
Achievements in modern proteomics, development

of new mathematical and computational approaches, and

requirements of fundamental medicine have put on the

agenda a very complicated and intriguing task—modeling

of the living cell. Solving of this problem is presently

becoming possible using modern achievements in theo-

retical and experimental methods. Some authors have

already attempted to design a static cell model based on

knowledge about structure and biochemical composition

of the cell and intracellular organelles, as well as on data

concerning localization and approximate number of mol-

ecules of all intracellular low- and high-molecular-weight

compounds [1]. However modeling a living, i.e. “work-

ing” cell implying constructing its dynamic model, which

takes into account changes of the cell chemical composi-

tion in time and space, as well as peculiarities of all intra-

and intercellular biochemical processes represent a much

more complicated problem [2]. An even more complicat-

ed task is construction of dynamic models of different cell

types as well as of cells existing in different physiological

and pathophysiological conditions, depending on their

microenvironment or external signals. Modeling a cell at

different cell cycle stages, including cell division, differ-

entiation, and death are of special interest.

Solving of such complex problems requires a great

amount of experimental and theoretical data and consid-

eration of two important and, in our view, interrelated

aspects. On one hand, a systemic approach, an integrated

view on processes that take place in the cell and/or its

separate compartments is necessary. Considering a cell as

a whole is the subject of a relatively new interdisciplinary

field of science—systems biology [3-6]. It provides inte-

gration of knowledge obtained at different levels, from

molecular to tissue and organism, and also with using dif-
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ferent experimental and theoretical methods. The aim of

systems biology is to elucidate how the cooperative func-

tioning of different cell or tissue components assures a

normal course of biological and physiological processes

within an organism.

Studying a cell from the point of view of systems biol-

ogy suggests existence in cell components of acquired, so-

called emerging properties or functions. This means that

different functions become possible only after achieve-

ment of a certain level of complexity of the system organ-

ization. In this case, each component separately may be

devoid of properties (and functions) that the system of two

components acquires. A system of two components may

have no properties and functions of more complex sys-

tems. Such integration suggests consideration of a cell over

a broad range of time and space. This requires knowledge

of detailed qualitative and quantitative parameters of

changes at all levels, including intermolecular interac-

tions, which in turn provides understanding of entire

processes that take place in a whole cell.

Modern experimental methods make it possible to

investigate either at the level of a whole cell like

microscopy methods do or at the level of individual mol-

ecules. Consideration of all cellular processes in total

with simultaneous study of detailed molecular mecha-

nisms of each process still seems impossible. The use of

mathematical and computer modeling methods allows

investigation of processes and events that are difficult to

study even using highly efficient experimental methods

[7, 8]. If mathematical methods are based on description

and analysis of intra- and intercellular processes and

events using a system of mathematical equations, com-

puter methods mainly serve for creation of algorithms to

simulate biological processes, to construct and visualize

them. Different variants of molecular dynamics (MD)

technique allow dynamic modeling of detailed mecha-

nisms of intracellular biochemical processes and inter-

molecular interactions [9].

Different types of networks formed by groups of

interacting components are used for modeling, descrip-

tion, and analysis of many real processes both in biologi-

cal and non-biological systems. Among biological net-

works, molecular networks including gene, protein inter-

action, metabolic, and signaling ones are used for studying

cell functioning. All these types of molecular networks are

complex ones on the basis of their properties and organi-

zation principles. They reflect complexity of biological

systems and therefore are subjects of systems biology [10].

Analysis of molecular networks reveals in them functional

modules and elucidates the role of each network compo-

nent in cell functioning. Groups of physically interacting

proteins that function in the cell in cooperation and coor-

dination, controlling interrelated processes taking place in

the organism, form protein interaction networks. Proteins

as key biomacromolecules are the main participants of

almost all cellular processes. That is why, living cell mod-

eling is impossible without dynamic proteomics data,

which include changes in concentrations and localization

of proteins and their interaction with each other [11-13].

Disruption of protein–protein interactions can

result in emergence of various diseases including tumor,

neurodegenerative, cardiovascular, autoimmune, etc.

Therefore, investigation of interacting partners and

analysis of protein networks formed by protein–protein

interactions comprise an important instrument in diag-

nosis of diseases and in revealing the mechanism of their

emergence and development, as well as the efficiency of

different therapeutic approaches [14, 15].

It is now recognized that most eukaryotic proteins

are multimodular and multifunctional [16, 17]. Each

module has an independent function, and this is resulted

in acquiring by the protein of ability to perform a set of

different functions. Due to multimodularity and multi-

functionality of most eukaryotic proteins, their complex

protein networks can interlace with each other.

Therefore, an important instrument in living cell model-

ing is structural and functional protein mapping that

localizes their functionally important sites including

those providing for protein–protein interactions.

This review is devoted to description, summarizing

and analyzing of data on protein–protein interactions

and protein networks obtained by present-day experi-

mental and theoretical methods. Principles underlying

modern methods of investigation of protein–protein

interactions are described. Advantages and disadvantages

of different experimental methods are analyzed and cur-

rent approaches used by different groups of authors to

solve emerging problems are described. The role of pro-

tein interaction network analysis for fundamental medi-

cine is shown. Methods of in silico modeling are consid-

ered, and possibilities of MD methods in dynamic cell

modeling are analyzed.

MAPPING OF PROTEIN–PROTEIN

INTERACTIONS

Interactomes

Multiple proteins in a cell are in dynamic interaction

with each other, and these interactions provide function-

ing and behavior of living cells. Reversible protein–pro-

tein interactions are among other dynamic processes that

proceed in a cell and contribute to cell functioning.

Intensive investigations carried out over past two decades

in this field have led to accumulation of data concerning

interacting protein pairs and protein complexes formed

by them. A number of high-throughput experimental

methods for investigation of protein–protein interactions

have been developed. These methods are not devoid of

disadvantages and this leads to developing of  comple-

mentary theoretical approaches including mathematical
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and computer methods of investigation. Protein–protein

interactions for different biological species and in eukary-

otic organisms also for different tissues and cell types have

been studied.

The whole set of protein–protein interactions of a

given organism is referred to as the interactome. Structural

organization of interactomes and total number of interac-

tions in them are among important factors that determine

complexity of biological systems. The number of copies of

a certain protein per cell can vary from several tens (about

50) to millions [18]. Therefore, interactomes even of sim-

ple organisms can be formed by a rather large number of

interactions. For example, size of the interactome of the

yeast S. cerevisiae can reach up to 10,000-17,000 or to

25,000-35,000 interactions depending on method of

investigation [19]. Statistical evaluation of putative size of

the human interactome has shown approximately

650,000 interactions. The size of the human interactome

is approximately tenfold larger than that in D.

melanogaster and can be three times higher than that of C.

elegans [20]. These data suggest that the size of the inter-

actome correlates with complexity of organization level of

a particular biological species.

Determination of physically interacting protein pairs

makes it possible to design interactome maps as graphs

consisting of nodes, in which a particular protein is locat-

ed, and of links between them that indicate paired inter-

actions (Fig. 1). The interactome maps are considered as

keys to obtain knowledge on protein functioning [21].

Data obtained in vitro are used to construct static interac-

tome maps, analysis of which, as will be shown below,

makes it possible to describe dynamic protein–protein

interactions existing in vivo. Construction of interactome

maps is also useful for fundamental medicine, namely, for

determination of the role of individual proteins and their

interactions in emergence and development of diseases

and their diagnosis, as well as for identification of possi-

ble drug targets and monitoring of treatment efficiency.

Presently known interactome maps are rather

incomplete even for the simplest organisms. Besides, data

obtained by different groups of authors are often contra-

dictory—interacting pairs and protein complexes identi-

fied by one group of investigators are not found by anoth-

er. Nevertheless, elaboration of new experimental and

theoretical approaches that will be discussed below results

in gradual accumulation of data necessary for analysis of

intracellular protein–protein interactions.

Currently used experimental methods allow deter-

mination of interacting pairs of proteins and protein

complexes mainly in prokaryotes and simple eukaryotic

organisms. Detection of protein–protein interactions in

higher organisms like mammals additionally requires a

method for their prediction on the basis of homology with

proteins whose interacting partners were revealed in sim-

pler organisms [22]. This approach is based on homology

between related proteins and comparison of conservation

in primary and spatial structures of the same protein in

different biological species. Thus, if it is shown experi-

mentally that any two yeast proteins interact with each

other, then it is supposed that these proteins also interact

in humans. Two protein pairs in different organisms,

which retained in evolution the ability to interact with

each other, were called interologs. Prediction of interact-

ing protein pairs gives more or less reliable results only in

the case of a high extent of similarity in their primary

sequences. Besides, recent studies show that data

obtained using high-throughput experimental methods

can be inaccurate (the reliability of even such methods as

the yeast two-hybrid assay does not exceed 50% [23]).

Therefore at the present time a number of works are

devoted to improvement and correction of already avail-

able data using combinations of different experimental

and theoretical methods to construct more precise maps

of physical interactions between proteins [24-26].

Methods of Investigation of Protein–Protein Interactions

Initially biochemical methods like chemical cross-

linking, combined fractionation during chromatography,

and co-immunoprecipitation were used for investigation

of protein–protein interactions. However, later such

Fig. 1. Map of protein–protein interactions in Drosophila

melanogaster. Enlarged subnet including Ras and other small

GTPases is shown in a frame. The figure is the courtesy of

Camonis and Daviet [96].
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highly efficient and high-throughput experimental meth-

ods like yeast two-hybrid assay (Y2H), phage display, and

tandem affinity purification-mass spectrometry (TAP-

MS) were elaborated for interactome determination in

various organisms [27-30]. Different microscopy tech-

niques and different mathematical and computer meth-

ods also open broad possibilities for dynamic proteomics.

These methods are described in detail in a number of

reviews [27, 31, 32]. Therefore, here we shall describe

only the main principles of these methods.

Yeast two-hybrid system. Yeast two-hybrid assay

allows highly precise determination of protein–protein

interactions in vivo. The method is based on the use of

transcription factors characterized by modular structure

and consisting of physically and functionally separable

domains: DNA-binding domain (BD) and transcription

activation domain (AD). Physical separation of BD and

AD domains results in transcription factor inactivation.

Activation of corresponding genes becomes possible upon

reconstruction of transcription factor by fusion of these

two domains with other two proteins X (called bait) or Y

(called prey) that interact with each other [27]. DNA-

binding domains of transcription factor GAL4 in S. cere-

visiae or of lexA repressor in E. coli are usually used for

creation of the two-hybrid system. The activation domain

of GAL4 and protein B42 in S. cerevisiae and E. coli,

respectively, are most often used as activation domains

[33].

Yeast cells are transfected by two plasmids, the first

of which contains nucleotide sequence encoding protein

X linked to the BD domain, while the second encodes Y

protein linked to the AD domain. As a result, DNA-bind-

ing domain together with X protein binds a certain

sequence of reporter gene, whereas the AD domain

together with Y protein binds another DNA region of this

gene. Since DNA regions of a reporter gene, which bind

regulatory proteins, are quite close to each other, no

reporter gene activation is possible without physical inter-

action between X and Y proteins. The interaction between

analyzed proteins can be inferred by the presence of the

reporter gene expression products in yeast cells.

The yeast two-hybrid assay was first used by Fields

and Song in 1989 during investigation in S. cerevisiae of

GAL4 transcription factor that regulates expression of the

gene encoding β-galactosidase that cleaves lactose to glu-

cose and galactose [34]. Two functionally important

domains are distinguished within GAL4—N-terminal

DNA-binding domain, able to interact with operator

sequence UASg, and C-terminal domain of transcription

activation rich in acidic amino acids. The level of β-

galactosidase expression is judged by intensity of coloring

of enzyme-producing cell colonies after their incubation

with a substrate. A high level of transcription activation is

observed only if both hybrid proteins are present in the

yeast cells. If X and Y proteins interact with each other,

then functionally active protein GAL4 is reconstructed

from two hybrid proteins and transcription activation

takes place.

In the case of the LexA system, the accuracy of

determination is provided by the use of yeast strains con-

taining reporter genes carrying different numbers of LexA

operator elements in the reporter gene promoters (usual-

ly lacZ and LEU2). More sensitive yeast strains have up

to six LexA-binding elements, while less sensitive strains

contain only two binding elements [27].

The yeast two-hybrid system was proposed as a

method for screening libraries of proteins able to interact

with some known protein used as a “bait”. The possibil-

ity of detection of physical interaction between different

proteins allows using of this system for identification of

specific amino acid residues responsible for interaction

[35]. However, the Y2H method does not allow estima-

tion of interaction with involvement of three and more

proteins, except those in yeast. Moreover, this method

not always makes it possible to estimate functional sig-

nificance of observed physical protein–protein interac-

tions.

Tandem affinity purification-mass spectrometry was

introduced in 1999 by Rigaut et al. [29] as an original way

for purification of proteins expressed under natural con-

ditions at physiological concentrations. The method is

based on the use of affinity tag attached to a target pro-

tein. Genes which encode tag components and a target

protein is incorporated using retrovirus into a host cell

capable of maintaining the target protein expression at a

level close to physiological. The standard tag, used in

yeast, consists of two immunoglobulin-G-binding frag-

ments of Staphylococcus aureus protein A and sites sensi-

tive to protease from tobacco mosaic virus and calmod-

ulin-binding peptide. The target protein complex with the

tag is isolated from the cell extract by a two-step proce-

dure of affinity purification. The first step is based on

binding of protein A to IgG-Sepharose, after which the

complex undergoes action of the above-mentioned pro-

tease. The second step is based on partial binding of

calmodulin-binding peptide, to calmodulin-Sepharose in

the presence of calcium, and the complex is eluted by

EDTA. The use of affinity tag allows rather rapid purifi-

cation of protein complexes from a small number of cells

without preliminary elucidation of protein composition

of complexes and functions of individual proteins. In

combination with mass spectrometry, this method pro-

vides for identification of proteins under study and their

interactions [36].

Initially affinity purification was used in tandem with

mass spectrometry for investigation of protein–protein

interactions and functional organization of proteomes in

simple organisms. For example, the work of a large group

of German researchers resulted in expression of hundreds

of proteins with affinity tag, and studying of their ability

to form complexes with other proteins in S. cerevisiae

[37]. This work led to purification of 589 protein com-
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plexes and prediction of functions for 344 various pro-

teins.

Later the TAP-MS technique was applied to investi-

gation of protein–protein interactions in different organ-

isms including mammals [38]. Many varieties of affinity

labels were proposed including those easily removable by

specific peptidases [39, 40]. To enhance the efficiency of

the method upon investigating protein–protein interac-

tions in mammalian cells, a new tag based on G proteins

that exhibit higher affinity to immunoglobulin G than

protein A, were also developed. Streptavidin-binding

peptide instead of calmodulin-binding peptide and biotin

for elution can be used. This results in tenfold increase in

the number of detectable protein complexes and higher

specificity of the method. This approach makes it possible

to use a small number of cells for purification of protein

complexes that previously could not be purified by the

standard TAP-MS technique [38].

Mass spectrometry is based on determination of

molecular masses of peptides and proteins, by their pre-

liminary ionization and distribution of obtained ions in

an electric field depending on the mass-to-charge ratio

(m/z) [30]. Two types of mild ionization are mostly used:

matrix-assisted laser desorption/ionization (MALDI)

and electrospray ionization (ESI). The MALDI method

is the most popular in proteomic investigations. Here a

sample containing peptides is mixed with molecules of

specific matrix and then is subjected to an ionizing laser

beam [41, 42].

In 1987 Karas and colleagues [43] were the first to

demonstrate the possibility of matrix application for inhi-

bition of fragmentation during analysis of nonvolatile

organic compounds such as proteins and peptides. Matrix

properties provide ionization of analyzed molecules and

lowering destructive ability of laser irradiation. Emitted

ions pass through the mass analyzer and moves to the

detector that registers mass spectra of ions according to

their mass-to-charge ratio (m/z). The spectra obtained

are compared with spectral libraries using special com-

puter programs. One of the MALDI varieties is MALDI-

TOF (time of flight mass spectrometry) in which the time

of ion flight through mass analyzer depends on mass and

charge of substances under study [44, 45].

Another variety of mass spectrometry commonly

used in proteomics studies is surface-enhanced laser-de-

sorption/ionization (SELDI). In this method, the pep-

tide-containing specimen is not mixed with the matrix but

is applied on the surface of a special chip that is then

placed in a vacuum cell where ionization of peptides or

small proteins under study takes place [46, 47]. The result-

ing ions are accelerated towards the detector depending on

their mass. A disadvantage of this method is impossibility

of immediate identification of proteins represented in the

mass spectra. Additional methods such as fractionation by

ion-exchange chromatography and electrophoresis in

polyacrylamide gel are used for protein identification [48].

The use of mass spectrometry, including its combina-

tion with other methods of analysis, is now a universal

approach to identification of protein markers of various

diseases, including tumors, cardiovascular, etc. [45, 46].

Mass spectrometry along with other methods of proteom-

ic analysis such as two-dimensional electrophoresis, liq-

uid chromatography, and protein biochips are also widely

used for estimation of efficiency of different therapeutic

approaches [49].

The phage display method is used for investigation of

molecular interactions including protein–protein inter-

actions and revealing of sites responsible for these inter-

actions. It is based on the use of bacteriophages to corre-

late genes and encoded proteins. In this case, the recom-

binant viral DNA contains information about a protein

molecule displayed in the phage capsid [50, 51]. Filamen-

tous phages M13, fd, and f1 are used, because they are

best suited for construction of recombinant DNA. The

presence in the phage genome of a site insignificant for its

vitality is most important for formation of hybrid DNA

molecules. A foreign gene, encoding a certain protein or

peptide (selective marker), that after synthesis is displayed

on phage surface, is inserted into the phage genome. The

recombinant DNA-carrying phage penetrates a bacterial

cell (E. coli) where its amplification takes place. In this

way, libraries are created that contain millions of phages,

each of which contains in its capsid a unique protein (or

peptide). Then the process called in vitro selection is car-

ried out during which these libraries are screened by

interaction of proteins exposed on the phage surface with

a specific immobilized ligand.

The phage display method allows making correlation

between phenotype and genotype, because the viral DNA

contains information about the structure of the protein

molecule expressed on the phage surface. Due to the sim-

plicity and high rate of DNA sequence analysis, the phage

display method allows rapid identification of proteins

under study. Protein or peptide libraries can be also creat-

ed using similar recombinant DNA technology.

One approach for estimation of protein–protein

interactions is the use of phage clones that are able to

specifically interact with polystyrene surface and carry

genes encoding affinity labels, significantly increasing

affinity to this surface [52]. Multienzyme complexes or

the antigen–antibody complex are used as model sys-

tems. For example, cysteine synthase multienzyme com-

plex in E. coli contains two enzymes, serine acetyl trans-

ferase (SAT) and O-acetylserine sulfohydrolase (OASS),

which interact with each other when sulfur concentration

is sufficient. In this case SAT activity increases, but OASS

activity decreases, and this results in the formation of O-

acetylserine. Immobilization on polystyrene surface of

OASS hybrid enzyme, obtained either by genetic fusion

or by chemical cross-linking with peptide label, increases

the intensity of a signal estimated by immunoenzyme

assay compared to that obtained upon immobilization of
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the enzyme alone. Moreover, when the peptide-labeled

enzyme interacts first with SAT in solution with subse-

quent immobilization on polystyrene surface, the signal

intensity increases even more owing to interaction of

these enzymes without any steric hindrance.

Microscopy methods are presently widely used both

for quantitative estimation of changes in concentrations

and intracellular localization of different proteins and for

qualitative investigation of protein–protein interactions.

Protein complexes formed due to protein–protein inter-

actions can be studied by detection within cells of the

protein accumulation regions [53]. Modern methods of

microscopy such as fluorescence microscopy and cryo-

electron tomography can be used to visualize intracellu-

lar structures with resolution up to 4-5 nm [54, 55]. The

average diameter of protein globule is 3-5 nm and that of

macromolecular complexes is 10-100 nm. Therefore,

combination of the two above-mentioned methods

allows reconstruction of macromolecules, their com-

plexes, and separate intracellular structures in native

state [56, 57].

Combination of microscopy techniques with differ-

ent experimental approaches and computational methods

makes it possible not only to represent intracellular archi-

tecture as a whole, but to create a complete and compre-

hensive spatial molecular atlas of the intact cell [58]. For

example, the human molecular atlas contains informa-

tion about gene sets and profiles of protein expression in

different normal and pathological tissues. In this atlas,

proteins are classified by their functions as well as by tis-

sues and biological fluids in which they are found [59].

Such methods of fluorescence microscopy as

Forster’s inductive resonance transfer of electron excita-

tion energy (FRET, fluorescence resonance energy trans-

fer) and FLIM (fluorescence lifetime imaging microscopy)

are also used to study protein–protein interactions. They

make possible qualitative analysis of protein–protein inter-

actions with investigation of dynamics of conformational

changes occurring in proteins in space and time, and of

amino acid residues involved in these interactions [60].

Fluorescence microscopy is based on measuring of differ-

ent fluorescence characteristics like intensity, quenching

time, polarization, and wavelength. The FRET method is

based on measuring of energy amount emitted by the excit-

ed fluorophore molecule and transferred onto the acceptor

molecule. Energy transfer is revealed by the increase in

acceptor fluorescence accompanied by quenching of the

fluorescence of the energy donor [61, 62]. In this case over-

lapping of the donor fluorescence spectrum with the

acceptor absorption spectrum is a necessary condition for

energy transfer. At the same time, this condition hinders

spectral measurements, and this is a disadvantage of the

method. Elimination of this disadvantage provides for the

application of the FRET method for quantitative evalua-

tion of the distance between interacting pairs of molecules

both in vitro and in vivo, which is used in laser-scanning

confocal microscopy. FLIM microscopy is based on the

fluorescence lifetime measurements at each point of a spa-

tial image [63]. It makes possible both estimation of inter-

action between proteins and analysis of local microenvi-

ronment of fluorophores, such as pH and concentration of

different ions, oxygen, etc.

Microscopy methods that use fluorescent proteins as

molecular markers are now actively developed. This

allows observation in real time of dynamic alterations in

localization and concentrations of thousands of proteins

in different parts of a single isolated cell. To achieve this,

a library of cell clones is created, each of which is fluores-

cently labeled on a certain protein. This approach on pro-

duction of labeled proteins with retention of their natural

localization and functions in a living cell was elaborated

by Jarvik et al. in the second half of the 1990s and suc-

cessfully tested in C. reinhardtii and D. melanogaster [64,

65]. Later the method was used to create libraries of cells

labeled by fluorescent proteins in mammals, including

humans [66].

A number of detailed experiments in real time inves-

tigation of dynamic alterations in localization and con-

centrations of different proteins during cell proliferation

were carried out by the group of Alon et al. [67, 68].

Human lung carcinoma H1299 cells were infected by

retrovirus carrying the gene encoding yellow fluorescent

protein (YFP). A library of over 1200 cell clones was cre-

ated, each of which could express its fluorescently labeled

protein. Cells containing the certain labeled protein were

selected using flow cytometry, and then the labeled pro-

teins were identified. Real-time fluorescent microscopy

made it possible to observe dynamics of changes in local-

ization and concentrations of 20 nuclear proteins during

the cell cycle. It was found that different proteins are

characterized by different dynamics of accumulation in

the cell nucleus. Dynamics of topoisomerase TOP1 accu-

mulation had sinusoidal character with maximum accu-

mulation in the nucleus in S phase of the cell cycle,

whereas other proteins were characterized by maximum

accumulation in the nucleus in G1 or G2 phases. This

method revealed the existence of distinctions in localiza-

tion of different proteins during the cell cycle.

The use of such technologies also allows studying

drug effects on protein dynamics in tumor cells, the

mechanism of drug resistance in cells, and the role of dif-

ferent proteins in cell survival. For example, studying

dynamics of about 1200 different proteins of human lung

carcinoma H1299 cells under exposure to antitumor drug

camptothecin, which blocks topoisomerase-1 in com-

plexes with DNA accompanied by DNA breaks and gene

transcription inhibition, made it possible to reveal

changes in different protein concentrations and localiza-

tion in response to this drug [68]. The cells intensively

divided during 24 h with cell cycle duration of about 20 h.

However, within 10 h after drug addition, lowering of cell

motility and inhibition of their division were observed
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along with morphological changes indicative of cell

death. In 36 h, the described changes involved 15% of all

cells.

In this case, almost 76% of changes in protein fluo-

rescence intensity were observed in the course of time.

Groups of functionally related proteins showed similar

dynamics of changes in their intracellular localization

and concentrations. It was shown that ribosomal proteins

underwent rapid degradation, whereas cytoskeleton pro-

teins and enzymes were destroyed rather slowly. In this

case, helicases and apoptosis regulating proteins such as

Bcl2-associated proteins BAG2 and BAG3, as well as

PDCD5 demonstrated the slowest degradation in

response to this drug [68]. Topoisomerase-1 underwent

the most rapid degradation, and the localization of the

enzyme was changed significantly. Concentrations of two

proteins (RNA helicase and DDX5 protein) increased

significantly in the cells exhibiting tendency to survival,

while it decreased in the cells that underwent morpholog-

ical changes resulting in their death.

Thus, it was shown that distinctions in cell reactions

to drugs are defined by differences in changes in concen-

tration and localization of various proteins. The great

advantage of such microscopy techniques is the possibili-

ty to study processes happening under living cell condi-

tions with preservation of natural functions of intracellu-

lar macromolecules. Besides, they can be used to observe

processes taking place in real time in a single isolated cell.

Computer-based methods. The use of a combination

of different experimental and theoretical methods is a

possible way of overcoming difficulties emerging during

studies of protein–protein interactions [69-73]. In this

case, it is necessary to separate real results from false-pos-

itive ones, which requires elaboration of systems for esti-

mation of data reliability. Because of labor-consumption

and expense of high-throughput experimental methods,

the most important role belongs to various computer

methods of prediction of protein–protein interactions

[74]. For this purpose, information on the structure of

genes and proteins encoded by them is used along with

available data about protein functions and possible func-

tional relationships between them.

In recent years, different computer methods of data

clustering have been elaborated that makes it possible to

estimate the extent of functional similarity between pro-

teins and to reveal protein complexes. Clusters obtained

represent spatial and functional protein associations.

They are compared with protein complexes experimen-

tally confirmed and described in special annotated data-

bases [75]. Some of these approaches can also reveal

functionally important modules in interactome maps.

Computer investigation of protein complexes

requires highly efficient computational methods and

development of new algorithms such as MCL (Markov

Clustering), RNSC (Restricted Neighborhood Search

Clustering), SPC (Super Paramagnetic Clustering), and

MCODE (Molecular Complex Detection) [76, 77].

Recently significant progress has been achieved in the

broad-scale mapping of interactomes of various organ-

isms as well as in creation of databases and special tools

for analysis of information stored in them.

Modern databases contain information about many

hundred thousand interactions formed by several thou-

sand proteins in tens of biological species [78-80]. For

example, database BioGRID (Biological General

Repository for Interaction Datasets) contains to date

information on approximately 198 thousand interactions

for six biological species [81]. Such databases contain

information about interacting pairs of proteins either

obtained by experimental methods or determined by

homology-based prediction using computer methods.

The purpose of such databases as DIP (Database of

Interacting Proteins), BIND (Biomolecular Interaction

Network Database), and INTERACT is integration of a

great amount of experimental data, providing easy access

to them, and the possibility of their visualization.

Databases are also furnished with tools for estimation of

reliability of experimental results. They are widely used

for construction and analysis of protein interaction net-

works that form a basis for functioning of living cells.

Presently created databases not only contain infor-

mation about interacting partners, but also make possible

detailed structural analysis of regions responsible for

interaction [82-84]. For example, SCOWLP (Structural

Characterization Of Water, Ligands, and Proteins) data-

base contains information about amino acid residues and

groups of atoms involved in interactions. Owing to this, it

provides for detailed analysis of interactions between pro-

teins, domains, and peptide motifs of different proteins as

well as of their interactions with solvent [82, 83]. Another

example is the global interactome map PSIMAP (Protein

Structural Interactome Map), which is constructed using

data on domain–domain interactions with involvement

of all proteins for which three-dimensional (3D) struc-

tures are experimentally established and presented in

PDB (Protein Data Bank). The PSIMAP algorithm

makes possible calculation of Euclidean distances

between amino acid residues of two interacting domains

within different proteins [85]. Two domains are consid-

ered as interacting if at least five amino acid residues are

at a distance less than 5 Å (the 5-5 rule). This algorithm

can be used to predict interacting partners by homology

of amino acid sequences of proteins and their structural

domains. Information on interacting partners is con-

tained in the PSIbase database.

Mapping Interactomes of Different Biological Species

The most complete map compiled for prokaryotic

organisms is that of protein–protein interactions of path-

ogenic microorganism Campylobacter jejuni [86]. The use
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of Y2H method has revealed and reproduced about

12,000 interacting pairs, including proteins involved in

regulation of different biological events like chemotaxis.

Another intensively studied prokaryote is E. coli, which is

considered as a model microorganism for investigation of

prokaryotic interactomes [87]. However, data obtained

for this organism by different groups of authors are con-

tradictory. According to different authors, the size of the

E. coli interactome varies from several thousands to sever-

al tens of thousands of interactions.

The use of approaches of functional and comparative

genomics enabled prediction of the existence of over

78,000 paired interactions in E. coli [88]. Moreover, it was

shown that proteins involved in replication, transcription,

translation, DNA repair, and cell wall synthesis are char-

acterized by a high density of interconnections with each

other. The interactome of E. coli cell wall is studied espe-

cially intensively [89]. The database Bacteriome.org con-

taining information about interactomes of this organism

was created on the basis of data obtained using experi-

mental proteomic techniques and methods of compara-

tive and functional genomics [90]. It assures an integrat-

ed view of the E. coli interactome and allows users to

reveal and analyze structural, functional, and evolution-

ary relationships between groups of interacting proteins.

This database now contains information about over 5000

experimentally confirmed interactions with involvement

of over a thousand proteins.

A classic subject in proteomic investigations is the

yeast S. cerevisiae, for which the most complete interac-

tome data for unicellular eukaryotic organism were

obtained. However, results of different groups of authors

obtained for S. cerevisiae using different experimental

methods are contradictory [91, 92]. The most precise data

on each protein copy number and intracellular localiza-

tion were obtained by combination of different methods

[93, 94]. A total of 7123 interactions with involvement of

2708 proteins were detected using the TAP-MS technique

[95]. Data clustering using the Markov algorithm revealed

547 protein complexes, each of which contained on aver-

age 4.9 proteins.

To obtain more precise and reliable data, a large

group of authors elaborated a new “empirically con-

trolled” mapping system [94]. This system made it possi-

ble to choose from literature data a pool of paired inter-

actions, which were then tested using the Y2H and TAP-

MS methods. This allowed creation of the “second gen-

eration” of low-productive but high-quality data. This

approach produced high-quality results covering about

20% of the interactome of S. cerevisiae.

Mapping protein–protein interactions in D.

melanogaster is considered as a model system for investi-

gation of biology, development, and mechanisms of

emergence of human diseases. The Y2H system was used

for screening D. melanogaster cDNA libraries to reveal

interacting partners for 102 proteins used as “bait” [96].

Most of these proteins were orthologs of human tumor-

associated or signaling proteins. About 2300 paired inter-

actions were revealed, and 710 of them were estimated as

of high confidence. Estimation of  reliability of the

results and revealing the interacting domains have con-

tributed to improvement of data concerning already

known protein complexes and prediction of new ones.

Interacting pair mapping for the cell cycle protein regu-

lators in D. melanogaster revealed 1814 interactions for

488 proteins [97]. Special annotated databases contain-

ing information about experimentally obtained and com-

puter-predicted data on physical protein–protein inter-

actions were also created for the given biological species

[98-100].

Human interactome mapping is now just at the ini-

tial stage of investigation. Statistical estimation of the

human interactome size suggests that it may reach

650,000 interactions [20]. However, according to

Venkatesan et al. [101] the human interactome is repre-

sented by 130,000 interactions, and the interacting part-

ners are still not found for the overwhelming majority of

proteins [101]. These data were obtained using the new

above-described “empirically controlled” approach. This

approach was used to estimate qualitative parameters of

methods used for studying protein–protein interactions.

These parameters included sensitivity, completeness of

screening, the number of revealed interactions, and the

accuracy of the method (number of artifacts). Works of

this group of authors showed that two-hybrid analysis

(Y2H) is most suitable for estimation of protein–protein

interactions in humans. The constructed interactome

maps appeared to be more precise compared to those

obtained by analysis of published data. This is due to the

fact that in the latter case only results of a single publica-

tion were used.

To date the use of Y2H assay and affinity purification

combined with bioinformatics approaches has revealed

interacting partners for proteins of some tissues including

brain, kidneys, erythrocytes, etc. [102-104]. Accumulated

experimental data are included in special databases like

HPID (Human Protein Interaction Database) and

OPHID (Online Predicted Human Interaction Data-

base), which contain information about protein–protein

interactions characteristic of humans. These databases

are created using both experimental results and those pre-

dicted by homology with interacting pairs revealed in

simpler model organisms [105, 106].

Studying of protein–protein interactions and reveal-

ing interacting partners specific for a certain pathology is

an important tool for elucidation of mechanisms of emer-

gence and development of a disease. Disturbance in syn-

thesis of components of the signal transduction pathways

or mutation in genes encoding synthesis of these proteins

is often the factor responsible for emergence of diseases

including tumors [107]. The use of affinity purification

combined with mass spectrometry revealed 221 molecular
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complexes formed by tumor necrosis factor α (TNF-α),

its receptor, and intracellular effectors [108]. TNF-α ini-

tiates a cascade mechanism of signal transduction that

results in activation of nuclear factor NF-κB playing the

role of transcription factor and regulating expression of a

number of genes responsible for cell proliferation and

survival [109]. Distortion of this function is the basis for

development of many pathological processes within an

organism such as tumor growth, inflammatory and

autoimmune diseases, etc. For example, nuclear factor

NF-κB induces expression of genes that encode anti-

apoptotic proteins TRAF1 and TRAF2, thus regulating

activity of the caspase family enzymes. Mutations in the

gene encoding NF-κB or in genes regulating its activity

are observed in a number of tumors [110].

Works have begun on revealing interacting protein

pairs associated with neurodegenerative diseases, sickle

cell anemia, schizophrenia, etc. [111-113]. Interactome

mapping in neurodegenerative diseases like Alzheimer,

Parkinson, and Huntington diseases, amyotrophic lateral

sclerosis, as well as prion diseases revealed that proteins

associated with them are characterized by the presence of

common interacting partners [112]. Nineteen proteins

common for all these pathologies were revealed, and most

of them appeared to be apoptosis regulators or partici-

pants of signal transduction mediated by the mitogen-

activated protein kinase (MAPK). In addition, domains

characteristic of all these proteins like SH2 (Src homolo-

gy 2) and phosphotyrosine-binding (PTB) domain were

revealed within these proteins.

PROTEIN INTERACTION NETWORKS

A group of physically interacting proteins forms a

protein network. Protein interaction networks are a variety

of molecular networks, among which there are also gene

networks that include genes, regulatory RNAs, and tran-

scription factors; metabolic networks consisting of sub-

strates and products of biochemical reactions; and net-

works of signaling molecules including receptors, their

ligands, and intracellular effectors [114-118]. Classifi-

cation of molecular networks mentioned above is condi-

tional because transcription factors and enzymes catalyz-

ing biochemical reactions are proteins by their nature.

Also, there is a functional connection between compo-

nents of different types of molecular networks. Thus, on

one side, expression of any gene is controlled by external

signals mediated by protein receptors and their intracel-

lular effectors. Both proteins and low-molecular-weight

intermediates of metabolic pathways can serve as ligands

for the receptors. Some intracellular effectors, compo-

nents of signaling networks, can penetrate into the cell

nucleus and play the role of transcription factors that

control gene expression. On the other side, the rate of

biochemical reactions depends on activity of enzymes—

gene products. Enzyme activity, in turn, can be regulated

by low-molecular-weight substrates or products of bio-

chemical reactions.

Among all the above-mentioned types of molecular

networks, signaling networks are the most complicated

ones with regard to functional interrelationships between

components. The components of signaling network are

able to interact with each other both physically (as in the

case of ligand–receptor interaction) and by involvement

in chemical modifications of other components (for

example, protein kinases), or in gene expression regula-

tion (intracellular effectors). Thus, proteins can be

involved in different types of molecular networks as their

structure–functional components. However, a special

type of molecular networks, namely, protein networks, is

used for modeling physical protein–protein interactions.

Organization Principles and Properties

of Protein Networks

Molecular networks, along with networks of nerve

filaments, blood and lymph vessels, etc., belong to bio-

logical networks. Both biological and non-biological net-

works (such as social and technological ones) are types of

complex networks, the description of which requires

methods of mathematical analysis and graph theory [119,

120]. As shown by recent studies, all types of complex

networks, both biological and non-biological, are based

on the same structural principle. Using the graph

method, complex networks can be represented as a com-

bination of nodes linked to each other by directed and

non-directed edges. The network components are located

in the nodes, and edges indicate the links between them.

Regulatory gene and metabolic networks can be repre-

sented in the form of graphs with directed edges in which

the link direction points  either to the gene under regula-

tory effect of a transcription factor or direction of a reac-

tion [119, 120]. Networks of signaling molecules may be

represented as graphs both with directed and non-direct-

ed edges. Since both partners are equally involved in pro-

tein–protein interactions, protein networks are shown in

the form of graphs in which adjacent nodes are bound to

each other by non-directed edges (Fig. 2).

Global structure of complex networks can be repre-

sented by large graphs consisting of thousands of inter-

linked nodes. In description of local structure, separate

parts of networks (subnetworks) that can be represented

only by several nodes and links between them are consid-

ered [121]. Among global parameters used for description

of complex network organization principles, topological

and dynamic characteristics are distinguished. Knowledge

of protein network architecture and dynamics obtained

using these parameters makes it possible to reveal the

main principles of functioning of the intracellular struc-

ture [122]. Topological characteristics include the number
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of nodes within the network and the number of edges at

each node (i.e. the number of adjacent nodes linked to it),

an average path length or network diameter, its density

and heterogeneity, and clustering coefficient. Among

dynamic parameters are the network resistance to any

external effects and the frequency and amplitude of oscil-

lations emerging in the network.

An important parameter of complex networks is the

path length or the  distance between two nodes within the

network, characterized by some number of other nodes

between them. The shortest distance between two nodes is

the shortest path length. The average path length within

the network or its diameter is determined by calculation

of average lengths of all such paths between all node pairs.

It has been shown that protein networks exhibit properties

of the “small world” with diameter (i.e. an average path

length) equal to 4-5 nodes. Networks with the “small

world” properties were first described by Watts and

Strogatz [123] who found that distances between nodes in

many biological and non-biological networks are not

long. As a result, processes taking place in most complex

networks are characterized by rapid dynamics and by the

effect of signal enhancement and synchronization.

Networks with “small world” properties are in intermedi-

ate position between regular graphs, which have tendency

to minimization of number of links, and graphs with ran-

dom architecture, which are characterized by numerous

links [124]. Such networks show the presence of hubs

(hub is center or focus), i.e. of a small number of nodes

with numerous links.

Clustering coefficient is the measure of the ability of a

node to form regions with high link density, i.e. clusters

[124]. The mean value of clustering coefficient for all

nodes corresponds to clustering coefficient of the whole

network. In real networks for the node with degree k,

clustering coefficient C(k) is proportional to k–1 where k

shows the number of adjacent linked nodes (k = 1, 2,

3…). Clustering coefficient is the measure of the network

organization heterogeneity and hierarchy. The network

hierarchy means the existence of a multilevel form of

organization with strict subordination of lower levels to

the higher ones. Each of the groups (clusters), character-

ized by a high density of internode links, is a

structure–functional module within the network.

Usually two main types of models, namely random

geometry and scale-free graphs, are used to characterize

the heterogeneity of complex networks [125]. Data of dif-

ferent groups of authors that characterize architecture of

protein networks are ambiguous and contradictory. Przulj

et al. [126] used different models for global and local

analysis of protein networks in S. cerevisiae and D.

melanogaster and showed that random geometry graphs

are better suited for description of physical protein–pro-

tein interactions. The random geometry networks are

described by the G(n,r) graph consisting of n number of

nodes represented by n independent dots, equally and

randomly distributed in metric space, at distance r

between them. Such networks are rather homogeneous,

and quantitative estimation of any node link probabilities

is characterized by a binomial distribution [127]. In the

case of large networks, density of probability that a certain

node has k links is characterized by a Poisson distribution

(Fig. 3):

,

where k = 0, 1, 2… is the number of links per node and λ

is the mean degree.

a

b

c

Fig. 2. Types of complex networks (according to [131]). a)

Schematic representation (on the left) and configuration (on the

right) of scale-free network. Gray circles (on the left) correspond

to hubs. b) Schematic representation (on the left) and configura-

tion (on the right) of a modular network. Here all nodes have an

equal number of links with adjacent nodes. Such a network is free

of hubs. c) Schematic representation (on the left) and configura-

tion (on the right) of hierarchically and modularly organized

scale-free network. The figure is the courtesy of A.-L. Barabasi

[131].
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In this case, each node has approximately equal

probability to be linked to any other node.

However, systemic analysis of the S. cerevisiae, C.

elegans, and D. melanogaster protein network topologi-

cal characteristics, carried out by different research

groups, revealed the scale-free character of most net-

works and the high extent of their clustering [128, 129].

In this case, the scale-free character of protein interac-

tion networks means existence of degree distribution

[128]. The degree distribution function for scale-free

networks can be assigned as P(k) = Ak–γ, where P(k) is

the density of linkage probability between adjacent

nodes, A is a constant, γ index is usually 2 < γ < 3 (most

often it is 2.2) for all organisms [122]. Such distribution

function is indicative of network heterogeneity, i.e. prac-

tically of impossibility of finding in it a typical node suit-

able for characterization of all the other nodes in the

network.

The key property of the scale-free architecture is the

presence of hubs, i.e. nodes with high density of linkages,

whereas most nodes are characterized by a small number

of links (Fig. 2). However, a small number of hubs pro-

vides for stability of the whole cell by uniting all the

nodes in the network. Experiments on hub removal from

protein and metabolic networks in D. melanogaster are

indicative of the role of hubs [129]. Networks with scale-

free architecture appeared to be resistant to random

removal of nodes. Even after removal of a large number

of randomly chosen nodes, links between the remaining

ones in the network are not disturbed and the network

topology does not change. However, the removal of hubs

alone results in 2-3-fold increase of the network diame-

ter.

Biological significance of hub removal was shown in

experiments on S. cerevisiae which demonstrated that

knockout of genes encoding proteins located in hubs was

accompanied by increased lethality. However, removal of

genes encoding proteins located in other nodes had no

such effect [130]. Such network property was called the

lethality–centrality. These data show that proteins locat-

ed in hubs are necessary for the organism survival and as

a whole they can be functionally more important than

proteins located in other nodes.

The hierarchy serves as the fundamental characteris-

tics of many complex networks and shows that large

groups of nodes in such networks consist of smaller

groups (modules) organized in hierarchical order [131].

Modules can be defined as structurally independent units

consisting of several components and capable of relative-

ly independent functioning. In this case, links between

nodes belonging to different modules are characterized by

lower density than links between nodes of the same mod-

ule.

The hypothesis on modular organization of protein

networks was proposed on the basis of systems analysis

using bioinformatics resources of data on expression,

intracellular localization, evolution, structure, and func-

tions of proteins and their interacting partners [132-135].

Although some authors follow the opinion on absence of

biological significance of the protein network modules

[135], quite a number of data are in favor of their func-

tionality. Comparison of experimental methods and func-

tional annotation of genes has shown the possibility of

existence of two types of modules in protein networks: (i)

protein complexes and (ii) dynamic functional modules

that combine proteins involved, for example, in cell cycle

regulation [136].

The existence of strong correlation between struc-

ture, function, and intracellular localization of proteins

that are involved in network formation has been demon-

strated in a number of works [137, 138]. For example,

information about interacting pairs of proteins obtained

from the DIP database was used to construct protein net-

works for S. cerevisiae. It was shown using the

Girvan–Newman (G-N) algorithm and MoNet program

that these networks are organized in 86 simple modules,

each of which consists of more than three proteins [133].

Each module was represented mainly by functionally

interrelated proteins. Other authors used an integrated

approach with involvement of data obtained by gene

expression analysis using oligonucleotide chips, along

with proteomics results, and revealed 266 functional

modules in yeast protein networks [139]. The probability

of interaction between proteins of functionally different

modules was low [140].

It was shown using computer modeling that modular

organization of molecular networks can be a result of

Fig. 3. Comparative graphs of degree distribution functions for

protein networks with random geometry (squares) and “scale-

free” protein networks (circles). Linear graphs are given on the

left, graphs in logarithmic scale are on the right (according to

[85]). The bell-shaped graph of distribution function for protein

networks with random geometry points to static homogeneity of

such networks. The graph of distribution function for the “scale-

free” protein networks follows formula P(k) = Ak–3 and charac-

terizes the network heterogeneity. The character of the decrease in

the distribution function suggests existence of numerous nodes

with a small number of links and small number of hubs with

numerous links.

k k

P
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gene duplication. Revealing the fact that evolution of pro-

tein networks takes place at the level of modules leads to

necessity of calculation of degree of conservation between

two interacting protein pairs. This is achieved by compar-

ison of primary structures of network proteins by align-

ment as well as by comparison of different network archi-

tecture [141, 142]. In this connection, special algorithms

for searching for similar networks among a set of molecu-

lar networks in different biological species or within one

species have been proposed in some works.

Construction of spatial (3D) models and their visu-

alization are used to characterize topology of protein net-

works [143, 144]. Such models are created using such

proteomics data as intracellular localization of proteins,

approximate number of copies of each protein within a

cell, their physicochemical characteristics, and data on

protein posttranslational modifications and orthologs.

Special databases contain information about organelle-

specific protein–protein interactions, which is also used

for three-dimensional modeling [145-147].

Unlike static graphs, really existing networks are

characterized by dynamic properties, i.e. by changes in

space and time. Temporal parameters of protein–protein

interactions can be studied by gene expression analysis

using oligonucleotide chips. Calculation of correlation

between expression of proteins located in hubs and that of

their interacting partners made it possible to distinguish

two types of proteins located in hubs [148]. The high

extent of co-expression of the proteins was specific for the

first type, while low extent was specific for the second.

Hubs of the first type are static (party hubs), and the sec-

ond type hubs are dynamic (date hubs). It was supposed

that proteins located in static hubs are characterized by a

constant set of interacting partners, while proteins in

dynamic hubs interact with different partners at different

times. Probably the first type hubs plays a local role in

networks and are characterized by strong links within a

functional module. The second ones are of global signifi-

cance because they bind different functional modules

with each other. It was shown that the removal of dynam-

ic hubs results in more severe consequences (increasing of

diameter and disintegration of a network) compared to

the removal of static hubs. However, soon it became clear

that increased lethality was caused by removal of either

type of hubs [149, 150].

Among important dynamic characteristics of com-

plex networks, their robustness to any factor and period-

ic oscillations should be distinguished. These oscillations

are indicative of cyclic character of intracellular process-

es. Cycles of cell activity are controlled by cascade mech-

anisms following the principle of direct and feedback reg-

ulation [151, 152]. The activity of a cell depends on coor-

dinated functioning of genes and their protein products

as well as low-molecular-weight metabolites involved in

regulatory pathways. Dynamic characteristics of protein

networks and methods of their modeling will be consid-

ered in the section “Methods of Dynamic Modeling in

silico”.

Biomedical Significance of Protein

Interaction Network Analysis

Analysis of protein interaction networks can be used

to solve a number of problems in fundamental medicine,

among which there are revealing and understanding of

mechanisms of  arising and development of tumor, neu-

rodegenerative, cardiovascular, and autoimmune dis-

eases, as well as search for molecular targets for drugs.

In a number of works using the OPHID database

containing experimentally confirmed or predicted infor-

mation on protein–protein interactions, graphs illustrat-

ing protein networks with involvement of products of

genes expressed in tumors were constructed. It was shown

that networks of tumor-associated protein products of

genes characterized by different regulatory pathways, are

larger than the those formed by a random set of proteins

[153]. This suggests existence of functional interrelations

between proteins. A carcinogenesis model based on

analysis of protein interaction networks was proposed that

considers it as a process specifically organized at the

molecular level and characterized by decreased expres-

sion of topologically and functionally associated proteins

synchronized with increased expression of other proteins

[154].

Presently available data on the disease-associated

protein networks are incomplete and ambiguous. It has

been also shown that proteins associated with similar dis-

eases are characterized by higher probability of physical

interaction with each other. A hypothesis concerning

existence in protein networks of functional modules spe-

cific for different diseases was put forward. According to

this hypothesis, proteins necessary for embryonic devel-

opment and normal cell functioning are synthesized in

different organs and are located in hubs of protein net-

works, while the majority of disease-associated proteins

are located in the network periphery [155].

However, it has been shown in a number of works

that tumor-associated proteins are characterized by a

high density of links and in contrast to normal proteins,

they are located in central hubs and contain numerous

structural domains involved in protein–protein interac-

tions [156-158]. Tumor-associated proteins contain dou-

ble the number of interacting partners compared to nor-

mal proteins. The presence of numerous interacting part-

ners can be responsible for the central role of these pro-

teins in the network and means their higher involvement

in intracellular pathophysiological processes. Wachi et al.

mapped in the human interactome protein products of

360 genes with increased expression and of 270 genes with

lowered expression in lung cancer [159]. It was found that

over-expressed proteins are characterized by a larger
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number of links compared to proteins demonstrating

decreased expression. Thus, a high extent of centraliza-

tion was shown for proteins with increased synthesis in

tumor compared to normal tissue.

Analysis of the protein network modules shows that

they contain products of co-regulated and functionally

interrelated genes and can be associated, for example,

with gene polymorphism or with mechanisms of emer-

gence of a disease [160]. Moreover, proteins exhibiting

their activity only within a certain functional module can

be considered as markers of this module or as potential

drug targets. Revealing of tumor-associated genes and

their protein products interacting with known proteins,

which represent tumor biomarkers, can contribute to

elaboration of a new strategy in diagnosis of diseases [161].

Application of special computer programs such as

Cytoscape can be used to comparatively visualize experi-

mental data and to use them together with information

contained in annotated databases on molecular networks

[162]. For example, it was shown using this approach that

proteins involved in regulation of epithelial–mesenchy-

mal transition initiated in kidney cells by TGF-β1 form a

common network [163]. Analysis of gene ontology

revealed in signaling pathways hyperexpression of proteins

that control morphogenesis and embryonic development.

Analysis of molecular networks also contributes to

understanding of mechanisms underlying emergence of

complex diseases caused by genetic and non-genetic fac-

tors, e.g. environmental factors, nutrition, etc. [164]. On

this basis, a new approach to disease diagnosis and classi-

fication is proposed. Analysis of molecular networks also

allows revealing new potential drug targets and detection

of drug resistance of cells. This actually provides for new

approaches to the treatment of diseases. For example,

comparison of networks formed by proteins involved in

apoptosis of HeLa cells and normal human fibroblasts

contributed both to elucidation of the mechanism of

apoptosis and to the search for potential drug targets

[165]. The existence of numerous interactions (841) in

tumor (HeLa) and normal cells was detected. About

18.7% of these interactions were present in tumor cells

and absent in normal cells. On the contrary, approxi-

mately the same number of interactions were revealed in

normal cells and were not found in tumor ones. As a

whole, these interactions were determined as potential

drug targets. It was supposed that Bcl2, PT53 proteins,

and caspase-3 can be drug targets. An interesting result of

this work is also revealing of proteins located in static and

dynamic hubs of protein networks. Caspase-3 was shown

to be located in dynamic hubs of networks formed by pro-

teins responsible for apoptosis of normal and tumor cells.

Caspase-2 and caspase-9 were responsible for topological

distinctions between the networks. More detailed analysis

of the role of molecular networks in elucidation of disease

mechanisms, diagnosis, and classification is described in

several reviews [155, 156, 166].

Protein Complexes

Protein–protein interactions form the basis of func-

tionally important stable protein complexes. Microscopy

methods revealed that protein molecules are irregularly

distributed in cytoplasm of living cell and exist there as

aggregates [167-169]. The content of macromolecules in

such aggregates can vary from 50 to 400 g/liter, so pro-

tein–ligand and protein–protein interactions, conforma-

tional transitions of the macromolecules, as well as for-

mation of self-organized supramolecular structures

become easier [170].

Modern proteomics methods provide quite detailed

characterization of composition and organization of

these intracellular structures. The protein complexes are

key supramolecular structures in which products of sever-

al genes are integrated and which are mainly intended to

carry out some interrelated functions. They may be a

multienzyme complex that catalyzes a chain of biochem-

ical reactions or a complex of proteins that are partici-

pants of a signal transduction pathway.

Protein complexes are formed due to the fact that

each protein molecule can simultaneously have several

protein-binding sites. For example, studying linker pro-

tein for T lymphocyte activation (LAT) has shown that

four sites containing phosphorylated tyrosine residues

interact with SH2 domains of signaling pathway adapter

proteins [171]. This stimulates formation of protein com-

plexes, making easier signal transduction from the mem-

brane into cells, which is the basis for normal maturation

and differentiation of immunocompetent cells.

Mutations that lead to replacement of tyrosine residues

involved in binding of different adapter proteins cause

disturbances in T lymphocyte differentiation and B lym-

phocyte maturation.

In a protein complex a core formed by a constant set

of proteins is surrounded by peripheral part of variable

proteins. The cooperativity in interaction between

different proteins within such complex was shown,

and this is determined by different affinity and specifici-

ty of their binding to each other [172]. The character

and mechanism of association and dissociation of such

complexes mainly depends on their size. Investigations

in S. cerevisiae showed exponential decrease in distribu-

tion in size of protein complexes. However, studying

dynamics of protein complexes has shown that their

association can be independent of the complex size

[173].

Some proteins are able to be simultaneously involved

in formation of several complexes, which can be

explained by multifunctionality and multimodularity of

these proteins. Since protein complexes are mainly

intended for carrying out a certain function, then multi-

functional proteins can realize different functions within

various complexes with involvement of different func-

tional modules.
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STRUCTURAL AND FUNCTIONAL MODULES

RESPONSIBLE FOR PROTEIN INTERACTIONS

Revealing of the same proteins within different pro-

tein complexes can be explained by the presence of sever-

al functionally important sites including those responsible

for protein–protein interactions. This means multimod-

ularity of protein structure. Recent studies show that

modularity is a universal property of living beings and is

revealed at all levels of their organization. As mentioned

above, modularity is characteristic of also protein net-

works, and this determines complexity and hierarchic

character of their organization.

Modular organization can be also characteristic of

individual proteins, and this means that a protein mole-

cule can consist of several (and even of a great number)

of structurally and functionally independent elements

(domains and motifs). In this case, each module is

responsible for a protein function and can function inde-

pendently of others. As a result, a protein molecule

acquires the ability to carry out a whole complex of dif-

ferent functions; such proteins are called multimodular

and polyfunctional [17, 18]. Probably these functions

are interrelated, i.e. the set of functional modules of any

particular protein is evidently formed nonrandomly. The

cell type, its microenvironment, physiological and

pathophysiological cell condition, as well as microenvi-

ronment of the protein molecule itself define which pro-

tein module can be involved in protein functioning.

Mosaic structure, multimodularity, and multifunctional-

ity are probably characteristic of most eukaryotic pro-

teins.

Structurally similar modules can appear within dif-

ferent proteins, probably causing similarity of some of

their functions. Molecules of different proteins can be

constructed by combination of a limited set of structural-

ly and functionally independent modules, which in turn is

determined by physiological (biological) role of a protein

[174]. This hypothesis is confirmed by experiments on

creation of artificial multifunctional proteins formed by

different combinations of peptide motifs with already

known function. These experiments showed (i) compact

packing of a protein molecule is not a necessary condition

for its function realization; (ii) function of a motif

depends on composition and arrangement of a set of

motifs [175]. Moreover, it appeared that rearrangements

of different motifs can produce proteins with absolutely

different functions.

Protein multimodularity can result in significant

complication of the character of a protein interaction

network [176]. If multimodular, multifunctional proteins

are located in the nodes of protein networks, each node

can be represented not by a separate protein but by its

functional module, and internodal links become inter-

laced. In this connection, it seems important to design

structure–functional maps for multimodular and multi-

functional proteins in order to reveal sites responsible for

any function, including protein–protein interactions.

It has been shown experimentally that protein–pro-

tein interactions involve domains of some proteins and

corresponding short linear peptide motifs of other pro-

teins. If a protein contains several domains for interaction

or several binding motifs, it can simultaneously interact

with several proteins, and this results in formation of pro-

tein complexes. Examples of domains participating in

protein–protein interactions are SH2 and PTB domains

that bind to phosphorylated tyrosine residues within

receptors, or SH3 and WW domains that react with pro-

line-rich protein motifs [177-179].

One model system for studying protein–protein

interactions is the SH3 domain interaction with proteins

that contain proline-rich domains [180, 181]. Protein

networks resulting from interaction of different proteins

with SH3 domains were revealed in S. cerevisiae, in which

28 proteins containing such domains were detected. The

use of the Y2H technique revealed 233 interactions with

involvement of 145 proteins, and the phage display tech-

nique revealed 394 interactions between 206 proteins.

Structural analysis of the SH3 domain has shown

that its polypeptide chain contains about 50-70 amino

acid residues and is organized in five β-folded structures.

To date over 1500 different SH3 domains are known and

PXXP motif is their classical binding site (where P is pro-

line and X is any amino acid) [182-184]. SH3 domains

are present within such enzymes as kinases, lipase, or

GTPase. The best studied are functions of SH3 domains

in adapter proteins like c-Src or Grb2, participating in the

signal transduction from membrane receptors to their

cytoplasmic effectors. For example, proline-enriched

tyrosine phosphatase (PEP) binds to SH3 domain of

cytoplasmic tyrosine kinase Csk (C-terminal Src kinase)

with involvement of a PXXP motif [184]. It was shown

that the amino acid residues including A40, T42, and L43

within the SH3 domain and forming hydrophobic bonds

with PEP take part in this interaction. Another example is

interaction of PXXP motifs of dynamin-1 and dynamin-2

proteins with purified SH3 domains of such proteins as c-

Src, Grb2, and intersectin. Studying of kinetics of such

interactions has shown that different SH3 domains can

bind to the same proline-rich domain. Evidently, under

conditions in vivo, several SH3 domains can compete for

binding with PXXP motifs [185].

Short linear motifs are sequences mainly consisting

of 3-10 amino acid residues responsible for a protein

function [186]. They are involved in protein–protein

interactions, interactions of the protein–ligand and pro-

tein–nucleic acid type, and can serve as sites of post-

translational protein modifications such as phosphoryla-

tion, glycosylation, etc. The first linear motifs found

within proteins were KDEL and HDEL sequences that

are functional sites of proteins of endoplasmic reticulum

and are responsible for prevention of secretion of these
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proteins [187]. It has been also shown that the KKXX

motif found in cytoplasmic domain of transmembrane

proteins functions as a signal site responsible for return of

proteins from Golgi apparatus into cisternae of endoplas-

mic reticulum [188, 189].

It is difficult to reveal short linear motifs consisting of

a small number of amino acid residues by comparison of

the protein primary sequences. So, such labor-consuming

and multistep experimental methods as point mutagenesis

or phage display are usually used for revealing short linear

motifs and the role of any amino acid residues in their

functioning. There are now appearing new bioinformatics

resources for detection of short linear motifs within pro-

teins [190, 191]. Computer methods for binding motif

revealing are based on the use of databases on

protein–protein interactions and extraction of motifs

common for the group of proteins interacting with each

other. Special algorithms like D-MOTIF, D-STAR,

MEME, Gibbs Sampler, PRATT, and TEIRESIAS can be

used for this purpose [192-195]. This approach is based on

the assumption that proteins having common interacting

partners should be characterized by existence of similar

motifs. Presently appearing databases contain information

about all known functionally important protein sites. For

example, the SCOWLP database contains information

about over 9,000 protein-binding sites of proteins belong-

ing to over 2,500 families. It appeared that members of

65% of families contain more than one binding site and

22% of sites are involved in formation of complexes with

several proteins belonging to different families [82, 83].

Methods of comparative genomics and gene cluster-

ing were used for detection of functionally important

oligopeptides in proteins of seven biological species [196].

This approach revealed tri- and tetrapeptides such as sig-

naling motifs SKL, KDEL/HDEL, and KKXX and

allowed predicting new motifs that may be of functional

significance. Special tools allow simultaneous determina-

tion of potential contacts between amino acid residues of

different polypeptide chains [197]. For example, the Con-

Struct Map algorithm allows investigation of changes in

protein spatial structure resulted from amino acid replace-

ments or, on the contrary, determination of conserved

residues important for interaction. This algorithm also

provides a possibility to study structure–function relation-

ships between unrelated and non-homologous proteins.

METHODS OF DYNAMIC MODELING in silico

Mathematical and Computer Modeling

Static graphs used for description of topology and

properties of protein networks do not reflect conforma-

tional and dynamic characteristics of macromolecular

complexes and multiplicity of protein functions. Because

of this, it is now important to develop methods for

description of conformational and dynamic properties of

protein complexes and to create dynamic models of intra-

cellular processes. The following methods are used in sys-

tems biology: (i) mathematical modeling using a system

of equations, or (ii) computer modeling based on special

algorithms for construction, design, and visualization of

intra- and intercellular processes and events [198-200].

Mathematical modeling has become an important

tool for an integrated approach to understand complicat-

ed intra- and intercellular processes [201]. It becomes

widely used for description of events and processes taking

place in a living cell and serves as a universal language for

interpreting experimental data and prediction of proper-

ties and behavior of biomacromolecules under various

conditions. Biomolecular systems including ligands,

receptors, adapter proteins, and intracellular effectors of

signaling pathways are best studied from the point of view

of mathematical modeling [202]. For example, an

attempt using this approach was undertaken to elucidate

mechanisms of fibroblast proliferation in response to epi-

dermal growth factor (EGF) [203]. Using kinetic param-

eters of the growth factor binding to its receptor as well as

dynamic parameters of the ligand–receptor complex

internalization, degradation, and recycling, and DNA

synthesis, it became possible to explain many available

experimental data and to predict new properties of this

signal system. A similar situation exists in investigation of

dynamic properties of protein networks including cell

division regulators [204, 205]. In this case, mathematical

modeling is used for estimation of different dynamic

parameters of the cell cycle, such as the rate of biochem-

ical reactions, dynamics of protein accumulation and

degradation, duration of different cell cycle stages or its

arrest in interphase [206]. Mathematical models can be

also used for prediction of phenotypic consequences of

mutations, such as those in genes encoding protein regu-

lators of the cell cycle.

Computer modeling methods are often used for

studying of dynamic characteristics of intracellular signal

transduction, such as the cascade mechanism of signaling

mediated by mitogen-activated protein kinase (MAPK).

The activity of the cascade signal transduction compo-

nents is regulated following the positive or negative feed-

back mechanism. Functional organization of such cas-

cade mechanisms provides for existence of the phenome-

non of cell supersensitivity to external signals. The cell

sensitivity significantly increases after each increase in

the number of components of such a cascade mechanism.

These properties determine the existence of oscillations

or periodic fluctuations of the MAPK phosphorylation

level [207]. It was predicted using kinetic data that these

oscillations can last from several minutes to several hours.

The decrease and increase in the MAPK phosphorylation

level result in emergence of waves of signal transduction

from the cell membrane to the cell nucleus, i.e. periodic

signal quenching and enhancement [208]. The latter pro-
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vides for the possibility of signal transduction over suffi-

ciently long distances. Studying of dynamics of ERK

(extracellular-signal-regulated kinase, MAPK being an

example) activation has shown that its short-term activa-

tion depends on initial level of ligands—EGF and the

nerve growth factor. However, long-term activation is

determined by final concentration of the growth factors

[209]. In this case, dynamics of ERK activation depends

on activation dynamics of small GTPases Ras and Rap1

that determine temporal and concentration parameters of

activation of intracellular effectors.

Modeling is a way of estimating system stability and

oscillations in it under certain assigned parameters. If a

model “works” only in a limited range of assigned param-

eters, then the system for which the model is used is

extremely sensitive and is hardly able to be of biological

significance. Studying of periodic oscillations in dynam-

ics of the protein interaction network of signal transduc-

tion mediated by the nuclear factor NF-κB has shown

that the number, amplitude, and frequency of oscillations

are significantly changed along with changes in the model

parameters [210]. In this case, synergism of effects is

observed among different parameters, i.e. effects of a cer-

tain parameter directly depend on the level of another

parameter and vice versa. This is indicative of complicat-

ed organization of complex networks and functional

interrelationship of their components.

Molecular Dynamics Methods

Protein–protein interactions are often accompanied

by conformational changes of the proteins involved [211,

212]. Molecular dynamics (MD) methods, now allowing

detailed modeling of conformational changes as well as of

intra- and intermolecular interactions, and the result of

the force field effects on individual atoms in the mole-

cule, can be used to investigate protein conformational

mobility [213-217].

Molecular dynamics methods are based on calcula-

tions of trajectories of atoms in molecules via solution of

a system of classical equations of motion using Newton’s

laws. Current MD methods are available for systems con-

taining up to 106 atoms. There is a worldwide tendency of

rapid increase in supercomputer productivity and acces-

sibility, which enhances interest in MD methods [218,

219]. Results of modeling using modern force fields agree

well with physicochemical experimental results. The use

in numerical experiments with the use of explicit solvent

is no longer a serious problem [220]. The use of distrib-

uted computational systems, i.e. grids consisting of tens

of thousands of computers working in parallel also

increase the capabilities of MD methods [221]. The

advantage of such approach is the possibility of computa-

tion control from different, sometimes geographically

remote points, and interaction between researchers carry-

ing out computations from different computers. All this

contributes to the situation when MD methods become a

powerful tool for investigation of structure and properties

of such biomacromolecules as proteins and nucleic acids,

as well as of mechanisms of their interactions and func-

tioning.

MD methods can be used to study detailed mecha-

nisms underlying the stability of biomacromolecules,

their unfolding and folding, ion transfer through mem-

branes, conformational-dynamic changes of proteins and

peptides, and their internal dynamics [222-225]. MD

methods are also an important step in computer modeling

of three-dimensional (3D) structure of proteins and their

complexes with ligands based on homology with protein

with known three-dimensional structure obtained exper-

imentally by X-ray analysis [226, 227]. They allow esti-

mation of the model correctness and detection of inade-

quacy in it. MD methods also provide for visual presenta-

tion of intra- and intercellular processes and often

become a good basis for proposing of  hypotheses con-

cerning cell functioning.

There are now numerous examples of the successful

use of MD methods for studies of functioning of bio-

macromolecules, including protein–protein interactions.

An example of the use of MD methods is in investigation

of mechanisms of SH3 domain interactions with different

peptides containing the PXXP motif. Experimental data

on interacting partners were confirmed by the MD

method. Relaxation analysis confirmed a pronounced

effect of the SH3 domain dynamic mobility on pro-

tein–protein interaction [181]. Conformational-dynamic

changes in Hck and c-Src proteins resulted from phos-

phorylation of C-terminal tyrosine residues were also

studied by MD methods. It was shown that dephosphory-

lation results in conformational changes in protein mole-

cules and in disturbance of interaction between SH2 and

SH3 domains of these protein kinases with their following

activation [228]. Point replacement by glycine of an

amino acid necessary for interaction between domains

also results in activation of these proteins.

Another example of the use of MD is the study of

aqueous solvent effect on protein–protein interactions

[229]. For this purpose, 17 protein complexes including

proteins of two protein families were analyzed. Energy

and dynamic properties were compared for amino acid

residues interacting directly or via one or two water mol-

ecules. These studies have shown that the presence of one

water molecule between interacting amino acid residues

(wet spots) results in noticeable decrease in their motility.

Such water molecules significantly contribute to changes

in free energy of protein complexes.

MD methods are now also widely used for modeling

processes taking place in cell membranes [222, 223].

Modeling interaction of two signal peptides of the hepati-

tis C virus protein NS2 with the cell membrane showed

that one of the peptides consists of two rigid helical struc-
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tures linked by hinge region. This region provides for the

polypeptide chain flexibility due to which the peptide is

able to penetrate relatively easily into a membrane.

Computational experiments have shown that point

replacements of amino acid residues in the hinged region

results in the loss of structure flexibility. The peptide is

transformed into a rigid helix, and this drastically restricts

the possibility of its penetration through the cell mem-

brane (Fig. 4). Thus, computer modeling can be used for

prediction of changes in the pathogenic properties of a

virus, and the resulting information can be useful in

design of antiviral vaccine.

MD methods are now also successfully used for

modeling biomolecules with potential therapeutic effect

and computer design of nanocontainers for directed

delivery of biologically active substances [230]. For exam-

ple, MD methods are a powerful tool for design of drugs

that can be used for treatment of a number of diseases,

including tumors, infectious and allergic diseases, etc.

CONCLUSION

Studying a cell from the point of view of systems

biology suggests integration of all its components at dif-

ferent levels of organization—from atom to cell and tis-

sue. Such integration implies interrelation, interdepend-

ence, and interaction of these components, which is the

basis for their co-operative and coordinated functioning.

Molecular networks showing complexity of biological

system organization are among subjects of systems biolo-

gy. Different types of molecular networks including gene,

protein, metabolic, and signaling networks are used for

modeling real intracellular processes.

Since proteins as key biomacromolecules are partici-

pants of almost all intra- and intercellular processes, living

cell modeling requires analysis of the whole set of dynam-

ic proteomics data. Physical protein–protein interactions

existing within a cell form protein networks. Protein net-

works are characterized by “scale-free” nature, modulari-

ty, hierarchy of organization, and existence of the “small

world” property. This determines rapid dynamics of

processes described using protein networks.

Modern high-throughput experimental methods

used in studies of protein–protein interactions are not

without limitations. Results of different groups of authors

are sometimes quite contradictory. Because of this, an

important problem at this stage of the development of this

field is elaboration of approaches for obtaining more reli-

able and trustworthy data on protein–protein interac-

tions. These data contribute to solution in the long-term

perspective of two fundamental problems of systems biol-

ogy: (i) revealing dynamic structure–functional relation-

ships at different levels of organization of the living sys-

tem; (ii) creation on this basis of a dynamic model of a

cell (virtual cell) and studying effects of different factors

on its functioning. All this, in turn, stimulates develop-

ment of new approaches for investigation of mechanisms

of development, diagnosis, and treatment of diseases.
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