
Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud
Data Center

Jing Bi1,3, Zhiliang Zhu1,2, Ruixiong Tian3, Qingbo Wang3
School of Information Science and Engineering1, College of Software2,

 Northeastern University, Shenyang 110004, P.R. China
IBM China Research Lab3, Beijing 100094, P.R. China

E-mail: neubijing@gmail.com, zzl@mail.neu.edu.cn, {tianruix, wangqbo}@cn.ibm.com

 Abstract—Dynamic provisioning is a useful technique for
handling the virtualized multi-tier applications in cloud
environment. Understanding the performance of virtualized
multi-tier applications is crucial for efficient cloud infras-
tructure management. In this paper, we present a novel
dynamic provisioning technique for a cluster-based virtua-
lized multi-tier application that employ a flexible hybrid
queueing model to determine the number of virtual machines
at each tier in a virtualized application. We present a cloud
data center based on virtual machine to optimize resources
provisioning. Using simulation experiments of three-tier
application, we adopt an optimization model to minimize the
total number of virtual machines while satisfying the customer
average response time constraint and the request arrival rate
constraint. Our experiments show that cloud data center
resources can be allocated accurately with these techniques,
and the extra cost can be effectively reduced.

Keywords-cloud computing; resource provisioning; virtua-
lized application; performance modeling

I. INTRODUCTION
Virtualization technologies have facilitated the reali-

zation of cloud computing services [1]. Cloud computing [2,
3] includes three kinds of computing capacities as a service
in different abstraction levels for different business pur-
poses, such as Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS). Here,
we consider only IaaS, which aims to provide computing
resources or storage as a service to customers. One major
player in cloud computing is Amazon’s Elastic Compute
Cloud (EC2), which comprises several data centers world-
wide. Amazon EC2 lets customers deploy virtual machines
(VMs) on-demand on Amazon’s infrastructure and pay
only for the computing, storage, and network resources
they use. While a number of recent papers address
virtualization of enterprise applications, such as resource
virtualization [4, 5], on-demand resource provisioning
management based on virtual machines [6, 7], and QoS
management of virtual machine [8]. These works lead to
improvements in the performance of virtualization and
resource utilizations. Since IT infrastructure customer
requirements for cloud infrastructure services are varied,
infrastructure providers have to ensure that they can be
flexible in their service delivery while keeping the
infrastructure service customers efficiently increasing

ability of commodity hardware to run applications within
VMs. VMs allow both the isolation of applications from
the underlying hardware and other VMs, and the
customization of the infrastructure resource to meet the
requirements of the IT infrastructure customer.

However, the application of virtualization technologies
shows its advantages for further challenges, such as the
intelligent allocation of VM resources for managing com-
puting resource demands of the infrastructure customers. In
addition, enterprise IT infrastructure customers with
virtualized applications require lesser resource cost, and
thus save resource by distributing workload requests to
virtualized multi-tier applications in cloud environment.
This creates the need for establishing a computing
atmosphere for dynamically provisioning cloud resources
from multi-tier domains within and across enterprises.
Furthermore, there are many open challenges involved in
on-demand resources dynamic provisioning for cloud data
centers, such as the CPU, memory, disk and network
bandwidth, to be partitioned among the resident VMs, and
optimal configuration for VMs.

Therefore, this paper considers the current trends in the
environment of cloud computing and presents rela-
tionships between performance and resources provision-
ing of virtualized applications. In order to address the
above challenge, this paper proposes a hybrid model for
dynamic resource provisioning in VM-based cloud data
center, which can be based on combination of an M/M/c
model and multiple M/M/1 queueing models methods.
Such model is important for the following reasons: (1)
Resource provisioning, a number of cluster VMs are
dedicated to virtualized multi-tier application and the model
must determine how many VMs are allocated to virtualized
multi-tier application to satisfy the requirement of given
response time for customers, that is, the model can not only
meet the needs of customers, but also cause little waste of
resources. (2) VM configuration, which enables various
configuration parameters of the VM to be determined for a
certain performance goal. Thus we can determine the most
effective resource utilization by VM optimal configuration.

The main contributions of the paper include: (1) We
develop a hybrid model composed of an M/M/c model and
multiple M/M/1 models to provision computing resources
for virtualized application; (2) Based on the proposed
hybrid model, an optimization model to minimize the total

2010 IEEE 3rd International Conference on Cloud Computing

978-0-7695-4130-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CLOUD.2010.53

370

number of virtual machines for computing resources is
developed, and the proposed optimization model is verified
with the three-tier virtualized application of handling
dynamic workloads through simulation.

The rest of this paper is organized as follows. In Section
2, we describe the infrastructure management of a cloud
environment for virtualized multi-tier applications. Section
3 presents the analytic models used to solve the defined
problem. Section 4 demonstrates the results of prototype
experiments. In Section 5, we review some related work in
the area of dynamic and scalable resources provisioning.
Concluding remarks and discussion about future work are
given in Section 6.

II. THE DYNAMIC VIRTUAL MACHINES IN
CLOUD DATA CENTER

In order to dynamically provisioning resources for
virtualized multi-tier application execution environments
(VAEEs) of different customers, the most common app-
roaches are based on self-managing techniques [9], such as
Monitor, Analyze, Plan, and Execute (MAPE) control
loops architecture is needed. The goal is to meet the
virtualized application requirements while adapting IT
architecture to workload variations. Usually, each request
requires the execution of virtualized application allocated
on the VM of each physical tier. A cloud data center en-
ables multiple virtualized applications may be increased
when workload increases and reduced when workload
reduces. This dynamic resource provision allows flexible
response time in a VAEE where peak workload is much
greater than the normal steady state. Figure 1 provides a
high-level dynamic resource provision architecture for
cloud data center, which shows relationships between
computational resources pool and self-management com-
munity.

Computational Resources Pool contains physical
resources and virtualized resources. Plenty of VMs hold
several VAEEs sharing the capacity of physical resources
and can isolate multiple applications from the underlying
hardware. VMs of each tier of a virtualized application may
correspond to a physical machine. Computational resources
pool delegates self-management community for satisfying
the requirement goal of the customer to automatically
allocate sufficient resources to the each tier of virtualized
application. Self-management community means mecha-
nisms to automate the VMs of configuring and tuning the
virtualized multi-tier application so as to maintain the
response time requirements of the different customers. It
generates result of run-time provisioning for cloud data
center. It includes four components as follows:
 Monitor: collects the workload and the performance

metric of all running VAEEs, such as the request arrival
rate, the average service time, and the CPU utilization,
etc.

 Analyzer: receives and analyzes the measurements from
the monitor to estimate the future workload. It also
receives the response times of different customers.

 Resource Scheduler: sets up performance analytic
models for each tier of the VAEE, and uses its optimizer
with the optimization model to determine resource
provisioning according to these workload estimates and
response time constrains of different customer such that
the resource requirements of the overall VAEE is
minimized.

 Virtualized application Executor: assigns the VM
configuration, and then runs the VAEEs to satisfy the
resource requirements of the different customers
according to the optimized decision.

Figure. 1 The dynamic resource provisioning of cloud data center

This paper focuses on the design of resource scheduler
for virtualized multi-tier applications. The goal is to mini-
mize the using of resources under a workload while satis-
fying different customer for the constraints of average
response time.

III. VIRTUALIZED MULTI-TIER APPLICATION
QUEUEING MODEL

In this section, we present a hybrid queueing model for
a virtualized multi-tier application, and then define a non-
linear constrained optimization problem for dynamic res-
ource provisioning. Moreover, the optimal model of rela-
tionships between performance and resources provision-
ing is used to maximize resources utilization according to
the response time of customer requirement.

A. Analytic Performance Model
A virtualized multi-tier application in cloud computing

environment is deployed on multiple virtual machines
(VMs), and each tier provides certain functionality to its
preceding tier. Here we consider an online e-commerce
application that consists of n tiers, denoted by 1 2, ,..., nT T T .
We assume that there are c parallel identical VMs in the
each tier of VAEE, and the requests of all the arriving
sessions enter into a common queue maintained by the on-
demand scheduler (ODS), waiting for available resources
in the first tier. The ODS schedules these requests of each
session. Note that in our system, scheduler decisions are
made only for the first tier of the virtualized application.
Once scheduled, a request is decided processing at the VMs
of the first tier within the virtualized application.

371

Dispatcher of other tiers is used for collecting requests
processed in the pre-tier and distributing them to multiple
parallel VMs queueing models of that tier to execute.
Multiple VMs queueing models of other tiers are
responsible for dynamic resource provisioning by the
requests of that tier. Each tier is assumed to employ a
perfect load-balancing element for a virtualized application
that is responsible for processing requests at that tier, and
each request is forwarded to its succeeding tier for further
processing. Once the result is processed by the final tier nT ,
the results are sent back by each tier in the reverse order
until it reaches 1T , which then sends the results to the
customer. In more complex processing scenarios, each
request at tier iT , can trigger zero or multiple requests to
tier 1iT + . For example, a static web page request is
processed by the Web tier entirely and will not be
forwarded to the following tiers. On the other hand, a
keyword search at a Web tier may trigger multiple requests
to the next tier. We also assume that database tier with a
shared-everything architecture [10], which can be clustered
and replicated on-demand. Through modeling all the tiers
and their interactions, our multi-tier model allows us to
integrate decisions for the first tier into scheduler and other
tiers into each VM. Therefore, the amount of concurrency
VMs may be determined by the number of concurrent
requests that tier supports according to our model. In order
to capture the virtualized multi-tier application for dynamic
resources provisioning, we define that our model is a
hybrid analytical model, which accords with real environ-
ment. This not only saves the network transmission time
but also improves the processing efficiency of the request.

B. Open Queueing Model of Virtualized multi-tier
application
The workload on the virtualized multi-tier application is

typically session-based customer, where a customer session
consists of a succession of requests. At a time, multiple
concurrent customer requests interact with the virtualized
multi-tier application. In order to capture the multiple
concurrent requests of customer sessions, we model the
serving system as an M/M/c queueing system to the first
tier, and other tiers can be modeled as multiple M/M/1
queueing systems. The requests of each tier are serviced in
a first-come-first-served (FCFS) order, as shown in figure 2.

,1sλ

1,1μ

2,1μ

1,1cμ

,1,2sλ
,2,2sλ

2, ,2s cλ

1, 2μ

2,2cμ

,1,3sλ

,2,3sλ

3, ,3s cλ

3,3cμ
, ,ns c nλ

,2,s nλ
,1,s nλ

2,2μ 2,nμ

1,nμ

,nc nμ

2,3μ

1,3μ

Figure. 2 Open queueing model for virtualized multi-tier application

Figure 2 shows the open virtualized multi-tier applica-
tion queueing models. The arrival of requests at the each
tier for a virtualized application is assumed to be describ-
ed by a Poisson distribution [11, 12], i.e. inter-arrival time

between requests subjects to the negative exponential
distribution. This assumption is validated by analyzing
traces taken from an e-commerce multi-tier application
website. Besides, the average service time of requests is
also considered the negative exponential distribution.

The first step in solving our model is to determine the
capacity of multiple VMs for each tier in terms of the
request rate they can handle. Given the capacity of each tier
VMs, the next step computes the number of VMs required
at each tier to satisfy the requirement of customer response
time. Here, let R be the desired end-to-end response time
for a virtualized multi-tier application. Denote ()1 ,rT

() ()2 ,...,r rT T n as the per-tier end-to-end response times,

such that ()
1

n

r
i

T i R
=

=∑ , these values are obtained by given

analytical model. We let ,s iλ be the aggregate request
arrival rate to the tier i for a customer s, such that

[]1,s m∀ ∈ , []1,i n∀ ∈ . Note that a session in our model
corresponds to a customer. Assume that requests of
forwarded tier will not arrival the following tiers, such that
requests are reduced at the following tiers, the probability
of relative request arrival rate can be denoted by

, ,(1) 1 1s i s i iλ λ α− −= ≤ , []2,i n∀ ∈ , such that, ,2 ,1 1s sλ λ α= ,

,3 ,2 2s sλ λ α= ,…, , ,(1) 1s n s n nλ λ α− −= . The parameters

1 2 1, ,..., nα α α − are derived using online mea- surements.
Each request brings with a certain amount of work for the
VM to do. We assume that the per-tier multiple VMs have
equal processing capability, such that 1, 2, ,...

ii i c iμ μ μ= = = .
The sum of the service rates of per-tier multiple VMs

is ,
1

ic

j i
j

μ
=
∑ , []1,i n∀ ∈ , the service rate of per-tier single VM

is ,
1

ic

j i i
j

cμ
=
∑ , []1,i n∀ ∈ . The sum of the service rates of

virtualized multi-tier application is ()
1

n

i
i

u j
=
∑ , where ()iu j

1, 2, ,...i i j iμ μ μ= + + + .
In our model systems, per-tier service times are

assumed to be drawn from a known fixed distribution.
Assume that the per-tier utilization of VM for virtualized
multi-tier application is (), 1i s i iu jρ λ= < , 0 1iρ< < ,
where iρ correspond to the utilization of the busiest
resource (e.g. CPU, disk, or network) for the tier i.

Our model can also express useful system metrics like
average request arrival rates and throughputs at multiple
VMs, in terms of the distributions of their per-tier inter-
arrival and service times. Therefore, our model enables us
to capture the behavior of various tiers such as HTTP,
J2EE, and database VMs. Here, the behavior of first tier
can be modeled an M/M/c system, using Little’s Law [13],
which derives the end-to-end average respond time for the
first tier, as follows:

372

 () () ()

()()
()

1
1

,
0, ,

2 0,

1

1

1

i
i

i

c
c

s i i i i i
r i k ic

ks i
i i

j

c c
T i p k p

u j

λ ρ ρ
λρ

−
−

=

=

⋅ + −
= ⋅ + ⋅ ⋅

−
∑

∏
 (1)

where (), 1i s i iu jρ λ= < (1i∀ = , s [1,m]∀ ∈) is the first
tier utilization of VMs for virtualized multi-tier applica-
tion. 0,ip is system state probability that a request leaves i
tier for the virtualized application just after completing
service.

The models of other tiers divide the coming requests
into multiple M/M/1 models by some rules, and send them
to different VMs respectively for response. It’s assumed
that the requests of customer s arrive at VM j for the tier i
with arrival rate , ,s j iλ (2 , 1 ii n j c≤ ≤ ≤ ≤), and the end-to-
end average respond time for the other tiers can be derived
as follows:

 ()
1, ,1, 2, ,2, , , ,

1 1 1...
i i

r
i s i i s i c i s c i

T i
μ λ μ λ μ λ

= = = =
− − −

 (2)

where these rules mean that the same response time can be
ensured no matter which VM is allocated for the next

request. , , ,
1

ic

s j i s i
j

λ λ
=

=∑ , (i [2,n]∀ ∈ , s [1,m]∀ ∈) is request

arrival rate for the tier i which is equally distributed to each
VM for that tier. 1, 2, ,...

ii i c iμ μ μ μ= = = = is equal capacity
of each VM for tier i.

Observe that our model can handle virtualized multi-tier
applications with an arbitrary number of tiers, since the
complex task of modeling a virtualized multi-tier app-
lication is reduced to modeling each tier. Assume that VMs
in each tier are homogeneous and load-balanced. Every
VAEE has VMs number ci, which is a function of the
performance metrics for each tier of that virtualized multi-
tier application, and thus

(), 1, ,, ,...,
ii i s i i c ic f λ μ μ=

The global function gC is a self-optimization function
of each virtualized multi-tier application. Thus, our model
of resource optimization would then be to minimize total
weighted VMs of the system, which can be formulated as
follows:

(){ }1,1 1,1 ,1 , 1, , , 1, ,min , ,..., ;...; , ,..., ;...; , ,...,
i ng s c s i i c i s n n c nC f λ μ μ λ μ μ λ μ μ= (3)

 () 0,
1

. .
n

r s
i

s t T i R
=

≤∑ (4)

 [] [], ,
1

 1, , s 1,
ic

j i s i
j

i n mμ λ
=

> ∀ ∈ ∈∑ (5)

Given the request rate, service rate, and end-to-end
response time for a virtualized multi-tier application, our
objective is to determine how many VMs to allocate such

that virtualized multi-tier application can service all
incoming requests with a given response time R0,s. The
output of the model would be to minimize the total number
of VMs for a virtualized multi-tier application, denoted by
Cg, such that meet to handle a request rate ,1sλ . Note that the
first constraint given by (4) requires that the average
response time for each tier cannot be greater than a certain
response time (R0,s, such as 0.5 second). Response time of
customer s requirement R0,s is specified by enterprise IT
customer’s contract. The second constraint describes a

condition, , ,
1

ic

j i s i
j

μ λ
=

>∑ , in (5), necessary for average utili-

zation in the VMs, which can not occur the state of infinite
queue. For satisfy with the constraints, and then we adjust
the capacity of all tiers to these values, resulting in an
immediate increase for effective capacity.

In order to compute the number of VMs, the model
requires several input parameters. In practice, these
parameters can be estimated through online monitoring
virtualized application. Therefore, we analyze the general
trends at each VM node for each tier in our cloud
environment, such as the Apache Web server with VMs.
The target application used in our experiments is that
auction system commonly used a benchmark for multi-tier
enterprise applications.

The main notations used throughout this paper are
summarized in Table 1 for clarity.

TABLE I. SUMMARY OF NOTATIONS

Symbol Description
n Number of virtualized application tiers
m Number of customers

ic Number of VMs for tier i (1 i n≤ ≤)

R End-to-end response time for a virtualized multi-
tier application (sec)

0,sR Response time (sec) of customer s requirement for
virtualized application

1iα − Relative probability of request arrival rate

,s iλ Request arrival rate (req/s) of customer s for tier i
(1 s m≤ ≤)

,j iμ Service rate (req/s) of server j for tier i (1 ij c≤ ≤)

()rT i End-to-end response time for tier i (sec)

gC Minimized number of VMs for a virtualized multi-
tier application

IV. EXPERIMENTAL EVALUATION
In this section we present our experimental results on

the efficiency of our autonomic resource provisioning
technique for optimizing the number of VMs in the cloud
environment. The results show that under fine-grained
resource provisioning, the provider’s achieved revenues
can be maximized while the customer’s operational cost is
reduced as much as possible. The following experiments
are for the validation of the model.

373

A. Experimental Setup
We establish a prototype system of cloud environment,

such that each of the server nodes was run on two Intel
Pentium 4 2.66GHz processors with 2GB RAM. Process-
ing capacity of each server is equal in cloud data center.
The on-demand scheduler was run on a machine with 4
Inter Xeon 3.00GHz processor with 3GB RAM. VAEE
Host ran the open-source version of the Xen 3.0.3 to build
the virtualization environment. All machines were cond-
ucted on a Linux kernel 2.6.16.29 cluster interconnected by
a Gigabit Ethernet (GigE) switch. Each Linux was installed
as a guest OS in each domain of Xen. Note that because
Xen places device drivers for physical devices into a
separate guest virtual machine called domain 0, all
incoming and outgoing network communication passes
through an extra node, and incurs additional latency.
Moreover, since this node potentially shares the CPU with
the other VMs, this latency depends on both the utilization
of the node and the number of messages. Therefore, we
explicitly model and measure parameters for this VM
monitor delay.

We present profiling result on one open-source multi-
tier application service based on Enterprise Java Beans
(EJB) in our experimental study: the RUBiS online auc-
tion benchmark [14], running on VMs hosted on different
servers. RUBiS implements the core functionality of an
auction site similar to eBay, including 26 interactions that
can be performed from a client’s Web browser. It follows
the three-tier application. The front tier was based on the
Apache 2.2 Web server. The middle tier was based on Java
servlets that implement the application logic with an
embedded Tomcat 5.0.28 as the servlets container. Finally,
the database tier was based on MySQL 4.0. To isolate
performance interference, we restrict the management
domain (domain 0) to use one CPU and VMs to use the
other CPU. Table 2 shows the values for various para-
meters in our simulation experiments.

TABLE II. WORKLOAD CHARACTERISTICS FOR RUBIS

Parameter Web Tier App Tier DB Tier
()rT i 0.08 sec 0.4 sec 0.32 sec

,j iμ 250 req/s 150 req/s 100 req/s

1iα − - 0.8 0.8

0,sR 0.8 sec

Because our tested application is CPU-intensive, the
only resource type we currently consider is CPU capacity
and we assume that all resources are identical. We do not
show the memory and disk I/O profiling results for brevity.
The memory and disk I/O consumption for the virtualized
application is relatively insignificant and they never
become the bottleneck resource in our test settings.

B. Effectiveness of Multi-Tier Model
In the following experiments, we evaluate our dynamic

resource provisioning technique for virtualized multi-tier

appliances. We built a time-driven optimizer that models
the system as a hybrid queue with two different queueing
models, and is fed with workload traces from virtualized
applications. For the self-optimization strategies, the
optimizer is coupled to an optimization model solver,
which is called at the each tier interval to calculate the
number ci of resource provisioning according to the end-to-
end response time ()rT i for tier i, for the next interval.
During each interval, per-request response time as well as
per-tier throughput and CPU utilization are collected and
used to compute the minimized number of VMs for each
tier of virtualized applications with different workloads.
Moreover, our optimizer employs a fair admission mecha-
nism, which accepts a request with probability , ,(1)s i s iλ λ − .
Thus, the assumption of Poisson arrivals holds for the
accepted requests in order to describe virtualized applica-
tions.

First, the RUBiS application is provided for each server
with embedded VMs. Here, each tier employs its own
provisioning technique. System parameter values are
shown in Table 2. Our technique is aware of the demands
at each tier and can take idiosyncrasies such as optimi-
zation model into account, as shown in Figure 3, where
arrival rates vary from 0 to 2000 requests per second. The
customer s given response time is 0.8 seconds for the
RUBiS application, and service rate is 250, 150, and 100
requests per second for Web, App, and DB tiers, res-
pectively. For App and DB tiers, the request probability is
0.8 and 0.8, respectively, for the hybrid analytic model. In
Fig.3, the minimized VM number for each tier by the
response time constraint is presented, which is computed
with our model and optimal approach.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

Request arrival rate (reqs/sec)

N
um

be
r o

f V
M

s

Web tier
App tier
DB tier

Figure. 3 Validation results on the number of VMs at various request

arrival rates

Next, we repeat this experiment to predict the through-
put of virtualized application, as shown in Figure 4. It
shows validation results on the overall system throughput
for RUBiS, the application throughput continues to increase
with the increasing workload. We measure the rate of
successfully completed requests at different requests rate.
In our experiment, a request is counted successfully only if
it responses within 0.8 seconds for the customer
requirement. The request probability is 0.8 for App tier and

374

for DB tier. The result shows that the system throughput
can be accurately predicted with our model.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

Request arrival rate (reqs/sec)

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

Web tier (Model)
Web tier (Measurement)
App tier (Model)
App tier (Measurement)
DB tier (Model)
DB tier (Measurement)

Figure. 4 Validation results on system throughput

Since the virtualized application throughput in our
model is derived from resource usage at each tier, we
further examine the accuracy of per-tier resource usage
prediction using the same parameter values in Table 2.
Figure 5 presents validation results on the CPU utilization
at Web, App and DB tiers, respectively. They compare the
predicted CPU utilization to the measured CPU utilization
for the three tiers with the workload increasing. Web, App
and DB tiers were running on their own virtual machine
with average 53.82%, 62.25%, and 62.51% CPU utilization,
respectively, which is close to the optimal solution 60%.
CPU utilization of domain 0 was average 22% for each tier
of virtualized application. Overall, these figures demon-
strate that the model is reasonably accurate and can
effectively use CPU resource.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Request arrival rate (reqs/sec)

C
PU

 U
til

iz
at

io
n

Web tier (Model)
Web tier (Measurement)
Domain 0 for Web tier
App tier (Model)
App tier (Measurement)
Domain 0 for App tier
DB tier (Model)
DB tier (Measurement)
Domain 0 for DB tier

Figure. 5 Comparison of models vs. experimental results

Therefore, the minimized number of VMs as well as the
maximized CPU resource utilization can be achieved with
our method by dynamic resource provisioning technique,
and then we can keep the high global utility.

V. RELATED WORK
Previous literature on issues related to managing res-

ources in multi-tier applications of data centers. In this
section we describe some prior work related to this paper as
follows.

Some papers have considered the provisioning of
resources at finer granularity of resources. Urgaonkar et al.
[15] presented an analytical model for multi-tier Internet
applications, which is general to capture various
characteristics of an arbitrary number of heterogeneous
tiers. Then, the model was applied to dynamic resource
provisioning. Ardagna et al. [16] proposed a provisioning
controller for multi-tier data center which maximize pro-
fits using a cost model, and developed a heuristic solution.
The limitation is that they did not distinguish servers in
different tiers, but allocated physical resources instead of
virtual machines. At the same time, they adopted a closed
queueing network performance model for the autonomic
system. Overall, the above approaches are commonly based
on the provisioning of identical servers as unit, while our
work is different in that we adopt full virtual machines
based on an open queueing network model, which supports
fine-grained sharing of the physical infrastructure as well
as guarantees the performance isolation of different
virtualized application environments by deploying them on
separate virtual machines.

Other research efforts have focused on the modeling of
multi-tier application environments. Urgaonkar et al. [17]
proposed a dynamic capacity provisioning model for multi-
tier Internet applications, which determine how much of the
resources to provisioning to each tier of the application,
and a combination of predictive and reactive methods that
determine when to provision these resources, both at large
and small time scales. Chen et al. [18] proposed a closed-
system model of multi-tier business applications, and based
on mean value analysis (MVA) algorithm to predicate
performance of multi-tier applications. Kamra et al. [19]
presented a single queue model for all tiers and based on
control-theoretic approach for admission control in multi-
tier Web sites that both prevented overload and enforced
absolute client response times, while still maintaining high
throughput under load. Jung et al. [20] proposed a
generating adaptation for multi-tier applications in
virtualized consolidated server environments. It provides
dynamic management method and optimizes offline
resources to generate suitable configurations by evaluating
a model consisting of multi-tier M/M/n queues. However,
the primary difference is that we have established
sophisticated models different from traditional analytic
models which adopt inaccurate MVA or single queueing
model. Here, we can conclude that a hybrid model, which
is an M/M/c queueing model combined with multiple
M/M/1 queueing models can be adopted in this paper,
which can be achieved more accurate provisioning for
virtualized multi-tier applications than other models.

Another area of related researches has focused on
optimization problems arising in multi-tier applications. For
example, Zhang et al. [21] presented a nonlinear integer
optimization model for determining the number of
machines at each tier in a multi-tier server network. Similar
to ours, they profile the computing resource of data center
in physical servers’ environment while we profile the
computing resource of cloud environment in virtual

375

machines environment. As a result, our approach can
support a more fine grained resource provisioning and
management for a virtualized application in cloud
environment. Additionally, their approach uses a simply
open queueing network model at each server, which is less
accurate than hybrid queueing models we used. Cunha et al.
[22] presented a new self-adaptive capacity management
framework for multi-tier virtualized environments. It
executes periodically and reassigns resources by evaluating
a model consisting of multi-tier M/M/1 queues and solves
an optimization problem. Instead, in our work we consider
that the domain 0 of Xen potentially shares the CPU with
the other VMs, and this latency depends on both the
utilization of the node and the number of messages.
Moreover, we propose an optimal method for VMs, which
can compute effective utilization for CPU of each tier of
virtualized application. Therefore, our work has presented
models close to reality.

VI. CONCLUSION AND FUTURE WORK
In this paper, it is argued that dynamic provisioning of

virtualized multi-tier applications raises new challenges not
addressed by prior work on provisioning technique for
cloud environment. We presented an optimal autonomic
virtual machine provisioning architecture for cloud data
center. We proposed a novel dynamic provisioning
technique, which was a hybrid model for a virtualized
multi-tier application in cloud data center. A constrained
non-linear optimization model is employed to minimize the
total number of VMs for the requirement of customer.
Hence the efficiency and flexibility for resource provi-
sioning were improved in cloud environment. We
evaluated and contrasted the performance of three tier
virtualized applications through simulation experiments.
Results have shown that under fine-grained resource
provisioning, computing resources are optimized utiliza-
tion. Moreover, our technique is also demonstrated that by
optimizing provisioning the overall performance could be
further enhanced while maintaining average response time
targets.

Our work can be improved in a number of ways. First,
we further integrate load prediction method technique to fit
our workload characteristics. Second, we will focus on
expanding the utility analytic model to fit cloud environ-
ments with heterogeneous servers produced by different
manufacturers. Third, we adopt Service Level Agreement
(SLA) based negotiation of prioritized applications to
determine the costs and penalties by the achieved
performance level. If the entire request cannot be satisfied,
some virtualized applications will be affected by their
increased execution time, increased waiting time, or
increased rejection rate.

ACKNOWLEDGMENT
This work was supported in part by the IBM Ph.D.

Fellowship, and the National Natural Science Foundation
of China under Grant 60872040.

REFERENCES
[1] D. Reed, I. Pratt, and P. Menage, et al, “Xenoservers: Accountable

execution of untrusted programs”, The Seventh Workshop on Hot
Topics in Operating Systems, Rio Rico, Arizona, 1999.

[2] M. Armbrust, A. Fox, and R. Griffith, et al, “Above the clouds: A
Berkeley view of cloud computing”, Technical Report No.
UCB/EECS-2009-28, University of California Berkley, USA, Feb.
10, 2009.

[3] R. Buyya, C.S. Yeo, and S. Venugopal, et al, “Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility”, Future generation computer systems,
Elsevier science, Amsterdam, the Netherlands, 2009, 25(6), pp. 599-
616.

[4] D. Gupta, S. Lee, and M. Vrable, et al, “Difference engine:
harnessing memory redundancy in virtual machines”, The 8th
USENIX Symposium on Operating Systems Design and Imple-
mentation, 2008, pp. 309-322.

[5] P. Barham, B. Dragovic, and K. Fraser, et al, “Xen and the art of
virtualization”, Proceedings of the 19th ACM Symposium on
Operating Systems Principles, Bolton Landing, NY, USA, 2003, pp.
164-177.

[6] Y. Song, Y. Li, and H. Wang, et al, “A service-oriented priority-
based resource scheduling scheme for virtualized utility computing”,
Proceedings of the 9th IEEE International Symposium on Cluster
Computing and the Grid, 2009, pp. 148-155.

[7] J. Zhang, M. Yousif, and R. Carpenter, et al, “Application resource
demand phase analysis and prediction in support of dynamic resource
provisioning”, Proceedings of the 4th International Conference on
Autonomic Computing, 2007.

[8] X.Y. Wang, Z.H. Du, and Y.N. Chen, et al, “Virtualization based
autonomic resource management for multi-tier Web applications in
shared data center”, The Journal of Systems and Software, 2008,
81(9), pp. 1591-1608.

[9] S.R. White, J.E. Hanson, and I. Whalley, et al, “An architectural
approach to autonomic computing”, Proceedings of the International
Conference on Autonomic Computing, 2004.

[10] Oracle9i. 2005. http://www.oracle.com/technology/products/oracle9i.
[11] D.A. Menascé, M.N. Bennani, “Autonomic virtualized environ-

ments”, Proceedings of IEEE International Conference on Auto-
nomic and Autonomous Systems, 2006, pp. 28-37.

[12] R.P. Doyle, J.S. Chase, and O.M. Asad, et al, “Model-based resource
provisioning in a web service utility”, Proceedings of the 4th
conference on USENIX Symposium on Internet Technologies and
Systems, 2003.

[13] J. McKenna, “A Generalization of Little's Law to moments of queue
lengths and waiting times in closed, product form queueing net-
works”, Journal of Applied Probability, 1989, 26, pp. 121-133.

[14] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance and
scalability of EJB applications”, Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, 2002, pp. 246-261.

[15] B. Urgaonkar, G. Pacifici, and P. Shenoy, et al, “An analytical model
for multi-tier Internet services and its applications”, Proceedings of
the 2005 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, 2005, pp. 291-302.

[16] D. Ardagna, M. Trubian, and L. Zhang, “SLA based profit
optimization in multi-tier systems”, Proceedings of the 4th IEEE
International Symposium on Network Computing and Applications,
2005, pp. 263-266.

[17] B. Urgaonkar, P. Shenoy, and A. Chandra, et al, “Agile dynamic
provisioning of multi-tier Internet application”, ACM Transactions
on Autonomous and Adaptive Systems, 2008, 3(1), pp. 1-39.

[18] Y. Chen, S. Iyer, and X. Liu, et al, “SLA decomposition: Translating
service level objectives to system level thresholds”, Proceedings of
the 4th International Conference on Autonomic Computing, 2007.

376

[19] A. Kamra, V. Misra, and E. Nahum, “Yaksha: A self-tuning
controller for managing the performance of 3-tiered web sites”,
Proceedings of International Workshop on Quality of Service, 2004,
pp. 47-58.

[20] G. Jung, K.R. Joshi, and M.A. Hiltunen, et al, “Generating adaptation
policies for multi-tier applications in consolidated server environ-
ments”, Proceedings of the 5th International Conference on
Autonomic Computing, 2008, pp. 23-32.

[21] A. Zhang, P. Santos, and D. Beyer, et al, “Optimal server resource
allocation using an open queueing network model of response time”,
HP Labs Technical Report, HPL-2002-301.

[22] I. Cunha, J. Almeida, and V. Almeida, et al, “Self-adaptive capacity
management for multi-tier virtualized environments”, Proceedings of
the 10th International Symposium on Integrated Network Manage-
ment,2007,pp.129-138.

377

