Dynamic Programming for

Linear Time Incremental Parsing

Liang Huang
Information Sciences Institute
University of Southern California

Kenji Sagae
Institute for Creative Technologies
University of Southern California

IST USC

ACL 2010, Uppsala, Sweden, July 2010 (slightly expanded) e on o




Ambiguities in Parsing
AN A

| feed cats nearby in the garden..

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY

DP for Incremental Parsing (Huang and Sagae) 2



Ambiguities in Parsing
SN\ A

| feed cats nearby in the garden..

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY

DP for Incremental Parsing (Huang and Sagae) 2



Ambiguities in Parsing

| feed cats nearby in he garden

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY

DP for Incremental Parsing (Huang and Sagae) 2



Ambiguities in Parsing

N AN A

| feed cats nearby in he garden ...

—

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY

DP for Incremental Parsing (Huang and Sagae) 2



But full DP is too slow...

| feed cats nearby in the garden ..

—
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)

DP for Incremental Parsing (Huang and Sagae) 3



But full DP is too slow...

| feed cats nearby in the garden ..

—
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)
® how about incremental parsing then?
® yes, but only with greedy search (accuracy suffers)

® explores tiny fraction of trees (even w/ beam search)

DP for Incremental Parsing (Huang and Sagae) 3



But full DP is too slow...

| feed cats nearby in the garden ...

—
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)
® how about incremental parsing then!?

® yes, but only with greedy search (accuracy suffers)

® explores tiny fraction of trees (even w/ beam search)
® can we combine the merits of both approaches!?

® a fast, incremental parser with dynamic programming!?

® explores exponentially many trees in linear-time!?

DP for Incremental Parsing (Huang and Sagae) 3



Linear-Time Incremental DP

ettty incremental parsing

search (e.g. shift-reduce)
@ (Nivre 04; Collins/Roark 04;...)

this work: full DP

principled fast shift-reduce parsing (e.g. CKY)

search

©

with dynamic programming | (Eisner 96; Collins 99;...)

fast © slow )
(linear-time) (cubic-time)

DP for Incremental Parsing (Huang and Sagae) 4



Preview of the Results

® very fast linear-time dynamic programming parser

® best reported dependency accuracy on PTB/CTB

® explores exponentially many trees (and outputs forest)

o o o o
° L]

parsing time (secs)

l I
ot

0O 10 20 30 40 50 60 70

sentence length

[} [} L] [}
o N = (o)) oo - N =
|

DP for Incremental Parsing (Huang and Sagae) 5



Preview of the Results

® very fast linear-time dynamic programming parser

® best reported dependency accuracy on PTB/CTB

® explores exponentially many trees (and outputs forest)

1.4 I T 1 i I**l:
n .m I\w
o 1.2 F S 9
0 £ K:
ol - %
.,_' EI
Y 0.6 R
2 :
5 0.4 | _
0.2 [, work
Q—' = B I =

0 10 20 30 40 50 60 70
sentence length

DP for Incremental Parsing (Huang and Sagae) 5



parsing time (secs)

DP for Incremental Parsing (Huang and Sagae)

o o o o
° L]

very fast linear-time c

best reported depenc

Preview of the Results

ynhamic programming parser

ency accuracy on PTB/CTB

explores exponentially many trees (and outputs forest)

[} [} L] [}
o N = (o)) oo - N =

0

T 1
g
£
<

U

l I
ot

10 20 30 40 50 60 70

sentence length

1010

108

 non=-DP beam search
I I I I I I -

10 20 30 40 50 60 70

sentence length



Qutline

® |ncremental (Shift-Reduce) Parsing
® Dynamic Programming for Incremental Parsing

® Experiments

DP for Incremental Parsing (Huang and Sagae)



Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack

DP for Incremental Parsing (Huang and Sagae)

queue

| feed cats ...




Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
I shift feed cats nearby ...

DP for Incremental Parsing (Huang and Sagae)




Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
| shift | feed cats nearby ...
2 shift | feed cats nearby in ...

DP for Incremental Parsing (Huang and Sagae)




Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
| shift | feed cats nearby ...
2 shift | feed cats nearby in ...
3 l-reduce yfeed cats nearby in ...

DP for Incremental Parsing (Huang and Sagae) 10



Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack
0 -
I shift |
2 shift | feed
3 l-reduce Kfeed
4 shift feed cats

_k

DP for Incremental Parsing (Huang and Sagae)

queue

| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...




Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
| shift | feed cats nearby ...
2 shift | feed cats nearby in ...
3 l-reduce yfeed cats nearby in ...
4 shift _ieed cats nearby in the ...
°a  r-reduce nearby in the ...

DP for Incremental Parsing (Huang and Sagae) 12



Shift-Reduce Parsing

| feed cats nearby in the garden.

queue

| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

action stack
0 i}
I shift |
2 shift | feed
3 l-reduce feed
4 shift feed cats

_k

5a r-reduce feed |
5b shift 1kfeed cats nearby

DP for Incremental Parsing (Huang and Sagae)

in the garden ...

|3




Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack
0 B}
I shift |
2 shift | feed
3 l-reduce gfee‘j
hift feed cat
shi 1kee ca s\

| shift-reduce

5a r-reduce feed | conflict

| cats

5b shift 1kfeed cats nearby
|

DP for Incremental Parsing (Huang and Sagae)

queue

| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

|4




Choosing Parser Actions

+ stack queue — + stack queue —

.. \feed cats in'the garden ...
) " .. S2 [ SI So| qo/qI ..
features: A A
(so.w, , 4o, ...) = (cats, ,in, ...)

® score each action using features f and weights w

® features are drawn from a local window
abstraction (or signature) of a state -- this inspires DP!

® weights trained by structured perceptron (Collins 02)

DP for Incremental Parsing (Huang and Sagae) 15



Greedy Search

® each state => three new states (shift, I-reduce, r-reduce)

® search space should be exponential

® greedy search: always pick the best next state

DP for Incremental Parsing (Huang and Sagae) 16



Greedy Search

® each state => three new states (shift, I-reduce, r-reduce)

® search space should be exponential

® greedy search: always pick the best next state

DP for Incremental Parsing (Huang and Sagae) |7



Beam Search

® each state => three new states (shift, I-reduce, r-reduce)

® search space should be exponential

® beam search: always keep top-b states

DP for Incremental Parsing (Huang and Sagae) 18



Dynamic Programming

® cach state => three new states (shift, I-reduce, r-reduce)

® key idea of DP: share common subproblems

® merge equivalent states => polynomial space

DP for Incremental Parsing (Huang and Sagae) 19



Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

o
<52 4B
<Z=

“graph-structured stack” (Tomita, | 988)

DP for Incremental Parsing (Huang and Sagae)

20



Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

=

“graph-structured stack” (Tomita, | 988)

DP for Incremental Parsing (Huang and Sagae)

‘/"

21



Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

each DP state corresponds to
exponentially many non-DP states

=7

“graph-structured stack” (Tomita, | 988)

DP for Incremental Parsing (Huang and Sagae)

0
<o -

21



Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

each DP state corresponds to 1010 — T
exponentially many non-DP states . Qo"' ; +
10° i 7
| o i
/7 % 10°
—_— —) 2 / 10*

,. non-DP beam search’

0O 10 20 30 40 50 60 70

“graph-structured stack” (Tomita, | 988)

DP for Incremental Parsing (Huang and Sagae)

sentence length
22



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

S2 KZ

qo qi ...

DP for Incremental Parsing (Huang and Sagae) 23



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

S2 KiAO

assume features only
look at root of so

qo qi ...

DP for Incremental Parsing (Huang and Sagae) 23



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

S2 KiAO

assume features only
look at root of so

qo qi ...

two states are equivalent
if they agree on root of so

DP for Incremental Parsing (Huang and Sagae) 23



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

qo qi ...

® shift-reduce conflict: S2 1 S0
o ueed cats|nearby in the garden A

sh re sh assume features only
m ... feed |—{feed —)[ cats
look at root of sg

® I .
ueed cats|nearby in the garden . equivalent

if they agree on root of so

DP for Incremental Parsing (Huang and Sagae) 23



Merging

Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost

® shift-reduce conflict:

° ueed cats nearby

° ‘ feed \ nearby

+ stack queue —

qo qi ...

. S2 SISO
in the garden A K

& ... nearby

... cats

—
€. feed

in the garden

DP for Incremental Parsing (Huang and Sagae) 24



Merging

Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost

® shift-reduce conflict:

° ueed cats nearby

° ‘ feed \ nearby

+ stack queue —

qo qi ...

e S2 S| SO
in the garden A K

& ... nearby

... cats

—
€. feed

in the garden

DP for Incremental Parsing (Huang and Sagae) 24



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

qo qi ...

® shift-reduce conflict:

e S2 S| SO
° ueed catsJ in the garden A K

re
&y ... hearby |—|... cats

... cats

T h
€. . feed S—) ... nearby

° \_“l‘eed.Sk nearby|(in the garden

DP for Incremental Parsing (Huang and Sagae) 25



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

w S2 S
® | feed in the garden A K

® shift-reduce conflict: so |/qoqi -
re

& ... nearby 5. cats — ... feed

... cats

T h
1. feed S—) ... nearby E) ... feed

feed,
Y
° ‘ feed | in the garden

DP for Incremental Parsing (Huang and Sagae) 26




Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

w S2 S
® | feed in the garden A K

® shift-reduce conflict: so |/qoqi -
re

& ... nearby 5. cats — ... feed

... cats

T h
1. feed S—) ... nearby E) ... feed

feed,
Y
° ‘ feed | in the garden

DP for Incremental Parsing (Huang and Sagae) 26




Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: .. S2 SI/ so|/qoqI ..
° ‘ feed \ in the garden A K
'Y &y ... nearby 5|, cats Qu
Ao |...cats - N P feed
"¢"|...feed| —>|... nearby| "¢
° ‘ feed | in the garden

DP for Incremental Parsing (Huang and Sagae) 27



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e 52 1 S0 |/qoq1 ...
° ‘ feed \ in the garden K
L Shy!... nearby 5|... cats|re
Nearby\ | cats < X > ... feed
" feed| >> ... nearby| "¢

° ‘ feed | in the garden

nearby
(local) ambiguity-packing!

DP for Incremental Parsing (Huang and Sagae) 27



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e S2 1 S0 |/qo q1 ..
® | feed in[the garden K
h Y &y ... nearby 5|, cats X
4. |...Cats - 1 / .. feed
" feed| > ... nearby| "¢ sh
® | feed in|the garden - 1N

DP for Incremental Parsing (Huang and Sagae) 28



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

qo qi ...

® shift-reduce conflict: S1 (S0
® | feed in[the garden A K
b 'Y & ... nearby 5|, cats Q;
... cats - N P feed
"©"...feed|—>|...nearby[ "¢ sh
® | feed in|the garden

DP for Incremental Parsing (Huang and Sagae)

xfr

graph structured stack

... in




Theory: Polynomial-Time DP

+ stack queue —

eof S2 SI S0

® this DP is exact and polynomial-time if features are:

qo/qi ...

® a) bounded -- for polynomial time
® features can only look at a local window
® b) monotonic -- for correctness (optimal substructure)

® features should draw no more info from trees farther
away from stack top than from trees closer to top

® both are intuitive: a) always true; b) almost always true

DP for Incremental Parsing (Huang and Sagae) 29



Theory: Monotonic History

® related: grammar refinement by annotation (Johnson, 1998)
® annotate vertical context history (e.g., parent)

® monotonicity: can’t annotate grand-parent without
annotating the parent (otherwise DP would fail)

® our features: left-context history instead of vertical-context
® similarly, can’t annotate s2 without annotating s

® but we can always design “minimum monotonic superset”

srand-parent

DP for Incremental Parsing (Huang and Sagae) 30



Related Work

® Graph-Structured Stack (Tomita 88): Generalized LR
® GSSis just a chart viewed from left to right (e.g. Earley 70)
® this line of work started w/ Lang (1974); stuck since 1990
® b/c explicit LR table is impossible with modern grammars

® general idea: compile CFG parse chart to FSAs (e.g. our beam)

DP for Incremental Parsing (Huang and Sagae) 31



Related Work

® Graph-Structured Stack (Tomita 88): Generalized LR

® GSSis just a chart viewed from left to right (e.g. Earley 70)

® this line of work started w/ Lang (1974); stuck since 1990

® b/c explicit LR table is impossible with modern grammars

® general idea: compile CFG parse chart to FSAs (e.g. our beam)
® We revived and advanced this line of work in two aspects

® theoretical: implicit LR table based on features
merge and split on-the-fly; no pre-compilation needed
monotonic feature functions guarantee correctness (new)
® practical: achieved linear-time performance with pruning

DP for Incremental Parsing (Huang and Sagae) 31



Experiments



Speed Comparison

® 5 times faster with the same parsing accuracy

93.1
93
g 929 [~
2 :
< Q2.7 __% e e R
£ 926 .
§ 92.5 | .
' 924 Hrrm s -
92.3 non-gg R
92.2 o | | ] | | ]

0 005 0.1 0.15 0.2 0.25 0.3 0.35
time (hours)

DP for Incremental Parsing (Huang and Sagae)

33



Correlation of Search and Parsing

® better search quality <=> better parsing accuracy

O
W
=

O
w
I

92.
92.
92.
92.
92.
92.
92.
92.

Dp —&—

non-DP
| | | | |

236523702375 23802385 23902395

average model score

dependency accuracy

N W b O O 9 00O O
I
|

DP for Incremental Parsing (Huang and Sagae) 34



Search Space: Exponential

10
- 10 | | | | I —
o - &L
2 10 8 L Qo . I+ + o
ol oo + +$ +++ +4 +¢H + + +
a<) i +Q+i$++5;:-___+=|= +I+*IL_+ -
6 < T 4 it +
n 10 — Q.. + ¥ B :|:+++ _
O o + +F
0] i . : _
t 4 + +I + ++
HC_) 1 O B T 1-__: ++ ++ =
L "1:‘_:_'¢ N
— B :I-"'E T+ -
() 2 i
-g 10™ |
= N non-DP: fixed (beam-width)
c 1 O 0 L~ | | | | | | .

0O 10 20 30 40 50 60 70

sentence length

DP for Incremental Parsing (Huang and Sagae)



N-Best / Forest Oracles

99
98
97
96

oracle precision

95
94
93

|

|

1 | |
DP forest oracle (98.15)

(b) oracle precision on dev

DP fOI" IIILIt:IIIt:IILdI rarsing (riudiig diid odgdec)

36



Better Search => Better Learning

® DP leads to faster and better learning w/ perceptron

A T

€ PO L e =

8 03 |- /_,,'6‘-9.4-)-6»18"“{' i | Teee o

5 1M

S 923 7/ "

= ¢

> 92 |-/ J

o .'

& 915 :

o |

% 91 7 Db — .

2 90.5 | ; : lnon-I)lP 1 "
0 4 8 12 16 20 24

hours

DP for Incremental Parsing (Huang and Sagae) 37



Learning Details: Early Updates

® greedy search: update at first error (Collins/Roark 04)
® beam search: update when gold is pruned (Zhang/Clark 08)

® DP search: also update when gold is “merged” (new!)

® b/c we know gold can’t make to the top again

it | updates early% time | updates early% time

1 31943 989 22 31189 87.7 29
27311 988 29 26324 809 37

5 20236 98.3 38 19027 703 47

17 8683 97.1 48 7434 495 60

3715 972 31 4676 412 65

~ ~

DP for Incre 38



Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers

1 o 4 | T +T -;-_'_T " :+ B X I
—_ + . $+ + +¢=|=++++++ + » »
A TR LT ii T F K+
o 1.2 " _
q) E
n 1 )
Q el
e 0.8 o -
'l_l E 2
Y 0.6 B
% 5
'l_l O ® 4 —
n
5 0.2 _
Q-| = _,..u;;|munn_n;"""'"'"""""“""“""" 2l I S0 m

O — o

O 10 20 30 40 50 60 70

sentence length

DP for Incremental Parsing (Huang and Sagae) 39



Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers

1.4 |
O 1.2 ‘g ]
’ &
2 1 g

Bl

Q

0.8
g Enﬂmég‘
+ 0.6 o
@ a|
S 0.4 " ]
% =30 -l ??..":; =
g, O this work

O 10 20 30 40 50 60 70

sentence length

DP for Incremental Parsing (Huang and Sagae) 39



Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers

O(n*°) O(n24)
- l ) 4 ! o 1 g ! :;"'T ¢l+l.:j+ |+_,_ Kok ;L w&
n + Vi ++ 4+t +¢i I J ;K@K &
@) 1 ° 2 B + "':+;+ ++ +'¢$ +=|= + x% g |
Q L+ B * K5
2 @ 7 . +¥ Hﬁ%‘xm&
~— 1 | )
Q

2 -
5 0.8 |- Efméa‘ o
-|-) O ° 6 [ ] EIEI v
@ |
5 0.4 ]
g 021 this workl O(n)

™ . , T CHEEE T
Q-| O ‘;_—:—: : --_..ﬂu;;unn_nnnun;aunuunu--uun----uuuun_n = I

O 10 20 30 40 50 60 70

sentence length

DP for Incremental Parsing (Huang and Sagae) 39



Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 | O(n?) | exponential
- O(n*) | exponential

0.11 O(n) constant

0.04 O(n) | exponential

McDonald et al 05 - MST
Koo et al 08 baseline*

Zhang & Clark 08 single

this work

89 91 93

DP for Incremental Parsing (Huang and Sagae)



Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

McDonald et al 05 - MST 0.12 | O(n?) | exponential

Koo et al 08 baseline™ - O(n4) exponential

Zhang & Clark 08 single 0.11 O(n) constant
this work 0.04 O(n) | exponential
Charniak 00 049 | O(n*°) | exponential
Petrov & Klein 07 0.21 | O(n**) | exponential
89 91 93

DP for Incremental Parsing (Huang and Sagae)



Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 | O(n?) | exponential

McDonald et al 05 - MST

Koo et al 08 baseline™ - O(n4) exponential

Zhang & Clark 08 single 0.11 O(n) constant
this work 0.04 O(n) | exponential
Charniak 00 049 | O(n*°) | exponential
Petrov & Klein 07 0.21 | O(n**) | exponential
89 91 93

DP for Incremental Parsing (Huang and Sagae) *at this ACL: Koo & Collins 10:93.0 with O(n4) ‘



Final Results on Chinese

® also the best parsing accuracy on Chinese
® Penn Chinese Treebank (CTB 5)

® all numbers below use gold-standard POS tags

B word
B non-root

Duan et al. 2007 " root

Zhang & Clark 08 (single)

this work

DP for Incremental Parsing (Huang and Sagae)

4]



Conclusion

greedy
search

incremental
parsing
(e.g. shift-reduce)

principled
search

=
Ov

fast

(linear-time)

DP for Incremental Parsing (Huang and Sagae)

full dynamic
programming
(e.g. CKY)

slow
(cubic-time)

42



Conclusion

incremental
greedy .
search parsing
(e.g. shift-reduce)
=
linear-time

principled

search w/ dynamic programming

fast

(linear-time)

DP for Incremental Parsing (Huang and Sagae)

full dynamic

(e.g. CKY)

slow
(cubic-time)

shift-reduce parsing @programming

42




Thank You

® a general theory of DP for shift-reduce parsing

® as long as features are bounded and monotonic

® fast,accurate DP parser release coming soon:

® http://www.isi.edu/~1huang

® http://www.ict.usc.edu/~sagae

e future work
® adapt to constituency parsing (straightforward)

® other grammar formalisms like CCG and TAG

® integrate POS tagging into the parser

DP for Incremental Parsing (Huang and Sagae)

43


http://www.isi.edu/~lhuang
http://www.isi.edu/~lhuang
http://www.ict.usc.edu/~sagae
http://www.ict.usc.edu/~sagae

