
Dynamic Programming for Minimum Steiner

Trees

B. Fuchs a W. Kern b D. Mölle c S. Richter c P. Rossmanith c

X. Wang b,1

aUniversity of Cologne, Center for Applied Computer Science Cologne,

Group AFS, Weyertal 80, 50931 Köln, Germany

bfuchs@zpr.uni-koeln.de

bUniversity of Twente, Department of Applied Mathematics, Faculty of EEMCS,

P.O.Box 217, 7500 AE Enschede, The Netherlands

{w.kern,xinhuiw}@math.utwente.nl

cComputer Science Department, RWTH Aachen University, Germany

{moelle,richter,rossmani}@cs.rwth-aachen.de

Abstract

We present a new dynamic programming algorithm that solves minimum Steiner
tree problems with k terminals in time O∗(ck) for any c > 2. This improves the
running time of the previously fastest exponential time algorithms (Dreyfus-Wagner
[2]) of order O∗(3k) and the so-called “full set dynamic programming” algorithm,
cf. [3], solving rectilinear instances in time O∗(2.38k).

Key words: Steiner tree, exact algorithm, dynamic programming, Dreyfus-Wagner

1 Introduction

The Steiner tree problem is one of the most well-known NP-hard problems:
Given a graph G = (V,E) of order n = |V |, edge costs c : E → R+ and a
set Y ⊆ V of k = |Y | terminals, we are to find a minimum cost tree T ⊆ E
connecting all terminals. Note that here and in the following, we identify a
subtree of the underlying graph with its edge set T ⊆ E. The node set of the

1 Supported by Netherlands Organization for Scientific Research (NWO) grant
613.000.322 (Exact Algorithms).

Preprint submitted to *** 27 October 2005

tree is denoted by V (T). So an optimal Steiner tree for Y is a tree T = T (Y)
that minimizes c(T) subject to Y ⊆ V (T).

The Steiner tree problem has been investigated extensively w.r.t. approxima-
tion (cf., e.g., [1]) and computational complexity, both from a theoretical and
practical point of view ([3], [7]). The most popular algorithm for computing
minimum Steiner trees is the dynamic programming procedure proposed by
Dreyfus and Wagner [2] which we shortly present below to make our presen-
tation self-contained.

First note that (since c ≥ 0) every leaf of a minimum Steiner tree must be a
terminal. Every interior node is either a terminal or a Steiner node. To describe
the Dreyfus-Wagner algorithm, let us adopt the following (rather ambiguous)
notation: For X ⊆ V we let T (X) denote both the cost of minimum Steiner
tree for X as well as the minimum Steiner tree itself.

The Dreyfus-Wagner algorithm recursively computes T (X ∪ v) for all X ⊆ Y
and v ∈ V . In the “generic case”, the new terminal v ∈ V is a leaf of the Steiner
tree T = T (X ∪ v) and v is joined by a min cost path Pvw to an interior node
w ∈ V (T) of degree at least 3. The node w splits T\Pvw into two parts, namely
T (X ′∪w) and T (X ′′∪w) for some nontrivial bipartition X = X ′∪X ′′. Hence
we may write (slightly misusing the notation as announced earlier)

T (X ∪ v) = min Pvw ∪ T (X ′ ∪ w) ∪ T (X ′′ ∪ w), (1)

where the minimum is taken over all nontrivial bipartitions X = X ′ ∪X ′′ and
all w ∈ V .

The above recursion is also valid in the“non-generic cases”, when the new
terminal v is not a leaf of T (choose w = v) or when v is joined by Pvw to a
leaf of T (X), i.e., when w has only degree 2 in T (take X ′ = {w} in this case).

Summarizing, the above recursion correctly computes an optimal tree for Y ⊆
V . As to the running time, observe that there are less than n

(

k

i

)

sets of type

X ∪ v with |X| = i and each such X has less than 2i nontrivial bipartitions.
Hence we get

n
∑

i≤k

(

k

i

)

2i = n3k = O∗(3k)

as an upper bound on the running time.

2 Improving the exponential time bound

Let us fix some minimum Steiner tree T = T (Y) for Y . Every leaf of T is
a terminal. In case T has interior nodes which are terminals, these interior

2

terminals split T into components, i.e., maximal subtrees without any inte-
rior terminals. The basic idea of our approach is to add (a few) additional
terminals so as to ensure that T is split into many “small” components and
then recursively reconstruct T from these small components. Here and in the
following, the size of a component equals the number of terminals (leaves) of
the component.

Lemma 2.1 For ǫ > 0, it suffices to add a ≤ 1/ǫ additional terminals, splitting
T into components of size at most ǫk + 1 each.

Proof. We may assume w.l.o.g. that T has no interior terminals. For an
interior node u ∈ V (T), let ku ≤ k − 1 denote the maximum size (including
u) of the components induced by u. There exists a node u with ku ≤ k/2 + 1.
Hence there also exists a node u∗ that maximizes ku∗ , subject to ku∗ ≤ k−kǫ.
Observe that u∗ splits T into one large component of size ku∗ and one or more
components of size (including u∗) at most ǫk +1 each. By induction, the large
component can be split into components of size at most ǫ

1−ǫ
ku∗ + 1 ≤ ǫk + 1

with no more than 1−ǫ
ǫ

= 1
ǫ
− 1 additional terminals. ¥

To describe our algorithm that reconstructs T (or any other optimal Steiner
tree for Y) by successively attaching small components, we adopt the following
notation from [3] for terminal sets X1, X2 and X:

X := X1 ✶ X2 ⇔ X = X1 ∪ X2 and |X1 ∩ X2| = 1.

Assume that A ⊆ V (T), |A| =
⌊

1
ǫ

⌋

has been added as a set of additional

terminals, splitting T = T (Y) into components of size at most ǫk + 1. Let
Ỹ = Y ∪ A, so that T = T (Ỹ). If X1 ⊆ Ỹ is the terminal set of a connected
union of components, then the subtree of T induced by X1 must be a minimum
Steiner tree for X1 (otherwise T would not be optimal). Hence the following
algorithm indeed composes recursively an optimal tree for Y by successively
attaching small components, once an appropriate set A of additional terminals
is chosen.

Algorithm ASC (“Attach Small Components”)

For each Ỹ , Y ⊆ Ỹ ⊆ V, |Ỹ | = k +
⌊

1
ǫ

⌋

do:

1) Compute T (X) for all X ⊆ Ỹ , |X| ≤ ǫk + 1.

2) For all X ⊆ Ỹ , |X| > ǫk + 1, compute T (X) recursively, according to

T (X) = min{T (X1) ∪ T (X2)|X = X1 ✶ X2, |X2| ≤ ǫk + 1}. (2)

There are O(n
1

ǫ) choices for Ỹ of size k̃ = k +
⌊

1
ǫ

⌋

. The time needed for 1)

3

(using Dreyfus-Wagner) is negligible for reasonably small ǫ > 0. So the total
running time is bounded by

n
1

ǫ

∑

i

(

k̃

i

)(

i

ǫk + 1

)

≤ n
1

ǫ k̃ 2k̃

(

k̃/2

ǫk̃

)

. (3)

This yields our main result.

Theorem 2.1 Algorithm ASC correctly computes a minimum Steiner tree for
Y ⊆ V, |V | = k in time O∗(ck) for any c > 2 by an appropriate choice of ǫ > 0.

Proof. By Stirling’s Formula, the binomial in (3) can be approximated (up
to a polynomial) as

(

k̃/2

ǫk̃

)

≈
[

(
1

2ǫ
)ǫ(

1

1 − 2ǫ
)

1

2
−ǫ

]k̃

< (1 + δ)k̃

for any prescribed δ > 0, provided ǫ > 0 is small enough. Hence indeed the
running time is O∗

[

(2 + 2δ)k̃
]

= O∗
[

(2 + 2δ)k
]

. ¥

Remark. The idea of composing the optimal tree from its components has
been used by Ganley and Cohoon [4] in the rectilinear case, i.e., when Y ⊆ R

2

and (V,E) is the grid graph induced by Y endowed with the Manhattan metric
|x − y| = |x1 − y1| + |x2 − y2|. The currently fastest algorithms for minimal
Steiner tree in the rectilinear case are based on this (de-)composition (cf.[3]).
The point is that in the rectilinear case, a lot can be said about the structure
of these components. Indeed, it can be assumed w.l.o.g. that each component
of the optimal tree consists of a straight line (the Steiner Chain), which starts
at a terminal node and has edges (legs) attached to it alternatively from left
and right. In addition, the last leg may have an additional edge attached to
it, cf. Figure 1.

Fig. 1. A component in the rectilinear case

This structure of components in the rectilinear case in known as Hwang topol-

ogy (cf. [6]). The components in the rectilinear case are called full components

and, correspondingly, a subset X ⊆ Y is called a full set if X is the terminal
set of a Steiner tree as in Fig. 1, i.e., of a component with Hwang topology.

4

Exploiting additional structural properties of full components, Fößmeier and
Kaufmann [3] could show that the number of full sets is bounded by 1.38k.
Full sets can be identified easily, so the recursive construction of the optimal
tree according to

T (X) = min{T (X1) ∪ T (X2)|X = X1 ✶ X2 ⊆ Y,X2 full}

takes time
∑

i

(

k

i

)

1.38i = O∗(2.38k).

It remains to be analyzed, whether our idea of splitting the optimal tree can be
fruitfully applied to the rectilinear case to yield an algorithm with complexity
O∗(ck) without such a prohibitively large polynomial factor of n

1

ǫ .

Remark. An analogue of ASC can be designed to solve the directed Steiner

tree problem, where the underlying graph (V,E) is a directed graph and we
seek for a directed rooted tree (with prescribed root terminal) connecting Y .
Indeed, it suffices to compute rooted Steiner trees Tr(X) (rooted in r ∈ X)
for all small X ⊆ Ỹ and then attach these successively in the obvious way.

3 Improving the polynomial factor

In this section we show how to improve the polynomial factor of n
1

ǫ to roughly

n
1√
ǫ . The basic idea is as follows. Instead of recursively constructing the opti-

mal tree T by adding components of size ǫk in each step, we allow the addition
of larger pieces at levels i ≪ k/2 and i ≫ k/2. Only when i ≈ k/2, we proceed
by adding small components of size ǫk as before.

To work this out in detail, we need the following technical result:

Lemma 2 For sufficiently small α > 0 and ǫ′ < α2 we have

(

k

i

)(

i

ǫ′k

)

≤ 2k

for all i such that |k/2 − i| ≥ αk.

Proof. If suffices to prove the claim for i = (1
2

+ α)k. By Stirling’s Formula,
we compute

(

k

(1
2

+ α)k

)(

(1
2

+ α)k)

ǫ′k

)

=





[

1
1
2
− α

](1

2
−α) [

1

ǫ′

]ǫ′
[

1
1
2

+ α − ǫ′

](1

2
+α−ǫ′)





k

5

(up to polynomial factors). Hence, setting ǫ′ = αβ with β > 2, our claim can
be restated as

f(α) := (
1

2
− α)(1

2
−α)(αβ)αβ

(
1

2
+ α − αβ)(1

2
+α−αβ) ≥ 1

2
.

Note that f(0) = 1
2
. Elementary calculus yields

f ′(α) = f(α)
[

−ln(
1

2
− α) + β2αβ−1lnα + (1 − βαβ−1)ln(

1

2
+ α − αβ)

]

.

Let g(α) denote the term in brackets. Then g(0) = 0 (as lim
α→0

αβ−1lnα = 0)

and

g′(α) = (1
2
− α)−1 + β2(β − 1)αβ−2lnα + β2αβ−2 − β(β − 1)αβ−2ln(1

2
− α − αβ)

+(1 − βαβ−1)2(1
2
− α − αβ).

Now β > 2 implies lim
α→0

αβ−2lnα = 0, showing that g′(α) ≈ 4 > 0 for suffi-

ciently small α > 0. Hence also g(α) and f ′(α) = f(α)g(α) are positive for
sufficiently small values of α. So indeed f(α) ≥ 1

2
for sufficiently small α > 0.

¥

Let us call - relative to a value of α to be determined below - a level i critical if
|k/2− i| ≤ αk, and uncritical otherwise. We modify the recursion (2) in ASC
such that, as long a i is uncritical, we replace ǫ by ǫ′ > ǫ, whereas for critical
i, everything remains unchanged. Lemma 2 ensures that our upper bound on
the running time of (2) remains unchanged:

∑

i uncritical

(

k̃

i

)(

i

ǫ′k̃

)

+
∑

i critical

(

k̃

i

)(

i

ǫk̃

)

≤ k̃ 2k̃

(

k̃/2

ǫk̃

)

.

Corresponding to the modified recursion, we investigate non-homogeneous
subdivisions of the optimal tree T into (many) components of size at most
ǫ′k and (a few) components of size at most ǫk. We first add 1

ǫ′
additional ter-

minals to ensure component size of at most ǫ′k. Now add such components
(in some order), one at a time, until the constructed subtree spans (1

2
− α)k̃

terminals.

At this point, we enter the critical phase. We keep adding ǫ′−components until
the current subtree has (1

2
+ α)k̃ terminals. At this point the critical phase

stops. The critical subtree, i.e., the subtree of T that we added during the
critical phase spans at most 2αk̃ (plus possibly ǫ′k̃) terminals. We can subdi-
vide this critical subtree into ǫ−components with at most (2α/ǫ) additional
terminals. After the critical phase, we complete the optimal tree by adding

6

ǫ′−components, one at a time. This shows that, in order to make the modified
recursion (2) work, it suffices to add

a ≤ 2α/ǫ + 1/ǫ′

additional terminals.

Now choose ρ < 1
2

close to 1
2

and observe that α := ǫρ and ǫ′ := ǫς with
ς = 1

2
+ ρ satisfy the assumption of Lemma 2 (for sufficiently small ǫ > 0).

The number of necessary additional terminals is thus

a ≤ 2ǫρ/ǫ +
1

ǫς
.

Applying the same trick to ǫ′ instead of ǫ, we can further reduce the necessary
number of additional terminals to

a ≤ 2ǫρ/ǫ + 2(ǫρ/ǫ)ς +
1

ǫς2
.

Continuing this way, we arrive at

Proposition For every ρ < 1/2, the number of necessary additional terminals
can be reduced to O(ǫρ−1).

Proof. Since ς = 1
2

+ ρ < 1, there exists a constant r > 0 such that ςr ≤ 1/2.
Hence if we apply our trick (r − 1) times, we arrive at

a ≤ 2
[

ǫρ/ǫ + (ǫρ/ǫ)ς + · · · + (ǫρ/ǫ)ςr−1
]

+
1

ǫςr ≤ 2rǫρ/ǫ +
1√
ǫ

= O(ǫρ−1).

References

[1] C. Gröpl, S. Hougardy, T. Nierhoff and H. J. Prömel, (2001) Approximation
Algorithms for the Steiner Tree Problem in Graphs, in: Steiner Trees in

Industries, X. Cheng and D.-Z. Du (eds.), Kluwer.

[2] S. E. Dreyfus and R. A. Wagner, (1972) The Steiner problem in graphs. Networks,
1, 195–207.

[3] U. Fößmeier and M. Kaufmann, (2000) On exact solutions for the rectilinear
Steiner tree problem Part 1: Theoretical results. Algorithmica, 26, 68–99.

[4] J. L. Ganley and J. P. Cohoon, (1994) Optimal rectilinear Steiner minimal
trees in O(n22.62n) time, in: Proceedings of the Sixth Canadian Conference on

Computational Geometry, 308–313.

7

[5] M. Garey and D. Johnson, (1977) The Rectilinear Steiner Tree Problem is NP-
Complete, SIAM Journal on Applied Mathematics 32(4), 826–834.

[6] F. K. Hwang, (1976) On Steiner Minimal Trees with Rectilinear Distance. SIAM

Journal on Applied Mathematics, 30(1), 104–114.

[7] D. M. Warme, P. Winter and M. Zachariasen, (2000) Exact Algorithms for Plane
Steiner Tree Problems: A Computational Study, in: Advances in Steiner Trees,
D.Z. Du, J.M. Smith and J.H. Rubinstein (eds.), Kluwer.

8

