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Biological networks, such as those describing gene regulation, signal transduction, and neural synapses, are
representations of large-scale dynamic systems. Discovery of organizing principles of biological networks can be
enhanced by embracing the notion that there is a deep interplay between network structure and system dynamics.
Recently, many structural characteristics of these non-random networks have been identified, but dynamical
implications of the features have not been explored comprehensively. We demonstrate by exhaustive computational
analysis that a dynamical property—stability or robustness to small perturbations—is highly correlated with the
relative abundance of small subnetworks (network motifs) in several previously determined biological networks. We
propose that robust dynamical stability is an influential property that can determine the non-random structure of
biological networks.
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Introduction

Life is a dynamical process. As the intricate connectedness
of biological systems is revealed, it is essential to keep in mind
that network maps are graphical representations of dynamic
systems. A network with fixed structure is dynamic in the
sense that the nodes take on values corresponding to activities
that change in time. In a specific context, these activities may
represent the concentration of a molecule, phosphorylation
state of an enzyme, depolarization state of a neuron, etc. For
example, the neural connection map of the nematode,
Caenorhabditis elegans, is fixed in the adult worm, and invariant
from individual to individual [1]. Although the network
structure is static, the behavior of the neural network is
dynamic. At the lowest level, the dynamic nature of the
system is exhibited as depolarizations of individual neurons.
At an intermediate level of organization, each neuron
potentially influences the behavior of its nearest neighbors
via synaptic connections.

Example biological networks, such as those analyzed here,
are artificially separated from the highly integrated and
complex whole, which includes interconnected metabolic,
signal transduction, transcriptional, cytoskeletal, and other
types of interlocked networks and pathways. Even with this
limitation, consideration of the structure of isolated networks
has profoundly influenced contemporary biology, which is
increasingly focused on systems-level concepts. The topolog-
ical structures of the networks studied here: the transcrip-
tional regulatory networks of Escherichia coli, Saccharomyces
cerevisiae, the developmental transcriptional network of
Drosophila melanogaster, the signal transduction knowledge
environment (STKE) network, and the neural connection
map of C. elegans, have been analyzed from various perspec-
tives, leading to provocative ideas relating structure to
function. These and other natural networks have non-Poisson
degree distribution (often power-law) [2]. In addition, recent

studies have indicated that certain patterns of local con-
nectivity (network motifs) are statistically over- and under-
represented in various networks, including those regulating
development and function of living organisms [3,4]. The term
‘‘network motif’’ refers to a directed subgraph, consisting of a
few nodes, that is embedded in a larger directed graph. Some
motifs, such as the three-node feed-forward loop, may
perform specific regulatory functions [5–7], although in
general it is not presumed that motif instances are necessarily
functional modules. Used as a structural analysis technique,
enumeration of all subgraphs consisting of three or four
nodes summarizes the local connectivity patterns that
compose a complex network [8–10].
Presently, it is not clear what determines the particular

frequencies of all possible network motifs in a specific
network. At least two alternative explanations can be offered.
One can hypothesize that certain constraints on development
of a network as a whole determine which motifs become
abundant. Conversely, some network motifs may possess
properties important enough to become overrepresented and
thereby drive the network evolution and its ultimate
structure. The latter explanation is consistent with the
frequently made assumption that the function of a small
biological network or pathway is largely determined by the
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connections among the constituting genes, proteins, metab-
olites, or cells [11–16]. Many of the genetic and biochemical
systems extensively studied to date as functional units, such as
the Lac and Che systems in E. coli (responsible for lactose
utilization and chemotaxis, respectively) are of this sort [17–
19]. In these systems, connectivity is typically translated into a
dynamic property, which, in turn, takes on a functional
meaning. For instance, a positive feedback loop in the Lac
system (a structural characteristic) is used to implement a
biochemical switch (dynamic behavior) that acts as a
primitive memory mechanism (functional role). We hypothe-
size that the dynamic behavior displayed by a network motif
is an important criterion in determination of functional
significance of the motif and, potentially, its abundance in
biological networks. Further, we propose that it is computa-
tionally tractable to determine certain dynamic properties
for every possible network motif. This strategy can explain
why certain network motifs are overrepresented in real
biological networks while others are not.

A comprehensive analysis of the dynamics of networks,
large or small, is considerably more complicated than the
corresponding analysis of their structure. For instance,
structures of all possible three- or four-node network motifs
can be generated and enumerated easily. However, their
dynamics may not be completely determined owing to
unknown and potentially complex functional dependencies
between nodes, the lack of knowledge of parameters defining
specific instances of motifs in real networks, and ‘‘unmod-
eled’’ interactions that may be absent from the network
representation yet relevant to dynamics. In addition, motifs
with the same topology may give rise to different dynamic
behaviors, as was recently demonstrated experimentally using
small synthetic genetic circuits [20]. Clearly, there is not a
direct one-to-one relationship between network structure
and possibly complex system dynamics. However, one can try
to address these fundamental challenges by taking advantage
of the widely acknowledged notion that biological systems
perform various functions robustly, i.e., under wide ranges of
their parameters [21]. Thus, instead of considering properties
of a particular instance of a motif, we analyze generic
properties that arise from the topology of the network motif.

Although the particular parametric values can confer
unique properties onto individual instances of motifs, we
argue that all instances of a particular motif display
characteristics that can be studied comprehensively. Here
we present the analysis of a specific robust property that can
be displayed by network motifs: robust stability to small-scale
perturbations of the activities of the biological entities. Small
perturbations include intrinsic stochastic fluctuations (noise)
and transient up- or down-regulation of activity. ‘‘Small’’
implies that a linear approximation of the potentially
nonlinear relations is still valid (see Materials and Methods).

Intuitively, one expects that for complex biological net-
works to function robustly, it is necessary that they display
stability and resist both noise and stressful small-scale
perturbations. These basic homeostatic properties, however,
are not inherent to any biological or biochemical system, as
small stimuli can, in principle, trigger large-scale sustained
responses, especially if feedback interactions between mem-
bers of a biological network are involved. For example,
relatively short stimulations by tumor necrosis factor a (5 min
or less) can trigger sustained (60 min) activation of the NF-jB

pathway leading to expression of a battery of genes [22]. Here
we show that stability to small perturbations displayed
robustly by network motifs can be characterized compre-
hensively. In addition, and more significantly, we show that
this property can be a driving force defining the structure of
several biological networks.

Results

The dynamic behavior of a circuit is determined by the
direction, sign, and strength of the connections. To develop
some intuition, consider the case of a two-node feedback loop
(Figure 1). The sign and strength of a connection from node j
to node i is labeled aij . Additionally, we assume that a self-
interaction, denoted aii, represents the commonly observed
mechanisms of constitutive degradation or inactivation of the

Figure 1. Dynamic Behaviors of a Two-Node Feedback Loop in Response

to a Small Perturbation from Steady-State

(Top) Schematic of a simple feedback circuit with the nodes and edges
labeled.
(Middle) We illustrate the dependence of stability on the values of a12
and a21 as they are varied from �1 to 1, with constant self-degradation
terms a11 ¼ �0.3 and a22 ¼ �0.7. The system can be stable (green),
oscillatory (blue), or unstable (red). These regions are determined by gain
k ¼ a12 a21. Shown in white are contours of constant gain k. The
quadrants labeled (þ) correspond to positive feedback (a12 and a11 have
the same sign), while the quadrants labeled (�) correspond to negative
feedback (a11 and a21 have opposite signs).
(Bottom) The stability regions vary as the values of self-degradation
terms a11 and a12 change. The more stable the open-loop nodes (more
negative a11 and a22), the greater the regions of closed-loop stability.
However, if a11 and a22 are close in sign and magnitude, the size of the
oscillatory regions increases.
DOI: 10.1371/journal.pbio.0030343.g001

PLoS Biology | www.plosbiology.org November 2005 | Volume 3 | Issue 11 | e3431882

Dynamic Motifs



biological entities. Without proper mathematical intuition,
one could incorrectly assume that negative feedback ensures
stability and positive feedback destroys stability. As we
demonstrate next, the dynamics of this simple circuit are
more complicated.

We analyze the response of this circuit to a small
perturbation from a steady-state under different assumptions
on the parameters (Figure 1). For a particular set of constant
values for the self-degradation terms (a11, a22), the system can
be stable (green), unstable (red), or oscillatory (blue), depend-
ing on the sign and strength of the feedback gain (k¼ a12a21).
However, these regions occupy different relative areas of
parameter space depending on the particular values of the
self-degradation terms. The more stable the individual nodes
(more negative a11, a22), the greater the regions of closed-loop
stability. Consequently, positive feedback produces stability if
constitutive degradation dominates the feedback gain. Both
positive and negative feedback can produce oscillations in
general (only negative feedback can produce oscillations in
the two-node case). Finally, upstream input nodes and
downstream output nodes can be added to the system
without altering the stability, provided that the number or
size of feedback loops is unchanged.

Similar analysis can be extended to all possible three- or
four-node network motifs by defining a metric, the structural
stability score (SSS), as the probability that the dynamical
system corresponding to a given motif relaxes monotonically
to steady-state following a small perturbation. An SSS value
of 1 indicates that non-oscillatory relaxation to a steady-state
(henceforth simply termed stability) is guaranteed by con-
nectivity and does not depend on the specific parameter
values that define the functional interactions, thus making
the system structurally stable. SSS scores less than unity
indicate the extent to which parameter values influence
stability: the lower the score, the more precise the balance of
connection signs and strengths necessary to achieve stability.

For example, the stability of a small transcriptional network
with a high SSS would be robust to fluctuations of protein
expression levels, seemingly the most important source of
variation of gene expression across bacterial cell populations
[23]. This compact description of the relationship between
network structure and system dynamics enables a compre-
hensive characterization of the stability of small circuits in
real networks.
Determination of the SSS values (fully described in

Materials and Methods) reveals that all topologically distinct
three-node (13 total) and four-node (199 total) network
motifs partitioned into three classes that display distinct
stability regimes. In particular, the first class (I) comprised all
the robustly stable motifs (SSS¼ 1) devoid of feedback loops,
i.e., motifs that are directed acyclic graphs. The second class
(II) consisted of moderately stable circuits (SSS ’ 0.4)
containing a single two-node feedback loop. These motifs
can be guaranteed not to be unstable (but may have damped
oscillations) provided that the feedback present is negative
(see Figure 1). The third class (III) contained motifs with
much lower SSS values (, 0.2), which were a mixture of more
complicated circuits: multiple two-node loops, three- and
four-node loops, nested multi-node loops, etc. Their stability
cannot be guaranteed by specifying the sign of the feedback
loops present. Generally, as the number or length of loops
increases, the SSS decreases. Thus, highly connected motifs
are generally the least stable.
Next, we contrasted the abundance of motifs in several real

biological networks with the corresponding motif SSS values
(Figure 2). Remarkably, in all networks analyzed, the stability
scores showed excellent correlation with the motif abundance.
The networks are mostly composed of themotifs in the highest
stability class, suggesting that the overall network behavior is
stable to small perturbations. This finding further suggests
that the overall network structure may be driven by the
requirement of stability to small perturbations, such as noise.

Figure 2. Abundance of a Motif Is Correlated with Its SSS

The number of instances of all three-node (left) and four-node (right) motifs in biological networks (log scale), and SSS (black dashed line). The motifs
are sorted on the x-axis from high to low SSS.
DOI: 10.1371/journal.pbio.0030343.g002
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Above, we chose a conservative definition of stability,
classifying any system with oscillatory behavior as unstable,
even if the oscillations are damped. However, our results still
hold if we adopt the more traditional, and less conservative,
definition of stability in which damped oscillations are
classified as stable dynamics, irrespective of the potential
presence of oscillation (see Figures S1 and S2, damped
oscillations in the SSS metric). Thus, our conclusions do not
have a strong dependence on the particular definition of
stability used.

We also noted that, for the same SSS values, the motif
abundance was correlated with the number of edges in the
motif, as can be seen from the particular ordering of the
three-node motifs used (Figure 2, left panel). Since all the
networks considered here are very sparse (compared to fully
connected graphs of the same number of nodes), it stands to
reason that motifs containing a large number of edges might
be encountered less frequently than motifs with a low
number of edges, independently of the stability properties.
In subsequent analyses we focused on a comparison of
relative abundances of network motifs within motif groups
having the same number of edges (a ‘‘density group’’).

Is the non-random character of network organization
driven, at least to some extent, by the structural stability of
network motifs? If this is the case, one would expect that
motifs of relatively higher stability would be overrepresented
compared to their relatively less stable counterparts when
compared to random networks of the same size. To test this
hypothesis, we generated 100 Erdös-Renyi (ER)–type random
graphs with the same number of nodes and edges as each of
the real networks. Lacking any organizing principle, the
distribution of motifs in this type of random graph is
determined by the density of edges [24]. Although there is
some controversy as to whether the ER-type or scale-free
random network model is a more natural representation of a
network devoid of organization, we chose the former because
it is the historically accepted model of a network produced by
a random process of linking nodes. Also, it agrees with our
intuition that power-law degree distribution is itself a level of
organization of a network. However, we also performed
simulations using randomized networks (which preserve
degree distribution) as the null model (Figures S3 and S4).
The particular choice of null model does not affect the main
conclusions of the paper. We compared motifs in real and
random networks by using Z scores as a metric of statistical
over- or underrepresentation, as previously proposed [3,25].
A positive Z score indicates that a motif is overrepresented in
the real network, whereas a negative score indicates under-
representation in the real network compared to random
graphs. The Z score profiles were normalized to unit vectors
to enable comparisons of scores across different networks.
Normalized Z score profiles are represented as bar graphs in
Figure 3 (left panel) and Figure 4.

The top panels of Figures 3 and 4 illustrate the computa-
tional model of stability expressed as the distribution of SSS
values, while the lower panels display the data for each real
network. Network motifs are ordered, left to right, from low
edge-density to high edge-density. Then, motifs with a given
number of edges are ordered, left to right, from high to low
SSS. For example, in Figure 3, motifs 1, 2, and 3 have two
links and SSS¼1. They comprise a ‘‘density group’’ consisting
of all the motifs in which three nodes are connected by two

links. The next density group is comprised of motifs 4, 5, 7,
and 8, which are the motifs in which three nodes are
connected by three links. Within this density group, the SSS
are diverse. Motif 7 has SSS¼1, motifs 4 and 5 have SSS’ 0.4,
and motif 8 has SSS ’ 0.2. All the real networks have some
overrepresentation of motif 7, which has a higher SSS than
those of motifs 4, 5, and 8. Next, some networks have a lesser
overrepresentation for motifs 4 and 5, members of the
moderately stable class. The least structurally stable circuit,
motif 8, is not overrepresented in any real network. Similarly,
the four-edge (three-node) density group also presents an
opportunity to investigate the stability trend since more than
one stability class is represented. The four-edge density group
consists of two moderately stable motifs (9 and 10) and two
minimally stable motifs (6 and 11). Z scores classified by
stability are plotted in Figure 3 (right panel). Overrepresen-
tation of structurally stable motifs (within each density group)
argues for importance of motif stability as a dynamic
property affecting network organization.
Four-node network motifs are combinatoric elaborations

of three-node motifs [26]. The four-node significance profiles
(Figure 4) capture a richer representation of the local
connectivity patterns than the three-node profiles. At this
resolution both similarities and differences between the
networks are immediately apparent, yet the general stability
trend is the same as in the three-node analysis. The networks
differ in precisely which motifs are overrepresented, but the
dynamic properties of overrepresented motifs are conserved
across all networks we analyzed. As with the three-node
profiles, the network motifs with the highest Z scores also
have higher SSS than the other motifs with the same number
of edges.
On average, the most structurally stable motifs have higher

Z scores than those with lower SSS within each density group
(Figure 5). For example, the Drosophila developmental tran-
scription network (Figure 5D) has overrepresentation of some
four, five, and six-edge network motifs. Box and whisker plots
for each density group indicate that high-stability motifs
(class I) have high Z scores, intermediate-stability motifs (class
II) have intermediate Z scores, and low-stability motifs (class
III) have low Z scores. The p-value attached to each plot was
calculated using the Kruskal-Wallis test (one-way analysis of
variance on ranks), which expresses the probability that the
observed differences in Z scores between stability classes is
expected by chance. In most cases, the difference in Z scores
between stability classes is significant at the usual criterion of
95% confidence or better.
In addition to statistically significant differences in average

Z scores among stability classes, there is similarity in stability
properties among highly overrepresented network motifs.
Table 1 demonstrates the preference for structural stability
among the highly overrepresented network motifs in density
groups consisting of four, five, and six edges (four nodes). We
selected the most significant network motifs in each density
group by picking Z scores in excess of one standard deviation
above the mean Z score for the group. These motifs dominate
the non-random organization of the network within their
density group. The stability classification (I, II, or III) is
indicated in parentheses next to the Z score. In all cases, the
highly significant network motifs belong to classes I or II.
Finally, Table 1 reports the size of each stability class, which
indicates, to some extent, avoidance of low-stability motifs.
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Figure 3. Distribution of Normalized Z Scores of Three-Node Network Motifs (Left), and Z Scores Classified by Stability within Specific Density Groups

(Right)

(Top panel, left) All 13 network motifs are sorted on the x-axis first, according to increasing number of edges (solid red line). For a given number of
edges, they are then sorted from high to low SSS (black bars).
(Bottom five panels, left) Normalized Z scores (green bars) for all 13 motifs of the transcriptional networks of E. coli and S. cerevisiae, STKE network, D.
melanogaster developmental transcriptional network, and C. elegans neuronal network, shown with outlines of the SSS from the top panel (dotted black
outline provided as a guide to the eye). Each vertical red line indicates a change in the number of motif edges, indicating boundaries of density groups.
(Right) Z scores of network motifs in the three-edge and four-edge density groups are plotted in columns labeled I, II, and III, corresponding to the three
stability classes, SSS¼ 1, SSS ’ 0.4, and SSS , 0.2, respectively. Note that the four-edge density group does not contain any motifs with SSS¼ 1 since
four edges among three nodes dictates at least one feedback loop.
DOI: 10.1371/journal.pbio.0030343.g003
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For example, the six-edge density group is comprised of 47

network motifs: one class I, nine class II, and 37 class III. The

Drosophila developmental network contains a highly over-

represented class I motif, which has the highest Z score in the

density group. The remaining high Z scores correspond to

class II motifs. None of the 37 low-stability motifs have high Z

scores. Overall, high Z scores correspond to high SSS, but an

SSS equal to unity does not always result in a high Z score,

implying that structural stability may be necessary, but not
sufficient, for network motif overrepresentation.
In the preceding investigation, we extended a structural

analysis technique (decomposition of a network into sub-
graphs) to a dynamical analysis. Our characterization of motif
dynamics implicitly assumed that subsystems consisting of a
few nodes could behave relatively autonomously despite
being embedded in a larger network. Conceptually, the
assumption is valid when the activity of a node does not

Figure 4. Distribution of Normalized Z Scores of Four-Node Network Motifs

(Top panel) All 199 motifs are sorted on the x-axis first, according to increasing number of edges (solid red line). For a given number of edges, they are
then sorted from high to low SSS (black bars).
(Bottom five panels) Normalized Z scores (green bars) for all 199 network motifs of the indicated biological networks, shown with outlines of the SSS
from the top panel (dotted black outline provided as a guide to the eye). Each vertical red line indicates a change in the number of motif edges,
indicating boundaries of density groups. The composition of the four-node density groups is specified in Protocol S1.
DOI: 10.1371/journal.pbio.0030343.g004
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propagate a long distance through the network, creating the
situation in which small subgraphs are functionally relevant.
This situation can arise when (i) only a small fraction of the
nodes are activated, or (ii) only a small fraction of the
potential regulatory interactions are activated. Under these
conditions, the ‘‘active network’’ is a fragmented version of
the full potential network. Note that the preceding dynamical
analysis was appropriate for only a small perturbation of the
activities of the nodes. Now we utilize the concept of a small
perturbation to demonstrate that the active network can be a
fragmented version of the full potential network, with true
functional regulatory units consisting of three or four nodes.

Regulation of gene expression is dependent on the

particular demands of a cell with respect to its environment.
For example, many transcription factors are active only in the
presence of additional signaling molecules. cAMP receptor
protein, the most connected node in the bacterial tran-
scription regulation network, is active only when bound to
co-regulator cAMP, which, in turn, is present under only
special circumstances, such as absence of glucose in the
medium. In the absence of a cAMP signal, cAMP receptor
protein is inactive, and its links are inactive. We define a
context-dependent network to be the subset of the nodes and
links that are activated in a certain context, such as glucose
deprivation of a bacterial culture. With this principle in
mind, we used high-throughput gene expression datasets to
infer the context-dependent gene regulation networks, with
specific contexts defined by mild environmental stress
perturbations. These contexts are relevant to the preceding
dynamical analysis.
We considered five different context-dependent gene

regulation networks based on the genomic expression pattern
of the yeast S. cerevisiae subjected to relatively small environ-
mental perturbations including mild heat shock, osmotic
shock, hydrogen peroxide treatment, etc. [27]. In the context
of a specific environmental shock, we mapped the activated
nodes (greater than 2-fold expression change) to their
locations in the network. We retained all inbound links to
regulated nodes, irrespective of whether or not altered
mRNA expression of the upstream transcription factor was
observed. We disregarded inactive links (the links that
terminate on inactive nodes). Then we obtained the
distribution of the size of active functional regulatory motifs
by a recursive algorithm that ‘‘walked backward’’ through the
network to discover all the upstream regulators that affect
each regulated node, similar to a method previously
employed [28]. In five different contexts, the mean number
of nodes in a regulatory structure ranges from 3 to 3.5 (Table
2). Furthermore, all of the active regulatory motifs (three
nodes, four nodes, and larger) had SSS¼ 1 (see Figure S5 for
examples of context-dependent regulatory motifs.) Thus, in
principle, the non-random character of the yeast transcrip-
tional network could have resulted from selection acting on
small network motifs that are functionally relevant in specific
environmental contexts, particularly with regard to robust-
ness to small-scale perturbations. Given appropriate small
perturbation data, similar approaches could be employed to
analyze the fragmentation of other complex biological
networks in various functional contexts.

Discussion

Do common ‘‘driving forces’’ underlie the organization of
biological networks? It seems fantastic to suggest that such
forces could exist, considering that the biological entities
involved are as diverse as genes, enzymes, and whole cells.
Nevertheless, even functionally unrelated systems may have
evolved under fundamental constraints. The analysis pre-
sented here suggests that the dynamic properties of small
network motifs contribute to the structural organization of
biological networks. In particular, robustness of small
regulatory motifs to small perturbations is highly correlated
with the non-random organization of these networks.
Inspection of highly overrepresented motifs in the four-node
significance profile (see Figure 4 and Table 1) and statistical

Figure 5. Z Scores of Four-Node Network Motifs, Classified by Stability

Density groups consisting of four, five, and six-edge network motifs
contain at least one motif in each stability class. Box and whisker plots
indicate a difference in the average Z score between stability classes (I, II,
and III correspond to SSS¼1, SSS’ 0.4, and SSS, 0.2, respectively). The
networks examined here are the transcriptional networks of (A) E. coli, (B)
S. cerevisiae, (C) STKE network, (D) D. melanogaster developmental
transcriptional network, and (E) C. elegans neuronal network. A box and
whisker plot is interpreted as follows: The box indicates the inner quartile
range. The median Z score is indicated by a horizontal red line within the
box. The whiskers extend to cover the upper and lower quartiles up to a
distance of 1.5 times the inner quartile range. Red crosses indicate
extreme scores (beyond the whisker length). P-values attached to each
plot express the probability that the observed difference in Z scores
between stability classes is expected by chance.
DOI: 10.1371/journal.pbio.0030343.g005
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analysis of Z scores within and between stability classes
(Figure 5) demonstrates a correlation between overrepresen-
tation of a network motif and its SSS.

There are two separate trends in the motif significance
profiles (see Figures 3 and 4). The similarity among all the
examined networks is the overrepresentation of stable motifs
compared to the other motifs with the same number of edges
(i.e., within a density group). A separate phenomenon is that
the networks differ in precisely which density groups are
overrepresented, as is clearly evident in Figure 4. Previously,
multiple networks have been grouped into a few families
displaying remarkable similarity in the three-node motif
distribution profiles [25]. At the resolution of four-node
motifs (see Figure 4), bacteria and yeast transcription
networks have a preference for the same network motifs. It
is likely that these networks, which perform gene regulation
in single-celled organisms, have evolved under similar
constraints and can be considered a true ‘‘family.’’ However,
according to the four-node motif significance profile, STKE,

Drosophila transcription, and C. elegans neuron networks do
not seem to form a family (as mentioned in [25] based on a
three-node analysis), since they independently have prefer-
ences for different four-node network motifs. Intuitively, it
makes sense that these networks do not share the same global
constraints since they are built from vastly different
components and have vastly different functional purposes.
Initially, we hypothesized that either (i) motifs are a
consequence of global constraints, as suggested by motif
families, or (ii) global structure is a consequence of motifs, as
suggested by constraints on robust stability of subsystems.
The four-node motif significance profile (see Figure 4)
demonstrates evidence for both mechanisms. Again, although
there are differences in precisely which motifs are enriched
in various networks, the dynamic properties of the over-
represented motifs are conserved across all networks we
analyzed. Compared to network motifs with the same number
of edges, the more structurally stable motifs are over-
represented. We conclude that robust stability of subsystems

Table 1. High Z Scores of Four-Node Network Motifs

Motif Z Score Bacteria Yeast STKE Fly Neuron

Four-edge network motifs Mean Z score 49 1,461 35 17 32

SD 153 4,113 48 18 24

Mean 6 SD 203 5,574 83 35 56

High Z scoresa,b 652 (I) 17,978 (I) 198 (I) 68 (I) 77 (I)

341 (I) 6,877 (I) 145 (I) 55 (I) 65 (I)

5,598 (I) 38 (I) 62 (I)

Stabilityc

Class I 2/9 3/9 2/9 3/9 3/9

Class II 0/10 0/10 0/10 0/10 0/10

Class III 0/3 0/3 0/3 0/3 0/3

Five-edge network motifs Mean Z score 14 2,651 47 37 85

SD 85 13,683 54 41 60

Mean 6 SD 99 16,333 101 79 145

High Z scoresa,b 510 (I) 81,084 (I) 213 (II) 222 (I) 222 (I)

185 (II) 106 (I) 210 (II)

149 (I) 96 (I) 198 (II)

146 (I) 81 (II) 189 (II)

115 (II) 164 (II)

103 (I) 149 (II)

Stabilityc

Class I 1/6 1/6 3/6 3/6 1/6

Class II 0/14 0/14 3/14 1/14 5/14

Class III 0/17 0/17 0/17 0/17 0/17

Six-edge network motifs Mean Z score 0 0 0 60 256

SD 0 0 0 96 378

Mean 6 SD 0 0 0 157 634

High Z scores a,b 369 (I) 1,862 (II)

310 (II) 1,621 (II)

310 (II) 1,303 (II)

170 (II)

Stabilityc

Class I 0/1 0/1 0/1 1/1 0/1

Class II 0/9 0/9 0/9 3/9 3/9

Class III 0/37 0/37 0/37 0/37 0/37

a High Z scores are greater than mean þ SD. These network motifs have the greatest contribution to the non-random organization of the network within their density group.
b Z scores are classified as belonging to stability class I, II, or III, corresponding to SSS ¼ 1, SSS ’ 0.4, or SSS , 0.2.
c The number of class I, II, and III network motifs differs among density groups.

SD, standard deviation.

DOI: 10.1371/journal.pbio.0030343.t001
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contributes to the global structure of the large-scale bio-
logical networks studied here.

An evolutionary argument may help explain the over-
representation of structurally stable motifs in real networks
compared to random graphs. Evolutionary pressure may
select for network innovations that are structurally stable
because these configurations are robust to variations in the
strength of the connections. A high SSS indicates that it is
likely that randomly assigned connection strengths and signs
will result in a stable equilibrium, while a low SSS indicates
that stability is possible although it requires precisely
weighted connection strengths. Easily parameterized network
designs that are predisposed to dynamical stability can be
advantageous considering the evolutionary mechanisms of
random mutation and natural selection. Of course, stability
to small perturbations is by no means the only functional
constraint on network performance and structure. For
instance, in the developmental transcriptional regulation
network in Drosophila considered here, irreversible switching
of transcriptional circuits involving feedback regulation is an
important determinant of irreversibility of the developmen-
tal progress, which might lead to selection of relatively
unstable network motifs with feedbacks. The C. elegans neuron
network, which strays the furthest from structural stability in
our analysis, may also have functional constraints leading to
overrepresentation of oscillators and memory switches.
Nevertheless, the correlation between network motif over-
representation and the SSS suggests that stability of small
functional circuits may be a basic constraint common to all
networks, which along with other functional requirements
can significantly bias the likelihood that a given motif is
selected for. Thus, one would expect to find with higher
probability that some (though not all) network motifs with a
high SSS would be strongly overrepresented, whereas the
probability of finding overrepresented motifs with low SSS
would be relatively much smaller, as suggested by Table 1.

The relationship between structural stability and over-
representation of motifs can be illustrated using the example
of three-node loops. The three-node feed-forward loop (motif
7) is an acyclic topology. Like all feed-forward architectures, it
has an SSS of 1, implying that its relative abundance in a
network might be high, as is indeed the case. As suggested
above, structural stability is usually necessary but not sufficient
for the emergence and preservation of network motifs. In the
case of the feed-forward loop, previous modeling has

demonstrated that this motif can produce a wealth of
computational functions [5], providing functional explana-
tions for its overrepresentation. Moreover, although all eight
possible sign combinations (describing whether interactions
between nodes are positive or negative) have the same SSS,
only two are abundant in the transcriptional networks of E. coli
and S. cerevisiae [5], providing further evidence of a particular
role for this motif in these networks. On the opposite side of
the SSS spectrum, the corresponding three-node feedback
loop (motif 8) has a low SSS score implying low abundance,
which is the case. The low SSS suggests that any possible
implementation of feedback loop will be more prone to
instabilities, stochastic fluctuations, and oscillations (also
proposed in [25], which has indeed been demonstrated
experimentally for a synthetic feedback loop network, the
‘‘repressilator’’ [29]). Our results suggest that low structural
stability of this network motif is prohibitive for its evolu-
tionary selection, whatever its potential benefits might be.
An important caveat of our work is that we have assumed

that the network operates in isolation of other components of
the overall system that may influence stability. Clearly, these
example networks are a significant simplification of a
considerably more complicated reality of biological regu-
lation. For example, in assigning SSS values in transcriptional
regulation networks, protein–protein interactions and other
modifications of transcription factors and their targets are
ignored. In this case, it is likely that these unmodeled
components represent dynamics with faster time scales, and
that the transcriptional network represents the slower,
dominant dynamic behavior. Moreover, it is reasonable to
conjecture that a network with higher SSS would be more
tolerant of perturbations in the faster scale components than
one with a lower SSS value. However, in some cases, these
unmodeled components may exert considerable influence on
the system. For example, in a recently published model of the
heat-shock response in E. coli, considerable control is
achieved by feedback loops involving mRNA and interactions
with chaperones and proteases [30], none of which are found
in the description of the transcriptional motifs. Nevertheless,
despite the simplification that is inherent in our analysis, it is
all the more interesting and surprising that we find the
correlation between the structural stability of network motifs
and their occurrence to be so strong. It may suggest that
external control, though clearly present and significant in
many cases, such as the heat-shock response, may still not be

Table 2. Size of Active Regulatory Motifs in the Yeast Gene Regulation Network, for Various Experimental Contexts

Experimental Context Regulated

Genes

(. 2-fold)

Regulated

Genes

in Networka

Context

Nodesb
Context

Linksc
Average

Motif Size

(Median)

Average

Motif Size

(Mean 6 SD)

Heat shock 803 406 519 896 3 3.4 6 2.4

H2O2 467 225 333 495 2 3.5 6 2.8

Dithiothrietol 474 227 331 497 2 3.5 6 2.8

Diamide 402 184 283 385 2 3.0 6 2.1

Hyper-osmotic 176 81 149 194 2 3.4 6 3.0

Full network 2,929 6,170 7 11.3 6 11.1

a The transcriptional regulatory network includes only those genes that have at least one link with p , 0.001.
b All regulated genes, plus transcription factors that directly influence regulated genes.
c All inbound links to regulated genes.

DOI: 10.1371/journal.pbio.0030343.t002
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of overriding importance in others. As we increase our
knowledge of the real biological networks, as well as our
ability to include interactions at different levels, the analysis
described here will still be applicable to their fuller
description and may result in further insights about network
structure and evolution.

Our characterization of motif dynamics implicitly assumed
that subsystems consisting of a few nodes could behave
relatively autonomously despite being embedded in a larger
network. We demonstrated how the yeast gene expression
network is only partially activated by mild environmental
perturbations (heat shock, osmotic shock, etc.), concluding
that nodes and links in large-scale networks can be interpreted
as potentially active, rather than ‘‘always on.’’ A context-
dependent network, composed of the subset of the nodes and

links that are activated at a givenmoment, can be a fragmented
version of the full potential network, where networkmotifs are
on the scale of three or four nodes. We demonstrated context-
dependence in yeast gene regulation, but we expect that, in
general, it is appropriate to assume that all elements in a
network are not ‘‘always on.’’ The more fragmented a network
in various functional contexts, the more relevant our analysis
of dynamic properties of network motifs.
In summary, our results suggest that robust stability of

network motifs is an important determinant of biological
network structure. This conclusion favors the intuitively
appealing claim that biological networks need to be resistant
to small-scale perturbation, including noise, and that this
resistance may be structurally embedded in the network
organization. While our analysis shows a strong correlation
between network motif abundance and structural stability, it
leaves us to speculate as to why motifs with various numbers
of edges are overrepresented in different networks. Since the
bacteria and yeast networks regulate gene expression in
relatively simple organisms, many features provided by the
presence of less stable, feedback-containing motifs may not
be necessary or could potentially be detrimental. In contrast,
transcriptional networks of higher organisms or non-tran-
scriptional regulatory networks may benefit from the
increased occurrence of feedback-containing motifs and
more complex functions potentially provided by them.
Stability to small perturbations can be important for robust
network performance. Thus, it is reasonable to expect that
motif distribution among diverse networks represents a
balance of abundant, stable motifs and relatively rare,
potentially unstable motifs, allowing greater functional
flexibility coupled with predominant dynamic stability.

Materials and Methods

Computational model of motif stability. Given complete knowledge
of the functional dependencies of the nodes, a dynamical system
corresponding to a particular motif consisting of n interconnected
nodes (Figure 6, panel I) can be represented by a system of
differential equations:

_xi ¼ fiðx1; :::; xnÞ;
i ¼ 1; :::; n; ð1Þ

where the variable xi represents the state of the ith node, fi represents
the combined influence of all nodes having connections to the ith
node, and _xi is the rate of change of xi (Figure 6, panel II). Most
frequently, we do not have enough information to construct specific
functions fi , which may exhibit complicated nonlinear dependencies.
However, if we restrict our focus to local stability, we can alleviate the
lack of functional relationships by assuming that one or more steady-
states (denoted x*) exist, and examine the system behavior in a small
neighborhood of these steady-states. Under these conditions, a linear
approximation of the dynamics can be used (Figure 6, panel III). This
approximation is accomplished by considering the evolution of small
deviations of the system from the steady-state. It involves the
computation of the Jacobian, a matrix of partial derivatives of the
functional dependencies expressed in the equations with respect to
the variables, evaluated at the equilibrium of interest.

J ¼ @fi
@xj

� �
x¼x�

ð2Þ

The linearized system in a small neighborhood (dx) of the steady-state
is:

d _x ¼ Jdx : ð3Þ

Although the precise values of the elements of the Jacobian matrix
might not be known, it is clear that the matrix has zero-valued
elements whenever one node exerts no influence on another node,
and non-zero elements whenever it does. The sign of these elements

Figure 6. Scheme for Modeling the Local Stability of a Network Motif

(I) An example network motif (10) depicted with nodes and edges
labeled. The sign and weight of an edge from node j to node i is denoted
aij (solid line) consistent with the notation in the rest of the figure.
Additionally, we assume that every node may have a self-interaction aii
(dotted line).
(II) A motif is a graphical depiction of a dynamical system that can be
modeled using (possibly nonlinear) ordinary differential equations, which
are functions of the state of the nodes in the motif.
(III) Assuming that the motif can achieve steady-state dynamics, the
stability of the equilibrium may be analyzed by making a linear
approximation of the (possibly nonlinear) functions. Linearization
involves computation of the Jacobian, a matrix of partial derivatives of
the functional dependencies expressed in the equations with respect to
the variables. The linearized system is evaluated at the equilibrium
point(s), resulting in specific values of aij.
(IV) The general form of the Jacobian matrix corresponding to this motif
contains zero entries wherever one node exerts no influence on another
node and non-zero elements wherever it does. An instance of a Jacobian
consistent with the corresponding motif is created by sampling the non-
zero terms from some distribution. Eigenvalues of the Jacobian indicate
the local stability properties of the equilibrium point. Sampling many
instances of structurally equivalent Jacobians allows computation of the
probability of stability of an equilibrium point.
DOI: 10.1371/journal.pbio.0030343.g006
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depends on whether the influence is activating (positive) or inhibitory
(negative). We note that the Jacobian can be reduced to the
corresponding adjacency matrix by normalizing the entries to ones
or zeros. Thus, the adjacency matrix is a particular example of a
Jacobian consistent with the potentially nonlinear differential
equations. Thus, in our analysis, the general form of the Jacobian
J ¼ faijg corresponding to each motif was obtained by inspection of
the adjacency matrix. We also assumed that the self-connections,
reflected in the diagonal terms of the Jacobian, are always negative.
This assumption represents the mechanisms of constitutive degrada-
tion or inactivation of the biological entities, including gene
products, phosphorylation states of signaling molecules, or depola-
rization states of neurons.

We analyzed the stability properties of the 13 three-node and 199
four-node motifs using root locus analysis (see Protocol S2). This
technique, developed to analyze engineering control systems, allows
determination of the stability of the system as a parameter is allowed
to vary. Root locus and graphical methods become unwieldy for
motifs containing multiple feedbacks.

Rather than calculate an exact solution for all possible three- and
four-node motifs, we employed a numerical method to estimate
stability under a particular probability distribution for the aij terms.
For each motif, we created 10,000 instances of the Jacobian matrix
where the diagonal terms (self-interactions) were sampled from a
uniform (�1,0) distribution, and the off-diagonal terms were sampled
from a uniform (�1,1) distribution similar to the method described in
[31]. These ranges were used since we consider linearized systems
where only relative values of the aij terms are significant. Eigenvalues
were determined for each random instance of the Jacobian (Figure 6,
panel IV). We defined a metric, SSS, as the probability that the
dynamical system corresponding to a given motif displays a non-
oscillatory, damped response to a small perturbation from a steady-
state. This is equivalent to the fraction of instances in which all
eigenvalues are complex numbers with negative real part and zero
imaginary part. For instance, SSS ¼ 1 indicates that non-oscillatory
relaxation to a steady-state (henceforth simply termed stability) is
guaranteed by the motif connectivity and does not depend on the
specific parameter values that define the interactions between the
variables in the corresponding dynamical system, thus making the
system structurally stable.

Abundance of network subgraphs. We used the Mfinder1.1
software program distributed by U. Alon’s group (http://www.
weizmann.ac.il/mcb/UriAlon/) to count the number of three- and
four-node subgraphs in the real and random networks.

Motif Z scores and null model. Motif abundances in the real
networks were compared to those in ER- type random graphs with
the same number of nodes and edges as the corresponding real
network. This is a different null model than previously described [3],
which utilized ‘‘randomized’’ networks that preserved the in- and out-
degree of each node. The randomized null model is appropriate for
investigating local phenomena while preserving global degree
distribution. We take a completely unbiased approach, using motif
abundances to study both local and global network structure
simultaneously. ER random graphs were generated by first placing n
nodes on a canvas, then adding e directed edges. The statistical
significance of the motif abundance was evaluated by calculation of
the Z score as utilized previously [25],

Zi ¼ ðNreali �,Nrandi.Þ=stdðNrandiÞ; ð4Þ

where Nreali is the abundance of the ith motif, and ,Nrandi. and
std(Nrandi) are the mean and standard deviation of its abundance in
the corresponding 100 random graphs with the same number of
nodes and edges as the real network. We normalized the vector of Z
scores to unit length:

NZi ¼ Zi=ðR Z2
i Þ

1=2: ð5Þ

Data sources. The E. coli transcription network, STKE network,
Drosophila transcription network, and C. elegans neuron network
described in [3,25] were obtained from U. Alon. The S. cerevisae
transcription network was obtained from a high-throughput dataset
described in [32]. We utilized the p , 0.001 binding interactions
observed under YPD culture conditions.

Supporting Information

Figure S1. Distribution of Normalized Z Scores of Three-Node
Network Motifs Using a More Expansive Definition of SSS That
Includes Damped Oscillations

The SSS is represented as a stacked bar graph (top panel) in which the

black portion of the bars represents the component of SSS due to
monotonic decay, and the grey portion of the bars represents the
component of SSS due to damped oscillations. The ordering of three-
node motifs by the more expansive definition (traditional in the field
of control systems engineering) produces the identical ordering of
three-node motifs as conservative definitions of SSS that exclude
oscillations (compare to Figure 3). Incorporating damped oscillations
into the definition of stability creates a gradual continuum of stability
scores. Exclusion of oscillations from the definition of stability
creates a jagged landscape of SSS values, separable into classes that
can also be discriminated by structural features: the number and size
of feedback loops. The particular definition of SSS (including or
excluding damped oscillations) does not affect the stability rank of
the three-node motifs, only the raw SSS value.

Found at DOI: 10.1371/journal.pbio.0030343.sg001 (19 KB PDF).

Figure S2. Distribution of Normalized Z Scores of Four-Node
Network Motifs Using a More Expansive Definition of SSS That
Includes Damped Oscillations

The SSS is represented as a stacked bar graph (top panel) in which the
black portion of the bars represents the component of SSS due to
monotonic decay, and the grey portion of the bars represents the
component of SSS due to damped oscillations. The ordering of four-
node motifs by the more expansive definition (traditional in the field
of control systems engineering) produces a substantially similar
ordering of four-node motifs as the conservative definition of SSS
that excludes oscillations (compare to Figure 4). The Spearman rank
correlation coefficient (r), which expresses the correlation between
the rank of the SSS and the rank of the Z score, is indicated for
selected density groups, as well as a p-value indicating the probability
that such a correlation coefficient occurs by chance.

Found at DOI: 10.1371/journal.pbio.0030343.sg002 (168 KB PDF).

Figure S3. Distribution of Normalized Z Scores of Three-Node
Network Motifs Computed Using a Degree-Constrained Null Model,
Identical to the Method Previously Proposed [3,25]

Overrepresented motifs (positive Z scores) tend to have higher SSS
scores than other motifs with the same number of edges (compare to
Figure 3). SSS does not provide insight into the occurrence of all
underrepresented motifs (negative Z scores).

Found at DOI: 10.1371/journal.pbio.0030343.sg003 (19 KB PDF).

Figure S4. Distribution of Normalized Z Scores of Four-Node
Network Motifs Computed Using a Degree-Constrained Null Model
Identical to the Method Previously Proposed [3,25]

Overrepresented motifs (positive Z scores) tend to have higher SSS
scores than other motifs with the same number of edges (compare to
Figure 4). SSS does not provide insight into the occurrence of all
underrepresented motifs (negative Z scores).

Found at DOI: 10.1371/journal.pbio.0030343.sg004 (165 KB PDF).

Figure S5. The Regulation of Putative Yeast Gene YHR087W in
Various Experimental Contexts
(A) The full potential network affecting the expression of YHR087W
(bottom node) was topologically sorted to reveal the causal structure.
Green nodes indicate that the gene was regulated (. 2-fold change in
expression) in at least one of the five environmental perturbation
experiments examined here (heat shock, H2O2, dithiothrietol,
diamide, hyper-osmotic shock). Green links are regulatory interac-
tions that were inferred from the regulated genes, irrespective of
whether or not the mRNA expression of the upstream transcription
factor was observed. (All inbound links to a regulated node are
inferred to be potentially active.)
(B) The context-dependent regulatory network in response to a mild
heat shock was obtained by traversing the green links backwards from
YHR087W, stopping when no more green links were encountered.
The regulatory unit is larger than the average motif size of three
nodes, yet dynamical stability is a robust property of the structure.
(C) The context-dependent regulatory networks for hyper-osmotic
shock and diamide perturbations are a subgraph of the heat-shock
regulatory structure.
(B and C) The context-dependent motifs have SSS¼1, indicating that
dynamical stability is a robust property of the structure of the
regulatory unit. Images generated with Cytoscape1.1 software [33].

Found at DOI: 10.1371/journal.pbio.0030343.sg005 (56 KB PDF).
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Protocol S1. Four-Node Motif Dictionary
ID labels match the output from mfinder1.1 motif-finding software
provided by U. Alon.

Found at DOI: 10.1371/journal.pbio.0030343.sd001 (215 KB PDF).

Protocol S2. Theoretical Analysis

Stability analysis using root locus.

Found at DOI: 10.1371/journal.pbio.0030343.sd002 (45 KB PDF).
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