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Abstract— This paper presents explicit solutions for a class
of decentralized LQG problems in which players communicate
their states with delays. A method for decomposing the Bell-
man equation into a hierarchy of independent subproblems is
introduced. Using this decomposition, all of the gains for the
optimal controller are computed from the solution of a single
algebraic Riccati equation.

I. INTRODUCTION

Decentralized control problems arise when control inputs
to a dynamic system are chosen by multiple subsystems
with access to different information. While decentralized
control schemes are often difficult to synthesize, they arise
in systems ranging from neural networks to the power grid.

In this paper, explicit optimal solutions for a class of
decentralized control problems is found. Explicit solutions to
decentralized optimal control problems are desirable because
they can describe how components of large scale systems
should behave if they are acting optimally. It is hoped that
by discovering explicit solutions to a sufficiently rich set of
examples, insight can be gained into control architectures
arising in nature and engineering.

A. Related Work

This paper is a generalization of previous work by the
authors which solved two simple LQG problems with com-
munication delays by dynamic programming [1]. That paper
as well as the current paper derive explicit solutions for a
class of problems previously solved by semidefinite program-
ming [2], [3]. While the existing solution is computationally
efficient, the structure of the optimal controllers is not imme-
diately clear from the semidefinite program. For some special
cases of the work in this paper, the dynamic programming
method can be extended to output feedback [4], [5], [6], but
in general the extension is challenging because the separation
principle often fails [7], [8]. The state feedback dynamic
programming method presented in this paper is similar to
methods developed for decentralized control with sparsity
constraints [9].

B. Contributions

The main contribution of this paper is an explicit optimal
controller for a general class of decentralized LQG control
problems with communication delays. The input decom-
poses into a hierarchy of independent components which
are defined by a graphical structure termed the information
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hierarchy graph. Perhaps surprisingly, the only optimization
required to compute the controller is the solution of a single
discrete-time algebraic Riccati equation. The controller is
found by propagating the solution of the Riccati equation
through the information hierarchy graph.

C. Overview

The article is structured as follows. Section II defines the
general problem studied in this paper. Section III defines in-
formation hierarchy graphs, which are used for decomposing
information into independent components. Using the concept
of information hierarchy graphs, the solution to problem of
this paper is presented in Section IV. The solution is derived
in Section V and finally conclusions are given in VI.

Notation. The expected value of a random variable, x, is
denoted by E[x]. The conditional expectation of x given y is
denoted by E[x|y]. Let x(0 : t) denote the stacked sequence
of vectors: x(0 : t) =

[
x(0)T x(1)T · · · x(t)T

]T
.

For a vector partitioned into blocks,
[
zT1 · · · zTn

]T
,

and v ⊂ {1, . . . , n}, let zv = (zi)i∈v . For instance, if
n = 5 and v = {1, 3, 5}, then zv is given by z{1,3,5} =[
zT1 zT3 zT5

]T
.

For a matrix partitioned into blocks

M =



M11 · · · M1n

...
. . .

...
Mn1 · · · Mnn




and s, v ⊂ {1, . . . , n}, let Ms,v = (Mi,j)i∈s,j∈v . For
instance, if n = 5, s = {2, 4, 5}, and v = {3, 5}, then Ms,v

is given by

M{2,4,5},{3,5} =



M23 M25

M43 M45

M53 M55


 .

II. PROBLEM STATEMENT

Consider a strongly connected directed graph G = (V,E)
with |V | = n, called a delay structure graph. Throughout this
section, the graph in Figure 1 will be used as an example.
It is assumed that one time-step is required for any piece of
information to travel across an edge in the delay structure
graph. Thus, if the shortest path from node i to node j has
length d, then d time-steps are required for information to
flow from node i to node j.

Associate a state vector xi ∈ Rki , an input vector ui ∈
Rpi , and a process noise vector wi ∈ Rki to each node in



Fig. 1. A delay structure graph with four nodes. Each edge corresponds to
a single step delay. So, one time-step is required for information to travel
between nodes 1 and 2. Two time-steps are needed for information to travel
from node 1 to node 3, and so on. Associated to each node i is a player
which chooses an input ui.

i ∈ V . The state vector is updated according to the following
discrete-time dynamic equations:

xi(t+1) = Aiixi(t)+
∑

{j:(j,i)∈E}

Aijxj(t)+Biiui(t)+wi(t),

(1)
with initial conditions xi(0) = 0. In Equation (1), Aij and
Bii are matrices of appropriate dimension. Throughout the
paper, ui(t) will be referred to as the input chosen by player
i at time t.

For all (i, j) /∈ E, let Aij be the zero matrix of dimension
ki × kj . Then define the matrices A and B by

A =



A11 · · · A1n

...
. . .

...
An1 · · · Ann


 , B =



B11

. . .

Bnn


 .

By stacking xi, ui, and wi into larger vectors,

x =



x1
...
xn


 , u =



u1
...
un


 , w =



w1

...
wn


 ,

Equation (1) can be written in the more compact form,

x(t+ 1) = Ax(t) +Bu(t) + w(t). (2)

For the graph in Figure 1, A has the structure

A =




A11 A12 0 0
A21 A22 0 A24

0 A32 A33 0
0 0 A43 A44


 .

To see how information flows around the graph based
on the structure of A, consider a sparse vector, w =[
0 0 ∗ 0

]T
. The ∗ is used to indicate that the particular

value of w is not important. It follows that successive
applications of A give the following sparsity structures:

w =




0
0
∗
0


 , Aw =




0
0
∗
∗


 , A2w =




0
∗
∗
∗


 , A3w =




∗
∗
∗
∗


 .

The process noise is Gaussian white noise, with terms
corresponding to different nodes assumed to be uncorrelated:

E[wiw
T
j ] = 0, when i 6= j. So the covariance of the noise,

w, is given by

E[wwT ] =



W1

. . .

Wn


 .

Let dii = 0, and let dij be the length of the shortest
path from node i to node j. Since G is assumed to be
strongly connected, dij must exist. The control problem is
to minimize

lim
N→∞

1

N

N−1∑

t=0

E
[
x(t)TQx(t) + u(t)TRu(t)

]
, (3)

subject to the constraint that E
[
x(t)Tx(t)

]
remains bounded

and inputs take the form

ui(t) = γi,t(x1(0 : t− d1i), . . . , xn(0 : t− dni)). (4)

Here, γi,t are Borel-measurable functions to be chosen in the
optimization procedure.

For the graph in Figure 1, the constraints on the input are
given by

u1(t) = γ1,t(x1(0 : t), x2(0 : t− 1),

x3(0 : t− 3), x4(0 : t− 2))

u2(t) = γ2,t(x1(0 : t− 1), x2(0 : t),

x3(0 : t− 2), x4(0 : t− 1))

u3(t) = γ3,t(x1(0 : t− 2), x2(0 : t− 1),

x3(0 : t), x4(0 : t− 2))

u4(t) = γ4,t(x1(0 : t− 3), x2(0 : t− 2),

x3(0 : t− 1), x4(0 : t)).

The weight matrices Q and R are assumed to be parti-
tioned into blocks, Q = (Qij)i,j∈V and R = (Rij)i,j∈V ,
conforming to the partitions of x and u, respectively. The
matrix Q is positive semidefinite, and R is positive definite.
To guarantee that a stabilizing solution to the corresponding
algebraic Riccati equation exists, it will be assumed that
(A,B) is stabilizable and (

√
Q,A) and is detectable. No

other assumptions are made about Q and R.
To derive the optimal controller, the following finite-

horizon variant of the control problem is studied. Minimize

E

[
N−1∑

t=0

(
x(t)TQx(t) + u(t)TRu(t)

)
+ x(N)T Λx(N)

]

(5)
with inputs of the form of Equation (4). Here Λ is a positive
semidefinite matrix of appropriate dimensions, corresponding
to a terminal cost. Using a standard limiting argument, [10],
it will be shown that as N → ∞, the optimal controller
for this finite-horizon problem approaches the steady-state
controller.

Note that the assumptions about the structure of input
and the sparsity structures of A and B guarantee that
communication between the players choosing ui occurs as
least as fast as information travels through the plant. This



assumption implies that the information structure (the set of
input constraints) is partially nested, which in turn implies
that optimal inputs are linear in the associated information
[11].

III. INFORMATION HIERARCHY GRAPHS

The optimal solution for the problem posed in Section
II relies on an auxiliary structure, known as the information
hierarchy graph, which can be derived from the original delay
structure graph. This section presents the basic construction
of the information hierarchy graph.

Let G = (V,E) be the delay structure graph, with V =
{1, . . . , n}. The information hierarchy graph I = (V ,E )
is a graph describing the flow of information through G as
constructed in Algorithm 1. See Figure 2 for a few examples
of information hierarchy graphs constructed from their delay
structure graphs.

Algorithm 1 Information Hierarchy Graph Construction
Algorithm

Start with G = (V,E) and assume that V = {1, . . . , n}.
Set V = {{1}, . . . , {n}}
Set E = ∅
while There is a vertex r ∈ V with no outgoing edge do

Pick r ∈ V with no outgoing edge
Set s = r
{Add to s all nodes reachable from nodes in v in one
step}
for all i ∈ r do

for all j such that (i, j) ∈ E do
if j /∈ s then

Add j to s
end if

end for
end for
if s /∈ V then

Add s to V
end if
Add edge (r, s) to E

end while
return I = (V ,E )

Remark 1: The information hierarchy graph can be used
to describe which players have access to each piece of
information. Let r be the set of nodes in V that are reachable
from node i in k steps. It follows from Algorithm 1 that r
is the unique node reachable from {i} in I in k steps. If
a new piece of information becomes available to player i at
time t, then it will be available to all players in the set r at
time t+ k.

Other useful properties information hierarchy graphs are
now listed. All of the properties are direct consequences of
Algorithm 1.

• Each node has exactly one outgoing edge.

{1}

{1, 2}

{2}
(a) Two-Player
Graph

{1} {2} {3}

{1, 2}

{1, 2, 3}

{2, 3}

(b) Three-Player Chain

{1} {2} {3} {4}

{1, 2}

{2, 3, 4}

{3, 4}

{1, 2, 3, 4}

{1, 2, 3}

{2, 4}

(c) Four-Player Example

Fig. 2. Each subfigure depicts a delay structure graphs on the top with the
associated information hierarchy graph on the bottom. Subfigures 2(a) and
2(b) correspond to the problems studied in [1].

• Nodes {1}, . . . , {n} are the only nodes with no incom-
ing edges.

• Since G is strongly connected, V is always a node in
V . Furthermore, the outgoing edge of V is a self-loop:
(V, V ) ∈ E .

• |V | = |E | ≤ n(d + 1), where d is the longest path
between any two nodes in E.

IV. OPTIMAL SOLUTION

This section presents the main result of the paper, Theorem
1, which gives the optimal controller for the problem defined
by Equations (1), (3), and (4). The optimal solution is a
dynamic controller that is constructed by propagating the so-
lution to a standard Riccati equation through the information
hierarchy graph.

Let XV be the stabilizing solution to the discrete-time
algebraic Riccati equation:

S = Q+ATSA−ATSB(R+BTSB)−1BTSA. (6)

Define the gain KV by the standard LQR gain:

KV = (R+BTXVB)−1BTXVA. (7)

For r 6= V , let s be the unique node such that (r, s) ∈ E .
Assume that Xs has already been defined and define Xr by

Xr = Qr,r +As,rTXsA
s,r (8)

−As,rTXsB
s,r
(
Rr,r +Bs,rTXsB

s,r
)−1

Bs,rTXsA
s,r.



Define the gain Kr by

Kr =
(
Rr,r +Bs,rTXsB

s,r
)−1

Bs,rTXsA
s,r. (9)

The gains, Kr, can now be used to define state equations
for the optimal controller. Let ζs(t) be vectors, of the same
dimension as xs(t), defined by the following dynamics:

ζs(t+ 1) =
∑

r:(r,s)∈E

(As,r −Bs,rKr) ζr(t)

for s ∈ V with |s| > 1 (10)
ζ{i}(t+ 1) = wi(t) for i = 1, . . . , n

with initial conditions ζs(0) = 0.

Theorem 1: The optimal controller for the general prob-
lem defined in Section II is given by

u(t) = −
∑

s∈V

IV,su Ksζs(t), (11)

and the steady state cost is given by
n∑

i=1

Tr(WiX{i}).

Here Ks and X{i} are defined by Equations (6)–(9), ζs(t)
is defined by Equation (10), and Iu is the identity matrix
partitioned into blocks conforming to the partition of u(t).

V. CONTROLLER DERIVATION

This section derives the optimal controller presented in
Section IV. First, in Subsection V-A, it is shown how to use
the information hierarchy graph to decouple the information
available to the players into independent components. Using
this decomposition, the state and input are also decoupled
into independent components. Next, in Subsection V-B, a
finite-horizon version of the problem is solved via dynamic
programming. Finally, in Subsection V-C, the steady state
controller and optimal cost are derived by limiting argu-
ments.

A. Decoupled State Dynamics

This subsection expands on the intuition from Remark 1 to
describe a method for decoupling the information available to
the players based on the information hierarchy graph. Once
the information has been decoupled, the state and inputs are
decomposed into independent terms. Finally, the dynamic
equations for updating the decoupled state terms are given.
The decoupled state variables will form the state of the
controller.

For partially nested information structures, each player’s
optimal control is a linear function of the noise that influ-
ences that player’s measurement [11]. Algorithm 2 shows
how to label each node s ∈ V with a noise vector Ls(t)
that can be computed by all players i ∈ s but unavailable to
all players j /∈ s (Figure 3). Note that the labels are pairwise
independent, by construction. Lemmas 1 and 2 demonstrate
that the labeling can be used to decompose the input into
independent components.

Algorithm 2 Information Hierarchy Graph Labeling
Label nodes {1}, . . . , {n} with L{1}(t) = w1(t −
1), . . . ,L{n}(t) = wn(t− 1), respectively.
while There is a node s ∈ V \ {V } that has not been
labeled do

Pick s ∈ V \ {V } such that s is not labeled and r is
labeled for all r with (r, s) ∈ E
for all r such that (r, s) ∈ E do

if The label for s has not been created then
Set Ls(t) = Lr(t− 1)

else
Set Ls(t) =

[
Ls(t)

Lr(t− 1)

]

end if
end for

end while
for i = 1, . . . , n do

Find s and k such that (s, V ) ∈ E and wi(t−k) appears
in Ls(t) {s and k will be unique}
Set di = k

end for

Set LV (t) =



w1(0 : t− d1 − 1)

...
wn(0 : t− dn − 1)




{1, 2}

{1} {2}
w1(t − 1) w2(t − 1)

�
w1(0 : t − 2)
w2(0 : t − 2)

�

(a) Two-Player Problem

{1} {2} {3}

{1, 2, 3}

w1(t − 1) w2(t − 1) w3(t − 1)

w3(t − 2)

{1, 2}
w1(t − 2)

{2, 3}




w1(0 : t − 3)
w2(0 : t − 2)
w3(0 : t − 3)




(b) Three-Player Chain

{1} {2} {3} {4}

{1, 2}

{2, 3, 4}

{3, 4}

{1, 2, 3, 4}

{1, 2, 3}

{2, 4}

w1(t − 1) w2(t − 1) w3(t − 1) w4(t − 1)

w1(t − 2)

�
w1(t − 3)
w2(t − 2)

�

w3(t − 2) w4(t − 2)

w3(t − 3)




w1(0 : t − 4)
w2(0 : t − 3)
w3(0 : t − 4)
w4(0 : t − 3)




(c) Four-Player Example

Fig. 3. Labeled information hierarchy graphs from Figure 2. The labels are
pairwise independent and correspond to information available to all players
in the corresponding node, but none of the other players.



Lemma 1: Player i’s available information, from Equa-
tion (4), can depend on Ls(t) only if i ∈ s. Furthermore, if
i ∈ s, then player i can calculate Ls(t).

Proof: [Sketch] First note that if s 6= V and wj(t− p−
1) ∈ Ls(t), then there must be a path in I from {j} to s
of length p. Therefore, s is the set of nodes reachable from
j in at most p steps.

Say that i /∈ s and take wj(t− p− 1) ∈ Ls(t). Thus any
path from j to i has more than p steps. Using the information
constraint, Equation (4), it can be shown that wj(t− p− 1)
must be independent of ui(t).

By Equation (1) and the fact that player i knows xi(t−1)
and xj(t − 1) for (j, i) ∈ E, it can compute wi(t − 1) =
L{i}(t). Now consider wj(t − p − 1) ∈ Ls(t) with i ∈ s.
Equation (4) implies implies that player i has access to all the
information available to player j at time t− p. In particular,
player i can compute wj(t− p− 1).

Lemma 2: The optimal input u(t) can be decomposed as
a sum

u(t) =
∑

s∈V

IV,su ϕs(t), (12)

where ϕs(t) is a linear function of Ls(t) of appropriate size.

Proof: [Sketch] By linearity of the optimal solution,
there exist matrices Hi,s(t) such that the optimal input is
given by

ui(t) =
∑

s∈V :i∈s

Hi,s(t)Ls(t).

Define ϕs(t) by I{i},su ϕs(t) = Hi,s(t)Ls(t).

Now that the input has been decomposed into independent
terms, the state x(t) can be similarly decomposed. Let ζs(t)
be vectors, of the same dimension as xs(t), defined by the
following dynamics:

ζs(t+ 1) =
∑

r:(r,s)∈E

(As,rζr(t) +Bs,rϕr(t))

for s ∈ V with |s| > 1 (13)
ζ{i}(t+ 1) = wi(t) for i = 1, . . . , n

with initial conditions ζs(0) = 0 for all s ∈ V . Equation
(13) is the open loop counterpart of Equation (10).

Lemma 3: The state vector can be decomposed as a sum

x(t) =
∑

s∈V

IV,sx ζs(t), (14)

where Ix is the identity partitioned into blocks conforming
to the partition of x, and ζs(t) is defined by Equation (13).
Furthermore, ζs(t) is a linear function of Ls(t).

Proof: [Sketch] The proof is by induction. By the initial
conditions, ζs(0) = 0 and x(0) = 0, Equation (14) holds and
ζs(t) is a linear function of Ls(t) at t = 0.

Now, inductively assume that Equation (14) holds at time
t and that ζs(t) is a linear function of Ls(t). Plugging

Equations (12) – (14) into the dynamic equations shows that
x(t+ 1) is updated as follows:

x(t+ 1) = Ax(t) +Bu(t) + w(t)

=
∑

r∈V

(AIV,rx ζr(t) +BIV,ru ϕr(t)) + (15)

n∑

i=1

IV,{i}x ζ{i}(t+ 1).

It can be shown by block matrix manipulations and the
sparsity structures of A and B that AIV,rx = IV,sx As,r and
BIV,ru = IV,sx Bs,r. Plugging these identities into Equation
(15) and applying Equation (13) to update ζs shows that

x(t+ 1) =
∑

|s|>1

∑

r:(r,s)∈E

IV,sx (As,rζr(t) +Bs,rϕr(t))

+

n∑

i=1

IV,{i}x ζ{i}(t+ 1)

=
∑

s∈V

IV,sx ζs(t+ 1).

The proof that ζs(t+ 1) is a linear function of Ls(t+ 1)
follows from Equation (13) and Algorithm 2.

B. Finite-Horizon Dynamic Programming

Denote the optimal expected cost-to-go function by
E[J(ζ, t)]. Recalling the finite-horizon cost function and
plugging in the state decomposition of Equation (14),
E[J(ζ,N)] is given by

E[J(ζ,N)] = E
[
xT Λx

]

= E



(∑

s∈V

IV,sx ζs

)T

Λ

(∑

s∈V

IV,sx ζs

)


=
∑

s∈V

E
[
ζTs Λs,sζs

]
.

The last equality follows from the pairwise independence of
ζs.

Set Xs(N) = Λs,s for all s ∈ V and define J(ζ,N) to
be J(ζ,N) =

∑
s∈V ζTs Xs(N)ζs. Inductively assume that

for some t+ 1 ≤ N , J(ζ, t+ 1) is defined by

J(ζ, t+1) =
∑

s∈V

ζTs Xs(t+1)ζs+

N∑

k=t+2

n∑

i=1

Tr(WiX{i}(k)).

(16)
The optimal expected cost-to-go function at time t is com-
puted by solving the Bellman equation:

E[J(ζ, t)] = min
ϕ

E
[
xTQx+ uTRu+ J(ζ ′, t+ 1)

]
, (17)

where ζ ′s are the variables ζs, updated according to Equation
(13).

Substituting the decompositions for x and u and applying
independence shows that the first two terms on the right-hand
side can be decoupled as

E
[
xTQx+ uTRu

]
=
∑

s∈V

[
ζTs Q

s,sζs + ϕT
s R

s,sϕs

]
. (18)



Combining Equations (13) and (16), and applying inde-
pendence shows that E[J(ζ ′, t+ 1)] can be expanded as

E[J(t, ζ(t+ 1))]

=
∑

r∈V

E
[
(As,rζr +Bs,rϕr)TXs(t+ 1)· (19)

(As,rζr +Bs,rϕr)] +

N∑

k=t+1

n∑

i=1

Tr(WiX{i}(k)),

where (r, s) ∈ E .
Combining Equations (18) and (19) shows that the right-

hand side of the Bellman equation can be decomposed into
a sum of independent terms, plus a constant term:

min
ϕ

E
[
xTQx+ uTRu+ J(ζ ′, t+ 1)

]
=

∑

r∈V

min
ϕr

E
[
ζTr Q

r,rζr + ϕT
r R

r,rϕr+

(As,rζr +Bs,rϕr)TXs(t+ 1)(As,rζr +Bs,rϕr)
]

+

N∑

k=t+1

n∑

i=1

Tr(WiX{i}(k)).

Standard quadratic minimization arguments show that the
optimal inputs are given by

ϕr = −Kr(t)ζr

with gains Kr(t) computed as

Kr(t) =
(
Rr,r +Bs,rTXs(t+ 1)Bs,r

)−1
Bs,rTXs(t+ 1)As,r.

Plugging in the inputs ϕr = −Kr(t)ζr(t) shows that J(ζ, t)
has the form

J(ζ, t) =
∑

r∈V

ζTr Xr(t)ζr +

N∑

k=t+1

n∑

i=1

Tr(WiX{i}(k))

where the matrices Xr(t) are computed as follows (denoting
Xs(t+ 1) by X ′s to save space):

Xr(t) = Qr,r +As,rTX ′sA
s,r

−As,rTX ′sB
s,r
(
Rr,r +Bs,rTX ′sB

s,r
)−1

Bs,rTX ′sA
s,r.

Since E[J(ζ, t + 1)] was the optimal expected cost-to-go
at time t + 1, it follows inductively that E[J(ζ, t)] is the
optimal expected cost-to-go at time t, and the form of J(ζ, t)
is valid for all t ≤ N . Finally, since x(0) = 0, the total cost
is calculated to be

∑N
t=1

∑n
i=1 Tr(WiX{i}(t)).

C. Steady State

Note that XV (t) is the solution to the centralized LQR
Riccati equation. Stabilizability of (A,B) and detectability
of (
√
Q,A) imply that as N → ∞, XV (t) → XV = S,

the stabilizing solution of the algebraic Riccati equation
[10]. Since all the other matrices, KV (t), Xr(t), and Kr(t),
are specified by XV (t), they respectively converge to the
matrices KV , Xr, and Kr, as defined in Equations (7), (8),

and (9), as XV (t) → XV . Thus, the optimal gains and
Riccati solutions have been found.

The steady state cost is calculated by noting that

lim
N→∞

1

N

N∑

t=1

n∑

i=1

Tr(WiX{i}(t)) =

n∑

i=1

Tr(WiX{i}).

VI. CONCLUSION

This paper gives explicit optimal controllers for a class
of state-feedback LQG problems whose delay structures are
specified by graphs. To derive the optimal solution, the
inputs are decomposed hierarchically based on the sharing of
information. The top-level inputs have access to global, but
delayed, state information, while lower-level inputs depend
on newer, but more localized, information.

Future work will involve extending this work to more gen-
eral delay patterns. Also, it would be desirable to unify the
results of this paper with the sparsity constrained problems
studied in [9], [12], [13]. Extension of the dynamic pro-
gramming method in this paper to output feedback problems
seems unlikely, in general, due to failure of the separation
principle [7], [8]. Spectral factorization approaches to the
output feedback problem are currently under investigation.
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