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DYNAMIC PROPERTIES OF IMPULSE MEASURING SYSTEMS

Aa. Pedersen & P. Lausen
Senior Member, IEEE Non Member, IEEE

The High Voltage Laboratory,
Electric Power Engineering Department, Technical University of Denmark.

Abstract - After some basic considerations the dynamic proper-
ties of the measuring system are subjected to a general examination
based on a number of responses, characteristic of the system. It is de-
monstrated that an impulse circuit has an internal impedance different
from zero, for which reason the interaction between the generator and
the measuring circuit is of paramount importance to the voltage across
the test object. Based on the measured values the determination of the
applied voltage is considered.

For design purposes the properties of impulse measuring systems
are finally discussed based on the characteristic responses.

INTRODUCTION

The evaluation of the result of any kind of measurement pre-
supposes an analysis of the following problems:

How correctly does the measurement represent the measured quan-
tity?
How does the measuring systeni influence the quantity to be
measured?
The solution of the first problem demands an examination of the

accuracy, sensitivity, and stability of the measuring system - proper-
ties that will receive no further comment in the present paper. Measure-
ments of quantities that vary as a function of time, furthermore demand
a determnination of the dynamic properties of the system.

The influence of the measuring system on the quantity to be
measured is caused by an interaction between the measuring and the
generating systems. Consequently both systems must be examined.

Based on this general concept the following paragraphs will deal
exclusively with measurements of dynamfiic phenomena, especially
high voltage ifmptilses.

GENERAL CONSIDERATIONS ON MEASURING SYSTEMS

1. Impedances of Measuring Systems.

If the measuring system consists of linear elements the principle of
superposition is applicable with the consequence that it is possible to
determine any given input as a function of one or more specific inputs,
and the measured response as the same function of the responses to the
specific inputs. Therefore, the measuring system may be considered as a
"black box" with two input and two output terminals, allowing all
transfer properties and loading characteristics to be determined by
measurements on the terminals of this system, regardless of any present
knowledge of the network.

If non-linear elements are included, the principle of superposition
does not apply any longer. Consequently, the response to any given in-
put must be determined on the basis oif the input itself, either by meas-
urement or by calculation. The latter, however, is only possible if a
completely equivalent network for the system can be established, for
which the individual elements and their amplitude dependency are
known, such as c = f(u), 1 = f(i), r = f(u) or r = f(i). For any practical
purpose calculations on the system can be performed by numerical

Paper 70 TP 605-PWR, recommended and approved by the Power System
Instrumentation and Measurements Committee of the IEEE Power Group for
presentation at the IEEE Summer Power Meeting and EHV Conference, Los
Angeles, Calif., July 12-17, 1970. Manuscript submitted March 27, 1970; made
available for printing May 4, 1970.

methods only. In addition to amplitude dependent non-linearity the
elements may show hysteresis, which will cause a further limitation of
the practical possibility of calculation.

Voltage dependent elements caused by partial discharges (corona)
occur in impulse measuring systems. In most cases it will be permissible
to ignore such non-linearities since they are of importance only in
connexion with measurerhents of fast phenomena (in the ns range). If,
however, an evaluation of this approximation is requested, the measur-
ing system must be examined at 1ow voltages without partial discharges
as well as at high voltages where such partial discharges occur. For the
purpose of calculation the non-linear elements arein practice substituted
by suitably chosen linear elements depending on the magnitude of the
input. In such cases the calculated results must always be checked by
measuremerits in order to ascertain whether a sufficiently good approx-
imation has been o'btained in the actual case. - The following para-
graphs are based on the presupposition that the measuring system con-
sists of linear elements.

For the purpose of evaluating the performance of the measuring
system by caiculatioin it is necessary to establish a sufficiently accurate
equivalent network. If transmission lines are present, or if the measuring
system has a significant physical extension, it will be necessary to make
use of distributed parametres - represented by an infinite number of
elements in the equivalent network - in order to account for all fre-
quencies.

Transmission lines or components of the length L may always be
substituted by concentrated elements when

v
L<-

f

v the velocity of light in the medium
in question.

f the highest frequency of interest
for the measurement.

However, it may often be advantageous to consider transmission
lines separately by using the travelling wave concept, as known from
the transmission theory, for these parts of the system in order to evalu-
ate the time function of the output from the complete measuring system.

The voltage between the input terminals of the measuring system
can be expressed by the following general equation in Laplace nota-
tion with s as the Laplace operator;

Zm(5)
Ul(s) = Ug(s) Zi(s) + Zm(5)

U1(s) the Voltage across the input terminals of the measuring
system.

Ug(s) the voltage generated in the system.

Zi(s) the internal impedance of the generating system as seen
from the input terminals of the measuring system.

Zm(s) the impedance of the measuring system as seen from the
input terminals of the measuring system.

Based on this equation, table I lists the only cases in which con-
nexion of a measuring system will have no influence on the quantity to
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be measured. In the special case when Zi(s) and Zm(s) are proportional
the connexion of the measuring equipment will only give rise to a pro-
portional change in the amplitude of the quantity to be measured. This
case, however, is mostly of academic interest.

Table I. Special cases when connexion of the mea-
suring equipment will not affect the
quantity to be measured.

Current Measurements Voltage Measurements

Z =oo Z. = 0

i.e. the generator re- i.e. the generator re-
presents an ideal presents an ideal
source of current sup- source of voltage sup-
ply. ply-

Z =0 Z =mm

In most practical cases fulfilment of the fol-
lowing requirements will suffice:

z << z z »> z.
m 1 m I

the line spectrum of the Fourier series t), it will usually be profitable to
describe the applied phenomenon as a function of the unit step and the
response of the system as the same function of the unit step response.

It is always possible to determine the output when the input and
the transfer properties of the measuring system are known, whereas in
general it is impossible in practice to reverse the procedure since the
measuring system will cause a loss of information. The lost information
cannot be regenerated, and the determination of the input on the basis
of the measured output therefore presupposes a certain advance knowl-
edge of the input.

3. Determination of the Dynamic Properties of the Measuring System
by Means of the Unit Step Response.

The unit step response is determined as the system's reproduction
of an applied unit step. In Laplace notation the following equation is
valid:

G(s) =-H(s)
s

C(s) the unit step response.

I
the unit step.

H(s) the transfer function of the system.

For certain types of measurement (including impulse voltage
measurements) the measuring equipment is a permanent part of the sys-
tem. The problem is therefore limited to generation of the required
voltage within a given accuracy with the measuring equipment in situ.

2. The Transfer Properties of the Measuring System.

The transfer properties of measuring systems consisting of linear
elements only, can be determined from the amplitude and phase-
frequency characteristics for the system (i.e. based on a number of
specific steady-state responses), or from the unit step response for the
system (i.e. based on one specific transient response). These methods
for the determination of transfer properties are two out of several
possible, but in practice they are used exclusively - as a consequence
of the existing mathematical tools for the treatment of information in
these forms.

The amplitude and phase-frequency characteristics determine the
signal ratio for the measuring system, defined as the ratio between the
input and the output voltage for a sine wave of specific frequency. The
unit step response determine the normalizing factor for the measuring
system, defined as the ratio between the unit step and a selected part of
the unit step response (normally the asymptotic value).

The unit step may be described by means of the cyclic frequency
by the equation:

1 1 sinct
U= + - f -S dco

2 7r , o cS)

Thus the unit step response of the system contains information
about the transfer properties of the system for all frequencies from 0 to
oo on an integrated form, while the amplitude and phase-frequency
characteristics contain the same information determined frequency by
frequency. The information can be transformed mathematically1 2from
one form to the other.

Steady-state phenomena, such as singular frequencies or periodic
functions - which via a Fourier expansion can be resolved into har-
monics -are often examined by means of the frequency characteris-
tics. In measurements of transient phenomena, where expansion into
sine functions gives a continuous frequency spectrum as opposed to

The response, U2(s), to an arbitrary input voltage, U (s), is found
to be:

U2(s)U1(s) H(s) = UI(s) s G(s)

Thus the unit step response implicitly contains the transfer func-
tion. The shape of the unit step response directly gives some information
about the measuring system. The front steepness is a measure for the
limit frequency, oscillations show the resonance frequencies, and the
magnitude determines the normalizing factor of the measuring system.

The area between the unit step and the normalized unit step
response is called the measuring system's response time, TN, which is
defined by the equation:

TN = yf (l - g(t)) dt
Q

g(t) the voltage time function of the
normalized unit step response.

As an example the use of the unit step response for the determin-
ation of the response to a dynamic phenomenon is demonstrated by a
measuring system's reproduction of a linearly rising input with the
steepness S = 1 (fig. 1). After a certain time, Tq' when the unit step

TN=Ti-T2t3 Tq NV T

Fig. 1 The response of a measuring system to a linearly rising input.

t) It should be noted, that a transient phenomenon can be described with
arbitrary accuracy by a line spectrum, provided that the basic frequency of this
spectrum is chosen sufficiently low.
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response has attained the value 1, the difference at a given time, t, will
be constantly equal to the system's response time, TN, and the mea-
sured voltage will be displaced by the time TN as compared to the ap-
plied voltage. If the steepness of the voltage is different from 1, e.g. S,
the amplitude difference between the applied and the measured voltage
after the time T will be S-T while the displacement in time will
always be equal to the response time TN.

MEASURING SYSTEMS FOR IMPULSE VOLTAGES

A measuring system for impulse voltages must reproduce the po-
tential difference between 2 points separated in space, as a function of
time. The measured voltages go up to megavolts and the time in-
volved goes down to nanoseconds. One of the two points will usually be
on ground potential, in which case it will be connected to the grounding
system of the measuring arrangement. The high voltages involve a great
distance between the terminals of the test object as well as voltage di-
viders of great height and divider ratio. This makes it difficult to design
measuring systems with high limit frequencies. The high level and fast
changes of the voltages together with the associate currents in the sys-
tem at the same time represent a risk of erroneous measurements due to
signals introduced into the system at other places than the input termin-
als (noise). This fact is mentioned only for the sake of completion, and
it may be added that the accompanying problems have not been clari-
fied in detail so far.

In the following paragraphs the dynamic properties of the impulse
measuring system are described through an analysis of the response pro-
perties of the system.

1. The Components of the Measuring System.

For the investigation of the behaviour of a measuring system it will
usually be of advantage to divide the system into two parts - the lead
and the rest of the system - where the lead is dealt with separately ac-
cording to the rules of the transmission theory. Afterwards the transfer
in the rest of the measuring system is determined on the basis of these
results.

In the following paragraphs only measuring systems without damp-
ing resistor in the lead ) will be examined, and in accordance with the
procedure above such systems will be divided into:

The lead with the grounding system of the measuring system as

return path.
The part of the measuring system loading the lead at the divider
end, i.e. voltage divider, measuring cable, registrating instrument,
etc, in the actual arrangement - viz. the complete voltage divider
hereinafter referred to as the terminator.

The surge impedance, Z, for the measuring lead will usually be in
the order of 400-500 Q2, and the propagation velocity, v, will be equal to

the velocity of light, 30 cm/ns.
The impedance of the terminator as seen fr. m the lead will mainly

be determined by the elements of the voltage divider. Voltage dividers
usually consist of resistors and/or capacitors. Depending upon the
elements employed the voltage dividers are termed:

- resistor dividers,
- capacitor dividers, or
- mixed dividers, consisting of resistors parallel to or in series with

capacitors.
The impedance of the terminator will vary as a function of the fre-

quency, except when the impedance is equivalent to a pure resistance.
In Laplace notation the impedance of the terminator, as a function of
the operator s, is Zt(s), where

Zt(s) - I(s)

t) For measuring systems with damping resistor in the lead, cf. lit. 3.

U(s) the voltage across the terminator.

I(s) the current input to the terminator.

For a given voltage input, u(t), associated with the current, i(t), an
"impedance" can be defined as:

=u(t)
zt(t) i(t)

It may often be convenient to use this time dependent "imped-
ance" for the evaluation of the reflections and the load associated with
a given input.

Measuring systems for fast impulse voltages usually utilize either
resistor dividers, often shielded to improve the capacitive voltage dis-
tribution, or mixed dividers with resistors and capacitors in series, for
which the "impedance" to a unit step in the first moment primarily is
determined by the series resistance.

2. The Unit Step Response of the Measuring System.

As an example of the application of the travelling wave concept the
unit step response is determined for the measuring system shown in fig.
2 and consisting of a lead of the length L with the surge impedance Z,
and a terminator T which is assumed to be ideal, i.e. the measured out-
put voltage is a true copy of the voltage across the terminator.

A

I1

6c
0--

L,Z T

B
Fig. 2. Measuring system with a terminator.

A: T:

Kt K
1 1 1 K2

I ./

Fig. 3. Unit step response of a measuring system with a pure resistive
terminator; Kt = 0.9.

The "impedance" of the system (fig. 2) as seen from A will be
equal to Z for two times the travel time on the lead, after which it will
change, dependent on the input and the "impedance" of the terminator.
The change of this "load impedance" implies that the generator gener-
ating the unit step between A and B must have a zero impedance.

In the example the terminator is assumed to be purely resistive.
The unit step applied between A and B will travel along the lead to the
terminator. Since R * Z, a reflection will be generated here, determined
by the reflection coefficient:

R -Z
K R + Z

The reflection will travel back to A where the zero impedance generator
will send back a similar but inverted wave to the terminator, since the
reflection coefficient Kg= -1. After 2 times the travel time on the lead,
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271 this wave will reach the terminator, and a new reflection will be

generated, moving in the direction of A. The voltage at A and T is

shown in fig. 3. t).
The response time of the system, which emanates exclusively from

the lead, is found from fig. 3 to be:

TL = -2- Kt(-Kt+Kt2K3. ) = -2 _lt
v v l+Kt

The voltage at T, however, will be oscillating.
In practice the input terminals of the measuring system, A and B,

are placed at a great distance from each other. Determination of the
unit step response by measurement requires a zero impedance gener-
ator placed between these two points. Unfortunately, the realization of
such a generator is impossible when the points are separated in space.
Therefore, the system is modified by a vertical lead AC (marked by a
dotted line on fig. 2). The distance between B and C is chosen so short
that a zero impedance generator between the two, points with suffic-
iently good approximation can be realized. The unit step response of the
modified system can be measured directly, whereas this measurement
cannot be executed on the true measuring system. On the other hand,
it is possible to determine the response time for the true system, since it
has been demonstrated3 that the vertical lead AC gives a negative contri-
bution, Th, to the response time, of the magnitude:

T = 2 h Kt(o)h v l + Kt(o)

Kt(o) the reflection coefficient at the terminator for the time
t + 00.

h the length of the added lead.

v the velocity of light.

The determination of the response time for an oscillating unit step
response will be encumbered with great uncertainty, since the response
time is found by subtraction of almost equally great areas. In practice
the response time for such systems therefore must be determined either

by means of the CIGRE volt-time curve or by an indirect method.

3. Determination of Response Time Based on CIGRE's Volt-Time

Curve.

As demonstrated earlier, the response of a measuring system after
a certain time will follow a linearly rising impulse at a time distance

T TCh
Tco

Fig. 4. Response of a measuring system to a linearly rising input.

t) In the following paragraphs the time of the beginning of input and re-
sponses is set at t = 0, the time-lag caused by the lead having been left out of
account.

equal to the response time of the system, TN (fig. 4).
Thus it is possible to determine the response time TN by a

measurement of the breakdown of a welldefined gap for which the rela-
tion between the steepness of an applied, linearly rising voltage and the
time to breakdown, TCo, are known.

CIGRE's (Conf6rence Internationale des Grande Reseaux Elec-
triques) Study Committee No. 8 has induced a number of laboratories
throughout the world to determine the volt-time curve for a 60mm
sphere gap with 25 cm spheres subjected to a negative, lineary rising
voltage with the steepness S, in accordance with a specified pro-
cedure4

The established graph, stated to have an accuracy within ± 5 ns,
is shown in fig. 5.

1000

0u3OC
V)
c
-.

0
-c 100
u

a)0
4-,-

E
F- 30
0
F9

1oI0 l l I
0.20.3 1 3 1
S-Steepness (kV/nsec)

Fig. 5. The CIGRE volt-time curve. (Lit. 5).

10

SYSTEM I SYSTEM II

T1 TNI =3/4T1 T 4TNI=4T1
Unit step response

Input and output
Fig. 6. Responses of measuring systems I and II to a linearly rising

voltage chopped momentarily at To,

If the measured time to breakdown, TCh, is defined as shown in
fig. 4, the response time of the measuring system will be

TN = TCO TCh

TCo true time to breakdown.

TCh measured time to breakdown.

If the response time TN has to be determined by means of the CIGRE
volt-time curve, it must be possible to pinpoint the correct time for the
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breakdown on the measured wave form. In practice this is not always
easy to do by simple means. As an example the responses to a linearly
rising voltage chopped momentarily at the time To have been con-

structed in fig. 6 with the shown simplified unit step responses of the
measuring systems I and II.

It will be impossible without advance knowledge of the unit step
response for system I to determine Ton whereas system II reproduces
the applied voltage in an immediately accessible form, even though the
two step responses consist of the same two basic components, only in
system I added with a time delay.

The determination of the response time by means of the CIGRE
volt-time curve is easy and elegant to perform in the laboratory. How-
ever, this method must always be supplemented by other measure-
ments on the measuring system examined, since it must be verified that
the measuring system follows the applied, linearly rising voltage before
the time to chop, and that this can be determined in a simple manner
from the measured output voltage. Furthermore, it is necessary to use
rather steep impulses for the determination of the response time with
sufficient accuracy, and therefore the method is only applicable for
fast measuring systems.

4. Indirect Method of Response Time Determination.

The oscillation on the unit step response of the measuring system
caused by the high voltage lead will disappear if the zero impedance
generator is replaced by a generator with an internal impedance equal
to the surge impedance of the lead. Such a generator can be realized by
a series connexion of a zero impedance generator and either a resistor
equal to the surge impedance of the measuring lead, or a measuring
lead of infinite length and constant surge impedance. Hence the term
"infinite-line" measurement which will be used in the following
paragraphs.

The "infinite-line" response time, T., is defined as the area be-
tween a unit step generated behind the internal impedance of the
"'infinite-line" generator, and the normalized response of the termina-
tor. To. can be determined by measurement with good accuracy, be-
cause the response has no oscillations.

For measuring systems without damping resistor in the lead the
''infinite-line" response time is3:

To= Tkt + Tt

Tkt the response time of the reflection at the terminator de-
fined as, the area between the unit step of the "infinite-
line" measurement and the normalized voltage across the
terminator (the reflection response).

Tt the response time of the transfer through the terminator
defined as, the area between a unit step applied to the
terminator and the normalized response of the latter.

impedance of the generator (R, fig. 7), since the voltage across this re-
sistor after 2 times the travel time is a true copy of the voltage across
the terminator.

Kt (°)

L 2(L+h)/V
Fig. 8. Voltage across R. (Cf. fig. 7).

In fig. 8 is shown the voltage wave across R for a terminator con-
sisting of a capacitance, Ct, in parallel with a resistance, Rt > Z.

The hatched area on normalized form determines the response
time for the reflection coefficient at the terminator.

A
kt 1 + Kt(o)

Kt(o) the reflection coefficient at the terminator for the time
t + 00.

If Too and Tkt are known the response time for the transfer
through the terminator, Tt, can be calculated.

If Tt is known the unit step response time, TN, can be calculated,
since it can be demonstrated3 that

TN Tt -2
L

-
Kt(o)

v I +Kt(o)

Tt the response time for the transfer through the terminator.

L the length of the measuring lead.

v the velocity of light.

Kt(o) the reflection coefficient at the terminator for the time
t +00.

This procedure for the determination of TN is far more accurate
than measurement of the unit step response of the modified system.
Furthermore, the method implies determination of the response time
for the transfer through a terminator, and thus allows a determination
of the response time for measuring systems without leads.

Measurement of the responses and response times mentioned in
this section gives rise to practical measuring problems which shall re-
ceive no further comments in this paper.

5. The Internal Impedance of the Impulse Circuit.

The response time for the reflection from the terminator, Tt
can 'be determined by a measurement of the voltage across the internal

A
0--

h
R

Rf

L7Z
N

B
Fig. 7. Arrangement for "infinite-line" measurement. R equal to the

surge impedance of the measuring lead at point C.

The voltage across the test object in an impulse circuit depends
upon the voltage generated as well as on the interaction between the
generating and measuring circuits. As a demonstration the voltage across
the test object and the response of the system to this influence are cal-
culated in two examples shown in fig. 9 for generators with Zi = 0 and
Zi = Z, for a unit step as well as for a linearly rising voltage. The termin-
ator of the employed measuring system is assumed to have the imped-
ance Zt = oo, and to give an exact reproduction of the voltage across
the terminator.

In neither case the measuring systems will record the voltage ap-
plied at the input terminals. In the first case the lack of damping will
cause the response to oscillate forever, while the generator in the second
case will match the lead, and the response will reproduce the applied
voltage except for a minor distortion caused by the measuring system
in the first part of the applied voltage.

So far, almost all analyses of measuring systems for impulse volt-
ages have been based on specified input voltages regardless of whether,
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IA LZ T

Voltage at A:

(a) 1

Voltage at T:

(b) TLJL-
2LV

zAt~~A A
At TIZ

(C) J

"IA
ing the lead and therefore differ very much from the conditions with a

zero impedance generator.
This is illustrated by a measurement (fig. 10) with two different

:-0 measuring systems. The data of the systems appear in table II, while

their unit step responses are shown in fig. 11.
Due to the excellent response properties of system A the voltage

measured by this system may be assumed to be identical with the ap-
plied voltage. The result of the measurement is shown in fig. 12.

2LV

Fig. 1. Unit step responses of measuring systems A and B.
System A: System B:
x: 20 ns/div x: 200 ns/div

A
At T

Fig. 9. Applied and measured voltages for the generator impedance

Zi = 0 and Zi = Z.

on account of the "impedance" of the generator, such voltages can be

generated. Measurements show that the "impedance", as seen from the

input terminals of the measuring system, will usually be in the order of

the surge impedance of the lead. Thus, the conditions in a practical

impulse circuit will be similar to example II with the generator match-

100Ohm 11.6m

Fig. 10. Impulse circuit.

Table II. Data of the measuring systems A and B.

Measuring Sy- Measuring Sy-
stem A. stem B.

Damping resistor 424 0 none
in the lead

Height (m) 0.60 2.40

Length of lead 18.8 15.8
(in)

Resistance (a) 10,000 8,976

T (ns) 14 45

TN (ns) 14 - 13

Divider ratio 1475 922

Fig. 12. Impulse voltages
A and B.
System A:
x: 200 ns/div
y: 36 v/div

simultaneously measured with systems

System B:
x: 200 ns/div
y: 60 v/div

The fronts of the output voltages from the two systems for the

simultaneously measured input voltage are nearly identical. The only
explanation of this similarity is, that the generator circuit has an almost

matching impedance which prevents oscillations caused by the lead of

system B (cf. the unit step response, fig. 11). After the breakdown of

the sphere gap the voltage measured with systems A and B will differ
very much, since the impedance of the generator now will be almost

equal to zero; (further examinations have shown that during the break-
down the sphere gap had an impedance of a magnitude of about 40 Q2).

The impedance of the impulse generator circuit is one of the prob-
lems in impulse measuring technique which are still not completely
clarified, and which must be further investigated6.

MEASURING SYSTEM PROPERTIES BASED ON RESPONSE
CHARACTERISTICS

The interaction between a physical phenomenon to be measured
and the circuit (including the measuring system) in which the phenom-
enon appears, must be subjected to careful consideration before the

design of any measuring system. Requirements of high limit frequency
and great accuracy will usually cause a low impedance of the measuring
system, and consequently the system will often be chosen on the basis

of a compromise between a sufficiently fast measuring system and the

tolerable load of the generating system. In the following paragraphs it

is briefly described, how the responses and response times mentioned

above determine the properties of the system.

1. The Rapidity of the Measuring System.

Measuring systems with high limit frequencies give unit step

responses with steep fronts. A general requirement for the achievement
of this is a small Tkt and a small Tt. If the measuring lead is short

(2 L < Tkt) the importance of Tkt will decrease, which in special
cases can be used to raise the limit frequency.

1429



The time after which the response of the measuring system will
follow an applied, linearly rising voltage depends on the internal im-

pedance of the generator. If the generating circuit has a zero impedance,
the unit step response must have reached its stationary value before this
is complied with. In practical impulse circuits the value of the internal
impedance, however, will be of the same magnitude as the surge im-

pedance of the lead. If Zg= Z, the required time is determined as the

time when the "infinite-line" response has reached its stationary value,
plus the time 2 L If Z is different from Z (e.g. Zg = V2 Z), the os-
cillations this causes in the response will be almost damped out after

3-4 reflections. This time should therefore be used instead of the time

for the "infinite-line" response to reach its stationary value, provided
that the time for 3-4 reflections is the greater.

The steepness of the "infinite-line" response can be described by
To,, (the steeper response, the smaller Too), whereas there is no immedi-

ate relation between the front steepness of the unit step response and

TN. Moreover, To<) is independent of the lead length and presents a

better means for the evaluation of a measuring system than does TN.

2. Measuring Error of the Measuring System in Case of Linearly Rising
Voltages.

The measuring error in measurements of linearly rising voltage..
after a certain time is determined, as stated earlier, by the steepness of

the voltage S and the response time for the measuring system, TN, as:

A = S TN

If this relation shall be applicable in the determination of the true

voltage across the test object in case of breakdown, it must be possible
to establish the true time for the breakdown by means of the recorded

wave. As shown earlier, the determination of this time is readily made
if the steepest part of the unit step response of the measuring system is

situated at the beginning of the unit step response.

3. The Load Impedance of the Measuring System.

The permissible magnitude of the load impedance of the measuring
system depends on the actual task. In some cases a constant load of the

test object is desired. In such cases the measuring system must employ a

terminator with an impedance constantly equal to the surge impedance
of the lead, or a lead so long that 2 L is greater than the time for which
the load must be constant.

In many cases a low load of the test object is desired. For 2

times the travel time on the lead the impedance of the measuring system
will in any case be equal to the surge impedance of the lead. Conse-

quently, the lead should be as short as possible (or if necessary ex-

cluded) in order to reduce the time in which the measuring system
represents a low impedance. It is further required, in order to attain a

low load, that the terminator has a high resistance and a small Tkt.

CONCLUSION

The unit step response and the corresponding response time of the
modified measuring system (often erroneously stated as the unit step
response and response time of the measuring system) have been the
only quantities so far used to describe the dynamic properties of a

measuring system. In general it will be possible to obtain sufficient
information about the system, if the unit step response of the modi-
fied system (including the lead length) and the "infinite-line" response
are known. If, moreover, the reflection response is known, all the prop-
erties of the measuring system will be determined with an accuracy that
will suffice for all practical purposes.
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Discussion

G. Karady and T. M. Parnell (Hydro-Quebec Institute of Research,
Varennes, Canada): This paper is welcomed as an extension of the total
measuring System Concept already introduced by Dr. Creed and others.
Furthermore travelling wave concepts are employed in evaluating sys-
tem response and the impedance of the impulse generator is also taken
into account.

The discussers believe that the system analysed by the author is in-
complete in that the impedance changes at the test object which ac-
company the generation of fast transients in most practical cases have
not been specifually inclided in the analysis. The Bewley chart for an
impulse test circuit is shown in Fig. 1 where it is assumed that break-
down of the test object occurs at time 7. Not only does occurence of
breakdown result in the injection of a new signal into the system it
also radically changes the reflection coefficient at the test object T/O.

The task now is to evaluate the voltage at T/0 using only the in-
formation available at the voltage divider VD. The diagram indicated
the complexity of this problem in which quite clearly the lead lengths,

LEAD LEAD

T/O VD

WiD
t

Fig. 1.
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the generator, test object and divider impedances and the instant of
flashover of the test object will all affect the result.

Would the authors comment on our suggestion and if appropriate
suggest means of extending their own analysis to include the effects
outlined above.

W. Zaengl (Eidg. Technische Hochschule, Zurich, Switzerland): The
authors are to be congratulated for their clarifying presentation of the
dynamic properties of impulse measuring systems, which are generally
well known and have been discussed for some time. I would like to
offer however some remarks on several items:

a) Leads to impulse voltage dividers 'should not have too small
diameters due to the corona which might occur by applying high im-
pulse voltage. Though it will be very difficult to avoid corona-effects
with very high voltages'in the order of some million of volts, a'lead
diameter in the order of 5 to 10 centimeters'is stufficient to get a
corona-free lead for voltages up to about 1 MV. This voltage level may
be applicable by measuring very steep impulse-voltages which are
chopped within short times in the order of 100 nsec, for which the
dynamic properties of the measuring systems are of fundamental im-
portance. The surge impedance Z of those leads is generally much
lower than 400 - 500 Q2, a value which is given by the authors.

As the surge impedance may be calculated with a very good ac-
curacy by:

L L length of the lead
Z = . V velocity of lightV C C capacity of the lead with the

length L

when the lead is in a position given by the measurement circuit, the
quantity of C governs the value of Z. The value of C can be calculated
mathematically also for special arrangements, which is shown in ref. 1.

b) In agreement to the authors it will be impossible to pinpoint
the correct time for a breakdown in an impulse voltage generating system
used for the determination of the response time TN by means of the
CIGRE volt-time curve (see Fig. 5), if the measuring system would have
a unit step response as shown for the idealized system I in Fig. 6 of the
paper. In practice however, a measuring system with such an extra-
ordinary unit step response should be rejected. It is true however, that
unit step response of all measuring circuits, measured in the arrangement
shown in Fig. 7, especially with the modification of the circuit by a
vertical lead, will have a voltage time curve a little bit similar to Fig. 6,
System I. The amplitude of the voltage within the time T1 however is
only in the region of some percent of the steady state value and is gen-
erated without exception by the electric and magnetic fields, which are
connected with the travelling w'aves running up the vertical lead. These
fields induce this voltage in the divider system and the time T1 is always
the time difference between the two possible travel paths of the two
voltage modes, the one following the leads to the divider, and the other
using the shortest distance between the voltage generator located at the
input end of the vertical lead. This "pick-up" or induced voltage is
actually one of the largest disadvantages' of using the arrangement of
Fig. 7 for response time measurements, as it is not known whether this
part of the unit step response is efficient in a practical impulse voltage
generating and measuring circuit with a test object of any construction
or not. I have proposed therefore a'circuit for measuring the unit step
response of impulse measuring circuits, using no vertical lead, which can
be used in almost every high voltage laboratory by elevating the square
wave generator to the input end of the horizontal lead to the divider
(see Ref. 2).

c) Referring to item 4 and 5 of the paper I agree with the authors
that the interaction between the generating and measuring systems
determine the voltage across the test object, i.e. the output voltage of
the generator or the input voltage of the measuring system. Due to this
fact also, oscillations within the whole systems are excited or damped
by the impedances and resistances which are effective in the system. I
don't like, however, the statement, that generators with finite internal
impedances Zi, which can be defined by splitting up the generating
system into a zero impedance voltage source Ug(s) and the impedance
Zi(s) in series, are damping the oscillations of the unit step response of
the measuring system. It must be pointed out that there is only one
unit step response of a system, which is defined by applying a unit
step voltage at the input of the system. If the input impedance of this
system is not constant, but time - or frequency - dependent, the input
step voltage can only be produced with a zero impedance generator. If
the input impedance of a measuring system is constant, however, a gen-
erator with finite internal and constant impedance can be used also for
a correct unit step response measurement. This technique is usually
applicable in low voltage high frequency systems which are used, for
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instance, in communication systems. An impulse voltage measuring
system, however, does not have a constant input impedance, and there-
fore only a zero impedance unit step voltage generator gives the true
unit step response. Therefore, the statement that the oscillations on the
unit step response will disappear by using a generator with an internal
impedance equal to the surge impedance is wrong, as this response is no
longer a unit step response. This response becomes now the unit step
response of the measuring system, which is changed by adding in this
special case a resistor to the input terminals with a value equal to the
surge impedance of the lead.

The true interaction between measuring and generating system is
given by the variation of the output voltage of the generating system
due to the input impedance of the measuring system. All considerations
given in this paper dealing' with the measurement of linearly rising
voltages' and the time to the steady state value of the unit step response
are only applicable to the measurement 'of idealized linearly rising
voltages at the test object,' generated by an impulse voltage generator
with or without internal impedance. But where is the surge generator
which has a linearly rising voltage, especially at the starting point of the
voltage? As-it is not possible, due to the loss of information in a
measuring system, to calculate or to determine the input voltage from
the output voltage without the knowledge of'the general shape of this
input voltage, the transfer properties of the measuring system should
be as simple as possible. And therefore, it would be more convenient
for many applications to have a measuring system without strong oscil-
lations. This means that the lead to a divider should always be damped
with a resistor at the input end of the lead, which should not be as large
as the surge impedance to get a very good transient response. Basic in-
vestigations due to damped lead' systems are published in ref. 3.
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Aa. Pedersen and P. Lausen: We wish to express our appreciation of the
contributions to the discussion of our paper.

The solution of the problems involved in impulse measuring tech-
nique has made great progress during the last decade resulting in a clar-
ification of a great number of the problems involved, although many
questions, as pointed out in the discussion, still remain unclarified
calling for a continuation of the research in this field.

The authors agree with Dr. Zaengl that the surge impedance of
measuring leads for measuring systems up to some MV may be lower
than 400-5O00 2. It is quite true that a bigger lead diameter will cause a
lower surge impedance, but at the same time as the voltage increases for
high-voltage systems the height of the lead above the ground will also
increase and thus to some extent counteract the decrease of the surge
impedance. We think, however, that surge impedances lower than
300 Q2 are seldom found in high-voltage measuring systems.

The aim of showing the two stylized unit-step responses in fig. 6
was to demonstrate the principal effect of the shapes of the step re-
sponse. Naturally, we agree that system 1 cannot be recommended for
fast impulse measurements. The authors, however, do not agree with
Dr. Zaengl that the foot on a step response "without exception" is
caused by the electromagnetic field of a travelling wave running up the
vertical lead. Anyhow this explanation is far too simplified. We agree
that all phenomena are basically caused by electromagnetic fields but
not in a simple way, and depending on the shape a foot on the response
can be generated in mnany other ways.

Concerning the proposed set-up of the square wave generator we
feel that it might give a step response for the measuring system closer to
the true step response. However, in neither of the set-ups the true step
response is determined. In our case the measuring system has been
modified by the vertical lead, and in the other case the ground system
has been modified by the addition of a vertical plane to the ground
plane. Thus, the square wave generator has not been connected to the
terminals of the measuring system in either of the cases. The response
time, however, can be corrected for the effect of the vertical lead,
whereas no correction can be applied for the effect of the vertical plane.

Dr. Zaengl's remarks concerning the unit-step response we think
must be caused by a linguistic misunderstanding between Dr. Zaengl
and us. We. quite agree that there is only one unit-step response for the
measuring system. The discussion in the paper concerning the inter-
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action between the impedances of the generating and measuring systems
and of the conditions of producing a desired voltage (e.g. a step) at the
input terminals of the measuring system in fact gave exactly the results
Dr. Zaengl is pointing out. The misunderstanding may be cleared, if one
bears in mind that theinfinite-line response for a two-component system
equals the unit-step response for a three-component system which is
composed of the two-component system and an ideal damping resistor
equal to the surge impedance of the measuring lead placed at the input
end of the measuring lead. Regardless of the apparent similarity be-
tweep the two systems it must be remembered that the measuring prop-
erties of the two systems are fundamentally different.

The generation of a true linearly rising voltage (a ramp) requires
in the same way as for the generation of a step voltage a zero impedance
source. A measuring system with a ringing step response will give rise to
a ringing response to a ramp. However, a linearly, rising voltage from a
normal impulse circuit will exhibit some deviation from the ramp around
the beginning of the impulse similar to the second case in fig. 9. The
response to this voltage will normally exhibit no oscillations due to the
influence of the impedance of the generator, as demonstrated by the
oscillograms in fig. '11 and 12 and explained e.g. in lit. 6: thus for a lot of
practical cases the measuring' system even with heavy ringing step re-
sponses will cause no oscillations on the voltage. For such cases there
will consequently be no advantage in adding a damping resistor as sug-
gested by Dr. Zaengl. In measurements of linearly rising voltages which
are suddenly chopped a damping resistor 'can in fact entail a disad-
vantage because it will reduce the limit frequency for the measuring
system. It is obvious, however, that, the damping resistor is advantage-
ous for measurements of voltages after the instant of chopping at which
the impedance of the test object changes to nearly zero.

Dr. Parnell and Mr. Karady have raised the question of the inter-
action between the "time-dependent impedances" of the generator,
test 6bject, and measuring system, and have set up a Bewley chart for
illustratiowipurposes. As stated, this chart shows the complexity of the
-problems. Furthermore, the reflection coefficients at all the discon-
tinuity points (at the test object, terminator, impulse generator, etc.)
are "time-dependent" which add drastically to the complexity. This
means that the Bewley chart cannot be used in practice for evaluation
of the test voltage. In many cases, however, the main problem' is to
make sure that the test voltage at a certain time before breakdown is
linear. This is possible by using the information contained in the 'step
response and in the output oscillogram from the measurement, a pro-
cedure which is suggested for the new IEC standards for High-Voltage
Test Techniques. The determination of the instant of chopping can be
similarly made provided that the chop is instantaneous, corresponding
to an instantaneous change of the impedance of the test object to zero.
This presupposition seems to be relatively well fulfilled for test objects
such as sphere gaps, whereas it is more doubtful whether the presuppo-

sition is fulfilled for rod gaps for which the'rate of collapse is smaller.
Investigations of the influence of the different components in the

impulse circuit have already been undertaken (lit. 6). Such investiga-
tions should be continued and extended to include the determination
of the rate of collapse for different gaps and the influence of the differ-
ent components hereon. The clarification of these problems is the aim
of a current investigation in our laboratory.
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