
Dynamic Programming for 

Linear Time Incremental Parsing

Kenji Sagae
Institute for Creative Technologies

University of Southern California

Liang Huang
Information Sciences Institute

University of Southern California

ACL 2010, Uppsala, Sweden, July 2010 (slightly expanded)



DP for Incremental Parsing (Huang and Sagae)

Ambiguities in Parsing

I    feed    cats     nearby      in     the    garden ...

• let’s focus on dependency structures for simplicity

• ambiguous attachments of nearby and in

• ambiguity explodes exponentially with sentence length

• must design efficient (polynomial) search algorithm

• typically using dynamic programming (DP); e.g. CKY
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But full DP is too slow...
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But full DP is too slow...
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I  feed  cats  nearby  in  the  garden  ... 

• full DP (like CKY) is too slow (cubic-time)

• while human parsing is fast & incremental (linear-time)

• how about incremental parsing then?

• yes, but only with greedy search (accuracy suffers)

• explores tiny fraction of trees (even w/ beam search)

• can we combine the merits of both approaches?

• a fast, incremental parser with dynamic programming?

• explores exponentially many trees in linear-time?
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Linear-Time Incremental DP
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greedy 
search

principled 
search

incremental parsing 
(e.g. shift-reduce)

(Nivre 04; Collins/Roark 04; ...)

this work:

fast shift-reduce parsing 

with dynamic programming 

full DP
(e.g. CKY)

(Eisner 96; Collins 99; ...)

fast
(linear-time)

slow
(cubic-time)

☹☺
☺
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Preview of the Results

• very fast linear-time dynamic programming parser

• best reported dependency accuracy on PTB/CTB

• explores exponentially many trees (and outputs forest)
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Preview of the Results

• very fast linear-time dynamic programming parser

• best reported dependency accuracy on PTB/CTB

• explores exponentially many trees (and outputs forest)
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Outline

• Motivation

• Incremental (Shift-Reduce) Parsing

• Dynamic Programming for Incremental Parsing

• Experiments
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Shift-Reduce Parsing
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Shift-Reduce Parsing
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Shift-Reduce Parsing
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Choosing Parser Actions

• score each action using features f and weights w

• features are drawn from a local window

• abstraction (or signature) of a state -- this inspires DP!

• weights trained by structured perceptron (Collins 02)
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    ...   s2     s1    s0    q0 q1  ...  

← stack   queue →← stack   queue →

features:

(s0.w, s0.rc, q0, ...) = (cats, nearby, in, ...)

 ...  feed cats      

I nearby

in the garden ...
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Greedy Search
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   Beam Search
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• each state => three new states (shift, l-reduce, r-reduce)

• search space should be exponential

•   beam search:  always keep top-b states
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Dynamic Programming

• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space
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Dynamic Programming

• each state => three new states (shift, l-reduce, r-reduce)

• key idea of DP: share common subproblems

• merge equivalent states => polynomial space
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Merging Equivalent States

• two states are equivalent if they agree on features

• because same features guarantee same cost

• shift-reduce conflict:

•   feed cats nearby in the garden
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Theory: Polynomial-Time DP

• this DP is exact and polynomial-time if features are:

• a) bounded  --  for polynomial time

• features can only look at a local window

• b) monotonic  --  for correctness (optimal substructure)

• features should draw no more info from trees farther 
away from stack top than from trees closer to top

• both are intuitive: a) always true; b) almost always true
29

    ...   s2     s1    s0    q0 q1  ...  

← stack   queue →
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Theory: Monotonic History

• related: grammar refinement by annotation (Johnson, 1998)

• annotate vertical context history (e.g., parent)

• monotonicity: can’t annotate grand-parent without 
annotating the parent (otherwise DP would fail)

• our features: left-context history instead of vertical-context

• similarly, can’t annotate s2 without annotating s1

• but we can always design “minimum monotonic superset”

30

parent

grand-parent

s1

s2

s0

stack
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Related  Work

• Graph-Structured Stack (Tomita 88): Generalized LR

• GSS is just a chart viewed from left to right (e.g. Earley 70)

• this line of work started w/ Lang (1974); stuck since 1990

• b/c explicit LR table is impossible with modern grammars

• general idea: compile CFG parse chart to FSAs (e.g. our beam)
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Related  Work

• Graph-Structured Stack (Tomita 88): Generalized LR

• GSS is just a chart viewed from left to right (e.g. Earley 70)

• this line of work started w/ Lang (1974); stuck since 1990

• b/c explicit LR table is impossible with modern grammars

• general idea: compile CFG parse chart to FSAs (e.g. our beam)

• We revived and advanced this line of work in two aspects

• theoretical: implicit LR table based on features

• merge and split on-the-fly; no pre-compilation needed

• monotonic feature functions guarantee correctness (new)

• practical: achieved linear-time performance with pruning

31
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Speed Comparison

33

• 5 times faster with the same parsing accuracy

time (hours)

non-DPDP
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Correlation of Search and Parsing
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Search Space: Exponential
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N-Best / Forest Oracles
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Better Search => Better Learning

37

• DP leads to faster and better learning w/ perceptron
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Learning Details: Early Updates

• greedy search: update at first error (Collins/Roark 04)

• beam search: update when gold is pruned (Zhang/Clark 08)

• DP search: also update when gold is “merged” (new!)

• b/c we know gold can’t make to the top again
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Parsing Time vs. Sentence Length

39
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Parsing Time vs. Sentence Length
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Final Results

• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank
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Final Results

• much faster than major parsers (even with Python!)

• first linear-time incremental dynamic programming parser

• best reported dependency accuracy on Penn Treebank

time complexity trees searched

0.12 O(n2) exponential

- O(n4) exponential

0.11 O(n) constant

0.04 O(n) exponential

0.49 O(n2.5) exponential
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*at this ACL: Koo & Collins 10: 93.0 with O(n4)
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Final Results on Chinese

• also the best parsing accuracy on Chinese

• Penn Chinese Treebank (CTB 5)

• all numbers below use gold-standard POS tags

41
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Conclusion
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Thank You

• a general theory of DP for shift-reduce parsing

• as long as features are bounded and monotonic

• fast, accurate DP parser release coming soon:

• http://www.isi.edu/~lhuang

• http://www.ict.usc.edu/~sagae

• future work

• adapt to constituency parsing (straightforward)

• other grammar formalisms like CCG and TAG

• integrate POS tagging into the parser

43
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