From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Dynamic Programming for POMDPs
using a Factored State Representation

Eric A. Hansen and Zhengzhu Feng
Computer Science Department and Intelligent Systems Laboratory
Mississippi State University, Mississippi State, MS 39762
{hansen,fengzz}@cs.msstate.edu

Abstract

Contingent planning - constructing a plan in which
action sclection is contingent on imperfect informa-
tion received during plan execution - can be formal-
ized as the problem of solving a partially observable
Markov decision process (POMDP). Traditional dy-
namic programming algorithms for POMDDPs use a
flat state representation that enumerates all possible
states and state transitions. By contrast. Al planning
algorithins use a factored state representation chat
supports state abstraction and allows problems with
large state spaces to be represented and solved more
efficiently. Boutilier and Poole (1996) have recently
described how a factored state representation can be
exploited by a dynamic programming algorithm for
POMDPs. We extend their framework. describe an
imnplementation of it, test its performance, and assess
how much this approach improves the computational
cfficiency of dynamic programming for POMDPs.

Introduction

Many Al planning researchers have adopted Markov
decision processes (MDPs) as a framework for decision-
theorctic planning. (See (Boutilier et al. 1999) for a
survey and references.). In doing so, they have also
adopted dynamic programming - the most common
approach to solving MDPs — as an approach to plan-
ning.

Classic dynamic programming algorithms for solving
MDPs, including value iteration and policy iteration,
require explicit cnumeration of a problem's state space.
Because the state space grows exponentially with the
number of state variables, these algorithins are prey to
Bellinan’s “curse of dimensionality.” Recently, promis-
ing extensions of these algorithms have been developed
that exploit structure in the representation of an MDD
to avoid explicit cnumeration of the state space. So far,
work in this area has focused on completely observ-
able MDPs and encouraging empirical results have re-
cently been reported (Hoey et al. 1999). Boutilier and

Copyright (©2000, American Association for Artificial In-
telligence (www.aaaj.org). All rights reserved.

130 AIPS-2000

Poole {1996) have also proposed a value iteration algo-
rithm for partially obscervable MDPs (POMDDPs) that
exploits a factored representation. However, their algo-
rithin has not previously been implemented. Boutilier
et al. (1999) write that “exploiting structured repre-
sentations of POMDPs is a topic that remains to be
explored in depth.”

A POMD?P models decision making under imper-
feet and partial state information and supports rea-
soning about whether to sclect actions that, change the
state, provide state information, or both. The prob-
lem of planning under uncertainty using information-
gathering actions has been considered in the Al com-
munity using other frameworks (Draper et el. 1994;
Onder & Pollack 1999; Majercik & Littman 1999).
This paper describes the first implementation of dy-
namic programining for POMDPs that exploits the
same factored representation used by Al planners.
We extend the algorithmic framework proposed by
Boutilier and Poole and describe value iteration and
policy iteration algorithms for POMDPs that adopt
this representation. Qur results validate this approach
and provide a preliminary assessment. of how much it
can improve the computational efficiency of dynamic
programming for POMDPs.

Background

We consider contingent planning problems that are
represented in factored formn. We assume the relevaut
properties of a domain are described by a finite set of
Boolean state variables, ' = {X,...,X,}. An as-
signment of truth values to " corresponds to a state
of the domain. Let § = 2% denote the set of all pos-
sible states. We assume an agent receives (possibly
imperfect) state information in the form of a finite set
of Boolean observation variables, J = {17,....Y,.}.
An assignment of truth values to)’ corresponds to a
particular observation. Let @ = 2% denote the set of
all possible observations. (The assumption that siate
and observation variables are Boolean does not limit

fine ToTTt408P PHASCRUPeT. CHY IAdCHERTS A (YT aEaL 0r9)- Al R B Plus the discounted expected value of the

coding, problems with multi-valued variables can be
represented using Boolean variables.) We also assume
a finite set of actions A.

We briefly review the traditional approach to solv-
ing POMDPs before describing how to generalize it to
exploit a factored representation.

POMDPs For the class of planning problems we
consider, the relationship between an agent and its en-
vironment is modeled as a discrete-time POMDD with
a finite set of states, S, a finite sct of observations, O,
and a finite set of actions, A. Each time period, the
environment is in some state s € S, the agent chooses
an action a € A for which it receives an immediate re-
ward with expccted value R*(s) € R, the environment
makes a transition to state 8/ € S with probability
Pr(s'|s,a) € [0,1], and the agent observes o € O with
probability Pr(o|s’,a) € [0,1). We assume the objec-
tive is to maximize expected total discounted reward
over an infinite horizon, where 3 € (0, 1] is the discount
factor.

Although the state of the environment cannot be di-
rectly observed, the probability that it is in a given
state can be calculated. Let b denote a vector of state
probabilities, called a belief state, where b(s) denotes
the probability that the system is in state s. If action «
is taken and it is followed by observation o, the succes-
sor belicf state, denoted b3, is determined by revising
cach state probability using Bayes’ theorem, as follows,

Y ses Pr(s’,ols,a)b(s)
Y ssrcs Pr(s’,0ls,a)b(s)

where Pr(s',0|s,a) = Pr(s’|s,a)Pr(o|s’.a). From now
on, we adopt the simplified notation, Pr{old,a) =
Y ssres Pr(s'.ols,a)b(s), to refer to the normalizing
factor in the denominator.

It is well-known that a belicf state updated by
Baycsian conditioning is a sufficient statistic that sum-
marizes all information necessary for optimal action
sclection. This gives rise to the standard approach to
solving POMDPs; the problem is recast as a completcly
observable MDP with a continuous, |S|-dimensional
state space consisting of all possible belicf states. In
this form, it can be solved by iteration of a dynamic-
programming update that performs the following “onc-
step backup” for each belief state b:

bo(s) =

V'(b) := max | > b(s)R%(s) + 3 Y_ Pr(o|b,a)V(b2)
a€A sES e (
1)

In words, this says that the value of belief state b is
set equal to the immediate reward for taking the best

resulting belief state b3.

Smallwood and Sondik (1973) prove that this
dynamic-prograinming step preserves the piccewisc lin-
earity and convexity of the value function. A piecewisc
lincar and convex value function V can be represented
by a finite set of |S|-dimensional vectors of real num-
bers, V = {1°,v!,...,v*}, such that the value of each
belicf state b is defined as follows:

Vb) = Jg&kab(s)vi(s). (2)
T~ T €S

This representation of the value function allows the
dynamic programming update to be computed exactly
and several algorithms for this have been developed
(e.g.. Cassandra et al. 1997). Value iteration re-
peatedly applies the dynamic-programming update to
improve a value function until convergence to an e-
optimal value function. A policy § mapping belief
states to actions can be extracted from the value func-
tion using one-step lookahead, as follows,

5(h) = argmax Y b(s)R*(s)+ 3 Pr(olb.a)V"(b3)
“ lees 0€0

Because value iteration represents a policy implicitly
by a value function and improves the policy by gradu-
ally improving the value function, it is said to “scarch
in value function space.” Another approach to dy-
namic programming, called policy iteration, is said to
“search in policy space” because it represents a policy
explicitly and iteratively improves the policy (Sondik
1978; Hansen 1998)

Planning using factored representations Unlike
the MDP model developed in operations research, Al
planning rescarch has traditionally used factored rep-
resentations. In the STRIPS action representation, for
example, actions arc modeled by their cffect on state
variables. When an action only affects a few state vari-
ables, or when its effects are very regular, the STRIPS
description of the transition model of the action can be
very compact cven if the state space of the planning
problem is very large.

The representations used by Al planners were origi-
nally developed for classical planners that ignored un-
certainty, such as the STRIPS planner. In the past
few years. there has been growing interest in gen-
cralizing thesc representations to planning problems
that include uncertainty about the ecffects of actions
and/or uncertainty about the problem state. A non-
linear planuer that solves planning problems that in-
clude both forms of uncertainty is described by Draper

Hansen 131

FIo8t A1 S F9UFIOGRACE P PORAEIL DT RMIBRHA) Al M Bagyed, oy -

provements to this algorithin. Majercik and Littman
(1999) describe a satisfiability-based planner for the
same class of planning problemns. Boutilier and Poole
(1996) propose exploiting the factored state represen-
tation used by such planners to improve the cfficiecy
of dynamic programming for POMDPs.

Decision diagrams To represent functions that,
map states to valucs {or probabilities), traditional
POMDP algorithms use a vector that represents cach
mapping from state to value independently. Boutilier
and Poole (1996) propose using decision trees to com-
pactly represent these functions. By mapping sets of
states with the same value to the same leaf of the
tree. decision trees can compactly represent the same
functions. Boutilier and Poole note that other com-
pact representations are possible, including rules and
decision lists, and Hoey et al. (1999) have recently
shown that algebraic decision dingrams (ADDs) can
compactly represent the transition probabilities, re-
ward function, value function and policy of an MDD.
They describe a value iteration algorithm for com-
pletely observable MDPs that uses this representation
and report that it outperforms a similar algorithm that
uses decision trees to compactly represent an MDP. We
also use ADDs in our algorithm for solving factored
POMDPs.

Decision diagrams are widely used in VLSI CAD be-
cause they make it possible to represent and evaluate
large state space systems (Bahar et al. 1993). A bi-
nary decision diagram is a compact representation of
a Boolean function, B" — B. An algebraic decision
diagram (ADD) gencralizes a binary decision diagram
to represent real-valued functions, B* — R. Figures 1,
2, and 3 include examples of ADDs. An ADD can be
more compact, than a decision tree because it merges
branches that lead to the same value. Efficient pack-
ages for manipulating ADDs are available that provide
operations such as sum, product, expectation, and oth-
ers (Somenzi 1998).

Factored representation of POMDP

The advantage of using a factored state representation
is that it allows a powerful form of state abstraction
in which an abstract state is a partial assignment of
truth values to A and corresponds to a set of possi-
ble states in the flat representation of the probleni.
Using abstraction to ignore properties of the state in
contexts where they are irrelevant makes it possible
to specify a transition and reward model for actions
more compactly, as well as to accelerate the dynamic
programiming algorithm.

132 AIPS-2000

10 A

ED—@ S

Sk
N

i p— Pa_SHRI "[‘
)/ s A A A
GHO @ F TF T TE| 00 :H.i Y
/ P TT T T 00 of
@*@ 5 ‘\\ \
Tuble A

Action Netwink Representauon Repre.entation

Figure 1: Factored representation of transition probabili-
ties for paint action.

Example As an example of a POMDP with a fac-
tored representation, we use a variation of the widget-
processing example of Draper et al. (1994). Our ver-
sion of this problem has six Boolean state variables.
A widget can be flawed (FL), stightly flawed (SL-F1.),
painted (PA), shipped (SH), and/or rejected (RE), and
a supervisor can be notified (NO) that the widget has
been processed. A manufacturing robot has six avail-
able actions. It can inspect, repair, paint. ship, or reject
the widget, and it can notify a supervisor that the wid-
get has been processed. The objective of the robor is
to paint and ship any widgetl that is not flawed and
reject any widget that is fawed. If a widget is only
slightly flawed, it can be repaired (removing the slight
flaw) and then painted and shipped. (However, the
repair and paint actions are only successful with prob-
ability 0.95.) The inspect action provides imperfect in-
formation about whether a widget is flawed or slightly
flawed. There arc two observation variables, BAD and
SL-BAD. If a widget is flawed, the BAD variable is true
with probability 1.0; if it is not. flawed. it is truce with
probablity 0.05. If a widget is slightly flawed, the SL-
BAD variable is true with probability 0.93; if it is not
slightly flawed, the SL-BAD variable is false with prob-
ability 0.0. (But if the widget is Hawed, the SL-BAD
variable is always falsc.) After the robot has processed
a widget, it notifies the supervisor. It reccives a re-
ward of 1.0 for shipping a widget that is unflawed and
painted, and a reward of -1.0 for shipping a flawed wid-
gct. After notifying the supervisor, the robot receives
another widget to process. The probability that the
next widget is flawed is 0.3 and the probability that it
is slightly flawed is 0.3. All the other state variables
are initially false. This example models a simple “as-
sembly line” in which a robot must process an infinite
sequence of widgets and its objective is to maximize
cumulative discounted reward over an infinite horizon.
The discount factor is 0.95.

From: AIPS 2000 Proceedings:_C%Eyri%T[’@ 2000, AAAI (wwmam.aaai.org). All rights, . REYVARD

T 0 - .-.
G 7 | o & e

sbrA
.~ FL' SL-FL' | SL-BAD .
GG T T B
. F T 095 s,f;

* F F 00 j

al

0s [J
Tuble ADD

Obhservation Network Representation Representation

Figure 2: Factored representation of observation probahil-
ities for inspect action.

Conditional probability functions A factored
representation of a POMDP allows state transition
and observation probabilities to be represented com-
pactly. Like Hoey et al. (1999), we represent state
transition and observation probabilities using two-slice
dynamic belief networks. A two-slice dynamic belicf
network for action a has two sets of variables, one set
X = {Xi....,X,} refers to the state beforc taking ac-
tion a, and X' = {X{, ..., X} } refers to the state after.
Directed arcs from variables in X' to variables in A"
indicate causal influence. The ahsence of arcs from
variables in X’ to variables in X reflects variable inde-
pendence, which allows the state transition probabili-
ties to be represented more compactly. The conditional
probability table for each post-action variable X de-
fines a conditional distribution P*(X}|X) over X] for
each instantiation of its parents. Instcad of represent-
ing these conditional probabilistics as a table, we follow
Hoey et al. in representing them using ADDs. (This
type of representation is said to exploit context-specific
or value independence, in addition to variable indepen-
dence.) Figure 1 illustrates a dynamic belief network
representation of the paint action.

We use a similar factored representation for obser-
vation probabilities, as illustrated in Figure 2. Obser-
vation probabilities are defined scparately for cach ac-
tion. The state variables in the network represent the
state that results from the action associated with this
network; only the relevant state variables are shown
in this network. The conditional probabilities of the
observation variables depend on the values of the state
variables

Recall that P2(X}|X) denotes the transition prob-
abilities for state variable X/ after action a. We let
Pe(X'|X) = P*(X{|X).. P“(\' |X) denote the tran-
sition probabilities for all state variables after action
a. It is represented by an ADD that is the product
of the ADDs representing the conditional probabilities
for each state variable. Similarly, we let P*°(X'|X’) de-
note the transition probabilities for all state variables

Rewanl Network

ADD Representation

Figure 3: Factored representation of reward function for
notify action.

after action a and observation o. It is defined in a sim-
ilar way using the product operation for ADDs. Hoey
et al. (1999) describe in detail how to use ADDs to
compute transition probabilities in the completely ob-
servable case. It requires defining both negative action
diagrams and dual action diagrams before performing
the product operation on these ADDs. For reasons of
space, we refer to that paper for details.

Reward and value functions The reward func-
tion for each action, denoted R®, is also a state-
value function and can be represented compactly by
an ADD. This is illustrated in Figure 3. Because
a piecewise lincar and convex value function for a
POMDP is repesented by a set of state-value functions
YV = {u"v',...,v*}, it can also be represented com-
pactly by a set of ADDs. In the rest of this paper, we
describe how to cxploit a factored representation of a
piecewise-linear and convex value function for compu-
tational speedup.

Dynamic programming update

The central step of dynainic programming algorithms
for POMDPs is the step that updates the piccewise
linear and convex value function based on a one-step
backup for all belief states, as expressed by Equa-
tion (1). Several algorithms have been developed that
perform this computation. Boutilier and Poole (1996)
describe how the simplest of these, called Monahan’s
algorithm. can exploit a factored representation. In
this section, we describe how the most efficient of these
algorithms, called incremental pruning, can also ex-
ploit a factored representation. We begin with a bricf
review of incremental pruning before describing how it
can be generalized to use a factored representation.
In their description of incremental pruning, Cassan-
dra et al. (1997) note that the updated value function
1" of Equation (1) can be defined as a combination of

Hansen 133

Frogindpfct APRMUBreaeRENSs CARVAINL® €000, AAAI (www.aaai.org). All rig3ig¢RagfyedThe backup step uses one-step lookahead to

V() = maxi()
vew) =) VeI
0€0
R (s)h.
o) = Z%O_i(”ﬂ+;-apw-(o|h,a)v(bs)

Each of these value functions is piccewise lincar and
convex. Thus, there is a unique minimum-size set of
state-value functions that represents each value fune-
tion. We use the symbols VY, V*, and V*° to refer to
these minimume-size sets. We use the symbol V to refer
to the minimum-size sct of state-value functions that
represents the currenr value function V7.

Using the script letters I/ and W to denote scts of
state-value functions, we adopt the following notation
to refer to operations on sets of state-value functions.
The cross sum of two sets of state-value functions, i
and W, is denoted i & W = {u+ w|u € U,uw: € W}
An operator that takes a set of state-value functions
U and reduces it to its unicque minimum form is de-
noted PRUNE(H/). Using this notation, the minimum-
size sets of state-value functions defined carlier can be
characterized as follows:

V' = PRUNE(UseaV")

v(l — PR(','"\TE (H::“Eovll,l’l)
Ve = PRUNE ({t™"i* € V}),

where v is the state-value function defined by

Ru(s)
Ol

Uu.o.i (8) —

+3 Y Pr(s'.ols,a)t’(s), (3)

&'CS

Incremental pruning gains its efficiency (and its name)
from the way it interleaves pruning and cross-sum to
compute 2, as follows:

V¢ = PRUNE(..(PRUNE(V®®1 iy V*2) pYnor),

Cassandra et al. (1997) describe a restricted region
generalization of incremental pruning that improves
the cfficiency of the algorithin further. We do not de-
scribe it here because it presents no further complica-
tion for use of a factored representation.

Only two steps of the incremental pruning algorithm
must. be modified to exploit a factored representation:
the backup step that creates each v®°? (and later
combines them using the cross-sum operator) and the
pruning step. Below, we describe how to modify these
two steps. The rest of the algorithm works exactly the
same using a factored representation as it doces using a
flat representation.

134 AIPS-2000

create new state-value functions, given a current value
function ¥V and the transition and reward functions of
the problem. First, it creates the state-value functions
in each set V*°. For state-value functions represented
in flat form, Equation (3) defines how the state-value
functions in V*? are created. For state-value functions
in factored form, the following equation docs the same:

R*(XY)
(&

L,u.u.i((\:) = + ‘dz Pa'u(.'l"'l‘-\'.')l'i(:{") (4)
X

In this equation, »*®i, R*, P™°, and v' are repre-
sented by ADDs. The operators used in this equation
include product of two ADDs and sum of two ADDs.
(Multiplication and division of an ADD by a scalar
is implemented by first converting the scalar to an
ADD representation and then computing the product
of two ADDs.) In addition, the symbol 3" ;. denotes
an operator that eliminates the primed state variables
in the product ADD, P*°(.V/|X)vi(X"), by summing
over their values. (In the ADD package, this oper-
ator is called existential abstraction.) This operator
makes it possible to compute an expected value at the
level of state variables instead of states. Once these
state-value functions have been created, the cross-sumn
operator — which simply sums the state-value functions
represented by ADDs — is used to create the state-value
functions that are eventually contained in V.

This backup step for POMDPs is very similar to the
dynamic programming update step for completely ob-
servable MDPs in factored form, as described by Hoey
el al. (1999). The only difference is that observa-
tions and observation probabilitics are included in the
POMDP version and the maximization operator is not.
Given this close correspondence, we refer to their pa-
per for a detailed explanation of how to implement
this backup step using a factored representation, such
as ADDs. The generalization of this step to POMDDPs,
assuming a decision tree representation of state-value
functions, is described by Boutilier and Poole (1996).
Boutilier and Poole also suggest that the priming step
of POMDP algorithms can exploit a factored represen-
tation, although they do not develop an algorithm for
this. To complement their paper, we proceed to discuss
this pruning step at length.

Prune The operator PRU N E(.) takes a set of state-
value functions as input and removes dominated state-
value functions from it, that is, state-value functions
whose removal does not change the belief-value func-
tion represented by the set of state-value functions.
The simplest method of removing dominated state-
value functions is to remove any state-value function

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). A"tmsd?ﬁ%rﬁefj

procedure POINTWISE-DOMINATE (w. U)
foreachu e

if w(s) < u(s), Vs € S then return true
return false

procedure LP-DOMINATE (w,)
solve the following linear program
variables: d, b(s) Vs € S
maximize d
subject to the constraints
b-(w—u)>d, Yueld
Spesbls) =1
if d > 0 then return b
else return nil

procedure BEST (b, U)
mar + —oo
forcachueld

if (b-u > max) or ((b-u = maz) and (u <jer w)) then

w e U
maz « b-u
return w

procedurc PRUNE(({)
W0
while i £ 0
1 ¢ any element in Y
if POINTWISE-DOMINATE((u, W) = true
U+ U-{u}
else
b <+ LP-DOMINATE(u, W)
if b = nil then
U+ U-{u}
else
w « BEST(b,U)
W« Wu {w}
U—U-—{w}
return W

Table 1: Algorithm for pruning a set of state-value
functions represented by vectors.

that is pointwise dominated by another state-value
function. A state-value function, u, is pointwise domi-
nated by another, w, if w(s) < w(s) for all s € §. The
procedure POINTWISE-DOMINATE in Table 1 per-
forms this operation. Although this method of detect-
ing dominated state-value functions is fast, it cannot
detect all dominated state-value functions.

There is a linear programming method that can de-
tect all dominated state-value functions. Given a state-
value function v and a set of state-value functions U

include v, the linear program in proce-
dure LP-DOMINATE of Table 1 determines whether
adding v to U improves the value function represented
by U for any belief state b. If it does, the variable d op-
timized by the linear program is the maximum amount
by which the value function is improved and b is the
belicf state that optimizes d. If it does not, that is, if
d <0, then v is dominated by &.

Table 1 summarizes an algorithm, due to White and
Lark (White 1991), that uses these two tests for dom-
inated state-valuc functions to prune a set of state-
value functions to its minimum size. (The symbol <.,
in the pscudocode denotes lexicographic ordering. Its
significance in implementing this algorithm was eluci-
dated by Littman (1994).) To use this algorithm to
prune a set of state-value functions represented in fac-
tored form, we first perform the pre-processing step
summarized in Table 2. It takes as input a set of
state-value functions represented in factored form and
creates an abstract state space for it that only makes
the state distinctions relevant for predicting expected
value. Because an abstract state corresponds to a set of
underlying states, the cardinality of the abstract state
space can be much less than the cardinality of the orig-
inal state space. By reducing the cffective size of the
state space, state abstraction can significantly improve
the efficicncy of pruning because the complexity of
the three subroutines used in pruning - POINTWISE-
DOMINATE, LP-DOMINATE, and BEST - is a func-
tion of the size of the state space. (In the case of
the linear programming test for dominated state value
functions, state abstraction reduces the number of vari-
ables in the lincar programs.)

In the pseudocode for CREATE-PARTITION, R de-
notes a set of abstract states. Initially, R contains
a single abstract state that corresponds to the entire
state set of the problem. Gradually, R is refined by
making relevant state distinctions. Each new state dis-
tinction splits some abstract state into two abstract
states. The algorithm does not backtrack; every state
distinction it introduces is necessary and relevant.

Each state-value function represented by an ADD
defines an abstraction of the statc space where the
number of abstract states is equal to the number of
leaves of the ADD, and cach abstract state represents
a sct of underlying states with the same value. Given
a set of state-value functions (represented by ADDs]),
the algorithin summarized in Table 2 creates a set of
abstract states that is consistent with the abstractions
of the statc space created by each state-value function.
This means that whenever two states are mapped to
different. values by the same state-value function, they -
must belong to different abstract states in R.

Hansen 135

From procedone FCREARE- EARIGETEQ00/MAI (www.aaai.org). Al right§esicusereating an abstract state space, our imple-

R+ {S}
for each state-value function v € V
T + set of abstract states defined by v
for each abstract state L € T
for each abstract state r € R
if (¢Nr =) or (r Ct) then do nothing
clse if £ C r then
R« R—{r}
R+ RU{t}u{r -1t}
exit innermost for loop

clse
R« R—{r}
R+« RU{r—t}u{rnt}
T«Tu{t-r}

exit innermost for loop
return R

Table 2: Algorithm for partitioning a state set, S, into
a sct of abstract states, R, that only makes relevant.
state distinctions found in a set of factored state-value
functions, V.

Table 2 describes the CREATE-PARTITION algo-
rithm as if the abstract states it manipulates corre-
spond to sets of underlying states, and conceptually
this is true. But in our implementation, we represent
abstract states by binary decision diagrams (BDDs)
that partition the state set into two sets of states. those
that map to 1 and those that map to 0. We define the
set of underlying states that corresponds to the ab-
stract state represented by a BDD d as follows:

Sq = {s|d(s) = 1,5 € S}.

This representation of abstract states allows Boolean
set operations provided by the ADD package to be
used in implementing the algorithm for partitioning
the state space into abstract states. We use the logical
AND operator, where

d1&da=(s) = 1 if and only if d;(s) = 1 and da(s) = 1,
and the logical complement operator, where
di(s) = 1 if an only if d;(s) = 0,

to define the following operations and relations on scts
of underlying states corresponding to abstract states:

Sa, N Sa,

Sdl - Sd'z Sdl&d_g

Sdl (_: Sdz if (il&dg = dl
Sa, NSy, =0 if di&dy=0

Sd,&d,

136 AIPS-2000

mentation of this pre-processing step returns a vector
representation of the set of stare-value functions, where
the size of cach vector is equal to the number of ab-
stract states. (Vectors defined over abstract states can
be much smaller than vectors defined over the under-
lying states; so this is not a flat representation of the
set. of state-value functious.) We do this because the
pruning algorithm runs much faster when state-value
functions arc represented as vectors than when they
are represented as ADDs. As long as the vectors are
defined for abstract states, both the vector and ADD
representations are equally compact. (This temporary
change of representation also has the benefit of allow-
ing the flat and factored algorithms to use the same
code for pruning sets of starc-value functions. Thus,
the differences in running time reported later are not
clouded by implementation differences and accurately
reflect the bencfits of state abstraction.)

The algorithm for creating an abstract state space
summarized in Table 2 has a worst-case complexiry
of [V||S|*, although it runs much faster when there is
state abstraction. (It is casy to imagine a faster heuris-
tic algorithun that finds a useful, though not necessar-
ily best. state abstraction. For the examples we have
tested so far, we have not found this necessary.)

Value and policy iteration

Value iteration for POMDPs consists of repeatedly ap-
plying the dynamic programming update. We have
also used a factored state representation in implement-
ing a policy iteration algorithm for POMDPs that rep-
resents a policy as a finite-state controller (ITansen
1998). By interleaving the dynamic programming up-
date with a policy cvaluation step, this algorithm can
converge in fewer iterations than value iteration. The
policy evaluation step of the algorithm exploits a fac-
tored state representation by using a successive ap-
proximation algorithm similar to that described by
Boutilier et al. (1995) to evaluate a controller.

For infinitc-horizon POMDPDPs. the error bound of
a value function is computed by solving a set of linear
programs. Computation of the error bound can also be
accelerated by exploiting a factored state representa-
tion, using the same algorithm for creating an abstract
state space summarized in Table 2. Space limitations
preclude us from describing this here. But we note that
the time it takes to compute the error bound is very
small, and almost negligible, compared to the time it
takes to compute the dynamic programining update.

For the widget processing example, value iteration
converges to an optimal belief-value function consist-
ing of 33 state-value functions and policy iteration

From: AIPS 2o eedings. Copyright © 2000, AAAI (www.aaai.org). Altagalstimenisislightly larger than the sum of the times

Figure 4: Optimal controller for widget-processing prob-
lem (showing only recurrent nodes).

converges to an optimal finite-state controller with 33
nodes. Figure 4 shows the recurrent nodes of the con-
troller, that is, the nodes that are reachable after a
widget is processed. The other 27 nodes are transient
nodes that are only useful for initial probability dis-
tributions that differ from those that characterize the
initial condition of the widget. The controller in Fig-
ure 4 represents an optimal assembly-line plan for the
rohot.

Test results

We compared the performance of our implementations
of incremental pruning using a factored and a flat rep-
resentation. Both implementations are identical except
that the factored algorithm uses ADDs to compactly
represent transition and observation probabilities and
state-value functions, while the flat algorithm uses vec-
tors and explicitly represents all states.

Table 3 compares one iteration of incremental prun-
ing using the factored and flat representations, for
seven different POMDPs. The results for the flat rep-
resentation are shown above the results for the factored
representation. Both algorithms have the same input
and compute identical results. Both perform the same
number of backups, the same number of pruning oper-
ations, the same number of linear programs, etc. They
only differ in the data structures they use.

The procedure PRUNE is invoked multiple times by
incremental pruning. FEach time it is invoked by the
factored algorithm, an abstract state space is created
by the procedure CREATE-PARTITION. The column
with the heading “Abs” indicates the average cardi-
nality of the abstract state sets that are created. In
gencral, the higher the degrec of abstraction for a prob-
lem, the faster the factored algorithm runs relative to
the flat algorithm. The relationship between degree of
abstraction and computational speedup is complicated
by other factors, however, including the cardinality of
the set of state-value functions and the number of ob-
servations. We have broken down the timing results to
help illustrate the effect of these various factors. (The

for all the operations; this reflects a slight overhead in
the algorithm for setting up the computation.)

Problem 1 in Table 3 is the coffce problem used as an
illustration by Boutilier and Poole (1996). Problem 3 is
the widget-processing problem used as an illustration
in this paper. The other problems are various synthetic
POMDPs created for the purpose of testing. Problem
4 illustrates the worst-case behavior of the algorithm
when there is no state abstraction. Problem 2 illus-
trates the performance of the algorithm where there
is a very modest degree of state abstraction. Prob-
lems 5, 6, and 7 illustrate the performance of the algo-
rithim when there is a high degree of state ahstraction;
they represent close to the best-case behavior of the
algorithm for problems of their size. As problem size
increases, that is, as the cardinality of S, O, and V
increases, the potential speedup from using a factored
representation increases as well.

Two steps of the incremental pruning algorithm ex-
ploit a factored representation: the backup step and
the pruning step. The table breaks down the timing re-
sults for each step. Within cach step, it times each op-
cration that uscs a factored representation separately.
This makes it possible to determine the relative con-
tribution of cach operation to the running time of the
algorithin, as well as the rclative performance of the
operations using the factored and flat representations.

The backup step for POMDPs is similar to the dy-
namic programming update for completely observable
MDPs represented in factored form. Like Hoey et al.
(1999), we found that its worst-case overhead can cause
a factored backup to run up to ten times slower than a
flat backup. This is illustrated by problem 4. But also
likc Hoey et al., we found that factored backups can
run much faster than flat backups when there is suffi-
cient state abstraction. This is illustrated by problems
6 and 7, in particular.

For most POMDPs, and for all POMDPs that arc
difficult to solve, most of the running time of dynamic
programming is spent. pruning scts of statc-value func-
tions. In our implementation, the only overhead for
the factored pruning algorithm is the overhead for cre-
ating an abstract state space. Empirically, we found
that this overhead is quite small relative to the running
time of the rest of the pruning algorithm. Although it
tends to grow with the size of the abstract state space,
problem 4, our worst-case example, does not illustrate
the worst-case overhead. This is because the proce-
dure CREATE-PARTITION has a useful and reason-
able optimization; as soon as the cardinality of the
abstract statc space is equal to the cardinality of the
underlying state space, it terminates. For CREATE-

Hansen 137

From: AIAS 2040 ProEgahlemcopyfight © Bobitden! www fhaai.org). All rights reserved. Timing Results
characteristics characterisiics Backup Prune
C# LIS 1AL 1o] V] V'] | Abs New | Xsum [Part | Pew | LP | Best | Total
- 0.4 0.08 - 196 4806 15.36 498.7]
1 25 3 2! 91 229 14.0 1.1 0.92 9.8 253 343.7 7.50 366.3
- 0.2 0.19 - 23.55 3640.3 166.73 3831.8
2 2 6 2° 25 142 209 0.2 0.48 8.6 J0.11 34714 10254 3615.3
- 1.1 . 0.00 - 0.02 2.4 0.14 6.7
3 28 6 2° 32 30 7.5 06, 002 06 0.01 2.7 0.07 1.0
- 53.4 0.09 - 1797 7957.8 152.02 81819
4 20 5 2° 521 2539 64.0 3956 839 1.8 1764 8072.1 152.79 8653.2
i - 7.0 0.12 -5 030 133.0 1294 154.2
5 27 8 22 412 42 128 565 0.15 3.8 ‘ 0.22 30.5 0.92 41.4
- 41131 141 -| 244 8099.1 32189 12546.1
6 2 11 2¢ 198 457 346 225.3 025 63.4: 240 641.8 19.82 959.7
- 1325 ° 0.24 | 0.10 6225 2597 782.0
7210 11 2t 4 235 8.9 3.0, 0.06 1.0 . 0.06 22.4 0.52 27.0

Table 3: Timing results (in CPU seconds) for an iteration of the dynamic programming update using incremental pruning.
Results for the flat representation are shown above results f r the factored representation. The column with the heading
“Abs” represents the mean number of abstract states, whul. is averaged over all calls to the procedure PRUNE. “New”

represents the time for computing Equation (4) (for the facror»d case) and (3) (for the flat case) to create all ¢

0.

“Xsum”

represents the time for cornputing cross sums. “Part” represents the time for partitioning the state space into abstract states.

“Ptw” represents the time for pointwise dominance pruning
represents the time for the procedure BEST.

PARTITION to incur its worst-case overhead. in other
words. there must be at least some state abstraction.
But this, in turn. can offset the overhead.

For problem 3, there is an apparent anomaly in the
timing of the pointwise dominance test; it is slightly
slower using a factored representation. The explana-
tion is that the algorithin for detecting pointwise dom-
inance is optimized to terminate as soon as onc vector
doces not dominate the other for some state. Thus, the
order of states can affect the timing of this algorithm.
although it does so by chance. Because abstract states
can be ordered differently than flat states, the running
time of the pointwise dominance test is not faster in
every case, using a factored representation.

Our results show that exploiting a factored repre-
sentation for state abstraction can significantly accel-
crate the pruning algorithm. It can reduce the running
time of the pointwise dominance test by decreasing the
number of state values that are compared (although
our results do not illustrate this well); it can reduce
the running time of lincar programming by decreasing
the number of variables in the linear programs; and it
can reduce the running time of the procedure BEST by
decreasing the size of the vectors for which a dot prod-
uct is computed. Because most of the running time of
dynamic programming is spent pruning sets of state-
value functions, especially using linear programmniing,

138 AIPS-2000

“LP” represents the time for lincar program pruning. “Best”

incremental pruning using a factored representation
can run significantly faster than using a flat representa-
tion. Morcover, it incurs very little overhead, even in
the worst case. Our results suggest that the worst-
case overhead for a factored dynamic programming
algorithm for POMDPs is considerably less than the
worst-case overhead for a factored dynamic program-
ming algorithm for completely observable MDPs (Hoey
et al. 1999). The backup step for both algorithms may
incur the same overhecad. However, the running time
of dynamic programming for POMDPs is taken up pri-
marily by pruning sets of state-value functions. This
step incurs very little overhead, and thus the combined
overhead for the POMDP algorithm can be a much
smaller fraction of the algorithm’s running time.

Discussion
We have described an implementation of dynamic pro-
gramming for POMDPDs that exploits a factored state
representation. It is based on, and extends, a frame-
work proposed by Boutilier and Poole (1996). We ex-
tend their framework in the following ways; we usc
ADDs instead of decision trees, we show how the in-
cremental pruning algorithm (the fastest algorichmn for
computing the dynamic programming update) can ex-
ploit a factored representation, and we describe an al-
gorithm for creating an abstract state space that accel-
erates the pruning step of dynamic programming. Our

fenn: 5\ £9Ga Rieatedtlust Gofdigivred0da kA pbprevenealorg). All BoigtRieFy«@. and Poole, D. 1996. Computing optimal

tion can significantly speed up dynamic programming
in the best case and incurs little overhead in the worst
case.

This positive result must be placed in perspective,
however. The approach we have described addresses
POMDP difficulty that is due to the size of the state
space. For completely observable MDPs, the sizc of the
state space is the principal source of problem difficulty.
For POMDPs, it is not. Although the size of the state
space contributes to POMDP difficulty. the size of the
value function representing a solution to a POMDP
can have a larger influence on problem difficulty. A
POMDP with a large state space may have a small
optimal value function that can be found quickly. By
contrast, a POMDP with a small state space may have
a large or unbounded value function that is computa-
tionally prohibitive to compute. Although the frame-
work we have described for exploiting a factored state
representation can be very beneficial, it does not ad-
dress the aspect of POMDP difficulty that relates to
the size of the value function.

Boutilier and Poole (1996) propose a related ap-
proach to approximation that uses a factored repre-
sentation of state-value functions to represent bounds
on state values. By ignoring state distinctions that
have little cffect on expected value, this approach can
reduce the size of the value function computed by dy-
namic programming. We plan to experiment with this
approach to approximation in the necar future. We
will also explore the possibility of exploiting the fac-
tored representation of observations to achieve addi-
tional computational speedup.

Acknowledgements We thank the anonymous re-
viewers for helpful comments.

References

Bahar, R.I.; Frohm, E.A.; Gaona, C.M.; Hachtel,
G.D.; Macii, E.; Pardo, A.; and Somenzi, F. 1993.
Algebraic decision diagrams and their applications.
International Conference on Computer-Aided Design,
188-191, IEEE.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and com-
putational leverage. Journal of Artificial Intelligence
Research 11:1-94,

Boutilicr, C.; Decarden, R.; and Goldszmidt, M.
1995. Exploiting structure in policy construction. In
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence (IJCAI-95), 1104-1111,
Montreal, Canada.

policies for partially observable decision processes us-
ing compact representations. In Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence (AAAI-96), 1168--1175. Portland, OR.

Cassandra, A.R.; Littman, M.L.; and Zhang, N.L.
1997. Incremental pruning: A simple, fast, exact
method for partially observable Markov decision pro-
cesses. In Proceedings of the Thirteenth Annual Con-
ference on Uncertainty in Artificial Intelligence (CAl-
97). 54-61, Providence, RIL

Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilis-
tic planning with information gathering and contin-
gent exccution. In Proceedings of the Second Interna-
tional Conference on Artificial Intelligence Planning
Systems (AIPS-94), 31-36.

Hansen, E. 1998. Solving POMDPs by searching in
policy space. In Proceedings of the Fourteenth Con-
ference on Uncertainty in Artificial Intelligence (UAI-
98), 211 219. Madison, W1

Hoey, J.; St-Aubin, R.: Hu, A.; and Boutilier, C.
1999. SPUDD: Stochastic Planning using Decision
Diagrams. In Procecdings of the Fiftcenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI-
99), Stockholm, Sweden.

Littman, M.L. 1994. The Witness algorithm: Solv-
ing partially observable Markov decision processes.
Brown University Department of Computer Science
Technical Report CS-94-40.

Majercik, S.M. and Littman, M.L. 1999. Contingent
planning under uncertainty via stochastic satisfiabil-
ity. In Proccedings of the Sixteenth National Con-
ference on Artificial Intelligence (AAAI-99), 549-556,
Orlando, FL.

Onder, N. and Pollack, M.E. 1999. Conditional, prob-
abilistic planning: A unifying algorithm and effective
scarch control mechanisms. In Proceedings of the Six-
teenth National Conference on Artificial Intelligence
(AAAI-99), 577 - 584, Orlando, FL.

Smallwood, R.D. and Sondik, E.J. 1973. The optimal
control of partially observable Markov processes over
a finite horizon. Operations Research 21:1071-1088.

Somenzi, F. 1998. CUDD: CU decision diagram pack-
age. Available from ftp://vlsi.colorado.cdu/pub/.

Sondik, E.J. 1978. The optimal control of partially
observable Markov processes over the infinite horizon:
Discounted costs. Operations Research 26:282-304.

White, C.C. 1991. A survey of solution techniques
for the partially observed Markov decision process.
Annals of Operations Research 32:215 230.

Hansen 139

