemory) as the original. Never-

theless, even with carefully replacing existing instructions with alternative ones, making sure that no

static data is left behind that may aid in creation of detection signatures, still this work don’t deny the

possibility that some generated adversarial payload might become nonfunctional after the transforma-

tion.

4.3.4. Adversarial Payload Harm to End Users

We determine, how easily these transformation attack bypass commercial antivirus and infect users is

analyzed. It is assumed that the offline behavioral and dynamic malware classifiers of the antivirus will

recognize and stop the adversarial example bypassing the the static-only classifiers when they are exe-

cuted, thus, posing no real harm to the end users. To answer this research question, an adversarial Trojan
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(a)

(b)

Fig. 3. Screenshot of Cuckoo Sandbox analysis showing a transformed Trojan payload (b) with same behavior as the original
(a).

is generated using the proposed transformation attack and test whether the transformed Trojan that evade

static classifier can actually infect users’ machine and create a backdoor to an attacker. The adversarial

Trojan selected was evaluated by the Cuckoo sandbox signature to be functional. In Figure 4 (b), the

Windows 10 antivirus detected and deleted the original Trojan sample (i.e. "virus2.exe contained a virus

and was deleted"). However, adversarial Trojan is the exception. It evade the behavior detector of the

Windows 10 machine and establish a meterpreter connection with the attackers’ machine. In Figure 4(c),
the Windows 10 machine only shows "Unknown Publisher" warning from Windows SmartScreen under

adversarial Trojan attack but does not delete nor stop the meterpreter connection. Windows SmartScreen

is a useful feature built into Windows 8 and 10 to block the download of programs or files from ma-

licious websites or from an Unknown publisher. However, adversarial example could be injected into

legitimate programs with known publisher which will be convincing enough to run. This represents an

attack surface for adversarial example and a recommendation for future antivirus systems. Anti-virus

systems rely on both static and dynamic detection to detect malicious file. However, since static detec-

tors are easy to evade, Antivirus need a robust offline dynamic detection to protect their clients from
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(c) (d)

Fig. 4. Screenshots of the extent to which adversarial example evades antivirus and infect users. (a) The Windows 10 IP
Address of 192.69.56.102. (b) The Windows 10 successfully detects and deletes the original payload. (c) The Windows 10
failed to detect our transformed payload as a malware/virus. (d) A meterpreter connection from the Windows 10 client system
to the attacker.

malicious programs. A popular Windows inbuilt antivirus scanner is tested and it lucks a robust offline

dynamic detection to detect the adversarial example when the example is executed.

AdvP1 AdvP2 AdvP3 AdvP4 AdvP5

Secml_Malware

MAB-Malware
Table 2

VirusTotal detection results for five (5) adversarial payloads from Secml_Malware and MAB-Malware.

4.3.5. Compare with Other Works

To illustrate the advantage of the proposed transformation, it is compare to two available state-of-

the-art black-box Adversarial attacks against PE payload detection framework: Secml-Malware [16]

and MAB-Malware [8]. The Secml-Malware and MAB-Malware generators are evaluated against com-

mercial antivirus on the same five (5) random payload samples used in in Figure 2. Evaluating on five

samples should not be classified as cherry picking since these models are purposely designed to gener-

ate adversarial examples, we assume that if they were successful in generating many examples in their
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original works then the possibility of them being successful on few should be higher. Secondly, another

reason of using few payload samples is due to significantly low response times from VirusTotal API.

To eliminate any future argument of using the wrong settings, this experiment strictly follow the Ad-

versarial payload generation settings presented in the manuals and Github pages of Secml-Malware and

MAB-Malware. Secml-Malware is a plugin for the SecML Python library. It contains many kinds of

attacks, however, in this experiment, only its genetic programming-based black-box attack is utilized.

In the selection step, it supports both confidence score-based selection and hard label-based selection.

It is assumed that the attackers cannot get the confidence score in the threat model generation. So only

the hard label-based attack is evaluated. Secml-Malware only utilizes transformation techniques such as

benign content injection, shifting and appending. Genetic Algorithm is used to find an optimal trans-

formations that will lead to evasion. MAB-Malware is a Reinforcement Learning-based payload ma-

nipulation environment. The payload generation problem is modeled as a classic multi-armed bandit

(MAB) problem, by treating each transformation pair as an independent slot machine. Each machine’s

reward is modeled as a Beta distribution and use Thompson sampling to select the next transformation,

striking a balance between exploitation and exploration. An action is devised to minimization process,

which minimizes an Adversarial by removing redundant actions and further reducing essential actions

into even smaller actions. Rewards are then assigned only to these essential micro-transformations. This

minimization process also helps interpret the root cause of evasions. Readers are referred to the Secml-

Malware and MAB-Malware Python libraries presented in their respective works for full understanding

of implementation. Table 2, presents the screenshots detailing Secml-Malware and MAB-Malware eva-

sion results from antivirus scanners.

Comparing the VirusTotal scanned results in Figure 2 and Table 2, it can be seen that the optimized

transformation greatly improves the evasion rate whiles the Secml-Malware and MAB-Malware genera-

tors barely provides any improvement. The evasion results from Table 2 indicate that the search strategies

used in Secml-Malware and MAB-Malware respectively, does not learn meaningful knowledge to guide

the evasion. These evasive learning process miss other sections in the payload PE file containing static

data that can be easily identified with signature detection. Unlike Secml-Malware and MAB-Malware,

the framework convert the PE file into standard shellcode format and perform the transformation on it.

The effect of the transformation is evasive, since the whole structure of the malicious file is modified

leaving less static data available which might be known by detection engines, hence evading many static

scanners.

4.4. Discussion

The results presented in the previous sections show the worrying nature of adversarial attack. As

the above results confirm that payload classifiers are not efficient in detection these attack strains as

consumers are made to believe. By using a black-box technique, the proposed attack ensures that the

adversarial example preserve it malicious behavior and effective against static payload classifiers.

These classifiers are mostly designed to work on specific problem sets, under the assumption that

their training and test data are generated from the same statistical distribution. However, this assumption

is often dangerously violated in practical high-stake applications, where the complete transformation

violates these statistical assumption leading to the high evasion rate recorded from these classifiers. The

results of the harm to end users (Figure 3) can be considered in many cases, catastrophic. Malware

detectors, needs a strong offline dynamic detection to safeguard their clients from malicious programs

because static detectors are simple to evade. During testing, a well-known Windows-based antivirus
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program failed to detect the adversarial payload when it was actually being executed. Nevertheless, the

generated payload samples can also be used to train classifiers and detectors because both dynamic and

static features can be extracted from these payload strains.

5. Conclusion

This study provides an argument to use Dynamic Programming to optimize code transformations

techniques to generate adversarial payload. These transformations were evaluated on staged Windows

payload samples from Metasploit Framework. The transformed payload samples were tested on static

ML classifiers such as EMBER, ClamAV, and static commercial antivirus scanners on VirusTotal. The

adversarial payload achieved high evasion rate on all classifiers and commercial antivirus systems. They

were able to bypass many popular antivirus scanners whiles preserving their behavior. The future works

intent to increase the sample size, and also include non-staged payloads samples with larger file size,

dynamic analysis and seek for stealthy examples.
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