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Ambiguities in Parsing
AN A

| feed cats nearby in the garden..

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY
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Ambiguities in Parsing

N AN A

| feed cats nearby in he garden ...

—

® |et’s focus on dependency structures for simplicity

® ambiguous attachments of nearby and in

® ambiguity explodes exponentially with sentence length
® must design efficient (polynomial) search algorithm
e typically using dynamic programming (DP); e.g. CKY
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But full DP is too slow...

| feed cats nearby in the garden ..

—
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)
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But full DP is too slow...

| feed cats nearby in the garden ...

—
e full DP (like CKY) is too slow (cubic-time)

® while human parsing is fast & incremental (linear-time)
® how about incremental parsing then!?

® yes, but only with greedy search (accuracy suffers)

® explores tiny fraction of trees (even w/ beam search)
® can we combine the merits of both approaches!?

® a fast, incremental parser with dynamic programming!?

® explores exponentially many trees in linear-time!?
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Linear-Time Incremental DP

ettty incremental parsing

search (e.g. shift-reduce)
@ (Nivre 04; Collins/Roark 04;...)

this work: full DP

principled fast shift-reduce parsing (e.g. CKY)

search

©

with dynamic programming | (Eisner 96; Collins 99;...)

fast © slow )
(linear-time) (cubic-time)
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Preview of the Results

® very fast linear-time dynamic programming parser

® best reported dependency accuracy on PTB/CTB

® explores exponentially many trees (and outputs forest)
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Qutline

® |ncremental (Shift-Reduce) Parsing
® Dynamic Programming for Incremental Parsing

® Experiments
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Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack
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Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack
0 -
I shift |
2 shift | feed
3 l-reduce Kfeed
4 shift feed cats

_k
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Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack queue
0 - | feed cats ...
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Shift-Reduce Parsing

| feed cats nearby in the garden.

queue

| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...

action stack
0 i}
I shift |
2 shift | feed
3 l-reduce feed
4 shift feed cats

_k

5a r-reduce feed |
5b shift 1kfeed cats nearby
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Shift-Reduce Parsing

| feed cats nearby in the garden.

action stack
0 B}
I shift |
2 shift | feed
3 l-reduce gfee‘j
hift feed cat
shi 1kee ca s\

| shift-reduce

5a r-reduce feed | conflict

| cats

5b shift 1kfeed cats nearby
|
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| feed cats ...

feed cats nearby ...

cats nearby in ...

cats nearby in ...

nearby in the ...

nearby in the ...
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Choosing Parser Actions

+ stack queue — + stack queue —

.. \feed cats in'the garden ...
) " .. S2 [ SI So| qo/qI ..
features: A A
(so.w, , 4o, ...) = (cats, ,in, ...)

® score each action using features f and weights w

® features are drawn from a local window
abstraction (or signature) of a state -- this inspires DP!

® weights trained by structured perceptron (Collins 02)
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Greedy Search

® each state => three new states (shift, I-reduce, r-reduce)

® search space should be exponential

® greedy search: always pick the best next state
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Beam Search

® each state => three new states (shift, I-reduce, r-reduce)

® search space should be exponential

® beam search: always keep top-b states
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Dynamic Programming

® cach state => three new states (shift, I-reduce, r-reduce)

® key idea of DP: share common subproblems

® merge equivalent states => polynomial space
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Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space
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Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

each DP state corresponds to
exponentially many non-DP states

=7
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Dynamic Programming

® cach state => three new states (s

® key idea of DP: share common su

ift, I-reduce, r-reduce)

oproblems

® merge equivalent states => polynomial space

each DP state corresponds to 1010 — T
exponentially many non-DP states . Qo"' ; +
10° i 7
| o i
/7 % 10°
—_— —) 2 / 10*

,. non-DP beam search’
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“graph-structured stack” (Tomita, | 988)

DP for Incremental Parsing (Huang and Sagae)

sentence length
22



Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

S2 KZ

qo qi ...
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

qo qi ...

® shift-reduce conflict: S2 1 S0
o ueed cats|nearby in the garden A

sh re sh assume features only
m ... feed |—{feed —)[ cats
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

qo qi ...

® shift-reduce conflict:

e S2 S| SO
° ueed catsJ in the garden A K

re
&y ... hearby |—|... cats

... cats

T h
€. . feed S—) ... nearby

° \_“l‘eed.Sk nearby|(in the garden
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: .. S2 SI/ so|/qoqI ..
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e 52 1 S0 |/qoq1 ...
° ‘ feed \ in the garden K
L Shy!... nearby 5|... cats|re
Nearby\ | cats < X > ... feed
" feed| >> ... nearby| "¢

° ‘ feed | in the garden

nearby
(local) ambiguity-packing!
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

® shift-reduce conflict: e S2 1 S0 |/qo q1 ..
® | feed in[the garden K
h Y &y ... nearby 5|, cats X
4. |...Cats - 1 / .. feed
" feed| > ... nearby| "¢ sh
® | feed in|the garden - 1N
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Merging Equivalent States

® two states are equivalent if they agree on features

® because same features guarantee same cost
+ stack queue —

qo qi ...

® shift-reduce conflict: S1 (S0
® | feed in[the garden A K
b 'Y & ... nearby 5|, cats Q;
... cats - N P feed
"©"...feed|—>|...nearby[ "¢ sh
® | feed in|the garden

DP for Incremental Parsing (Huang and Sagae)

xfr

graph structured stack

... in




Theory: Polynomial-Time DP

+ stack queue —

eof S2 SI S0

® this DP is exact and polynomial-time if features are:

qo/qi ...

® a) bounded -- for polynomial time
® features can only look at a local window
® b) monotonic -- for correctness (optimal substructure)

® features should draw no more info from trees farther
away from stack top than from trees closer to top

® both are intuitive: a) always true; b) almost always true

DP for Incremental Parsing (Huang and Sagae) 29



Theory: Monotonic History

® related: grammar refinement by annotation (Johnson, 1998)
® annotate vertical context history (e.g., parent)

® monotonicity: can’t annotate grand-parent without
annotating the parent (otherwise DP would fail)

® our features: left-context history instead of vertical-context
® similarly, can’t annotate s2 without annotating s

® but we can always design “minimum monotonic superset”

srand-parent

DP for Incremental Parsing (Huang and Sagae) 30



Related Work

® Graph-Structured Stack (Tomita 88): Generalized LR
® GSSis just a chart viewed from left to right (e.g. Earley 70)
® this line of work started w/ Lang (1974); stuck since 1990
® b/c explicit LR table is impossible with modern grammars

® general idea: compile CFG parse chart to FSAs (e.g. our beam)
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Related Work

® Graph-Structured Stack (Tomita 88): Generalized LR

® GSSis just a chart viewed from left to right (e.g. Earley 70)

® this line of work started w/ Lang (1974); stuck since 1990

® b/c explicit LR table is impossible with modern grammars

® general idea: compile CFG parse chart to FSAs (e.g. our beam)
® We revived and advanced this line of work in two aspects

® theoretical: implicit LR table based on features
merge and split on-the-fly; no pre-compilation needed
monotonic feature functions guarantee correctness (new)
® practical: achieved linear-time performance with pruning
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Speed Comparison

® 5 times faster with the same parsing accuracy
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Correlation of Search and Parsing

® better search quality <=> better parsing accuracy
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Search Space: Exponential
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N-Best / Forest Oracles
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oracle precision
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Better Search => Better Learning

® DP leads to faster and better learning w/ perceptron
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Learning Details: Early Updates

® greedy search: update at first error (Collins/Roark 04)
® beam search: update when gold is pruned (Zhang/Clark 08)

® DP search: also update when gold is “merged” (new!)

® b/c we know gold can’t make to the top again

it | updates early% time | updates early% time

1 31943 989 22 31189 87.7 29
27311 988 29 26324 809 37

5 20236 98.3 38 19027 703 47

17 8683 97.1 48 7434 495 60

3715 972 31 4676 412 65

~ ~
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Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers
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Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers
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Parsing Time vs. Sentence Length

® parsing speed (scatter plot) compared to other parsers
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Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 | O(n?) | exponential
- O(n*) | exponential

0.11 O(n) constant

0.04 O(n) | exponential

McDonald et al 05 - MST
Koo et al 08 baseline*

Zhang & Clark 08 single

this work

89 91 93

DP for Incremental Parsing (Huang and Sagae)



Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank
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Final Results

® much faster than major parsers (even with Python!)
® first linear-time incremental dynamic programming parser

® best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 | O(n?) | exponential

McDonald et al 05 - MST

Koo et al 08 baseline™ - O(n4) exponential

Zhang & Clark 08 single 0.11 O(n) constant
this work 0.04 O(n) | exponential
Charniak 00 049 | O(n*°) | exponential
Petrov & Klein 07 0.21 | O(n**) | exponential
89 91 93
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Final Results on Chinese

® also the best parsing accuracy on Chinese
® Penn Chinese Treebank (CTB 5)

® all numbers below use gold-standard POS tags

B word
B non-root

Duan et al. 2007 " root

Zhang & Clark 08 (single)

this work

DP for Incremental Parsing (Huang and Sagae)
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Conclusion

greedy
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incremental
parsing
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principled
search

=
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Conclusion

incremental
greedy .
search parsing
(e.g. shift-reduce)
=
linear-time

principled

search w/ dynamic programming

fast

(linear-time)

DP for Incremental Parsing (Huang and Sagae)

full dynamic

(e.g. CKY)

slow
(cubic-time)

shift-reduce parsing @programming
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Thank You

® a general theory of DP for shift-reduce parsing

® as long as features are bounded and monotonic

® fast,accurate DP parser release coming soon:

® http://www.isi.edu/~1huang

® http://www.ict.usc.edu/~sagae

e future work
® adapt to constituency parsing (straightforward)

® other grammar formalisms like CCG and TAG

® integrate POS tagging into the parser

DP for Incremental Parsing (Huang and Sagae)
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