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 Abstract—Dynamic provisioning is a useful technique for 
handling the virtualized multi-tier applications in cloud 
environment. Understanding the performance of virtualized 
multi-tier applications is crucial for efficient cloud infras- 
tructure management. In this paper, we present a novel 
dynamic provisioning technique for a cluster-based virtua- 
lized multi-tier application that employ a flexible hybrid 
queueing model to determine the number of virtual machines 
at each tier in a virtualized application. We present a cloud 
data center based on virtual machine to optimize resources 
provisioning. Using simulation experiments of three-tier 
application, we adopt an optimization model to minimize the 
total number of virtual machines while satisfying the customer 
average response time constraint and the request arrival rate 
constraint. Our experiments show that cloud data center 
resources can be allocated accurately with these techniques, 
and the extra cost can be effectively reduced. 

Keywords-cloud computing; resource provisioning; virtua- 
lized application; performance modeling 

I. INTRODUCTION 
Virtualization technologies have facilitated the reali- 

zation of cloud computing services [1]. Cloud computing [2, 
3] includes three kinds of computing capacities as a service 
in different abstraction levels for different business pur- 
poses, such as Infrastructure as a Service (IaaS), Platform 
as a Service (PaaS), and Software as a Service (SaaS). Here, 
we consider only IaaS, which aims to provide computing 
resources or storage as a service to customers. One major 
player in cloud computing is Amazon’s Elastic Compute 
Cloud (EC2), which comprises several data centers world- 
wide. Amazon EC2 lets customers deploy virtual machines 
(VMs) on-demand on Amazon’s infrastructure and pay 
only for the computing, storage, and network resources 
they use. While a number of recent papers address 
virtualization of enterprise applications, such as resource 
virtualization [4, 5], on-demand resource provisioning 
management based on virtual machines [6, 7], and QoS 
management of virtual machine [8]. These works lead to 
improvements in the performance of virtualization and 
resource utilizations. Since IT infrastructure customer 
requirements for cloud infrastructure services are varied, 
infrastructure providers have to ensure that they can be 
flexible in their service delivery while keeping the 
infrastructure service customers efficiently increasing 

ability of commodity hardware to run applications within 
VMs. VMs allow both the isolation of applications from 
the underlying hardware and other VMs, and the 
customization of the infrastructure resource to meet the 
requirements of the IT infrastructure customer. 

However, the application of virtualization technologies 
shows its advantages for further challenges, such as the 
intelligent allocation of VM resources for managing com- 
puting resource demands of the infrastructure customers. In 
addition, enterprise IT infrastructure customers with 
virtualized applications require lesser resource cost, and 
thus save resource by distributing workload requests to 
virtualized multi-tier applications in cloud environment. 
This creates the need for establishing a computing 
atmosphere for dynamically provisioning cloud resources 
from multi-tier domains within and across enterprises. 
Furthermore, there are many open challenges involved in 
on-demand resources dynamic provisioning for cloud data 
centers, such as the CPU, memory, disk and network 
bandwidth, to be partitioned among the resident VMs, and 
optimal configuration for VMs. 

Therefore, this paper considers the current trends in the 
environment of cloud computing and presents rela- 
tionships between performance and resources provision- 
ing of virtualized applications. In order to address the 
above challenge, this paper proposes a hybrid model for 
dynamic resource provisioning in VM-based cloud data 
center, which can be based on combination of an M/M/c 
model and multiple M/M/1 queueing models methods. 
Such model is important for the following reasons: (1) 
Resource provisioning, a number of cluster VMs are 
dedicated to virtualized multi-tier application and the model 
must determine how many VMs are allocated to virtualized 
multi-tier application to satisfy the requirement of given 
response time for customers, that is, the model can not only 
meet the needs of customers, but also cause little waste of 
resources. (2) VM configuration, which enables various 
configuration parameters of the VM to be determined for a 
certain performance goal. Thus we can determine the most 
effective resource utilization by VM optimal configuration. 

The main contributions of the paper include: (1) We 
develop a hybrid model composed of an M/M/c model and 
multiple M/M/1 models to provision computing resources 
for virtualized application; (2) Based on the proposed 
hybrid model, an optimization model to minimize the total 
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number of virtual machines for computing resources is 
developed, and the proposed optimization model is verified 
with the three-tier virtualized application of handling 
dynamic workloads through simulation. 

The rest of this paper is organized as follows. In Section 
2, we describe the infrastructure management of a cloud 
environment for virtualized multi-tier applications. Section 
3 presents the analytic models used to solve the defined 
problem. Section 4 demonstrates the results of prototype 
experiments. In Section 5, we review some related work in 
the area of dynamic and scalable resources provisioning. 
Concluding remarks and discussion about future work are 
given in Section 6. 

II. THE DYNAMIC VIRTUAL MACHINES IN 
CLOUD DATA CENTER 

In order to dynamically provisioning resources for 
virtualized multi-tier application execution environments 
(VAEEs) of different customers, the most common app- 
roaches are based on self-managing techniques [9], such as 
Monitor, Analyze, Plan, and Execute (MAPE) control 
loops architecture is needed. The goal is to meet the 
virtualized application requirements while adapting IT 
architecture to workload variations. Usually, each request 
requires the execution of virtualized application allocated 
on the VM of each physical tier. A cloud data center en- 
ables multiple virtualized applications may be increased 
when workload increases and reduced when workload 
reduces. This dynamic resource provision allows flexible 
response time in a VAEE where peak workload is much 
greater than the normal steady state. Figure 1 provides a 
high-level dynamic resource provision architecture for 
cloud data center, which shows relationships between 
computational resources pool and self-management com- 
munity. 

Computational Resources Pool contains physical 
resources and virtualized resources. Plenty of VMs hold 
several VAEEs sharing the capacity of physical resources 
and can isolate multiple applications from the underlying 
hardware. VMs of each tier of a virtualized application may 
correspond to a physical machine. Computational resources 
pool delegates self-management community for satisfying 
the requirement goal of the customer to automatically 
allocate sufficient resources to the each tier of virtualized 
application. Self-management community means mecha- 
nisms to automate the VMs of configuring and tuning the 
virtualized multi-tier application so as to maintain the 
response time requirements of the different customers. It 
generates result of run-time provisioning for cloud data 
center. It includes four components as follows: 
 Monitor: collects the workload and the performance 

metric of all running VAEEs, such as the request arrival 
rate, the average service time, and the CPU utilization, 
etc.  

 Analyzer: receives and analyzes the measurements from 
the monitor to estimate the future workload. It also 
receives the response times of different customers. 

 Resource Scheduler: sets up performance analytic 
models for each tier of the VAEE, and uses its optimizer 
with the optimization model to determine resource 
provisioning according to these workload estimates and 
response time constrains of different customer such that 
the resource requirements of the overall VAEE is 
minimized. 

 Virtualized application Executor: assigns the VM 
configuration, and then runs the VAEEs to satisfy the 
resource requirements of the different customers 
according to the optimized decision. 

 
Figure. 1 The dynamic resource provisioning of cloud data center 

This paper focuses on the design of resource scheduler 
for virtualized multi-tier applications. The goal is to mini- 
mize the using of resources under a workload while satis- 
fying different customer for the constraints of average 
response time. 

III. VIRTUALIZED MULTI-TIER APPLICATION 
QUEUEING MODEL 

In this section, we present a hybrid queueing model for 
a virtualized multi-tier application, and then define a non-
linear constrained optimization problem for dynamic res- 
ource provisioning. Moreover, the optimal model of rela- 
tionships between performance and resources provision- 
ing is used to maximize resources utilization according to 
the response time of customer requirement. 

A. Analytic Performance Model 
A virtualized multi-tier application in cloud computing 

environment is deployed on multiple virtual machines 
(VMs), and each tier provides certain functionality to its 
preceding tier. Here we consider an online e-commerce 
application that consists of n tiers, denoted by 1 2, ,..., nT T T . 
We assume that there are c parallel identical VMs in the 
each tier of VAEE, and the requests of all the arriving 
sessions enter into a common queue maintained by the on-
demand scheduler (ODS), waiting for available resources 
in the first tier. The ODS schedules these requests of each 
session. Note that in our system, scheduler decisions are 
made only for the first tier of the virtualized application. 
Once scheduled, a request is decided processing at the VMs 
of the first tier within the virtualized application. 
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Dispatcher of other tiers is used for collecting requests 
processed in the pre-tier and distributing them to multiple 
parallel VMs queueing models of that tier to execute. 
Multiple VMs queueing models of other tiers are 
responsible for dynamic resource provisioning by the 
requests of that tier. Each tier is assumed to employ a 
perfect load-balancing element for a virtualized application 
that is responsible for processing requests at that tier, and 
each request is forwarded to its succeeding tier for further 
processing. Once the result is processed by the final tier nT , 
the results are sent back by each tier in the reverse order 
until it reaches 1T , which then sends the results to the 
customer. In more complex processing scenarios, each 
request at tier iT , can trigger zero or multiple requests to 
tier 1iT + . For example, a static web page request is 
processed by the Web tier entirely and will not be 
forwarded to the following tiers. On the other hand, a 
keyword search at a Web tier may trigger multiple requests 
to the next tier. We also assume that database tier with a 
shared-everything architecture [10], which can be clustered 
and replicated on-demand. Through modeling all the tiers 
and their interactions, our multi-tier model allows us to 
integrate decisions for the first tier into scheduler and other 
tiers into each VM. Therefore, the amount of concurrency 
VMs may be determined by the number of concurrent 
requests that tier supports according to our model. In order 
to capture the virtualized multi-tier application for dynamic 
resources provisioning, we define that our model is a 
hybrid analytical model, which accords with real environ- 
ment. This not only saves the network transmission time 
but also improves the processing efficiency of the request.  

B. Open Queueing Model of Virtualized multi-tier 
application  
The workload on the virtualized multi-tier application is 

typically session-based customer, where a customer session 
consists of a succession of requests. At a time, multiple 
concurrent customer requests interact with the virtualized 
multi-tier application. In order to capture the multiple 
concurrent requests of customer sessions, we model the 
serving system as an M/M/c queueing system to the first 
tier, and other tiers can be modeled as multiple M/M/1 
queueing systems. The requests of each tier are serviced in 
a first-come-first-served (FCFS) order, as shown in figure 2. 
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Figure. 2 Open queueing model for virtualized multi-tier application  

Figure 2 shows the open virtualized multi-tier applica- 
tion queueing models. The arrival of requests at the each 
tier for a virtualized application is assumed to be describ- 
ed by a Poisson distribution [11, 12], i.e. inter-arrival time 

between requests subjects to the negative exponential 
distribution. This assumption is validated by analyzing 
traces taken from an e-commerce multi-tier application 
website. Besides, the average service time of requests is 
also considered the negative exponential distribution. 

The first step in solving our model is to determine the 
capacity of multiple VMs for each tier in terms of the 
request rate they can handle. Given the capacity of each tier 
VMs, the next step computes the number of VMs required 
at each tier to satisfy the requirement of customer response 
time. Here, let R be the desired end-to-end response time 
for a virtualized multi-tier application. Denote ( )1 ,rT  

( ) ( )2 ,...,r rT T n  as the per-tier end-to-end response times, 

such that ( )
1

n

r
i

T i R
=

=∑ , these values are obtained by given 

analytical model. We let ,s iλ  be the aggregate request 
arrival rate to the tier i for a customer s, such that 

[ ]1,s m∀ ∈ , [ ]1,i n∀ ∈ . Note that a session in our model 
corresponds to a customer. Assume that requests of 
forwarded tier will not arrival the following tiers, such that 
requests are reduced at the following tiers, the probability 
of relative request arrival rate can be denoted by 

, ,( 1) 1 1s i s i iλ λ α− −= ≤ , [ ]2,i n∀ ∈ , such that, ,2 ,1 1s sλ λ α= , 

,3 ,2 2s sλ λ α= ,…, , ,( 1) 1s n s n nλ λ α− −= . The parameters 

1 2 1, ,..., nα α α −  are derived using online mea- surements. 
Each request brings with a certain amount of work for the 
VM to do. We assume that the per-tier multiple VMs have 
equal processing capability, such that 1, 2, ,...

ii i c iμ μ μ= = = . 
The sum of the service rates of per-tier multiple VMs 

is ,
1

ic

j i
j

μ
=
∑ , [ ]1,i n∀ ∈ , the service rate of per-tier single VM 

is ,
1

ic

j i i
j

cμ
=
∑ , [ ]1,i n∀ ∈ . The sum of the service rates of 

virtualized multi-tier application is ( )
1

n

i
i

u j
=
∑ , where ( )iu j  

1, 2, ,...i i j iμ μ μ= + + + .  
In our model systems, per-tier service times are 

assumed to be drawn from a known fixed distribution. 
Assume that the per-tier utilization of VM for virtualized 
multi-tier application is ( ), 1i s i iu jρ λ= < , 0 1iρ< < , 
where iρ  correspond to the utilization of the busiest 
resource (e.g. CPU, disk, or network) for the tier i. 

Our model can also express useful system metrics like 
average request arrival rates and throughputs at multiple 
VMs, in terms of the distributions of their per-tier inter-
arrival and service times. Therefore, our model enables us 
to capture the behavior of various tiers such as HTTP, 
J2EE, and database VMs. Here, the behavior of first tier 
can be modeled an M/M/c system, using Little’s Law [13], 
which derives the end-to-end average respond time for the 
first tier, as follows: 
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where ( ), 1i s i iu jρ λ= <  ( 1i∀ = , s [1,m]∀ ∈ ) is the first 
tier utilization of VMs for virtualized multi-tier applica- 
tion. 0,ip  is system state probability that a request leaves i 
tier for the virtualized application just after completing 
service. 

The models of other tiers divide the coming requests 
into multiple M/M/1 models by some rules, and send them 
to different VMs respectively for response. It’s assumed 
that the requests of customer s arrive at VM j for the tier i 
with arrival rate , ,s j iλ  ( 2 ,  1 ii n j c≤ ≤ ≤ ≤ ), and the end-to-
end average respond time for the other tiers can be derived 
as follows: 

    ( )
1, ,1, 2, ,2, , , ,

1 1 1...
i i

r
i s i i s i c i s c i

T i
μ λ μ λ μ λ

= = = =
− − −

    (2) 

where these rules mean that the same response time can be 
ensured no matter which VM is allocated for the next 

request. , , ,
1

ic

s j i s i
j

λ λ
=

=∑ , ( i [2,n]∀ ∈ , s [1,m]∀ ∈ ) is request 

arrival rate for the tier i which is equally distributed to each 
VM for that tier. 1, 2, ,...

ii i c iμ μ μ μ= = = =  is equal capacity 
of each VM for tier i. 

Observe that our model can handle virtualized multi-tier 
applications with an arbitrary number of tiers, since the 
complex task of modeling a virtualized multi-tier app- 
lication is reduced to modeling each tier. Assume that VMs 
in each tier are homogeneous and load-balanced. Every 
VAEE has VMs number ci, which is a function of the 
performance metrics for each tier of that virtualized multi-
tier application, and thus  

( ), 1, ,, ,...,
ii i s i i c ic f λ μ μ=  

The global function gC  is a self-optimization function 
of each virtualized multi-tier application. Thus, our model 
of resource optimization would then be to minimize total 
weighted VMs of the system, which can be formulated as 
follows: 

( ){ }1,1 1,1 ,1 , 1, , , 1, ,min , ,..., ;...; , ,..., ;...; , ,...,
i ng s c s i i c i s n n c nC f λ μ μ λ μ μ λ μ μ=  (3) 

                ( ) 0,
1

. .   
n

r s
i

s t T i R
=

≤∑                                 (4) 

                           [ ] [ ], ,
1

    1, ,  s 1,
ic

j i s i
j

i n mμ λ
=

> ∀ ∈ ∈∑     (5) 

Given the request rate, service rate, and end-to-end 
response time for a virtualized multi-tier application, our 
objective is to determine how many VMs to allocate such 

that virtualized multi-tier application can service all 
incoming requests with a given response time R0,s. The 
output of the model would be to minimize the total number 
of VMs for a virtualized multi-tier application, denoted by 
Cg, such that meet to handle a request rate ,1sλ . Note that the 
first constraint given by (4) requires that the average 
response time for each tier cannot be greater than a certain 
response time (R0,s, such as 0.5 second). Response time of 
customer s requirement R0,s is specified by enterprise IT 
customer’s contract. The second constraint describes a 

condition, , ,
1

ic

j i s i
j

μ λ
=

>∑ , in (5), necessary for average utili- 

zation in the VMs, which can not occur the state of infinite 
queue. For satisfy with the constraints, and then we adjust 
the capacity of all tiers to these values, resulting in an 
immediate increase for effective capacity. 

In order to compute the number of VMs, the model 
requires several input parameters. In practice, these 
parameters can be estimated through online monitoring 
virtualized application. Therefore, we analyze the general 
trends at each VM node for each tier in our cloud 
environment, such as the Apache Web server with VMs. 
The target application used in our experiments is that 
auction system commonly used a benchmark for multi-tier 
enterprise applications.  

The main notations used throughout this paper are 
summarized in Table 1 for clarity. 

TABLE I.  SUMMARY OF NOTATIONS 

Symbol Description 
n  Number of virtualized application tiers 
m  Number of customers 

ic  Number of VMs for tier i (1 i n≤ ≤ ) 

R  End-to-end response time for a virtualized multi-
tier application (sec) 

0,sR  Response time (sec) of customer s requirement for 
virtualized application 

1iα −  Relative probability of request arrival rate 

,s iλ  Request arrival rate (req/s) of customer s for tier i 
(1 s m≤ ≤ )  

,j iμ  Service rate (req/s) of server j for tier i (1 ij c≤ ≤ )

( )rT i  End-to-end response time for tier i (sec) 

gC  Minimized number of VMs for a virtualized multi-
tier application 

IV. EXPERIMENTAL EVALUATION 
In this section we present our experimental results on 

the efficiency of our autonomic resource provisioning 
technique for optimizing the number of VMs in the cloud 
environment. The results show that under fine-grained 
resource provisioning, the provider’s achieved revenues 
can be maximized while the customer’s operational cost is 
reduced as much as possible. The following experiments 
are for the validation of the model. 
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A. Experimental Setup 
We establish a prototype system of cloud environment, 

such that each of the server nodes was run on two Intel 
Pentium 4 2.66GHz processors with 2GB RAM. Process- 
ing capacity of each server is equal in cloud data center. 
The on-demand scheduler was run on a machine with 4 
Inter Xeon 3.00GHz processor with 3GB RAM. VAEE 
Host ran the open-source version of the Xen 3.0.3 to build 
the virtualization environment. All machines were cond- 
ucted on a Linux kernel 2.6.16.29 cluster interconnected by 
a Gigabit Ethernet (GigE) switch. Each Linux was installed 
as a guest OS in each domain of Xen. Note that because 
Xen places device drivers for physical devices into a 
separate guest virtual machine called domain 0, all 
incoming and outgoing network communication passes 
through an extra node, and incurs additional latency. 
Moreover, since this node potentially shares the CPU with 
the other VMs, this latency depends on both the utilization 
of the node and the number of messages. Therefore, we 
explicitly model and measure parameters for this VM 
monitor delay. 

We present profiling result on one open-source multi-
tier application service based on Enterprise Java Beans 
(EJB) in our experimental study: the RUBiS online auc- 
tion benchmark [14], running on VMs hosted on different 
servers. RUBiS implements the core functionality of an 
auction site similar to eBay, including 26 interactions that 
can be performed from a client’s Web browser. It follows 
the three-tier application. The front tier was based on the 
Apache 2.2 Web server. The middle tier was based on Java 
servlets that implement the application logic with an 
embedded Tomcat 5.0.28 as the servlets container. Finally, 
the database tier was based on MySQL 4.0. To isolate 
performance interference, we restrict the management 
domain (domain 0) to use one CPU and VMs to use the 
other CPU. Table 2 shows the values for various para- 
meters in our simulation experiments. 

TABLE II.  WORKLOAD CHARACTERISTICS FOR RUBIS 

Parameter Web Tier App Tier DB Tier 
( )rT i  0.08 sec 0.4 sec 0.32 sec 

,j iμ  250 req/s 150 req/s 100 req/s 

1iα −  - 0.8 0.8 

0,sR   0.8 sec  

Because our tested application is CPU-intensive, the 
only resource type we currently consider is CPU capacity 
and we assume that all resources are identical. We do not 
show the memory and disk I/O profiling results for brevity. 
The memory and disk I/O consumption for the virtualized 
application is relatively insignificant and they never 
become the bottleneck resource in our test settings. 

B. Effectiveness of Multi-Tier Model 
In the following experiments, we evaluate our dynamic 

resource provisioning technique for virtualized multi-tier 

appliances. We built a time-driven optimizer that models 
the system as a hybrid queue with two different queueing 
models, and is fed with workload traces from virtualized 
applications. For the self-optimization strategies, the 
optimizer is coupled to an optimization model solver, 
which is called at the each tier interval to calculate the 
number ci of resource provisioning according to the end-to-
end response time ( )rT i  for tier i, for the next interval. 
During each interval, per-request response time as well as 
per-tier throughput and CPU utilization are collected and 
used to compute the minimized number of VMs for each 
tier of virtualized applications with different workloads. 
Moreover, our optimizer employs a fair admission mecha- 
nism, which accepts a request with probability , ,( 1)s i s iλ λ − . 
Thus, the assumption of Poisson arrivals holds for the 
accepted requests in order to describe virtualized applica- 
tions. 

First, the RUBiS application is provided for each server 
with embedded VMs. Here, each tier employs its own 
provisioning technique. System parameter values are 
shown in Table 2. Our technique is aware of the demands 
at each tier and can take idiosyncrasies such as optimi- 
zation model into account, as shown in Figure 3, where 
arrival rates vary from 0 to 2000 requests per second. The 
customer s given response time is 0.8 seconds for the 
RUBiS application, and service rate is 250, 150, and 100 
requests per second for Web, App, and DB tiers, res- 
pectively. For App and DB tiers, the request probability is 
0.8 and 0.8, respectively, for the hybrid analytic model. In 
Fig.3, the minimized VM number for each tier by the 
response time constraint is presented, which is computed 
with our model and optimal approach. 
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Figure. 3 Validation results on the number of VMs at various request 

arrival rates 

Next, we repeat this experiment to predict the through- 
put of virtualized application, as shown in Figure 4. It 
shows validation results on the overall system throughput 
for RUBiS, the application throughput continues to increase 
with the increasing workload. We measure the rate of 
successfully completed requests at different requests rate. 
In our experiment, a request is counted successfully only if 
it responses within 0.8 seconds for the customer 
requirement. The request probability is 0.8 for App tier and 
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for DB tier. The result shows that the system throughput 
can be accurately predicted with our model. 
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Figure. 4 Validation results on system throughput 

Since the virtualized application throughput in our 
model is derived from resource usage at each tier, we 
further examine the accuracy of per-tier resource usage 
prediction using the same parameter values in Table 2. 
Figure 5 presents validation results on the CPU utilization 
at Web, App and DB tiers, respectively. They compare the 
predicted CPU utilization to the measured CPU utilization 
for the three tiers with the workload increasing. Web, App 
and DB tiers were running on their own virtual machine 
with average 53.82%, 62.25%, and 62.51% CPU utilization, 
respectively, which is close to the optimal solution 60%. 
CPU utilization of domain 0 was average 22% for each tier 
of virtualized application. Overall, these figures demon- 
strate that the model is reasonably accurate and can 
effectively use CPU resource. 
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Figure. 5 Comparison of models vs. experimental results 

Therefore, the minimized number of VMs as well as the 
maximized CPU resource utilization can be achieved with 
our method by dynamic resource provisioning technique, 
and then we can keep the high global utility. 

V. RELATED WORK 
Previous literature on issues related to managing res- 

ources in multi-tier applications of data centers. In this 
section we describe some prior work related to this paper as 
follows. 

Some papers have considered the provisioning of 
resources at finer granularity of resources. Urgaonkar et al. 
[15] presented an analytical model for multi-tier Internet 
applications, which is general to capture various 
characteristics of an arbitrary number of heterogeneous 
tiers. Then, the model was applied to dynamic resource 
provisioning. Ardagna et al. [16] proposed a provisioning 
controller for multi-tier data center which maximize pro- 
fits using a cost model, and developed a heuristic solution. 
The limitation is that they did not distinguish servers in 
different tiers, but allocated physical resources instead of 
virtual machines. At the same time, they adopted a closed 
queueing network performance model for the autonomic 
system. Overall, the above approaches are commonly based 
on the provisioning of identical servers as unit, while our 
work is different in that we adopt full virtual machines 
based on an open queueing network model, which supports 
fine-grained sharing of the physical infrastructure as well 
as guarantees the performance isolation of different 
virtualized application environments by deploying them on 
separate virtual machines. 

Other research efforts have focused on the modeling of 
multi-tier application environments. Urgaonkar et al. [17] 
proposed a dynamic capacity provisioning model for multi-
tier Internet applications, which determine how much of the 
resources to provisioning to each tier of the application, 
and a combination of predictive and reactive methods that 
determine when to provision these resources, both at large 
and small time scales. Chen et al. [18] proposed a closed-
system model of multi-tier business applications, and based 
on mean value analysis (MVA) algorithm to predicate 
performance of multi-tier applications. Kamra et al. [19] 
presented a single queue model for all tiers and based on 
control-theoretic approach for admission control in multi-
tier Web sites that both prevented overload and enforced 
absolute client response times, while still maintaining high 
throughput under load. Jung et al. [20] proposed a 
generating adaptation for multi-tier applications in 
virtualized consolidated server environments. It provides 
dynamic management method and optimizes offline 
resources to generate suitable configurations by evaluating 
a model consisting of multi-tier M/M/n queues. However, 
the primary difference is that we have established 
sophisticated models different from traditional analytic 
models which adopt inaccurate MVA or single queueing 
model. Here, we can conclude that a hybrid model, which 
is an M/M/c queueing model combined with multiple 
M/M/1 queueing models can be adopted in this paper, 
which can be achieved more accurate provisioning for 
virtualized multi-tier applications than other models. 

Another area of related researches has focused on 
optimization problems arising in multi-tier applications. For 
example, Zhang et al. [21] presented a nonlinear integer 
optimization model for determining the number of 
machines at each tier in a multi-tier server network. Similar 
to ours, they profile the computing resource of data center 
in physical servers’ environment while we profile the 
computing resource of cloud environment in virtual 
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machines environment. As a result, our approach can 
support a more fine grained resource provisioning and 
management for a virtualized application in cloud 
environment. Additionally, their approach uses a simply 
open queueing network model at each server, which is less 
accurate than hybrid queueing models we used. Cunha et al. 
[22] presented a new self-adaptive capacity management 
framework for multi-tier virtualized environments. It 
executes periodically and reassigns resources by evaluating 
a model consisting of multi-tier M/M/1 queues and solves 
an optimization problem. Instead, in our work we consider 
that the domain 0 of Xen potentially shares the CPU with 
the other VMs, and this latency depends on both the 
utilization of the node and the number of messages. 
Moreover, we propose an optimal method for VMs, which 
can compute effective utilization for CPU of each tier of 
virtualized application. Therefore, our work has presented 
models close to reality. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, it is argued that dynamic provisioning of 

virtualized multi-tier applications raises new challenges not 
addressed by prior work on provisioning technique for 
cloud environment. We presented an optimal autonomic 
virtual machine provisioning architecture for cloud data 
center. We proposed a novel dynamic provisioning 
technique, which was a hybrid model for a virtualized 
multi-tier application in cloud data center. A constrained 
non-linear optimization model is employed to minimize the 
total number of VMs for the requirement of customer. 
Hence the efficiency and flexibility for resource provi- 
sioning were improved in cloud environment. We 
evaluated and contrasted the performance of three tier 
virtualized applications through simulation experiments. 
Results have shown that under fine-grained resource 
provisioning, computing resources are optimized utiliza- 
tion. Moreover, our technique is also demonstrated that by 
optimizing provisioning the overall performance could be 
further enhanced while maintaining average response time 
targets. 

Our work can be improved in a number of ways. First, 
we further integrate load prediction method technique to fit 
our workload characteristics. Second, we will focus on 
expanding the utility analytic model to fit cloud environ- 
ments with heterogeneous servers produced by different 
manufacturers. Third, we adopt Service Level Agreement 
(SLA) based negotiation of prioritized applications to 
determine the costs and penalties by the achieved 
performance level. If the entire request cannot be satisfied, 
some virtualized applications will be affected by their 
increased execution time, increased waiting time, or 
increased rejection rate. 
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