
Dynamic Programming for

Linear Time Incremental Parsing

Kenji Sagae
Institute for Creative Technologies

University of Southern California

Liang Huang
Information Sciences Institute

University of Southern California

ACL 2010, Uppsala, Sweden, July 2010 (slightly expanded)

DP for Incremental Parsing (Huang and Sagae)

Ambiguities in Parsing

I feed cats nearby in the garden ...

• let’s focus on dependency structures for simplicity

• ambiguous attachments of nearby and in

• ambiguity explodes exponentially with sentence length

• must design efficient (polynomial) search algorithm

• typically using dynamic programming (DP); e.g. CKY

2

DP for Incremental Parsing (Huang and Sagae)

Ambiguities in Parsing

I feed cats nearby in the garden ...

• let’s focus on dependency structures for simplicity

• ambiguous attachments of nearby and in

• ambiguity explodes exponentially with sentence length

• must design efficient (polynomial) search algorithm

• typically using dynamic programming (DP); e.g. CKY

2

DP for Incremental Parsing (Huang and Sagae)

Ambiguities in Parsing

I feed cats nearby in the garden ...

• let’s focus on dependency structures for simplicity

• ambiguous attachments of nearby and in

• ambiguity explodes exponentially with sentence length

• must design efficient (polynomial) search algorithm

• typically using dynamic programming (DP); e.g. CKY

2

DP for Incremental Parsing (Huang and Sagae)

Ambiguities in Parsing

I feed cats nearby in the garden ...

• let’s focus on dependency structures for simplicity

• ambiguous attachments of nearby and in

• ambiguity explodes exponentially with sentence length

• must design efficient (polynomial) search algorithm

• typically using dynamic programming (DP); e.g. CKY

2

DP for Incremental Parsing (Huang and Sagae)

But full DP is too slow...

3

I feed cats nearby in the garden ...

• full DP (like CKY) is too slow (cubic-time)

• while human parsing is fast & incremental (linear-time)

DP for Incremental Parsing (Huang and Sagae)

But full DP is too slow...

3

I feed cats nearby in the garden ...

• full DP (like CKY) is too slow (cubic-time)

• while human parsing is fast & incremental (linear-time)

• how about incremental parsing then?

• yes, but only with greedy search (accuracy suffers)

• explores tiny fraction of trees (even w/ beam search)

DP for Incremental Parsing (Huang and Sagae)

But full DP is too slow...

3

I feed cats nearby in the garden ...

• full DP (like CKY) is too slow (cubic-time)

• while human parsing is fast & incremental (linear-time)

• how about incremental parsing then?

• yes, but only with greedy search (accuracy suffers)

• explores tiny fraction of trees (even w/ beam search)

• can we combine the merits of both approaches?

• a fast, incremental parser with dynamic programming?

• explores exponentially many trees in linear-time?

DP for Incremental Parsing (Huang and Sagae)

Linear-Time Incremental DP

4

greedy
search

principled
search

incremental parsing
(e.g. shift-reduce)

(Nivre 04; Collins/Roark 04; ...)

this work:

fast shift-reduce parsing

with dynamic programming

full DP
(e.g. CKY)

(Eisner 96; Collins 99; ...)

fast
(linear-time)

slow
(cubic-time)

☹☺
☺

☹

DP for Incremental Parsing (Huang and Sagae)

Preview of the Results

• very fast linear-time dynamic programming parser

• best reported dependency accuracy on PTB/CTB

• explores exponentially many trees (and outputs forest)

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

p
a
r
s
i
n
g

t
i
m
e

(
s
e
c
s
)

sentence length

DP for Incremental Parsing (Huang and Sagae)

Preview of the Results

• very fast linear-time dynamic programming parser

• best reported dependency accuracy on PTB/CTB

• explores exponentially many trees (and outputs forest)

5

C
h

a
rn

ia
k

B
e
rk

e
le

y
M

ST

this work

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

p
a
r
s
i
n
g

t
i
m
e

(
s
e
c
s
)

sentence length

DP for Incremental Parsing (Huang and Sagae)

Preview of the Results

• very fast linear-time dynamic programming parser

• best reported dependency accuracy on PTB/CTB

• explores exponentially many trees (and outputs forest)

5

C
h

a
rn

ia
k

B
e
rk

e
le

y
M

ST

this work

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

p
a
r
s
i
n
g

t
i
m
e

(
s
e
c
s
)

sentence length

10
0

10
2

10
4

10
6

10
8

10
10

 0 10 20 30 40 50 60 70

sentence length

D
P: e

xponen
ti
al

non-DP beam search

DP for Incremental Parsing (Huang and Sagae)

Outline

• Motivation

• Incremental (Shift-Reduce) Parsing

• Dynamic Programming for Incremental Parsing

• Experiments

6

DP for Incremental Parsing (Huang and Sagae)

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

7

action stack queue

I feed cats nearby in the garden.

0 -

DP for Incremental Parsing (Huang and Sagae)

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

8

action stack queue

I feed cats nearby in the garden.

I

0 -

1 shift

DP for Incremental Parsing (Huang and Sagae)

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

9

action stack queue

I feed cats nearby in the garden.

I feed

I

0 -

1 shift

2 shift

DP for Incremental Parsing (Huang and Sagae)

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

10

action stack queue

I feed cats nearby in the garden.

I feed

I

 feed

I

0 -

1 shift

2 shift

3 l-reduce

DP for Incremental Parsing (Huang and Sagae)

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

Shift-Reduce Parsing

11

action stack queue

I feed cats nearby in the garden.

I feed

I

 feed

I

 feed cats

I

0 -

1 shift

2 shift

3 l-reduce

4 shift

DP for Incremental Parsing (Huang and Sagae)

Shift-Reduce Parsing

12

action stack queue

I feed cats nearby in the garden.

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

I feed

I

 feed

I

 feed cats

I

 feed

I cats

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

DP for Incremental Parsing (Huang and Sagae)

Shift-Reduce Parsing

13

action stack queue

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

I feed cats nearby in the garden.

I feed

I

 feed

I

 feed cats

I

 feed

I cats

 feed cats nearby

I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

DP for Incremental Parsing (Huang and Sagae)

Shift-Reduce Parsing

14

action stack queue

shift-reduce
conflict

I feed cats nearby in the garden.

I feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

in the garden ...

I feed

I

 feed

I

 feed cats

I

 feed

I cats

 feed cats nearby

I

0 -

1 shift

2 shift

3 l-reduce

4 shift

5a r-reduce

5b shift

DP for Incremental Parsing (Huang and Sagae)

Choosing Parser Actions

• score each action using features f and weights w

• features are drawn from a local window

• abstraction (or signature) of a state -- this inspires DP!

• weights trained by structured perceptron (Collins 02)

15

 ... s2 s1 s0 q0 q1 ...

← stack queue →← stack queue →

features:

(s0.w, s0.rc, q0, ...) = (cats, nearby, in, ...)

 ... feed cats

I nearby

in the garden ...

DP for Incremental Parsing (Huang and Sagae)

Greedy Search

16

• each state => three new states (shift, l-reduce, r-reduce)

• search space should be exponential

• greedy search: always pick the best next state

DP for Incremental Parsing (Huang and Sagae)

Greedy Search

17

• each state => three new states (shift, l-reduce, r-reduce)

• search space should be exponential

• greedy search: always pick the best next state

DP for Incremental Parsing (Huang and Sagae)

 Beam Search

18

• each state => three new states (shift, l-reduce, r-reduce)

• search space should be exponential

• beam search: always keep top-b states

DP for Incremental Parsing (Huang and Sagae)

Dynamic Programming

• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

19

DP for Incremental Parsing (Huang and Sagae)

Dynamic Programming

• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

20

“graph-structured stack” (Tomita, 1988)

DP for Incremental Parsing (Huang and Sagae)

Dynamic Programming

• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

21

“graph-structured stack” (Tomita, 1988)

DP for Incremental Parsing (Huang and Sagae)

Dynamic Programming

• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

21

“graph-structured stack” (Tomita, 1988)

each DP state corresponds to
exponentially many non-DP states

DP for Incremental Parsing (Huang and Sagae)

Dynamic Programming

• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space

22

“graph-structured stack” (Tomita, 1988)

10
0

10
2

10
4

10
6

10
8

10
10

 0 10 20 30 40 50 60 70

sentence length

D
P: e

xponen
ti
al

non-DP beam search

each DP state corresponds to
exponentially many non-DP states

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I

23

 ... s2 s1 s0 q0 q1 ...

← stack queue →

... cats
re

feed... feedI
shsh

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I

23

 ... s2 s1 s0 q0 q1 ...

← stack queue →

... cats
re

feed... feedI
shsh assume features only

look at root of s0

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I

23

 ... s2 s1 s0 q0 q1 ...

← stack queue →

... cats
re

feed... feedI
shsh assume features only

look at root of s0

two states are equivalent
if they agree on root of s0

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I

23

 ... s2 s1 s0 q0 q1 ...

← stack queue →

... cats
re

feed... feedI
shsh assume features only

look at root of s0

two states are equivalent
if they agree on root of s0

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I cats

24

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

...

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I

• feed cats nearby in the garden
I cats

24

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

...

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed cats nearby in the garden
I nearby

• feed cats nearby in the garden
I cats

25

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats

sh
... nearby

...

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats

 nearby

• feed in the garden
I cats nearby

26

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats ... feedre

... feed
resh

... nearby

...

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats

 nearby

• feed in the garden
I cats nearby

26

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats ... feedre

... feed
resh

... nearby

...

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats

 nearby

• feed in the garden
I cats nearby

27

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats re

... feed
resh

... nearby

...

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats

 nearby

• feed in the garden
I cats nearby

27

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats re

... feed
resh

... nearby

...

(local) ambiguity-packing!

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats

 nearby

• feed in the garden
I cats nearby

28

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats re

... feed
resh

... nearby
... in

sh

...

DP for Incremental Parsing (Huang and Sagae)

Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

• feed in the garden
I cats

 nearby

• feed in the garden
I cats nearby

28

 ... s2 s1 s0 q0 q1 ...

← stack queue →

sh

re
... cats

... nearby

... feed

re
... cats re

... feed
resh

... nearby
... in

sh

...

graph-structured stack

DP for Incremental Parsing (Huang and Sagae)

Theory: Polynomial-Time DP

• this DP is exact and polynomial-time if features are:

• a) bounded -- for polynomial time

• features can only look at a local window

• b) monotonic -- for correctness (optimal substructure)

• features should draw no more info from trees farther
away from stack top than from trees closer to top

• both are intuitive: a) always true; b) almost always true
29

 ... s2 s1 s0 q0 q1 ...

← stack queue →

DP for Incremental Parsing (Huang and Sagae)

Theory: Monotonic History

• related: grammar refinement by annotation (Johnson, 1998)

• annotate vertical context history (e.g., parent)

• monotonicity: can’t annotate grand-parent without
annotating the parent (otherwise DP would fail)

• our features: left-context history instead of vertical-context

• similarly, can’t annotate s2 without annotating s1

• but we can always design “minimum monotonic superset”

30

parent

grand-parent

s1

s2

s0

stack

DP for Incremental Parsing (Huang and Sagae)

Related Work

• Graph-Structured Stack (Tomita 88): Generalized LR

• GSS is just a chart viewed from left to right (e.g. Earley 70)

• this line of work started w/ Lang (1974); stuck since 1990

• b/c explicit LR table is impossible with modern grammars

• general idea: compile CFG parse chart to FSAs (e.g. our beam)

31

DP for Incremental Parsing (Huang and Sagae)

Related Work

• Graph-Structured Stack (Tomita 88): Generalized LR

• GSS is just a chart viewed from left to right (e.g. Earley 70)

• this line of work started w/ Lang (1974); stuck since 1990

• b/c explicit LR table is impossible with modern grammars

• general idea: compile CFG parse chart to FSAs (e.g. our beam)

• We revived and advanced this line of work in two aspects

• theoretical: implicit LR table based on features

• merge and split on-the-fly; no pre-compilation needed

• monotonic feature functions guarantee correctness (new)

• practical: achieved linear-time performance with pruning

31

Experiments

DP for Incremental Parsing (Huang and Sagae)

Speed Comparison

33

• 5 times faster with the same parsing accuracy

time (hours)

non-DPDP

DP for Incremental Parsing (Huang and Sagae)

Correlation of Search and Parsing

34

 92.2

 92.3

 92.4

 92.5

 92.6

 92.7

 92.8

 92.9

 93

 93.1

 2365 2370 2375 2380 2385 2390 2395

d
e
p
e
n
d
e
n
c
y

a
c
c
u
r
a
c
y

average model score

DP
non-DP

• better search quality <=> better parsing accuracy

DP for Incremental Parsing (Huang and Sagae)

Search Space: Exponential

35

10
0

10
2

10
4

10
6

10
8

10
10

 0 10 20 30 40 50 60 70

sentence length

D
P: e

xponen
ti
al

non-DP: fixed (beam-width)n
u
m

b
er

 o
f
tr

ee
s

ex
p
lo

re
d

DP for Incremental Parsing (Huang and Sagae)

N-Best / Forest Oracles

36

DP forest oracle (98.15)

DP k-best in forest

no
n-

D
P

k-
be

st

in
 b

ea
m

DP for Incremental Parsing (Huang and Sagae)

Better Search => Better Learning

37

• DP leads to faster and better learning w/ perceptron

DP for Incremental Parsing (Huang and Sagae)

Learning Details: Early Updates

• greedy search: update at first error (Collins/Roark 04)

• beam search: update when gold is pruned (Zhang/Clark 08)

• DP search: also update when gold is “merged” (new!)

• b/c we know gold can’t make to the top again

38

DP for Incremental Parsing (Huang and Sagae)

Parsing Time vs. Sentence Length

39

• parsing speed (scatter plot) compared to other parsers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

p
a
r
s
i
n
g

t
i
m
e

(
s
e
c
s
)

sentence length

DP for Incremental Parsing (Huang and Sagae)

Parsing Time vs. Sentence Length

39

• parsing speed (scatter plot) compared to other parsers

C
h

a
rn

ia
k

B
e
rk

e
le

y
M

ST

this work

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

p
a
r
s
i
n
g

t
i
m
e

(
s
e
c
s
)

sentence length

DP for Incremental Parsing (Huang and Sagae)

Parsing Time vs. Sentence Length

39

• parsing speed (scatter plot) compared to other parsers

C
h

a
rn

ia
k

B
e
rk

e
le

y
M

ST

this work

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

p
a
r
s
i
n
g

t
i
m
e

(
s
e
c
s
)

sentence length

O(n2)

O(n)

O(n2.4)O(n2.5)

DP for Incremental Parsing (Huang and Sagae)

Final Results

• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 O(n2) exponential

- O(n4) exponential

0.11 O(n) constant

0.04 O(n) exponential

0.49 O(n2.5) exponential

0.21 O(n2.4) exponential

McDonald et al 05 - MST

Koo et al 08 baseline*

Zhang & Clark 08 single

this work

Charniak 00

Petrov & Klein 07

89 91 93

92.4

92.5

92.1

91.4

92.0

90.2

DP for Incremental Parsing (Huang and Sagae)

Final Results

• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 O(n2) exponential

- O(n4) exponential

0.11 O(n) constant

0.04 O(n) exponential

0.49 O(n2.5) exponential

0.21 O(n2.4) exponential

McDonald et al 05 - MST

Koo et al 08 baseline*

Zhang & Clark 08 single

this work

Charniak 00

Petrov & Klein 07

89 91 93

92.4

92.5

92.1

91.4

92.0

90.2

DP for Incremental Parsing (Huang and Sagae)

Final Results

• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 O(n2) exponential

- O(n4) exponential

0.11 O(n) constant

0.04 O(n) exponential

0.49 O(n2.5) exponential

0.21 O(n2.4) exponential

McDonald et al 05 - MST

Koo et al 08 baseline*

Zhang & Clark 08 single

this work

Charniak 00

Petrov & Klein 07

89 91 93

92.4

92.5

92.1

91.4

92.0

90.2

*at this ACL: Koo & Collins 10: 93.0 with O(n4)

DP for Incremental Parsing (Huang and Sagae)

Final Results on Chinese

• also the best parsing accuracy on Chinese

• Penn Chinese Treebank (CTB 5)

• all numbers below use gold-standard POS tags

41

Duan et al. 2007

Zhang & Clark 08 (single)

this work

70 85

78.3

76.7

73.7

85.5

84.7

84.4

85.2

84.3

83.9 word
non-root
root

DP for Incremental Parsing (Huang and Sagae)

Conclusion

42

greedy
search

principled
search

incremental
parsing

(e.g. shift-reduce)

 ☺✓
full dynamic

programming
(e.g. CKY)

fast
(linear-time)

slow
(cubic-time)

DP for Incremental Parsing (Huang and Sagae)

Conclusion

42

greedy
search

principled
search

incremental
parsing

(e.g. shift-reduce)

 ☺✓
full dynamic

programming
(e.g. CKY)

fast
(linear-time)

slow
(cubic-time)

linear-time
shift-reduce parsing

w/ dynamic programming

DP for Incremental Parsing (Huang and Sagae)

Thank You

• a general theory of DP for shift-reduce parsing

• as long as features are bounded and monotonic

• fast, accurate DP parser release coming soon:

• http://www.isi.edu/~lhuang

• http://www.ict.usc.edu/~sagae

• future work

• adapt to constituency parsing (straightforward)

• other grammar formalisms like CCG and TAG

• integrate POS tagging into the parser

43

http://www.isi.edu/~lhuang
http://www.isi.edu/~lhuang
http://www.ict.usc.edu/~sagae
http://www.ict.usc.edu/~sagae

