
Dynamic Programming for POMDPs
using a Factored State Representation

Eric A. Hansen and Zhengzhu Feng
Computer Science Department and Intelligent Systems Laboratory

.Mississippi State University, Mississippi State.. MS 39762
{ hansen,fengzz} @cs. msstate.edu

Abstract

Contingent planning -- constructing a plan in which
action seh,ction is contingent on imperfect infornla-
tion received during plan execution - can be forma]-
ized ~s the problem of solving a partially observabh,
Markov decision process (POMDP). Traditional dy-
namic programmiug algorittmm for POMDPs use a
flat state representation that enunmrat(.s all possible
states au,l staCe tr~msitions. By contrast, AI plmming
algorithms use a fiwt.ored state rcpres(.ntation that
supports state abstraction and allows prolfloms with
large state spaces to be represented and solved nmre
efficiently. Boutilier ~md Peele (1996) have recently
described how a factored state rcpresent.ation c~ut be
exploited by a dynamic programming algorithm for
POMDPs. We. extend their framework, describe an
implementation of it, test its performance, and assess
how mucl~ this approach improves the computational
effk:iency of dynaanic l)rogramming fi,r POMDPs.

Introduction
Many AI plamfing researchers have adopted Marker
decision processes (MDPs) as a frmncwork for decisi,)n-
theoretic planning. (See (Boutilier el al. 1999) for
survey and refererlces.). In doing so, they have also
adopted dynamic programming - the most common
approach to solving MDPs - as an approach to plan-
ning.

Classic dyimmic programming algorithms for solving
MDPs, including value iteration and policy iteration,
require explicit enumeratk)n of a problem’s state space.
Because the state space grows exponentially with the
numt)er of state variables, these algorithms are prey to
Belhnan’s "curse of dimensionality." Recently, prornis-
ing extensions of these algorithms have been developed
that exploit structure in the rc.presentatkm of an MDP
to avoid explicit enumeration of the sl ate space. So 51r,
work in this area has focused on completely observ-
able MDPs and encouraging empirical results have re-
cen0y been reported (Hoey et al. 1999). Boutilier and

Copyright (~)2000, Arnerican Association for Artificial In-
telligence (www.aaai.org). All right.s reserved.

Pool[’ (1996) have also proposed a value iteration algo-
rithm for partially observable MDPs (PO,MDPs) that
exploits a factored representation. H,)wevcr, their algo-
rithm has not previously been imph,Jnented. Boutilicr
et al. (1999) write that "exl)loit.ing strttcturcd r(’pre-
scntations of POMDPs is a topi(’ that remains).o I)c
explored in depth."

A POMDP mod(’ls (lecision m;~king under iml)(:r-
feet and partial slat(, information and supports rea-
soning about whcth,:r to select actkms that change the
state, provide state informaL[ion, or both. The prob-
lem of planning under urlcert:tinty using information-
gathering act.ions has been considered in the AI com-
munity [[sing other fralm,works (Draper et al. 1994;
Ondcr & Pollack 1999; Majcrcik & Lit[man 1999).
This pal)er describes the first implementation of ,ly-
mmfic programming for POMDPs that exploits tim
same factored representation used by AI planners.
We c,xteml the algorithmic fl’anmwork proposed t)y
Boutilicr and Pooh, and (tcscribe v~due iteration and
policy iteration algorithms for POMDPs that adopt
this rcprescnt~tion. Our results validate this al)l*roach
and provide a I)reliminary assessment of how much it
can improve the computational efficiency of dynamic
programming for POMDPs.

Background

We consider (:ontingcnt plmming i)rol)lems tha.t
represented in factored form. We a~sume the. relevant
properties of a domain are described tW a finite set of
Boole~m state variables, A’ = {Xn Xn}. An a,s-
signment of truth values to ,~’ corresponds to a state
of the domain. Let. S = 2x denote the set of ~fll pos-
sibh: states. We assume an agent receives (1)ossibly
imperfect) state information in the form of a finit.e set
of Boolean observation variables, y = {YL,...:);n}.
An assigmnent of truth values to Y corresponds to a
l)articulax observation. Let. O = y denote the set o f
all possible observations. (The a,ssumption that state
and observation w~riables are Boolean does not limit

130 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

the results of this paper. By adopting a suitable en-
coding, problems with multi-valued variables call be
represented using Boolean variables.) We also assume
a finite set of actions A.

We briefly review the traditional approach to solv-
ing POMDPs befi~re describing how to generalize it to
exploit a factored representation.

POMDPs For the class of planning problems we
consider, the n.qationship between an agent arid its en-
vironment is modeled as a discrete-tinm POMDP with
a finite set of states, S, a finite set of observations, O..
and a finite set of actions, A. Each time period, the
environnu.*nt is in some state s E S, the agent chooses
an action a E A for whic.h it receives an immediate re-
ward with expected value Ra (s) E ~, the environment
makes a transition to state s~ E S with probability
Pr(s’]s, a.) [0, 1] , and the agent observes o E O with
probability Pr(ols’, a) E [0, 1]. We assume the objec-
tive is to maximize expected total discounted reward
ow~r art infinite horizon, where/5 E (0, 1] is the discount
factor.

Although the state of the environment cannot be di-
rectly observed, the probability that it is in a given
state can be calculated. Let b denote a vector of state
probabilities, called a belie~ state, where b(s) denotes
the probability that the system is in state s. If action a
is taken and it is followed by observation o, the succes-
sor belief state, denoted boa, is detcrnlined by revising
eat~ state probability using Bayes’ theoreln, a8 follows,

~’]~ses Pr(s’, o[s, a)b(b~(s’) = ~’~s.s, es Pr(s’, o1.~, a)b(s)

where Pr(s’, ois, a) = Pr(s’ls, a)Pr(o[s’, a). now
on, we adopt the simplified notation, Pr(olb,) =

~-~-s,s, es Pr(s’,°l s, a)b(s), to refer to the normalizing
factor in tile denominator.

It is well-known that a belief state updated by
Bayesian conditioning is a sufficient statistic that sum-
marizes all information necessary for optimal action
selection. This gives rise to the standard approach to
solving POMDPs; the problem is recast as a completely
observable MDP with a continuous,]S]-dimensional
state space consisting of all possible belief states. In
this form, it can be solved by iteration of a dynamic-
pro.qramming update that performs tile following "one-
step ba~up" for each belief state b:

(U
In words, this says that the value ¢ff belief stat.e b is
set equal to the immediate reward for taking the best.

action for b plus tile discounted expected value of the
resulting belief state boa.

Smallwood and Sondik (1973) prove that this
dynamic-programming step preserves the piecewise lin-
earity and convexity of the value function. A piecewisc
linear and convex value function V can be represerit(;d
by a finite set of [S[-dimensional vectors of real num-
bers, V = {v°, vX,..., vk}, such that the value of eadl
belief state b is defined as follows:

Vfb) = max ~ b(s)vi(s). (2)
O<i<k

-- sES

Tl,is representation of the value function allows the
dynamic programming update to be computed exactly
and several algorithms for this have been developed
(e.g., Cassazldra et al. 1997). Value iteration re-
peatedly applies the dynamic-programnling update to
improve a value function until convergence to an e-
optimal value function. A policy d mapping belief
states to actions can be extracted from the value func-
tion using one-step lookahead, as follows,

Because value iteration represents a policy implicitly
by a value function and improves the policy by gradu-
’ally improving the value function, it is said to "search
in value function space." Another approach to dy-
namic programming, called policy iteration, is said to
"search in policy space" because it, represents a policy
explicitly and iteratively improves the policy (Sondik
1978; Hmisen 1998)

Planning using factored representations Unlike
the MDP model developed in operations research, AI
planning rescardl has traditionally used factored rep-
resentations. In the STRIPS action representation, for
example, actions are modeled by their cffect on state
variables. When an action only ’affects a few state v~i-
ahles, or when its effects are very regular, the STRIPS
description of the transition model of the action can be
very compact even if the state space of tile planning
problem is very large.

The representations used by AI planners were origi-
nally developed for classical planners that ignored un-
certainty, such as the STRIPS planner. In the past
few years, tlmre has been growing interest it, gen-
eralizing these representations to planning probleins
that include uncertainty about the effects of actions
and/or uncertainty about the problem state. A non-
linear planner that solves planning problems that in-
clude both forms of uncertainty is described by Draper

Hansen 12} I

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

et el. (1994). Onder and Pollack (1999) describe
provements to this "algorithnl. Majercik and Littman
(1999} describe a satisfiability-based planner for tlle
smile class of planning problems. Boutilier and Peele
(1996) propose exploiting the factored state represen-
tation used by such planners to improve the efficiecy
of dynamic programnfing for POMDPs.

Decision diagrams To represent fimctions that
map states to vahms {or probabilities), traditional
POMDP ~dgorithms use a vector that represents each
mapping from state to vahm independently. Boutilier
and Peele (1996) propose using decision trees to com-
pax:tly represent these fimctions. By mapping sets of
states with the same value to the same leaf of the
tree. decision trees can compactly represent the sam(,
functions. Boutilier and Peele note that other com-
pact representations an’ possible, including rules amt
decision lists, and Hoey et al. (1999) have recently
shown that algeb~n.ic decision diagrams (ADDs) (:an
compactly represent the transition prol)abilities, re-
ward function, value function and policy of an MDP.
They describe a value iteration algorithm for cum-
pletely observable MDPs ttmt uses this representation
a~z(t report that it OUtl)erforms a similar algorithnl that
uses decision trees to compactly represent an MDP. We
also use ADDs in our algoritlml K~r solving factored
POMDPs.

Decision diagrmns are widely used in VLSI CAD l)c-
cause they make it possible to represent and evaluate
large state space systems (Bahar et el. 1993). A bi-
naxy decision diagram is a conllm(:t representation of
a Boolean function, /3" -~ /3. An algcbralc decision
diagram (ADD) gem’.ralizcs a binary decision diagram
to represent real-valued functions,/3" ~ ~. Figures 1,
2, and 3 include examples of ADDs. An ADD can be
more compact than a decision tree because it merges
branches that lead to the same value. Efficient pack-
ages for manipulating ADDs are available that provide
operations such as sum, product, expectation, and oth-
ers (Sornenzi 1998).

Factored representation of POMDP
The advantage of using a factored state representation
is that it allows a powerful form of state abstraction
in which an abstract stat.c is a partial assignment of
truth values to X and corresponds to a set of possi-
ble states in the flat representation of the probh,nl.
Using abstraction to ignore properties of the state in
contexts where they are irrelevant makes it possible
to specie" a transition and reward model for actions
more compactly, a,s well as to accelerate the dynamic
progranzming algorithm.

.~_______________2~~~ ..." "_.~. , 1-I."

"’.. T~
¯ .. t~-

¯ "" SH RI" "40 I PA’
f~,. --.~_..~ f-~...~... "" - ,

, . +°,
F T,I-" I F O0

~~--~--~’~

F I",’F "l’/!’ OO

/

Figure 1: Fettered represontatioa of transition prolml~ili-
ties for imint action.

Example As an exanlple of a POMDP with a fac-
tore(t representation, we use a variation of the widget-
processing ex+mtple of Draper ctal. (1994). Our ver-
sion of this problem has six Boolean sta.t<~ variabh,s.
A widget can be flawed (FL), slightly flawed (SL-FI+),
painted (PA), shipped (SH), and/or rejected (RE), and
a supervisor can be notified (Nf)) that tile widget,
been processed. A manufacturing robot has six avail-
able actions. It can inspcct, re.pair., paint, ship, or reject
the widget, and it can verify a supervisor that the wid-
get. has been processed. Tile objective of the robot is
to paint and ship any widget that is not flawed and
rqiect ~my widget that is flawed. If a widget is only
slightly flawed, it can be repaired (removing the slight
tlaw) and then painted and slail)ped. (llowt,ver, t.he
repair and paint actions are only succ(,ssful with prob-
ability 0.95.) The inspect action provides imt)orfoct in-
formation +0)out whether a widget is flawed or slightly
flawed. There are two observation variables, BAD +.ml
SL-BAD. If a widget is flawed, the BAD variable is true
with probability 1.0; if it is not flawed, it is t.ruc wit.h
probablity 0.05. If a widget is slightly flawed, the SL-
BAD variable is true with probability 0.95; if it is not
slightly flawed, the SL-BAD wtriable is false with prob-
ability 0.0. (But if the widget is flawed, the SL-BAD
variable is always false.) Aftcr the robot ilas processed
a widget, it nol.ifies the supervisor. It receives a re-
ward of 1.0 for shipping a widget that is unllawed ~utd
painted, and a reward of-l.0 for shipping a flawed wid-
get. After notifying the suimrvisor, the robot receives
another widget to process. The probability that the
next widget is flawed is 0.3 mad the probability that it
is slightly flawed is 0.3. All the other state variables
are initially false. This examl>le models a simple "as-
sembly line" in which a robot must process an infinite
sequence of widgets and its objective is to maximize
cumulative discounted reward over an infinite horizon.
The discount factor is 0.95.

132 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

...’" FL’ [BAD

..... T/~-

~ -~ F I 0.05

\f__~ ~, s~__~.
Cs~., ~-----~SL.S^D~: T ~n=

~ ’"... F T
"" F F

SL-BAD

0.0

0.0
o.9~ "’"~ o

Figure 2: Factored representation of observation probabil-
ities for inspect action.

RF,?ARD

.~L-¢,-"""n~

I|. "’’. "

I .O 0.0 - I .O

ADD Repmsmlafion

Figure 3: Factored representation of reward function for
noti~- action.

Conditional probability functions A factored
representation of a POMDP allows state transition
and observation probabilities to be represented com-
pactly. Like Hoey et al. (1999), we represent state
transition and observation probabilities using two-slice
dynamic belief networks. A two-slice dynamic belief
network for action a has two sets of variables, one set
2l = {XI Xn} refers to the state before taking ac-

rltion a, and X’ = {X~, ...,Xr, } refers to the state after.
Directed arcs from variables in X to variables in X’
indicate causal influence. The absence of arcs from
variables in A" to variables in XI reflects variable inde-
pendence, which allows the state transition probabili-
ties to be represented more compactly. The conditional
probability table for each post-action variable X~ de-
fines a conditional distribution Pa(X~IX) over X~ for
each instantiation of its parents. Instead of represent-
ing these conditional probabilistics as a table: we follow
Hoey et al. in representing them using ADDs. (This
type of representation is said to exploit context-specific
or value independence, in addition to variable indepcn-
dence.) Figure 1 illustrates a dynamic belief network
representation of the paint action.

We use a similar factored representation for obser-
vation probabilities, as illustrated in Figure 2. Obser-
vation probabilities are defined scparately for cach ac-
tion. The state variables in the network represent the
state that results from the action associated with this
network; only the relevant state variables are shown
in this network. The conditional probabilities of the
observation variables depend on the values of the state
variablcs

Recall that Pa(X~K2d) denotes the transition prob-
abilities for statc variable X~ after action a. We let
P" (X’[X) P~(X~]2d)...P~ (,X"~ 12d)denote the trazl-
sition probabilities for all state variables after action
a. It is represented by an ADD that. is the product
of the ADDs representing the conditional probabilities
for each state variable. Similarly, we let Pa’°(X’[X) de-
note the transition probabilities for all state variables

after action a and observation o. It is defined in a sim-
ilar way using the product operation for ADDs. Hoey
et al. (1999) describe in detail how to use ADDs
compute transition probabilities in the completely ob-
servable case. It requires defining both negative action
diagrams and dual action diagrams before performing
the product operation on these ADDs. For reasons of
space, we refer to that paper for details.

Reward and value functions The reward func-
tion for each action, denoted R’~, is also a state-
value fimction and can be represented compactly by
an ADD. This is illustrated in Figure 3. Because
a piecewise linear and convex value function for a
POMDP is repesented by a set of state-value functions
V = {vn,’v I,...,vk}, it can also be represented com-
pactly by a set of ADDs. In tim rest of this paper, we
describe how to exploit a factored representation of a
piecewise-linear and convex value function for compu-
tational speedup.

Dynamic programming update

The central step of dynamic progranmfing algorithms
for POMDPs is the step that updates the piecewise
linear and convex value function based on a one-step
backup for all belief states, as expressed by Equa-
tion (1). Several algorithms have been developed that
perform this computation. Boutilier and Poole (1996)
describe how the simplest of these, called Monahan’s
algoriLhm, can exploit a factored representation. In
this section, we describe how the most efficient of these
algorithms., called incremental pruning, can also ex-
ploit a factored representation. We begin with a brief
review of incremental pruning before describing how it
can be generalized to use a factored representation.

In their description of incremental pruning, Cassan-
dra et al. (1997) note that the updated value function
V’ of Equation (1) can be d(~fined as a combination

Hansen 133

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

simpler value functions, a,s follows:

V’(b) = maxV"(b)
aEA

= y"’°(b)
oEO

V"’"(b) = ~’~e.~ Ra(s)b(") + flPr(olb, a)l..,(b~)IOi
Each of these value functions is piecewise linear and
convex. Thus, there is a unique minimum-size set of
state-value functions that represents each vMue time-
lion. We use the symbols V’, V", and]/a,o to refer to
these minirnum-size sets. We use the symbol ~; to refer
to the mininmm-size set of state-value flmctions that
represents the current wtlue fimction 1".

Using the script letters 14 and W to denote sets of
state-value funetkms, we adopt the following notation
to refer to operations on sets of state-vahm fimctions.
The clvss sum of two sets of state-value filnctions. 14
and W, is denoted 14 :? W = {u + wlu e 14, w ¯ W}
Aa operator that takes a set of stat(~-value functions
H ~md reduces it to its unique minimum form is (le-
noted PRUNE(H). Using this notation, the minimum-
size sets of state-value functions defined earlie.r can l)c
characterized as follows:

Y’ = PRUNE (U,,e.412’)

Y" = PRUNE (~,eoV"’")

Y"’° = PRUNE ({v"’""l v’ ¯ V}),

where t i is the state-vahm fimction defined by

v,,,o,i(~)_ R"(s)+ i~ Z Pr(s’, ols, a)t"(s’), (3)
IO---F s’C:’,"

Incremental pruning gains its efficiency (and its name)
from the way it interleaves pruning and cross-sum to
compute Va, as follows:

1;~ = PRUNE(... (PRUNE(V"’°’ :.-0 l, ’~’°2)... ~ ~,,.o~).

Cassandra et el. (1997) describe restricted re gion
generalization of incremental pruning that improves
the efficiency of the algorithm Mrther. We (it) not de-
scribe it here because it presents no fllrther compli(’a-
tion for use of a factored representation.

Only two steps of the incremental pruning algorithm
must be nmdified to exploit a factored representation:
the backup step that creates each va’°’~ (and later
comtfincs thexn using the cross-sum operator) and the
pruning step. Below, we describe how to rnodi~" these
two steps. The rest of the algorithm works exactly the
same using a factored representation as it does using a
flat representation.

Backup The backup step uses one-step lookahead to
create new state-value functions, given a current value
flmction]2 and the transition and reward functions of
the problem. First, it creates the state-vahm functions
in each set];,,o. For state-vahm functions represented
in flat form, Equation (3) dcfines tmw the state-value
funct ions in]2"’° arc created. For state-value flmctions
in fa~:tore(t form, the following equation does the same:

R"(X)
/J ~ P"’%V’I,V)v~(A ’’) (4)v~(,v)- I0~ + x,

[n this equation, vTM, R’~, p,,.o, and vi are repre-
sented by ADDs. The operators used in this equation
include product of two ADDs and sum of two ADDs.
(Multiplication and division of an ADD by a scalar
is implemented by first, conw:rting the scalar to an
ADD representation and then computing the product
of two ADDs.) In addition, the syrnhol ~"]-x’ denotes
~m operator that eliminates the primed state variables
in the product ADD, P"’°(,~"lA’)v i(,V,), by summing
over their values. (In the ADD package, this oper-
ant.or is called existenti~fl abstraction.) This operator
makes it. possible to compute an expected value at the
level of state variables instead of states. Once these
state-value functions have been created, the cross-sum
opt’rater - which simply sums the state-value functions
ret)resented by A DI)s - is used to create the state-value
flmctions that are eventually cont~fined in ~;’.

This backup step for POMDPs is very similar to the
dynmrnic programming update step for completely oh-
servable MDPs in factored form, as described by ltoey
et el. (1999). The only difference is that observa-
tions azld observation probabilities are included in the
POMDP version axld the maximization operator is not.
Given this close correspondence, we refer to their pa-
per for a detailed explanation of how to implement
this backup step using a factored representation, such
as ADDs. The generalization of tiffs step to POMDPs,
assuming a decision tree representation of state-value
functions, is described by Boutilier and Peele (1996).
Boutilier and Peele also suggest that the pruning step
of POMDP algorithms can exploit a factored represen-
tation, although they do not develop an ,’flgorithm for
this. To complement their paI)er, we proceed to discuss
this pruning step at length.

Prune The operator PRUNE(.) takes a set of state-
value functions as input ~md removes donfinated state-
value fim(:tions from it, that is, state-value flmt:tions
whose removal does not change the belief-value fimc-
tion represented by the set of state-value functions.

The simplest method of removing donfinated state-
value functions is to renlove any state-value fimction

134 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

procedure POINTWISE-DOMINATE(w,/4)
for each u E L/

if w(s) <_ u(s), Vs thenretur n true
return false

procedure LP-DOMINATE(w,/4)
solve the following linear program

variables: d, b(s) Vs ̄ S
maximize d
subject to the constraints

b.(w-u)>d, Vu¯H

~,esb(s) =
if d > 0 then return b
else return nil

procedure BEST(b,U)

for each u ¯/4
if (b- u > max) or ((b-u max) and (u<zez w)) then

max ~-- b . u
return w

procedure PRUNE(/4)
]4.’ ~ 0
while/4 ¢ 0

u ~-- any element in/4
if POINTWISE-DOMINATE(u, W) = true

U ~ U - {u}
else

b e- LP-DOMINATE(u, W)
if b = nil then

U +- U - {u}
else

w +-- BEST(b,/4)
W ~ W o {w}
U ~- U - {w}

return YV

Table 1: Algorithm for pruning a set of state-value
functions represented by vectors.

that is pointwise donfinated by another state-value
flmction. A state-value function, u, is pointwise domi-
nated by another, w, if u(s) _< w(s) for all s ¯ S. The
procedure POINTWISE-DOMINATE in Table 1 per-
forms this operation. Although this method of detect-
ing dominated state-value functions is fast, it cannot
detect all dominated state-value functions.

There is a linear prograznming method that can de-
tect all dominated state-value functions. Given a state-
value function v and a set of state-value fun(’tions/4

that doesn’t include v, the linear program in proce-
dure LP-DOMINATE of Table 1 determines whether
adding v to/4 improves the value function represented
by/4 for any belief state b. If it does, the variable d op-
timized by the linear program is the maximum amount
by which the value fimction is improved and b is the
belief state that optimizes d. If it does not, that is: if
d _< 0, then v is dominated by/4.

Tabh: 1 summarizes an algorithm, due to White and
Lark (White 1991), that uses these two tests for dom-
inated state-value functions to prune a set of state-
value functions to its minimum size. (The symbol <le,
in the pseudocode denotes le_xicographic ordering. Its
significance in implementing this algorithm was eluci-
dated by Littman (1994).) To use this algorithm
prune a set of state-value functions represented in fi~(:-
tored form, we first perform the pre-processing step
summarized in Table 2. It takes as input a set of
state-value functions represented in factored form and
creates an abstract state space for it that only makes
the state distinctions relevavt for predicting expected
walue. Because an abstract state corresponds to a set of
underlying states, the cardinality of the abstract state
space can be much less than the cardinaiity of the orig-
inal state space. By reducing the effective size of the
state space, state abstraction can significantly improve
the efficiency of pruning because the complexity of
the three subroutines used in pruning - POINTWISE-
DOMINATE, LP-DOMINATE, and BEST - is a filnc-
tion of the size of the state st)ace. (In the case
the linear programming test for dominated state value
flmctions, state abstraction reduces the number of vari-
ables in the linear prograzns.)

In the pseudocode for CREATE-PARTITION, R de-
notes a set of abstract states, hfitially, R contains
a single abstract state that corresponds to the entire
state set of the problem. Gradually, R is refined by
nraking relevant state distinctions. Each new state dis-
tinction splits some abstract state into two abstract
states. Th(: algorithm (toes not backtrack; every state
distinction it introduces is necessary and relevant.

Each state-value flmction represented by all ADD
defines an abstraction of the state space where the
mnnber of abstract states is equal to the number of
leaves of the ADD, and each abstract state represents
a set of underlying states with the same value. Given
a set of state-value functions (represented by ADDs),
the algorithm summarized in Table 2 creates a set of
abstract states that is consistent with the abstractions
of the state space created by each state-value function.
This meea~s that. whenever two states are mapped to
different values by the same state-value flmction, they
must belong to different abstract states in R.

Hansen 135

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

procedure CREATE-PARTITION(V)
R +- {S}
for each state-value function v 6 V

T ~ set of abstract states defined by ’v
for each abstract state l 6 T

for each abstract state r 6 R
if (t A r = 0) or (r C_ t) then do nothing
else if t C 7" then

R R - {r}
a R U {0 U {r - t}
exit innermost for loop

else
R R- {r}
a R U {r - t} U {r n t}
T +-- TU {t- r}
exit innermost for loop

return R

Talfle 2: Algorithm for partitioning a state set.. S, into
a set of abstract states, R, that only makes relevant
state distinctions found in a set of factored state-value
functions, V.

Table 2 describes the CREATE-PARTITION algo-
rithln as if the abstract states it manipulates corre-
spond to sets of underlying states, mL(1 conceptually
this is true. But in our implementation: we represent
abstract states by binary decision diagrmns (BDDs)
that partition the state set into two sets of states, those
that map to 1 arid those that map to 0. We define the
set of underlying states that corresponds to the ab-
stract state represented by a BDD d as follows:

Sd = {sld(s) = 1, s S}.

This representation of abstract states allows Boolean
set operations provided by the ADD package to be
used in implementing the algorithm for partitioning
the state space into abstract states. We use the logical
AND operator, where

dl&d~.(s) = 1 if and only if dl(S) = 1 and d2(s) = 1,

and the logical complement operator, where

([1 (s) = 1 if an only if dl (s)

to define the following operations azl(l relations on sets
of uriderlying states corresponding to abstract states:

Sa, A Sa.~ = Sa,aa~

Sa, - Sa.~ = Sa~az~.
St, c_ Sa~ if dl&d.., = dl

Sa~ASd2 =0 if dl&d.~ =0

Besides creating an abstract state space, our impk.-
mentation of this pre-processing step returns a w~ctor
representation of the set of state-~due flmctions, where
the size of each vector is equal to the number of ab-
stract states. (Vectors defixmd over abstract states can
be mu(’h smaller th,’m vectors defined over the taMer-
lying states; so this is not a fiat representation of the
set of state-vahm flmctions.) We do this becaus,, the
pruning algorithm runs much faster when state-value
functions are represented as vectors than when th(:y
are represented as ADDs. As long as the vectors are
defined for abstract states, I)oth the vector and ADD
representations art: equally (’ompact. (This temporary
change of representation also ha~ the ben,,iit of alh)w-
ing t, ho flat and factored algorithms to use the same
code fi)r framing sets of stare-value functions. Thus,
the differences in running tilnc reported later are not
clouded by imtflenmntation differences and accur.’m,ly
reflect the benctlts of state abstraction.)

The algorithm for creating an abstract sta.t.e sl);Lcc
sulnmarized in Table 2 has a worst-case complexity
of]V]IS]", allhough it rims mu(’h fa.st(,r when there
sl ate abstraction. (It is easy to imagine a fa.su.r heuris-
tic algoritt,m that finds a us~flfl, though not necessar-
ily best. state abstraction. For the examples we haw,
tested so far, we have not fouud this necessary.)

Value and policy iteration

V~due iteration for POMDPs consists of repeatedly ap-
plying the dynami(: t)rogramming ul)date. W(,
also used a factored state representat ion in implernent-
ing a policy iteration algorithm fi)r POMDPs that rep-
resents a policy as a finite-mat(: controller (]lansen
1998). By interleaving the dynamic programming Ul)-
date with a policy evaluation step., this algorithm can
converge in fewer iterations than ~flue iteration. The
policy evaluation step of the algorithm exploits a fac-
tored state representation by using a successive ap-
proximation algorithm similar to that described by
Boutilier et al. (1995) to evaluate a controller.

For infinite-horizon POMDPs. the error bound of
a value function is computed by solving a set of linear
prograzns. Computation of tile error bound can also be
accelerate(] by cxpk)iting a fimtore(1 state representa-
tion, using the same algorithm fi)r creating an abstract
state space summarized in Table 2. Space limitations
preclude us from describing this here. But we note that
the time it takes to compute the error bound is very
small, aad ahnost negligible, (’ompared to the time it
takes to compute the dynmnic programming update.

For the widget processing example, value iteration
converges to an optimal belief-value flmction consist-
ing of 33 state-vahm flmctions and policy iteration

136 AIPS-200O

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

|NSPF.CI" -BAD, -$L-BAD

Figure 4: Optimal controller for widget-processing prob-
lem (showing only recurrent nodes).

converges to an optimal finite-state controller with 33
nodes. Figure 4 shows the recurrent nodes of the con-
troller, that is, the nodes that are reachable after a
widget is processed. The other 27 nodes are transient
nodes that are only useful for initial probability dis-
tributions that differ from those r.hat characterize the
initial condition of the widget. The controller in Fig-
ure 4 represents an optimal assembly-line plan for the
robot.

Test results

We compared tile performance of our implementations
of incremental pruning using a factored and a flat rep-
resentation. Both implementations are identical except
that the factored algorithm uses ADDs to compactly
represent transition and observation probabilities and
state-value functions, while the flat algorithm uses vec-
tors and explicitly represents all states.

Table 3 compares one iteration of incremental prun-
ing using the factored and flat representations, for
seven different POMDPs. The results for the flat rep-
resentation are shown above tim results for the factored
representation. Both algorithms have the same input
and compute identical results. Both perform the same
number of backups, the same number of pruning oper-
ations, the same number of linear programs, etc. They
only differ in the data structures they use.

The procedure PRUNE is invoked multiple times by
incremental pruning. Each time it is invoked by the
factored algorithm, an abstract state space is created
by the procedure CREATE-PARTITION. The column
with the heacling "Abs" indicates the average cardi-
nality of the abstract state sets that are created. In
general, the higher the degree of abstraction for a prob-
lem, the faster the factored algorithm runs relative to
the fiat algorithm. The relationship between degree of
abstraction arid computational speedup is complicated
by other factors, however, including the cardinality of
the set of state-vahm functions and the number of ob-
servations. We have broken down the timing results to
help illustrate the effect of these various factors. (The

total time is slightly larger than the sum of the times
for all the operations; this reflects a slight ow~’rhead in
the algorithm for setting up the computation.)

Problem 1 in Table 3 is the coffee problem used as all
illustration by Boutilier and Poole (1996). Problem 3
the widget-processing problem used as an illustration
in this paper. The other problems are various synthetic
POMDPs created for the purpose of testing. Problem
4 illustrates the worst-case behavior of the algorithm
when there is no state abstraction. Problem 2 illus-
trates the performance of the algorithm where there
is a very nmdest degree of state abstra~:tion. Prob-
lems 5, 6, and 7 illustrate the performance of the algo-
rithm when there is a high degree of state abstractkm;
they represent close to the best-case behavior of the
algorithm for problems of their size. As problem size
increases, that is, as the cardinality of S, G, and V
increases, the potential speedup from using a factored
representation increases as well.

Two steps of the incremental pruning algorithm ex-
ploit a factored representation: the backup step and
the pruning step. The table breaks down the timing re-
sults for each step. Within each step, it times each op-
eration that uses a factored representation separately.
This makes it possible to determine the relative con-
tribution of each operation to the running time of the
algorithm, as well as the relative performance of the
operations using the factored and flat representations.

The backup step for POMDPs is similar to ttm dy-
namic progrmnming update for completely observable
MDPs represented in factored form. Like Hoey et al.
(1999), we found that its worst-case overhead cml cause
a factored backup to run up to ten times slower than a
flat backup. This is illustrated by problem 4. But also
like Hoey et al., we found that factored backups can
run mud1 faster than flat backups when there is suffi-
cient state abstraction. This is illustrated by problems
6 and 7, in particular.

For most POMDPs, and for all POMDPs that. are
difficult to solve, most of the ruiming time of dynamic
progranmfing is spent pruning sets of state-value func-
tions. In our implementation, the only overhead for
the factored pruning algorithm is the overhead for cre-
at.ing an abstract state space. Empirically, we found
that this overhead is quite small relative to the tutoring
time of the rest of the pruning algorithm. Although it
tends to grow with the size of the abstract state space,
problem 4, our worst-case example, does not illustrate
the worst-case overhead. This is because the proce-
dure CREATE-PARTITION has a useful and reason-
able optimization; as soon as the cardinality of the
abstract state space is equal to the cardinality of" the
underlying state space, it terminates. For CI~EATE-

Hansen 137

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

~ Problem
characteristics

Solution ~ Timing Results
characteristics II Backup [Prune [

IV[IV’ I Abs New Xsum Part Ptw LP Best Total

- 0.4 0.08 1.96 480.6 15.36
1 2’~ 3 21 91 229 14.0 1.1 0.92 9.8 2.53 343.7 7.50 366.3

- 0.2 0.19 23.55 3640.3 166.73 3831.8
2 2s 6 22 25 142 20.9 0.2 0.48 8.6 30.11 3471.4 102.54 3615.3

- 1.1 0.00 0.02 5.4 0.14 6.7

I3 26 6 2" 32 30 7.5 0.6 0.02 0.6 0.01 2.7 0.07 4.0
- 53.4 0.09 17.97 7957.8 152.02 8181.9

] 4 2~ 5 2" 521 2539 64.0 395.6 8.39 1.8 17.6-t 8072.1 152.79 8653.2
i - 7.5 0.12 0.30 133.0 12.94 154.2

5 2r 8 22 42 42 12.8 56 {}.15 3.8 0.22 30.5 0.92 41.4
- 4113.1 1..11

6 21° 11 2:~ 198 457 34.6 225.3 0.25 63.4
132.5

7 2t° 11 2’t 4 255 8.9 3.0
0.24
0.06 1.0

2.44 8099.1 32.1.89 12546.1
2.40 641.8 19.82 959.7
0.10 622.5 25.97 782.0I

0.06 22.,t 0.52 [27.0
I

Table 3: Timing results (in CPU seconds) for an iteration uf the dynamic programming update using increment’,fl pruning.
Resul|s for the fiat representation are shown above results f. r tile factored representation. The (’olumn with the heading
"Abs" represents the nn,ml number of abstra~’t states, wh:c!, is averaged over all calls to the procedure PRUNE. "New"
represents the time for computing Equation (4) (for the fac.,o::,d ,:a,se) mtd (3) (tbr the flat case) to create ",all i. "Xsum"
represents the time for computing cross sums. "Part" represexr:,,, the time for partitioning the state space into abstract states.
"Ptw" represents the time for pointwise dominance pruaing "LP" represents the dine for linear program pruning. "Best"
repre^sents the time for the procedure BEST.

PARTITION to incur its worst-case overhead, in other
words, there must be at least some state abstraction.
But this, in turn. can offset the overhead.

For probhml 3, there is an apparent mmnmly in the
timing of the pointwise dotninance test; it is slightly
slower using a factored representation. The explana-
tion is that the algorithm for detecting pointwise dom-
inance is optimized to terminate as soon as one vector
does not donfinate the other for some state. Thus, the
order of states can affect the timing of this algorithm.
’although it does so by chance. Because abstract states
can be ordered differently than flat states, the running
time of the pointwise dominance test is not faster in
every case, using a factored representation.

Our results show that exploiting a factored repre-
sentation for state abstraction can significantly accel-
erate the pruning algorithm. It can reduce the running
time of the pointwise dominance test by decreasing the
number of state values that are compared (although
our results do not illustrate this weU); it can reduce
the running time of linear programming by decreasing
the number of variables in the linear progranls; and it
can reduce the running time of the procedure BEST by
decreasing the size of the vectors for which a dot prod-
uct is computed. Because most of the running time of
dynanfic programming is spent pruning sets of state-
value functions, especially using linear programming,

int:renmntal I)runing using a factored reprcscntation
can run significantly faster than using a fiat represent a-
tion. Moreover, it incurs very little overhead, even in
the worst case. Our results suggest that the worst-
case overhead fi)r a factored dynamic progranmfing
algorithm for POMDPs is considerably less than the
worst-case overhead for a factored dynamic program-
ruing algorithm for completely observable MDPs (Hoey
et al. 1999). The ba(~up step for both algorithrns may
incur the santo overhead. However, the rumfing time
of dynamic programming for POMDPs is taken up pri-
marily by pruning sets of state-value functions. This
step incurs very little overhead, and thus the combined
overhead for the POMDP algorithm can be a much
smaller fraction of the ~flgorithm’s rurming time.

Discussion
We have described an implementation of dynaznic pro-
granmfing for POMDPs that exploits a factored state
representation. It is based on, and extends, a frame-
work proposed by Boutilier and Poole (1996). We ex-
te.nd their fraznework in the following ways; we use
ADDs instead of decision trees, we show how the in-
cremental pruning algorithm (the fastest algorithm for
computing the dynamic programming update) cml ex-
ph)it a factored ret)resentation, and we describe an al-
gorithm for creating an abstract state space that accel-
erat(:s the pruning step of dymmfic progrmnming. Our

138 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

test results indicate that a factored state representa-
tion cazl significantly speed up dynamic programming
in the best case and incurs little overhead in the worst
case.

This positive result must be placed in perspective,
however. The approach we have described addresses
POMDP difficulty that is due to the size of the state
space. For completely observable MDPs, the size of the
state space is the principal source of problem difficulty.
For POMDPs, it is not. Although tile size of the state
space contributes to POMDP difficulty~ the size of the
value function representing a solution to a POMDP
can have a larger influence on problem difficulty. A
POMDP with a large state space may have a small
optimal value function that can be h)und quickly. By
contrast, a POMDP with a small state spax:e may have
a large or unbounded value function that is computa-
tion,~ly prohibitive to compute. Although the frazne-
work we have described for exploiting a factored state
representation can be very beneficial, it does not ad-
dress the aspect of POMDP difficulty that relates to
the size of the value function.

Boutilier and Poole (1996) propose a related ap-
proach to approximation that uses a factored repre-
sentation of state-value functions to represent bounds
on state values. By ignoring state distinctions that
have little effect on expected vahm, this approach can
reduce tile size of the value fimction computed by dy-
namic programming. We plan to experiment with this
approach to approximation in the near future. We
will also explore the possibility of exploiting the fac-
tored representation of observations to achieve addi-
tional computational speedup.

Acknowledgements We thank the anonymous re-,
viewers for helpful comments.

References

Bahar, R.I.; Frohm, E.A.; Gaona, C.M.; Hachtel,
G.D.; Macii, E.; Pardo, A.; and Somenzi, F. 1993.
Algebraic decision diagrams and their applications.
International Conference on Computer-Aided Design,
188-191, IEEE.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and com-
putational leverage. Journal o] Artificial Intelligence
Research 11:1-94.

Boutilicr, C.; Dearden, R.; and Goldszmidt, M.
1995. Exploiting structure in policy construction. In
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence (IJCAI-95), 1104-1111,
Montreal, Canada.

Boutilier, C. and Poole, D. 1996. Computing optimal
policies for partially observable decision processes us-
ing compact representations. In Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence (AAAI-96), 1168.1175. Portland, OR..

Cassandra, A.R.; Littman, M.L.; and Zhang, N.L.
1997. Incremental pruning: A simple, fast, exact
method for partially observable Markov decision pro-
ccsses. In Proceedings of the Thirteenth Annual Con-
ference on Uncertainty ill Artificial Intelligence (UAI-
97). 54-61, Providence, RI.

Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilis-
tic planning with information gathering and contin-
gent execution. In Proceedings of the Second Interna-
tional Conference on Artificial Intelligence Planning
Systems (AIPS-94), 31--36.

Hansen, E. 1998. Solving POMDPs by searching ira
polic.y space. In Proceedings of the Fourteenth Con-
ference on Uncertainty in Artificial Intelligence (UAI-
98), 211 219. Madison, WI.

Hoey, J.; St-Aubin, R.: Hu, A.; and Boutilier, C.
1999. SPUDD: Stochastic Planning using Decision
Diagrams. In Proceedings of the Fifteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI-
99), Stockhohn, Swcden.

Littman, M.L. 1994. The Witness algorithm: Solv-
ing partially observable Markov decision processes.
Brown University Department of Computer Science
Technical Report CS-94-40.

Majercik, S.M. and Littman, M.L. 1999. Contingent
planning under uncertainty via stochastic satisfiabil-
ity. In Proceedings of the Sixteenth National Con-
ference on Artificial Intelligence (AAAI-99), 549-556,
Orlazldo, FL.

Onder, N. and Pollack, M.E. 1999. Conditional, prob-
abilistic planning: A unifying algorithm and effective
search control mechanisms. In Proceedings of tile Six-
teenth National Conference on Artificial Intelligence
(AAAI-99), 577 - 584, Orlando, FL.

Smallwood, R.D. and Sondik, E.J. 1973. The optimal
control of partially observable Markov processes over
a finite horizon. Operations Research 21:1071-1088.

Somcnzi, F. 1998. CUDD: CU decision diagrmn pack-
age. Available from ftp://vlsi.colorado.cdu/pub/.

Sondik, E.J. 1978. The optimal control of partially
observabk~’ Markov processes over the infinite horizon:
Discounted costs. Operations Research 26:282-304.

White, C.C. 1991. A survey of solution techniques
for the partially observ(:d Markov decision process.
Annals o/ Operations Research 32:215 230.

Hansen 139

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

