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   1. Introduction. 

   Dynamic programming (DP) has been introduced by R. Bellman [2] as an import-

ant technique to solve non-linear programming problems in which a sequence of 

decisions has to be chosen in an optimal manner. Bellman, in his book, proposed 
"Principle of Optimality" to show that th

e determination of an optimal policy can be 

reduced to the solution of an optimality equation, i. e., a functional equation that 

should be satisfied by an optimal return. Although Principle of Optimality is a pro-

position which needs mathematical reasoning, his justification for the principle was 

not in a precise mathematical form. For this reason, the scope of cost structure to 

which the principle is applicable has been left unexplained. 

   Afterward, G. L. Nemhauser [9] gave a sufficient condition for the cost structure 

in order that an optimality equation holds true. His condition is that the cost func-

tion should have both a separability property and a monotonicity property. Nem-

hauser did not make explicit the relation between the effectiveness of Bellman's 

principle and the justification for an optimality equation — the relation is no more 

trivial under his condition. 

   In this paper we shall be concerned with the optimization of finite-stage sequential 

decision processes. We shall give rigorous proofs for the justification of optimality 

equations and for the effectiveness of optimality principles with two meanings , with-
out assuming the existence of maximum values of returns. Our condition is that the 

cost function should have a recursiveness property, a monotonicity property and a 

Lipschitz condition. Our recursiveness is essentially same as the separability in 

Nemhauser sense. Our monotonicity has two senses : one is a wide sense, and the 

other a strict sense. The monotonicity properties in the wide and the strict senses, 

together with the recursiveness and the Lipschitz condition, induce optimality prin-

ciples in a weak and a strong senses, respectively. Bellman's Principle of Optimality 

is well to be identified, in our terms, a principle in the strong sense. Our principle 

in the weak sense has not been introduced in other literatures as far as the authors 

know. If we assume the existence of maximum values of returns like Nemhauser 

did, then the Lipschitz condition can be suppressed from hypotheses in our arguments. 

   In this paper we treat both deterministic and stochastic cases. Section 2 is
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devoted to the former case, and Section 3 to the later case. In Section 3, we anew 

introduce a stochastic recursiveness and a stochastic strict monotonicity, and develope 

arguments parallel to those in deterministic case. 

   Section 4 classifies DP problems from the viewpoint of the reward system (RS). 

The family of RSs considered in this paper, in both deterministic and stochastic cases, 

explicitly covers all types of returns discussed by Nemhauser. Our RSs are, for in-

stance, recursive additive, multiplicative additive, divided additive, logarithmic addi-

tive, and exponential additive. Especially in deterministic case, backward power, 

forward power, maximum and minimum RSs are added to those cited above. 

   The last section sets forth a variety of examples in which optimal policies and 

optimal returns are given.

   2. Deterministic case. 

   2.1. Notation and definitions. 

   In the deterministic case a dynamic programming problem is specified by five 

elements S,  {AO, {T„} , {g.,,} and d. The set of states S of some system is a non-

empty Borel subset of the J-dimensional Euclidean space R.I. For each n (1�n�N), 

An is a mapping from S to the space of nonempty Borel subsets of RK. For sES, 

An(s) means the set of actions available to us at the state s in the n-th stage. Let 

 n denote the set {(s, a)laEAn(s), sESI. For each n (1�n�N), 7',„ is a Borel mea-

surable mapping from I" 7, to S. {Tn} means the transition law of the system : if we 

choose an action aE An(s) after observing the state s of the system in the n-th stage, 

then the system moves to a new state s' uniquely determined by s' -=-Tn(s, a). For 

each m and n (1�m�n�N±1), gmn is a real-valued Borel measurable function de-

fined on F m X rni„ X ••• X n_, x S x R1. In the case when m=n, here, the set 

EmXT.,,X ••• Xrn_IXSXR1 is interpreted as SXR1. We assume, for every n, gnn 

satisfies the relation that gnn(s; c)=c for all sES and all ceRl. The terminal reward 

function d is a real-valued Borel measurable function defined on S. We shall call the 

set of functions {gm„} and d a reward system (RS). If starting from an initial state 

s1 we observe a sequence of states si, s2, ••• , sN and terminate at sN, by choosing 

actions a1, a2, ••• , aN in turn, then we receive a total reward g                                                                                (s1, a1, $2, a2, ••• , 

aN, sN,; d(sN+l)). Given the number N, our problem is then to maximize the total 

reward. The maximizing problem is called the N-stage problem. We shall call gi,N-FI 

(s„ a1, s2, a2, ••• , sN,; d(s,„)) an objective function (OF). 

   Let 117, denote the set ri x i2x • •• xFn_ixS. lin means the space of partial 

histories (s1, a1, s2, a2, ••• , sn) consisting of (2n-1) elements. An element of Hn is de-

noted by hn. A finite sequence 7r= {7r1, 72, ••• , 7N} is called a deterministic policy for 

the N-stage problem, if 7c7, is a Borel measurable mapping from 1-17, to Ric for each n, 

and if for each n, rn(hn)EAn(sn) for all hnE Hn where sn, is the last component of hn. 

Suppose, throughout Section 2, a policy means a deterministic policy unless otherwise 

stated. A policy 7r= {'r1, r2, ••• 737} is called Markov, if for each n 7,2 depends only 

on the last component of hn. A Markov policy is denoted by {f1, f2, ••• fN}. Let 

H and HI denote the set of all policies and the set of all Markov policies, respec-
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tively, for the N-stage problem. For a policy  77={7r1, 7r2, ••• 7N}, let n7r denote the 

final subsequence {7.-1-.1, 7C/2+27 ••• , 7N}. For each 71, (0�nN-1) let 

(2.1)IN-n(n7C)(h.+1)-=gn+1                                        ,N+1.s.+1, 4+1, S0n-,-2, 6101V1 S0N+1 d(s0.Ar+1)) 

where 
                    a3=;72(h.,) i=n+1, n+2, ••• , N, 

                    4=Tk_1(411, dk_1) k=n+2, n+3, ••• , N+1, 

                           4,-1=Sn+ • 

In the definition (2.1) the upper suffix of I means the number of stages left for us to 

take actions. For a Markov policy 7r= f2, ••• (2.1) is interpreted as 

(2.2)IN n(fn+17 Jcn+2, ••• fN)(sn+1) 

                       =gn+1,N+1(Sn+1, aL-1,•••d2v-,•s?v+i ;d(4sT-F1)), 
where 

                66=1/(4) j=n+1, n+2, •-• , N, 

                  sk =Tk-1(s2-1, dk_1) k=n+2, n+3, ••• , N+1, 

                            SC,,P+1—Sn+i • 

Substituting n-=0 into (2.1) we have 

(2.3)IN (7r)(si)--- gi,N,(si, s?2, •-• , s9v+1; d(4\1+1)) 

that is what we want to maximize with respect to 27 in the set H. A policy 7r* 

for the N-stage problem is said to be optimal, if IN(7-c*)(s)�_IN(7r)(s) for all sES and 

all Ir

   2.2. Recurrence relations and the principle of optimality. 

   At first we shall set up two general assumptions which are valid for this sub-

section. 

   (G1). For each n (1�n�N), rn has a Borel Selector, i. e., there exists a Borel 

mapping S to RN such that graph oncrn. 

   Let 

(2.4)L„(s)=-sup                                        -- ,sN+1)EA,,(8)x rn+ix xrN xs 

                                      gn,N+I(s, an, Sn+1, ••• SN+1; CI(SN-I-1))I • 

   (G2). For each n (1�n�N+1) and each s, Ln(s) is finite. 

   Many authors have worked on the existence of a Borel Selector. We like to pre-

sent here a sufficient condition for the existence of a Borel Selector which is a slight 

modification of the result by Arsenin and Ljapunov [1]. 

   PROPOSITION 2.1. Let X=RJ and Y=Rg. Let F be a Borel subset of Xx Y such 

that for each xE X the x-section of r is a-compact in Y. Then projxr is Borel and
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F has a  Borel Selector defined on proj1F. 

   We now prepare two lemmas. 

   LEMMA 2.1. For any n-E14 and any .siES, there exists a Markov policy ft such 

that 

                         IN(7)(s1)=IN(fc)(si). 

   PROOF. The proof is easy by the use of Borel Selectors {On} assured in the as-

sumption (G1). 

   LEMMA 2.2. For any siES and any e> 0, there exists a Markov policy ft such that 

                      IN(ft)(si)>_ sup IN(r)(si)—E • 
                                         rE.17Z 

   PROOF. The proof is easy from Lemma 2.1. 

   For each n, let 

                                          {N-nr 

That is, N-71111r means the set of all final subpolicies with n components. And let 

(2.5)Un(h N - n+1)= sup In(N TC) y 
                                                           N -n itEN-n 

where In n 7r) is given by (2.1). Then we have the following 

   THEOREM 2.1. Let 

(2.6)Vn(S N - n+ 1)— SUP In ({f„f2,f.1)(sN-n+i) 
                                    n) 11SH 

for n=0, 1, ••• , N, where In({fi, f2, ••• , fn}) is given by (2.2). Then it holds that 

(2.7)un(hN-n+1)=Vn(S N -n+1)for all l'IN-n+1EHN-m-F1 

where sN...n4.1 in the right-hand side is the last component of hN_n+, in the left-hand 

side. 

   PROOF. It suffices to show the equality (2.7) in the case when n=N-1, for we 

can show it similarly in general case. 

   Let 

(2.8)UN-1(s2)= sup IN -1(7r)(s2) , 
                                                    N-1                                                 rEff 

then it follows directly from the definitions of TIN -1 and -1 that 

(2.9)uN-1(h2)>UN-1(s2) for all h2EH2 

where S2 is the last component of h2 in the left-hand side. For hn=(si, a1, s2, ••• SO, 
let 1hn denote (52, a2, ••• , SO. Let (s1, ai) ri and 7r= {7-C1y 7C2y • •• , 7TN} fix arbitrarily. 

By considering r n(hn) as the function of 1117, since (Si, a1) is fixed, define 7r;, by 

                  7;t(112n)=7r.(s1, a1, 'ha) for all 112n, 

                                     for n=2, 3, N. 

Let 2c'-= {7r, 7.c, • - , rc'Ar} , then 2-ci becomes an element of Hr. Since ir starting from
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 (s1, a1, s2) yields the expected reward as much as 7' starting from S2, we have 

                      /N-1(170(s1, a1, s2)5_ sup /N-1(7-E)(s2) 
                                                               sE ”N-1                                                           110 

Then we have 

                                  uN-1( 19                                   s2)�0-1(s2) 

This holds for all s2ES. Since (s1, a1) is arbitrary, we have 

(2.10)uN-1(h2)�0-1(s2) for h2EH2 • 

It follows from (2.9) and (2.10) that 

                      u'(h2)=UN-1(s2) for h2EH2 , 

which implies that uN-4(h2) is independent of (S1, a1). 

   We now fix s2 arbitrarily. By applying Lemma 2.2 to the (N-1)-stage problem 

starting from s2, we have 

                                vN-1(s2)>fiN-1(s2)_s 

Letting 61 0, we have 

                                      vN -1(s2)? ...u1s7 -1(s2) • 

Since the converse inequality is trivially true, we get 

                    vN-1(s2)_RN-1(s2)_uN -i(h2) for h2EH2 

which completes the proof. 

   We now introduce two properties of {g.} which play a crucial role leading us 

to "the principle of optimality". 

   DEFINITION 2.1. {gmn} is said to be recursive, if for each m and n such that 

m�n —2, all (S., am, '•• , Sn)Er r "' X r n-iXS and all cE1?1, it holds that 

              gmn(sm, am, sm+i, am+i, s.; c) 

                        =gm
,m+i(sm, am, sm+1; gni+i,n(Sra+i• a7.+1, sn; c)) • 

   DEFINITION 2.2. Igniml is said to be monotone (strictly monotone), if c1<c2 implies 

gn,n+i(s, a, ; c1)-�-(<)g.,.+1(s, a, s' ; c2) for all n and all (s, a, s')1" nx S. 

   The following proposition is immediate from Definition 2.2. 

   PROPOSITION. 2.2. If {gmn} is recursive and monotone (strictly monotone), then 

c1<c2 implies gmn(sm, am, ••• , sn ; ci)�(<)gmn(sm, am, ••• , sn; c2) for each m, n such that 

m�n-2 and all (sm, am, •-• , sn)Er mxim,x ••• xrn_ix S. 

   We shall make use of the following condition which means a Lipschitz condition 

in a weak sense. 

   CONDITION (L). For each n(l�n�_N) there exists a positive number 1C7, such 

that 

                     gn,n-Fi(s, a, s' ; c+s)—gno,(s, a, s' ; c)•�Kne 

for all (s, a, s')ErnxS, all cl?' and for sufficiently small s>0. 

   In Theorem 2.1 we have proved that un(hN-n+i) depends only on the last com-

ponent of hN-n+i- Hence we shall write Un(SN-n+i) or, simply, un(s) in place of
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un(hN-n+i), hereafter. The spirit of the following theorem can be found in Theorem 

1 of Karp and Held [8]. 

   THEOREM 2.2. Let {g,„,} be recursive and monotone. Let Condition (L) be satisfied. 

Then lunl satisfies the recurrence relations: 

           un(5)= sup gN-n+1,N-.+2(s, a, TN-.+1(s, a); un-1(TN-7,+i(s, a))) 
                        cLEAN—n+1(8) 

(2.11)for SE S, n=1, 2, ••• , N, 

   PROOF. It suffices to show the relation in the case when for we can show 

it similarly in general case. 

    From Theorem 2.1 we have 

            uN(s)= sup IN({fi, f2, . , fN})(s) 
                           ,f N1E/II 

                   =SUP gi ,N-Fi(s, a?, s'3, a2,•••s?v+i ;d(s?v+i)) 
                        ,fNle/7:1;i 

where 

                    aj= s3) =1, 2, • •• , N 

                    sk k_1(4_1, dk_i) k=2, 3, , N+1 , 

                    s?=s 

Hence from the recursiveness and monotonicity we have 

           uN(s)= SUP g1,2(s, a?, s2 ; g2,N4-1(4, a?, eN+1; CI(SN+1))) 

                                                    

.,f 

(2.12) sup g1,2(s, a?, sc2' ; 0-1(4)) 
                  fiE161 

              = sup g1,2(s, a, T 1(s, a) ; uN-1(T1(s, a))) •                         aEAl(s) 

   Next, take aE.A1(s) arbitrarily. Let s> 0 be sufficiently small. Applying Lemma 

2.2 tothe(N-1)-stageproblem starting fromS'=Ti(s, a), we find a Markov policy 

7r*-1 .RK,••• ,E111--, such that 

                          UN —1(§) IN —1(7r*)(§)± 

which implies from the monotonicity that 

                g1,2(s, a, .§; uN-1(:9))5_- gi,2(s, a, § ; IN -1(7*)(§)-E s) • 

By making use of Condition (L) and the recursiveness in the right-hand side, we get 

                     g1,2(s, a, :s ; u'(,§))_uN(s)+Kie 

Letting s 0, we have 

(2.13)sup g1,2(S, a, 7'1(s, a); uN --1(T1(s, a)))<uN(s) 
                          aEA1(s) 

From (2.12) and (2.13) finally we get
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 uN(s)= sup g1,2(s, a, Ti(s, a); uN-AT,(s, a)))                                  aEAl(s) 

This completes the proof. 

   THEOREM 2.3 (Weak Principle of Optimality). Let {gm,,,} be same as in Theorem 

2.2, and let Condition (L) be satisfied. Then the optimal policy n-*= {7rp, 71, • •• 71} for 

the N-stage problem satisfies the relations: 

(2.14) aP, s'Ar`-n+1; In(N-n2r*)(h1-.+1)) 

                                  * * * 4 -n+1;itn(st-n+i)) 

                                   for siES and n=-1, 2, ••• , N-1, 
where 

                    a"-=7.1'(4) 1=1, 2, ••• , N 

                              at_1) k=2, 3, , N+1, 

                      sP=s, . 

   PROOF. Since 7r* is optimal, we have 

(2.15)uN(s)-= IN (7r*) 

                   =g1 ,2(s, ; IN-1(17*)(h2)) for seS 

By using the monotonicity in the right-hand side of (2.15), we get 

                uN(s)_gi,,(s, at, s2 ; uN-1(42)) 

(2.16) sup g1,2(s, a, T1(s, a); u'(Ti(s, a))) 
                                aEA1(s) 

                            -=--uN(s) 
, 

where the last equality is due to Theorem 2.2. Combining (2.15) and (2.16) we have 

               g1,2(s, 4', s2 ; IN-1(1e)(h2 ))=-g1,2(s, ; u'(4')). 

Thus it has been shown that (2.14) is true in the case when n-=N-1. 

   For general case we can prove it in the manner similar to the case when n=N-1 

by the repeated use of the recursiveness. 

   It should be noted that the assertion of Theorem 2.3 is very similar to Bellman's 

principle of optimality, but somewhat weaker than Bellman's one. Namely, the rela-

tions (2.14) follow from Bellman's principle ; on the contrary, the converse may not 

be true. The following theorem shows that Bellman's principle can be obtained from 

our Weak Principle by replacing the monotonicity property with the strict mono-

tonicity property. 

   THEOREM 2.4 (Principle of Optimality). Let {gm7,} be recursive and strictly mono-

tone, and let Condition (L) be satisfied. Let 7*=-17P, •-• , 7rt I be optimal. Then 

we have 

(2.17)un(st_n+i)=_in(N-nn.*)(4_„,) for n=1, 2, ••• , N and siES , 

where
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                  4=71(4) 1=1, 2, ••• , N, 

                    sit=Tk_i(sti, at 1) k=2, 3, ••• , N+1 

                                  --=s. 

   PROOF. The theorem follows directly from Theorem 2.3 by virtue of the assump-

tion that {g,nn} is strictly monotone. 

   COROLLARY 2.1. Let the same assumptions as in Theorem 2.4 be placed. Then 

there exists a Markov policy which is equivalent to the optimal policy . 

   PROOF. Trivial from (2.17). 

   THEOREM 2.5. Let the same assumptions as in Theorem 2.2 be placed. Suppose 

that we can construct a Markov policy 7r* ={fP, , ft} in order that the following 

relations be satisfied. 

             gn,n+i(s, f:(s), Tn(s, f:(s)); u'(Tn(s, fn(s)))) 

(2.18)= sup gn,n+i(s, a, Tn(s, a); u'n(Tn(s, a))) 
                                 aEAn(s) 

                                   for sES and n=1, 2, ••• , N. 
Then 7r* is optimal. 

   PROOF. From Theorem 2.2 and (2.18) we have 

(2.19)gn,n+i(s, f:(s),Tn(s, f:(s)); uN-n(Tn(s, f:(s))))=74N-niAs) 

                                   for sES and n=1, 2, ••• , N. 

   For any fixed 5N, we have, from the recursiveness and the relations (2.19) with 

n=N and n=N-1 substituted, that 

       gN-1,Ni-i(SN-1, J _i(s N - 1), sck, ft (sON), N(SON,(5N)); d(T N(47, ft(s?v)))) 

(2.20)=gN-J,N(sN-a, s?v;u1(5°N)) 

                    =u2(sN _1) , 

where eN=--TN-i(sN-1, f'is'7-1(sN,)). Since sN_, is arbitrary, (2.20) holds for all sN_,ES. 

Inductively we have 

             (7r*)(S1)- Jc(si), 11(s2), , st+, ; d(st +0) 

                     =uN(s,) for sieS , 

where s:=Tn_i(s:_i, f:_i(s:_i)) for n=2, 3, , N, and si*=si. Thus jr* is optimal. This 

completes the proof. 

   REMARK 1. In the case when Ln(s) is bounded on S for each n, in Theorems 

2.2,,,2.5 Condition (L) can be slightly weakened to the following condition : 

   CONDITION (U). For each n (1�_n�N) there exists a positive number IC such 

that 

                    gn,n+i(s, a, s' ; c-1-6)—gn,n+1(s, a, ; c)�1C6 

for all (s, a, s')Er nxS, all c such that I cl �M and for sufficiently small s> 0, where



Dynamic Programming on Recursive Reward Systems111

M= sup  I LTh(s)I. 

        sES 

   REMARK 2. In the practical problems of dynamic programming, it very often 

happens to us that for each n and s, un(s) is attained by the maximum rather than 
by the supremum, that is, for each n and s, there exists an optimal policy, which 
may depend on s, for the n-stage problem starting from s. In those cases Condition 

(L) can be suppressed from the hypotheses in each theorem.

   3. Stochastic case. 

   3.1. Nontation and definitions. 

   A stochastic dynamic programming problem is defined in the manner parallel to 

the deterministic case. Namely, a dynamic programming problem in the stochastic 

case is specified by five elements S, {An}, {qn}, {gnin} and d. Every element is same 

as in the deterministic case except for {qn} . For each n , cin is a regular conditional 

probability measure on S given Sx RK. {q„} means the stochastic transition law of 

the system : when the system is in state s at the n-th stage and we take action a , 
the system moves to a new state s' selected according to the probability law qn(• Is , a). 

   A finite sequence {n-i, ••• , rN} is called a random policy for the N-stage 

problem, if 7,-„ for each n, is a regular conditional probability measure on RR given 

Hn such that 

                    n-n(An(sn)Ihn)=1 for all hnEHn, 

where sn is the last component of hn. Suppose, throughout Section 3, a policy means 

a random policy unless otherwise stated. Let HI denote the set of all (random) 

policies for the N-stage problem. A Markov policy and the set H35`,'‘.are defined in 

the same way as in the deterministic case . For any policy 7={71, 72, ••• 7N}, nnr 

denotes the final subsequence                            {7rn+i, 7n+2, ••• 7rN} as stated in Section 2.1. Let En7r(hn+i) 

denote the integral operator with respect to the probability measure induced from 
n7r and {q

,„ , qN} over the space of (a,, sn„, ••• , sN„) given hn,• Viewing 

En7r(hn„) as a function of we shall denote it by E". For each n (0�n�N-1) , let 

(3.1) sN-n(n,,.)(1,                 461V.n+1)=Enj'(11n+.1)Ign+1,N+1(Sn+1, an+a, sn+2, SN+1 d(sN+i))] 1 

or as a function of h, let 

(3.2)sN-n(nn.)=Entrign+iy_ (                                         Iv+11-'71+1, an+i, Sn+2, ••• SN+1 ; d(sN-Fi))J • 

Substituting n=0 into (3.1) we have 

(3.3)SN(z)(si)=E'(si)Cg1,N+1(si• a1, s2, sN+1; cl(sN+1))1 • 

Our optimizing problem is to maximize 3'N(7)(si) with respect to r in the set HI . A 

policy 7r*EH1 is said to be optimal, if iN(2-14)(s)�:S'(7)(s) for all sES and all 7rE/Pl.

   3.2. Recurrence relations and the principle of optimality. 

   In addition to the general assumption (G1) we shall impose the following assump-

tions throughout this subsection.
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   (G3). d is bounded on S. 

   (G4). For each n  (1�n�N) and for every bounded function w on S, g„,„„(s, a, s' ; 
w(s')) is bounded on rn x S. Note that (G2) is taken its place by the joint use of 

(G3) and (G4). 
   Next we shall give stochastic versions of the recursiveness property and of the 

strict monotonicity property. 

   DEFINITION 3.1. {,g-nin} is said to be stochastically recursive, if for any 7re HI 

any m, n such that 2 and any bounded Borel measurable function w on lin, it 

holds that 

        EmirEgirt,n(Smy am, Sin+1, Sn; w(hn))] 

            -=gm,m„(sm, am, sm„; Enirt[gm„,,i(sm+i, am„, ••• , sn; w(hn))]) a. S. (Pn), 

where Pir denotes the probability measure induced from r. 

   Let HP be the s1-section of lin for .siES. Let en(s1) denote the probability 

measure on HP induced from 7 and {qn} . 

   DEFINITION 3.2. { g7„,n} is said to be stochastically strictly monotone, if it is mone-

tone in the sense of definition 2.2, and if for any n (1�n�N), any and any 

siES it holds that if there exist a Borel set and Borel functions u, v on Hn, 

such that u<v on B and egs1)(B)>O, then we have 

                      gn,n+i(Sn, an, sn+i ; u(hni-i))der,-(s1) 

                        < gn,n+1(Sn, an, Sn+1; V(hn+1))de,(si) 

   In this subsection we shall frequently use "monotone" and Condition (L) which 

have been both given in Section 2.2, besides "stochastically recursive" and "stochasti-

cally strictly monotone" just given above. 

   LEMMA 3.1. Let {gmn} be stochastically recursive and monotone in the sense of 

Definition 2.2. Let Condition (L) be satisfied. Then for any s1 S, any s> 0 and any 

7r.17,2Yz, there exists a Markov policy it such that SN(*)(s1).�9-N(7)(s1)—s. 

   PROOF. We can show the lemma in the same way as in authors' previous theorem 

(Theorem 5.1 in [3] and its correction [4]), and so the details are omitted. 
   For each n, let 

                           N-71111={N-n71.17111-} 

Define the conditional expectation of reward in parallel with (2.5) by the following : 

(3.4)Un(hN--.+0= sup SN(N-n7r) . 
                                                            N-n 

7,EN -n 

Then we have 

   THEOREM 3.1. Let 

(3.5)Vn(SN-n+1)= sup Sn(11-1, f2, fn1)(sN-n+i) 
                                {il, f 2, f n}Elni 

for n=0, 1, ••• , N. Then under the same assumptions as in Lemma 3.1 it holds that
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(3.6)Un(hN-7,1-1)=Vn(SN-74-1-1) for  , 

where  sN_7,+1 is the last component of hN_,. 

   PROOF. Follow the same line as in Theorem 2.1 by the use of Lemma 3.1. 

   By virtue of the above theorem we shall anew express Un(hN-n+1) by LI n(SN - n+i) 

or by Un(s) for short, hereafter. 

   The following lemma is a slight modification of Theorem 7.1 of Strauch [10]. 

   LEMMA 3.2. For each n, Un is universally measurable. 

   Gokiriski and Jakubowski gave, in Theorem of [5], a stochastic version of the 

recurrence relations given by Karp and Held [8]. The following theorem is a refine-

ment of the result by the former authors, but is not written in terms of stochastic 

automaton as they did. 

   THEOREM 3.2. Let Ig7,n1 be stochastically recursive and monotone in the sense of 

Definition 2.2. Let Condition (L) be sdtisfied. Then the following recurrence relations 

hold: 

            Un(s)= supgN-.+1,N-.+2(s, a, s' ;un-i(sI))4N-n+i(s' I s, a) 
                          aEAN—n+i(s)S 

(3.7)for sES and n=1, 2, ••• N. 

                                 , or symbolically 

                Un(s)= sup EaEgN-.+1,N-N+2(s, a, ; Un-1(s'))] 
                                  aEAN-n+1(s) 

(3.8)for SE S and n=1, 2, ••• , N, 

   REMARK. It should be noted that the integrals in (3.7) and (3.8) are well defined 

by virtue of Lemma 3.2 and the measurability of ginn. 

   PROOF. Since Un.-L---Vn for each n from Theorem 3.1, we have 

     UN(s,)= sup Elf 1f M                                                         ,f2,—,r 0.                                               Lz,i,N+1(sipal,S2,•••SN+1;d(SN-i-i))1 
                           -,fN}E:/71{ 

                       sup Ef'Egi,2(si, al, S2 ; Ef''''''fNlig2,N+11(S2))1 
                              f NI,E-D:15h 

                 sup Efi[gi,2(si,a„,s2;UN-1(s2))] 
                     11 

by the use of the stochastic recursiveness and the monotonicity. Thus we have 

(3.9)UN(s,)5_ sup Ea[g1,2(s1, a, S2 ; UN'(s2))] 
                                     aEA1(s1) 

   To show the converse inequality, we need the following lemma. 

   LEMMA. For any probability measure p on S and any s> 0, there exists a Markov 

policy ir such that p IsN(fr)� uN___61 =1. 

   It is noted that the assertion of this lemma is more strengthened than that of 

Lemma 3.1, but the proof follows the line of it. 

   Now take aEA,(si) arbitrarily. By the use of above lemma applied to the pro-

bability measure q1(. 1s,, a), we find a Markov policy fr such that
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                      SN-1(1)�UN-1—E a. e. (q1(. I SI, a)) 

From the monotonicity and Condition (L) then we have 

(3.10) E ar gi,2(s.i, a, s2; UN -1(S2))1_-Eargi,2(Si, a, s2; SN-1(71)(s2)+E)1                                  

.�EaEg1,2(s1, a, s2; SN-1(t)(s2))14-Kle • 

Let 7r*= {a, , then 7r* is a policy in reality and the first term in the last side of 

(3.10) is equal to the expectation of reward received from 7r*. Hence (3.10) leads us 

to 

                    Ea[g1,2(s1, a, s2;UN-1(s2))1-UN(si)-FICiE • 

By letting s 0, we have 

(3.11)sup Earg1,2(s1, a, S2;UN-1(S2))1_UN(S1) • 
                          aeill(s1) 

It can be seen from (3.9) and (3.11) that the recurrence relation holds in the case 

when n=N. 

   For general case, follow the line of the above. 

   THEOREM 3.3 (Weak Principle of Optimality). Let {gnin} be same as in Theorem 

3.2. Let Condition (L) be satisfied. Then the optimal policy 7r* satisfies the following 

relations: 

(3.12) EQ.               L...,1,N-m+.10N-n+1;EN-n7"IgN-n+1,N+1(SN-n+1, aN-n+1,SN+1;CL(SN+1))1)] 

              =EVigi 9N-rt+1(11N-n+1; Un(SN-n+1))1 for n=1, 2, ••• , N. 

   PROOF. Follow the same line as in Theorem 2.3 by the use of (3.8). 

   THEOREM 3.4 (Principle of Optimality). Let Igninl be stochastically recursive and 

stochastically strictly monotone. Let Conditon (L) be satisfied. Then the optimal policy 

7r* satisfies the following relations: 

               EN-nr`gN-n+1,N+1(sN-n+1, aN-n+1, , SN+1; d(sN+1))1 

                      -=Un(sN -n+1) a. s. (137") , for n=1, 2, ••• , N. 

   PROOF. Easy from Theorem 3.3 and from the stochastic strict monotonicity. 

   The following theorem supplies us an algorithm for finding an optimal policy. 

   THEOREM 3.5. Let the assumptions be same as in Theorem 3.3. Take a Markov 

policy TC*={fP, 11, ••• , in order that the following relations be satisfied: 

        Ef;Egn,Th+i(s, f:(s), s';UN-n(s1))1= supEalgn,n+i(s, a, s';UN-n(s'))1 
                                                          aEAn(s) 

                                       for sS and n=1, 2, ••• , N. 

Then 2r* is optimal. 

   PROOF. Follow the same line as in Theorem 2.5.

   4. Reward systems. 

   We classify the DPs according to the reward system (RS). The corresponding 

objective function (OF) of each RS is explicitly written down. We give sufficient
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conditions for the  {gm„} to satisfy the monotonicity, strict monotonicity, stochastic 

monotonicity, recursiveness, stochastic recursiveness, and Condition (L) (or (L')). 

Throughout this section each DP is assumed to have the fixed elements, S, {An} 1�n�N9 

{gra} i,„,, (or {TO i�n�N) except for the element g                                              1�m<n�N+1, and g(X) (resp. C(X)) 

denotes the set of all real-valued Borel measurable (resp. continuous) functions on X. 

The following § 4.1-4.16 correspond to § 6.1-6.16 in [6], respectively, which have treated 

the game version of our DP.

   4.1. Non-stationary recursive DP. 

   A DP has a non-stationary recursive RS {gn} 1�.�N, d} if each gmm is expressed 

as follows : 

           gmn(sm, am, sm+1, • •• 1(sn))—gm(sm, am, Sm+1 ; gm+i(Sm+1, am+i, Sm+2 

                                        gn-1(Sn-i, an-i, Sn; l(Sn)) • —)) 9 

where gm E g(S xAxSxR). Then the OF is 

          RN(h)=gi(si,s2; g2(s2, a2, s3 ;gN(sN, aN, sN+1;cl(sN+1)) -.)) •

   4.2. Stationary recursive DP. 

   A DP has a stationary recursive RS {g, d} if gn=g, ln�N in the non-stationary 

recursive RS.

   4.3. Stationary recursive DP with stage-wise reward {rn}. 

   A DP has a stationary recursive RS with stage-wise reward {rn} if in the stationary 

recursive RS 

           g(sn, an,; 1(s.+0)=-g(rn(sn, an, sn+i); 1(sn+i)) 

where ge(RxR) and rnE.B(Sx AxS). Then the OF is 

       RN(h)=g(r,(si, a1, s2); g(r2(s2, a2, s2); ••• g(rN(sN, aN, sN-1-1); d(sN+1))-.)) • 

   The DPs in § 4.4-4.16 can be viewed as the finite harizontal version of MDPs in 

[3].

   4.4. Non-stationary recursive additive DP. 

   A DP has a non-stationary recursive additive RS { {r.} i�n�N9 On} 1n�N, {tm} 1-�n�-N+1, id} 

if in the non-stationary recursive RS 

(4.1)gn(s, a, s' ; l(s'))=tn(rn(5, a, 51))+ ign(s, a, si)t,i(1(s1)) 

where tnC(R) and Pm E g(S x A X S), Pfl,�20. We call to and Pm n-th translator of the 

stage-wise reward and n-th accmulator of the RS, respectively. Then the OF is 

       RN(h)=t,(ri(si, al, s2))- F al, s2)t2(r2(s2, a2, 53)) 

              -1-13(sa l,53)S2(s2,a2,s3)4(r3(s3,a3,50)4-•••
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              +131(s2, a2, s2)P2(s2, a2, s3) ••• aN-1, sON(rN, (SN, aN, sN+1)) 

                 431(s2, al, s2)132(s2, a2, s3) ••• 13N(sN, aN, sN-1-1)1-N+1(d(sN+1)) • 

Of course this RS is stochastically recursive (therefore, recursive). Note that 437,>0 

implies strict monotonicity and stochastically strict monotonicity and that /5„�0 implies 

monotonicity. Condition (L) is satisfied provided that 0_137,�1-(7,<oo, tn(c+E)—t„(c)� 

K'i,s for cER1, sufficiently small s>0, where K„, K;i>0 are constant.

   4.5. Stationary recursive additive DP. 

   A DP has a stationary recursive additive RS {{7-7,}, t, k} if to=t, 1�n�N+1 

in the non-stationary recursive additive RS.

   4.6. Additive DP. 

   A DP has an additive RS Urn}, d} if /3n-m-1, t(r)=r in the stationary recursive 

additive RS. Then the OF is 

                 RN(h)=ri(s„ al, s2)+ ••• +rN(sN, aN, sN-EI)+d(sN+1) • 

The additive RS, which is typical and important in DP problems, is stochastically 

recursive, stochastically strictly monotone, and strictly monotone, and satisfies Con-

dition (L).

   4.7. Non-stationary multiplicative additive DP. 

   A DP has a non-stationary multiplicative additive RS {{rTh}, ItnI, d} if 13.=-7". 

1�n�N in the non-stationary recursive additive RS, where rnEg(SxAXS), r,,�0. 

Then the OF is 

            RN(h)=ti(ri(si, al, s2))+ri(s1, al, s2)t2(r2(s2, a2, s3)) 

                               al, s2)r2(s2, a2, s3) 

                      ••• rN_1(sN_i, aN-1, sN)tN(rN(sN, aN, sN+1)) 

                    -+-ri(si, al, s2)r2(s2, a2, s3).•• rN(sN, aN, sN+1)tN+1(d(sN+1)) •

   4.8. Stationary multiplicative DP. 

   A DP has a stationary multiplicative additive RS { frnI, t, d} if to=t, 1�n�N+1 

in the non-stationary multiplicative additive RS.

   4.9. Non-stationary divided additive DP. 

   A DP has a non-stationary divided additive RS { {r.}, {t.}, d} if P7,=1/r„, 1�n�N 

in the non-stationary recursive additive RS, where ri, E g(S X A X S), inf rn( • ) > O. Then 

the OF is
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            RN(h)=ti(ri(st2(r2(s2,a2,s3))   + „ s2))±
s2) 

                           tN(rN(sN, aN, sN,))  
       ((                                ,02)r2\ .02, a2, s3) ••• rN_1(sN-1, aN-1, SN) 

                        tN+I(d(sN+1))  
                          r1(s1, a2, s2)r2(s2, a2, s3) • •• rN(sN, aN, sN+1) 

   4.10. Stationary divided additive DP. 

   A DP has a stationary divided additive RS {{rn}, t, d} if to=t, 1�n�N+1 in the 
non-stationary divided additive RS.

   4.11. Non-stationary logarithmic additive DP. 

   A DP has a non-stationary logarithmic additive RS {{ni}, {t7,1, d} if /3„=log r„, 
1�n�N in the non-stationary recursive additive RS, where r„Eg(SxAxS), rn�e. 
Then the OF is 

               RN(h)=tl(rl(Sl, a1, s2))+(log r,(si,a1, s2))t2(r2(s2, a2, s3)) 

                         •-• +(log r,(si, a2, s2))(log r2(s2, a2, s3)) 

                        ••• (log rN_1(sN,, aN-1, SN))tN(rN(SN, aN, SN+1)) 

                     +(log r1(s1, a1, s2))(log r2(s2, 02, s3)) 

                      ••• (log rN(SN, aN, sN+1))tN-Fi(d(sN+0) •

   4.12. Stationary logarithmic additive DP. 

   A DP has a stationary logarithmic additive RS {fni}, t, d} if to=t , 1-7/N+1 in 
the non-stationary logarithmic additive RS.

   4.13. Non-stationary exponential additive DP. 

   A DP has a non-stationary exponential additive RS { {t„}, d} if 13n=ern, 
in the non-stationary recursive additive RS, where rnEg(Sx A x S) . Then the OF is 

         RN(h)=ti(ri(s„ al, s2))+er1(s1,a1,s2)4(7-2(s2, a2, s3)) 

                                 +eri(s1,ai,s2)-1,2(s2,a2,s3)+..•+rN_1(sN-1,aLv_,,s,,tN(rNf0N,                                                                                                 .)NA-1/) 

                              eri(s.bai,s2)+r2(s2,a2,s3)+•••+rN(sN,aN,sN+,    +fc1(                                                                               -)'N+1\(`'N-Fi .)) •

   4.14. Stationary exponential aditive DP. 

   A DP has a stationary exponential additive RS {{rn} , t, d} if to=t , 1�n_N+1 in 
the non-stationary exponential additive RS.

   4.15. Multiplicative DP. 

   A DP has a multiplicative RS Urn}, d} if 

(4.2)g(rn(s, a, s9 ; 1(s9)=-rn(s, a, s9xl(s9



118N.  FURUKAWA and S. IWAMOTO

in the stationary recursive RS with stage-wise reward r„, where 7-7,E g(Sx AxS), 

r7,�0, d�0. Then the OF is 

               RN(h)=rl(sl, a1, .32)r2(s2, a2, s3) ••• rN(sN, aN, sN+i)d(sN+i). 

Clearly the RS is stochastically recursive and monotone. Further rn>0, 1�n�N im-

plies stochastically strict monotonicity and strict monotonicity. Condition (L) is 

satisfied provided 0�_rn�Kn, where IC7, is constant.

   4.16. Terminal DP. 

   A DP has a terminal RS {d} if rn1=_O, 1�n�N in the additive RS. Then the ter-

minal OF is 

                            RN(h)=d(sN+i) • 

It is natural that this RS satisfies all the conditions stated in the additive DP. Note 

that this OF is also the case where rn-=-1, 1�n�N in the multiplicative OF. 

   The DPs in § 4.17-4.21 are restricted only to the deterministic case, because they 

do not, in general, satisfy the stochastic recursiveness.

   4.17(18). Maximum (Minimum) DP. 

   A DP has a maximum (minimum) RS {rn} d} if 

                  g(r,„(s, a, s') ; l(s'))=max (r„„(s, a, s'), l(s1)) 

                               (=min (r,„(s, a, s'), 1(s'))) 

in the stationary recursive RS with stage-wise reward rn, where 7-7,2(SxAxS). 

Then the OF is 

          RN(h)=max al, s2), r2(s2, a2, s3), ••• rN(sN, aN, sN+1), cl(sN+1)) 

              (=min (r1(s1, a1, s2), r2(s2, a2, s3), rN(sN, aN, sN+1), d(sN+1))) • 

(see [2, p. 57], [9, p. 56, p. 89]). The RS is recursive and monotone. It is easily 

shown that the maximum (minimum) RS satisfies Condition (L).

   4.19. Backward power DP. 

   A DP has a backward power RS { {rn}, d} if 

                        g(rn(s, a, s') ; l(s1))=-7-7,(s, a, s')'('') 

in the stationary recursive RS with stage-wise reward r„ , where rnEg(SxAxS). 
Then the OF is

                                                    d(sN+1) 
                                                rN(sN, aN, 

                                 r2(s2, a2, s3) 
               RN(h)=ri(si, a1, s2) 

        zw l / (zw ) \\ 

                          • / 

where xY =---\xI . This RS is recursive. Note that min r,a(•)>1
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implies strict monotonicity. Furthermore, 1  < 1�n�N, K constant implies Con-

dition (U) (see Remark 1 in § 2.2).

   4.20. Forward power DP. 

   A DP has a forward power RS {{r7,}, d} if 

                                           rn(s, a, s') 

                    g(rn(s, a, s'); 1(s1))=1(s') 

in the stationary recursive RS with stage-wise reward rn, where rnE.B(SxAxS). 

Then the OF is
                                                         r1(s1, a1, s2) 

                                             r2(s2, a2, s3) 

                                                                                                                                                                   • 

                             rN(sN, aN, 0N+1) 
            RN(h)=d(sN+1) 

                    yx /                                     Y 
           ••                                                                                     • 

where in this case wz = \ (wz) / . This RS is recursive. Note that 
min rn(•)> 0 implies strict monotonicity. Furthermore, min rn(•)> 1 and rn�K,1�n�N, 

K constant Condition (U) (see Remark 1 in § 2.2).

   5. Examples. 

   5.1. Deterministic case. 

   The mathematical programming problems in Examples 1-4 may be reduced to our 

DPs and analytically solved by calculating and using the corresponding optimal 

policies and optimal returns. They have continuous state and action spaces. Note 

that un(s) or Un(s) is attained by the maximum or minimum in each examples (see 

Remark 2 in § 2.2). 
                        1     EXAMPLE 1.Minimize (4-2xx (max (x2, x3)) 

                                        x, 

                  subject to (i) x1(x2-d-x2)=c (>0) 

                              (ii) x1, x2, x,>0 . 

This reduces to a non-stationary recursive DP (S, {An} 1�.�3, {Tn}1�n�39 {gn} 1�n�-37 d), 

where 

          N=3, s=c, a=x, S=(0, oo), 11,(c)=(0, oo), A2(c)=(0, 

          A3(c)= {c} , T1(c, x)= xc , T2(c, x)=T3(c, x)=c—x, 

          g1(c, x, c' ; 1(c'))=(1.----k2x2) X 1(c'), g2(c, x, c' ; l(c'))=max (x, 1(c')), 

          g3(c, x, c' ; d(c'))=x+d(c'), d(c)-=0 . 

Then by solving the recursive equations 

            Un(c)= Min gn(c, xn, Tn(c, xn); un-l(Tn(c, xn))) 1 nC3 , 
                           xnEAn(e)
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           u°(c)=d(c)=0 , 

we have the optimal policy {fP, fP, f:} and optimal returns u°, it', a', u3 as follows : 

              fP(c)=1, fP(c)=  2  , ft(c)=c, 

           c3 
                u°(c)=0, ul(c)=c, u2(c)= 2 , u3(c)= 2  c . 

Therefore, when 

                xP=fP(c)=1, xP =fP(Ti(c, xP))= 2  , 

                x:=f:(T2(Ti(c, xn, 4))== e2 , 

the given problem attains the minimum u3(c)=  32 c. 

   EXAMPLE 2.Maximize max (xi, x2+ x3. x4) 

                    subject to (i) xid - x2- F x3i-x4-=c (�0) 

                           (ii) xn�0 1�n4. 

This reduces to a non-stationary recursive DP whose elements are specified as follows : 

        N=4, s=c, a=x, S=[0, 00), An(c)= [0, c] 1�n�3, A4(c)= {c}, 

        Tn(c, x)=c—x 1�n.�4, gl(c, x, c' ; i(e))=-max (x, 1(c')), 

        g2(c, x, c' ; l(c'))=x+l(c'), g3(c, x, c' ; 1(c1))=xxl(c'), 

        g4(c, x, c' ; d(c'))=x+d(c'), d(c)=0 . 

We have the optimal policy 

                 10 or c 0c4(c 0�c4          fP(c)—.11((c)=1 
           0c>4,0c>4, 

              ft(c)= 2c,f:(c)---c , 

and the optimal returns 

                                {c 0_c�4           u°(c)=0, u1(c)=c, u2(c)= cz; , u3(c)=u4(c)=c2 
                                                      4c > 4 . 

Hence, if 0�c�4 (resp. c>4) the problem yields the maximum c (resp.  e42 ) at the 

point (x*, xP , x:, x:)=(0, c, 0, 0) or (c, 0, 0, 0) (resp, (0, 0,  e2 ,  2e )). This completes 
Example 2. 

   Before we proceed to discuss the further examples, it should be noted that any 

function composed recursively by virtue of the operations "addition", "multiplication", 
"multiplicative addition"

, "maximum" •-• may, in some appropriate condition, be used 

as both objective and constraint functions in such problems as Examples 1, 2. More-

over, note that the constraint consisting of p (�2) inequalities whose left hand sides
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are such functions composed above is also expressed as our state transformation  [7]. 

For example, the constraint 

                             x1+x2x3 _c1 (_0) 

                            xl-H- x2+ x2�c2 (>=0) 

is expressed as follows : 

        N=3, s=(c1, a=x,A1(c1,c2)=[0, min (c1, c2)] 

        A2(c1, c2)=(0, c2], c2)=A1(c1, c2), T1((c1, c2), c2-x), 

        T2((c1, c2), x)=(  c2-x), T3((c1, c2), x)=(cl-x, c2-x). 

   EXAMPLE 3. Let's now consider the unconditional maximum problem stated in 

[2, p. 102] : 

              Maximize (1-xi)ex1±(1-x2)exl+x2-1- ••• -1-(1-xN)exi+x2+.-+x, 

This, however, reduces to a stationary exponential additive DP whose elements are 

specified as follows : N, s=c, a=x, S= {co}, i. e., one point set, An(c0)=R1, Tn(co, x)=co, 

rn(co, x, co).=x t(r)=(1-e)er, d(c0)=1. Then the optimal policy is 

                           e 

       J`P(co)=eAr.-2).factors, f N -3(c 0)=-ee, f N - 2(c 0)= e fN -1(c 0)=1, fN(c.)=-0 , 

and the optimal returns are e 

           u°(c0)=0, u1(c0)=1, u2(c0)=e, 2,13(c0)=ee, ••• , uN(co)=ON. -1)-factors • 

                                                                                  e Hence the problem attains the maximum uN(c0)=ee. ((N-1)-factors) at the point 

                             zw (zw ) )) 
         ...ee                                                \ • (

xP, ••., .74)=(0N-2)- factors/ 67-3)-factors, •••, e, 1, 0). Here, xY Y 

   EXAMPLE 4. We find the problem : 

                      ga3)gni)              Minimize g(a
i)-F           g( 2                                 aa2)l+ a(a_j_ala2--•(a  

              subject to (i) ai�1, i=1, 2, ••• , m 

                            (ii) aia,••• am=x 

in [2, p. 58]. This is rather extended to 

           Minimize g(x1)+  g(x2) g(x2)g(x.)  
                                        xix2xix2••• Xrn ,-1 

             subject to (i) xn>0, 1�n_m 

                        (ii) xix2••• xn=c (>0) . 

Then the latter reduces to a stationary divided additive DP such that 

         N=m, s=c, a=x, S-=-An(c)-=(0, 00) 1�n_m-1, Ani(c)= {c} , 

        Tn(c, x)= 
xc , rn(c, x, c')=x d(c)=0, t(r)=g(r).
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   The following Examples 5-11 have, on the turn, finite state and action spaces. 

   EXAMPLE 5. Maximize max {r(s1, al, s2), r(s2, a2, s3), ••• , r(sioo, aloo, a(sioi)} sub-

ject to the following stationary state transformation T,

    

. 1 2 3 

 1 1 2 2 

 2 3 1 3 

 3 1 1 1 

       T(s. a)

S=An(s)= {1, 2, 3} 

   s=1, 2, 3

where d(s)=0 and r(s, a, s') is

s a r(s, a, 1) r(s, a, 2) r(s, a, 3) 

 1 1048 

1 2824 

 3464 

 113018 

2 2 16168 

 3—5—5—5 

 1 1028 

3 2 1!642 

    3 iI    408        ll

This is the maximum DP whose elements are specified above. We have the optimal 

policy {fP, ft, ••• , ftoo} , where

  -12 or 3-2 or 3 

fP= 1 1, f2 =[ 1 , f3=[1 or 2 , 
  -11 -1 , 2 or 3 

                 -1
, 2 or 3- 

f t =ft .= ••• =f1'00= 1,2 or 3 
                 -1 , 2 or 3 -

and the optimal returns 7/1.—*u2— • • • —,221", where 

          - 10 - - 18 - - 18 - - 18 --18-

              18  --> 18 —> 18 --> 18 --> • • • --> 18 . 

           - 10 - - 10 - - 18 - - 18 -- 18 - 

Here (resp. thereafter) we have used (resp. will use) the conventional notations, 

   f:(1)- un(1)- 

f:= f:(2) and un= un(2) . For example, ft(1)=2 or 3, u2(3)=10. 
   - f:(3) - -u(3)-

   EXAMPLE 6. Maximize (x(vz)) subject to (i) x+y+z=9, (ii) x, y, z�2, integers.



Dynamic Programming on Recursive Reward Systems123

This reduces to a backward power DP whose elements are as  follows  : 

         N=3, s=c, a=x, y or z, S= {2, 3, ••• , 9}, A1(c)= {2, 3, ••• , c-4} 

         c=6, 7, 8, 9, A2(c)= {2, 3, ••• , c-2} c=4, 5, ••• , 9, A2(c)= {c} 

         c=2, 3, ••• , 9, Tn(c, a)=c-a, r,t(c, a, c')=a d(c)E-1 . 

Then we have

c 1 u°(c), u1(c)f t(c),u2(c)1.'(c),u3(c) f *1(c) 

2 1 122 

3133 

4 14422 2 

515532 3 

6 j 16933 324 2 

717734 328 2 

818844 422' 2 

919945 4 281 2

Therefore, the problem attains the maximum u3(9)=281 at the point (x*, y*, z*)=(2, 3, 4). 

   EXAMPLE 7. Maximize (zY)x subject to (i) x+y+z=9, (ii) x, y, z�2, integers. 

This reduces to a forward power DP whose elements are the same as those of Ex-

ample 6 except for d(c)--_E-0. We have

c u°(c),u1(c) f3 (c), u2(c) f2 (c), u3(c) fP(c) 

2 022 

3 033 

4 I 04422 2 

5 ' 05532 2 

6 066 33 324 2 

7 07734 434 2 

8 : 08844 436 2 

9 ' 09945 539 3

Therefore, the problem attains the maximum u3(9)=39 at the point (x*, y*, z*)=(3, 3, 3).

   5.2. Stochastic case. 

   EXAMPLE 8. Maximize Pr(lir(sk, a k, sk+1)) subject to the following stationary 
                                                 k=1 

transition law q, where S=An(s)= {1, 2, 3} s=1, 2, 3, n=1, 2, ••• , 5, and the stationary 

stage-wise reward r is also given as follows :
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s 1 a g(1ls, a) q(21 s, a) q(3 I s, a) r(s, a, 1) r(s, a, 2) r(s, a, 3) 

, 

  1 0.50.250.250.50.75 1.5 

1 2 I 0.0625 0.750.1875 1.52.00.33..- 

   3 1 0.25 0.125 0.6252.01.50.5 

     I;   10
.50.00.51.02.01.5 

2 i 2 1 0.0625 0.875 0.0625 0.51.52.0 

   3 0.33• 0.33.-• 0.33.. - 2.01.00.5 

  1 j 0.25 0.250.52.00.51.0 
3 2 0.125 0.750.1251.02.50.5 

   3 0.75 0.0625 0.1875 0.333... 0.52.0

This problem reduces to a multiplicative DP with the terminal reward function d(s)=1 

s=1, 2, 3. Then we have the optimal policy IfP, _RK , ••• , fn and the sequence of 

optimal returns U1U2 ••• -U5 as follows :

     -2--2- 

                                  fP =ft= 2 ,=ft=f= 1 7 

            -2--2-

-1 .656 - - 2. 487 - - 3. 989 - 6. 055 - - 9. 606 -

 1. 469 2. 375 --> 3. 581 -> 5. 712 8. 670 

- 2. 063 - - 3. 090 - - 4. 957 - 7. 523 - - 11. 937 -

   EXAMPLE 9. Furtherconsiderthe problem : 

       Maximize E7r(-Vri +r,-Frir2'Vr3-d-- • • • --Frir, • r99 A/rioo+rir2 .• • rioo '1/41) 

subject to the same transition law q in Example 8, where S=An(s)= {1, 2, 3} s=1, 2, 3, 

rn=r(s„, an, sn+1) 1�n�100, d=d(sioi). In this case, r and d are given as follows :

s 1 d(s)a 1 r(s, a, 1) r(s, a, 2) r(s, a, 3)  I1 

      11.50.50.8 

1 ' 1.020.81.22.0 

      31.21.50.6 

      11.02.01.5 

2 1 1.022.40.60.8 

      31.00.80.5 

      10.51.00.8 

30.822.00.80.5 

       30.752.02.0

This is a stationary multiplicative additive DP with t(r)= . The optimal policy is 
                                    - 2 - 

stationary one specified by f*= 1 , and the sequence of optimal returns LP--->U2 

                                      -3-
-,       (pH is
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 -  2
.  51  - - 4. 09 - - 6. 16 -- 4.382 x 108 - - 5.25 x 108 - 

 2. 28 3. 90 5. 76 — • • • 4.088 x 108 —› 4.90 x 108 

- 2. 04 - - 3. 47 - - 5. 09 -- 3.613 x 108 - - 4.33 x 108 -

   EXAMPLE 10. Maximize Pr[d(s6)] subject to the same transition law as q in 

Example 8, where S=An(s)= {1, 2, 3} and d(1)=0.5, d(2)=0.0, d(3)=-0.2. This is a 

terminal DP. Then we have the optimal policy {fP, ••• , ft} and the sequence of 

optimal returns U1-4.12--, ••• —415 as follows :

      -1--3- 

         fP=ft=ft= 2 ,fl<=f:= 1 , 
                 -3--1-

- 0.200 - - 0.280 - - 0. 271 - - 0.273 - - 0.273 -

 0.150  ---> O. 269 ---> O. 269 —> O. 273 ---> O. 273 

- 0.338 - - 0.256 - - 0.274 - - 0. 272 - - 0. 273 -

   EXAMPLE 11. Finally we consider the problem : Maximize E'[r1d-r2r3-Fr2r3r4-Fr2r3d] 

subject to the following stationary transition law q, where S=An,(s)= {1, 2}, rn-= 

r(s„, an, sn+1) s=1, 2, n=1, 2, 3, d=d(s5), and r and d are also given as follows :

s d(s) a g(1ls, a) q(2 I s, a) r(s, a, 1) r(s, a, 2) 

  12123 
11.033 

  2112242 

  10111 
21.0 

   2211220

We have

s u°(s) U1(s) f4 (s) U2(s) f3 (s)  U3(s) f'(s)  U4(s) ft(s) 

114213231282 1 

212 1 or 25213223 2

Note that this is a non-stationary recursive DP such that

g1(s, a, s' ; 1(s1))=r1(s, a, s')+1(s') 

g2(s, a, s' ; 1(s1))=r2(s, a, s')l(s') 

g3(s, a, s' ; 1(s'))=r3(s, a, s')-Pr,(s, a, s')l(s') 

g4(s, a, s' ; l(s'))=r4(s, a, s')±1(s').
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