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Abstract

In wireless sensor networks, efficiently disseminating
data from a dynamic source to multiple mobile sinks is
important for applications such as mobile target detection
and tracking. The tree-based multicasting scheme can be
used. However, due to the short communication range of
each sensor node and the frequent movement of sources and
sinks, a sink may fail to receive data due to broken paths,
and the tree should be frequently reconfigured to reconnect
sources and sinks. To address the problem, we propose a dy-
namic proxy tree-based framework in this paper. A big chal-
lenge in implementing the framework is how to efficiently
reconfigure the proxy tree as sources and sinks change.
We model the problem as on-line constructing a minimum
Steiner tree in an Euclidean plane, and propose central-
ized schemes to solve it. Considering the strict energy con-
straints in wireless sensor networks, we further propose
two distributed on-line schemes, a shortest path-based (SP)
scheme and a spanning range-based (SR) scheme. Exten-
sive simulations are conducted to evaluate the schemes. The
results show that the distributed schemes have similar per-
formance as the centralized ones, and among the distributed
schemes, SR outperforms SP.

1 Introduction

A wireless sensor network [2] consists of many tiny and
inexpensive sensor nodes that are distributed over a vast
field to obtain sensing data. These nodes are capable of
not only measuring real world phenomena, but also storing,
processing and transferring these measurements. Due to
these attractive characteristics, sensor networks are adopted
in many military and civil applications such as battlefield
surveillance, environmental control, and security manage-
ment. In these applications, sensing data usually need to be
disseminated from a source to many sinks, where the source

and the sinks may frequently move. For example, a sensor
network may be deployed in a battlefield to detect and mon-
itor the enemy tanks and soldiers. When such a target is
detected, the sensing data about the target (e.g., its location,
velocity and the geographic characteristics of its surround-
ing area) should be sent to commanders and soldiers, who
may also move in the battlefield.

In recent years, many data dissemination schemes [11,
13, 21, 19, 8, 9, 23] have been proposed for sensor net-
works, but most of them can not efficiently support multi-
casting from a dynamic source to multiple mobile sinks. For
example, the external storage-based scheme [11], the data-
centric storage-based (DCS) scheme [19] and the index-
based scheme [23] only consider the point-to-point com-
munication between a pair of source and sink. The directed
diffusion scheme [13] and the two-tier data dissemination
(TTDD) scheme [21] naturally support data multicasting,
but they are not efficient when the source and the sinks are
mobile. In the directed diffusion scheme, a source needs
to flood availability information over the whole network.
Even though the flooding rates at different areas can be
adaptively changed according to the locations and the query
rates of the sinks, there still exist lots of redundancy. The
TTDD scheme proactively maintains a grid-based propaga-
tion structure over the whole network in spite of the actual
locations of the sinks, and the structure should be updated
whenever the source location changes, which may cause
high maintenance overhead.

To avoid unnecessarily flooding information [13] or ex-
panding propagation structure over the whole network [21],
the tree-based multicasting scheme can be used. In this
scheme, the source and the sinks form a tree rooted at the
source, and the source pushes data to the sinks along the
tree branches. However, due to the short communication
range of each sensor node and the frequent movement of
sources and sinks, a sink may frequently fail to receive data
due to broken paths, and the tree should be frequently re-
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configured to reconnect sources and sinks. To address the
problems, we propose a dynamic proxy tree-based frame-
work. In this framework, each source (sink) is associated
with a stationary sensor node called source (sink) proxy.
The proxies related to the same source form a proxy tree.
Facilitated by the tree, a source can push data to its proxy,
which further pushes the data to multiple sink proxies, and
a sink can query its proxy to get the data.

As a source changes or a sink moves, the associated
proxy should be changed to reduce the cost of pushing
(querying) data to (from) the proxy. Accordingly, the tree
should also be reconfigured to reduce the cost of multicast-
ing data from the source proxy to the sink proxies. Due to
the strict energy constraints in sensor networks, tree recon-
figuration should be conducted in an energy efficient way.
Many multicasting tree reconfiguration schemes have been
proposed for the existing wired and wireless networks such
as the Internet, the cellular network and the wireless ad hoc
network. However, these schemes can not be directly ap-
plied to the wireless sensor network due to their large over-
head. For example, in the rearrangeable inexpensive edge-
based on-line steiner (ARIES) algorithm [3], a new node
joins an existing tree via the shortest path to the tree, and
the subtrees including newly added or deleted nodes are re-
configured every certain time. This algorithm requires each
multicasting member to know its distance to other mem-
bers. It is suitable for the Internet and the cellular network,
in which each router (base station) can naturally obtain the
information through the underlying topology advertisement
protocol (e.g., OSPF). However, it is not suitable for sensor
networks, where running the topology advertisement proto-
col may cause large overhead. On the other hand, the mul-
ticasting protocols [16, 17, 10] for mobile ad hoc networks
emphasize more on route robustness and pay less attention
to energy efficiency, since mobile ad hoc networks have fre-
quent path breaks due to high node mobility.

In this paper, we first formalize the tree reconfigu-
ration problem as an on-line Euclidean steiner problem
[18], and propose several Voronoi diagram-based central-
ized schemes to solve the problem. Considering the strict
energy constraints and the locality requirements in wire-
less sensor networks, we propose two distributed heuristic-
based schemes, the shortest path-based (SP) scheme and
the spanning range-based (SR) scheme. These schemes
are motivated by the following observations: First, the new
proxy of a source (sink) can utilize the information provided
by the previous proxy to efficiently join the tree. Second, lo-
calized adjustments can be conducted at individual nodes to
gradually optimize the tree structure. With the SP scheme,
when a sink (source) changes its proxy, the new proxy uses
flooding to join the tree. The proxy changes also cause the
tree nodes to gradually adjust their locations in a localized
way. Since SP still has large overhead due to flooding, es-

pecially when the tree nodes are far away from each other,
the SR scheme is proposed. In this scheme, each subtree
is associated with a certain spanning range, which is dy-
namically assigned and adjusted. With a few messages, a
new proxy can find the root of the smallest subtree whose
spanning range covers itself, and joins the subtree.

We use extensive simulations to compare the proposed
schemes in terms of data dissemination cost and tree recon-
figuration overhead. The results show that the centralized
schemes slightly outperform the distributed schemes, and
the SR scheme outperforms the SP scheme.

The rest of the paper is organized as follows: Section
II describes the system model and the dynamic tree-based
framework. Section III proposes centralized schemes for
tree reconfiguration. The distributed schemes are presented
in Section IV. Section V reports the performance evaluation
results, and Section VI finally concludes the paper.

2 Preliminaries

2.1 System Model

We consider a wireless sensor network that consists of
many stationary sensor nodes. These nodes are densely de-
ployed over a vast field to detect and continuously monitor
some mobile targets. The network is connected, and the
field can be completely sensed. Each sensor node knows
its own location through GPS [1] or other inexpensive tech-
niques such as triangulation [5]. Based on the location in-
formation, some location-based routing protocols [4, 15]
can be used for multi-hop communication between sensor
nodes.

Some mobile hosts (e.g., PDAs) are moving within the
sensing field. They can query and receive sensing data from
sensor nodes. A mobile host can directly communicate with
a sensor node if it is within the transmission range of the
node. For simplicity, we do not consider the communication
between the mobile hosts.

When a mobile target of interest appears in the sensing
field, the sensor nodes surrounding it can detect it and the
leader (source) may exclusively detect the target [6] or ag-
gregate the related detections [22], periodically generates
sensing data about the target, and disseminates the data to
some mobile hosts (sinks) that have subscribed for the sens-
ing data. As the target moves away from its current source,
the source is changed to be another node closer to the target.

To facilitate a sink finding a source of interest, the index-
based scheme proposed in [23] is adopted. In this scheme,
some index nodes maintain the locations of sources, and a
sink can query the appropriate index nodes to get the loca-
tion of a source. When a source is changed, its location is
updated at the related index nodes, such that the sinks can
still find it.
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Figure 1. Using proxy tree to support dynamic
multicasting

2.2 Dynamic Proxy Tree-Based Framework

Due to the dynamic characteristics of sources and sinks,
it is difficult to maintain a tree that directly connects a
source and multiple sinks that are interested in the source,
or disseminate data directly from the source to the sinks.
To deal with the problem, we propose a proxy tree-based
framework. In the framework, as shown in Figure 1, a
source (sink) is associated with a stationary sensor node
called source (sink) proxy. As the location of the source
(sink) changes, its proxy does not change until its distance
to the source (sink) exceeds a certain threshold. A source
proxy and the proxies of the sinks that need to frequently
query the source form a proxy tree. Facilitated by the tree,
sensing data is periodically pushed from the source to its
proxy, and then is multicast to sink proxies in the tree. Each
sink can query data from its proxy. The change of a source
(sink) proxy may cause the proxy tree to be reconfigured to
reduce the cost for pushing data from the source proxy to
the sink proxies and from sink proxies to sinks. In the re-
maining of the paper, we focus on efficiently reconfiguring
the proxy tree to minimize the data dissemination cost and
the tree reconfiguration overhead.

3 Centralized Tree Reconfiguration Schemes

The problem of forming a minimum-cost proxy tree can
be formalized as constructing a minimum Steiner tree [14]
that connects a given set of terminals in a graph. Due to the
dense deployment of sensor nodes, we can further formalize
the problem as constructing a minimum Steiner tree in an
Euclidean plane. In this section, we describe a centralized
off-line scheme and several centralized on-line schemes to
address the problem.

3.1 An Off-Line Scheme

Constructing a minimum Steiner tree is known as a NP-
hard problem [12], and the exact solution of the problem has
very high computational complexity. Heuristic-based solu-
tions have been proposed to solve the problem, and many
of them are based on the idea of optimizing the minimum
spanning tree to approach a minimum steiner tree. Next, we
present an off-line scheme for constructing an approximated
minimum-cost proxy tree, which is similar to the algorithm
proposed by Smith et al. [20].

The scheme makes use of the observation that a mini-
mum steiner tree (minimum-cost proxy tree) is a union of
full Steiner trees (FSTs), and each FST is a tree with the
following properties:

• It spans k (k > 1) terminals (proxies) and has k − 2
steiner points.

• Each Steiner points has three edges making 120o with
each other, and every proxy in the FST has degree one.

Based on the above observation, a minimum-cost proxy tree
is constructed in two steps: first, a minimum spanning tree
(denoted as T ) including all the proxies is constructed; sec-
ond, T is reconfigured to be a set of FSTs. The Kruskal’s
algorithm [7] can be used to construct T , and the procedure
for reconfiguring T is described as follows:

1. T is decomposed into multiple components, each with
i (i = 2, 3, · · · , m) proxies, where a 2-proxy compo-
nent is an edge of T , and an i-proxy (i > 2) component
is a corner that has (i − 1) edges.

2. For each i-proxy component Ti, a FST (denoted as
FST (Ti)) that consists of all the i proxies is con-
structed. All the generated FSTs are placed on a prior-
ity queue Q based on the value of

| FST (Ti) | / | Ti | .

3. An approximated minimum-cost proxy tree is con-
structed by picking FSTs from Q in the same way as
the Kruskal’s algorithm.

3.2 On-Line Schemes

When a sink joins (leaves) a multicasting group, or
moves far away from its current proxy, the proxy set has
to be changed by adding (removing) a proxy, and the tree
should also be reconfigured to reduce the data dissemina-
tion cost. Since it is overly expensive to totally reconstruct
the tree after each membership change, we borrow the idea
of ARIES [3] and propose an approximated on-line mini-
mum steiner tree (ONMST) scheme.
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In ONMST, a new proxy (denoted as Pn) is added to the
current proxy tree in two steps: first, Pn is added to the
current tree via the shortest path that connects the tree and
Pn; second, a small subtree that contains Pn is optimized
based on the locality property of the Voronoi diagram [14].
Specifically, the procedure is described as follows:

1. The current proxy tree (denoted as Tc) is divided into
multiple Voronoi cells.

2. Suppose Pn is covered by the Voronoi cell of node Pi.
We construct a node set Y which includes Pn and each
node that is either a vertex of the Voronoi cell or a
neighbor of a vertex of the cell.

3. In the subgraph (denoted as Gs) of Tc which contains
nodes in Y , the off-line scheme presented in Section
3.1 is used to construct one or more approximated
Steiner trees. Note that, in the tree(s), a pair of nodes is
connected if and only if they are connected in Tc (ex-
cept that Pn is connected with Pi). The reconfigured
subgraph is denoted as G′

s.

4. Tc is replaced by a new tree T ′
c, which is obtained by

replacing Gs with G′
s.

When a proxy should leave the current tree, it is removed
only if it is a leaf.

The ONMST scheme can be further optimized by letting
each Steiner node (denoted as Pi) on the tree to adjust its
location every certain time interval. Let Y denote a node
set containing the neighbors of Pi. A FST that consists of
the nodes in Y is computed, and Pi is replaced by the newly
introduced Steiner nodes in the FST. In the following, we
call the enhanced ONMST scheme E-ONMST.

4 Distributed Tree Reconfiguration Schemes

Even though the ONMST scheme and the E-ONMST
scheme have lower complexity than the off-line scheme,
they may not be suitable for sensor networks due to the fol-
lowing reasons: Each sensor node has only partial knowl-
edge of the multicasting group; i.e., it only knows its neigh-
bors in the tree. When a proxy changes from one node to
another, requiring the new proxy or its neighbor to collect
necessary information to construct Voronoi diagram and re-
configure the subgraph surrounding itself may cause large
overhead. To address the problem, we propose two dis-
tributed heuristic-based schemes in this section.

4.1 Shortest Path-Based (SP) Scheme

The SP scheme is based on the heuristic that a new proxy
(Pn) should join the current proxy tree by attaching to the
tree node (Pi) that has the shortest distance to it. Pi then

X

Pn

Root

X

Pn

Root

(a) (b)

Figure 3. A node leaves the tree.

conducts localized reconfigurations within the subtree con-
taining itself and its neighbors. Also, each node periodically
conduct localized reconfiguration to gradually optimize the
tree.

4.1.1 Proxy Join and Leave

When a sink wants to join the proxy tree, it selects a nearby
sensor node (Pn) as its proxy. Pn joins the tree by going
through the following three steps.

Step 1: Pre-searching. Pn obtains the location of
the current source proxy (root) from the appropriate index
nodes (refer to Section 2), and then sends a join req to the
root. On receiving the request, as shown in Figure 2 (a), the
root forwards the request to its neighbor that is closest to
Pn, and the neighbor further forwards the request to its own
neighbor that is closest to Pn. The forwarding procedure
continues, until it reaches a node (Pj) which is closer to Pn

than any of its neighbors, and a message join rep is sent
from Pj to Pn.

Step 2: Finding the closest node. On receiving the re-
ply, as shown in Figure 2 (b), Pn floods a message discover
within a circle that is centered at itself and has a radius of
dPn,Pj (i.e., the distance between Pi and Pj ). Every node
receiving the discover replies its location to Pn. Based on
the replies, Pn finds the node (Pi) which is closest to itself,
and sends a confirm message to Pi.

Step 3: Node join. On receiving the confirm message,
as shown in Figure 2 (c), Pi adds in Pn, and reconfigures
the subtree containing itself and its neighbors into a FST.

When Pn wants to leave, and it is a leaf in the tree,
as shown in Figure 3 (a), it leaves the tree and sends a
leave req to its parent. Otherwise, Pn has to stay in the tree
and mark itself as a Steiner node. On receiving leave req,
the parent node removes Pn. If the parent is a Steiner point
and has only two neighbors in the tree, as shown in Figure 3
(b), it removes itself and lets its neighbors directly connect
with each other.
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Figure 2. A new node joins the tree: (a) Pre-searching; (b) Finding the closest node; (c) Joining the
node.

4.1.2 Sink (Source) Movement Initiated Tree Reconfig-
uration

As a sink (source) moves and becomes far away from its
proxy, the current proxy (Pn) should be changed to another
node (P ′

n) which is closer to the sink (source). The tree
reconfiguration initiated by a proxy change goes through
the following three steps.

Step 1: Establishing a temporary edge. As shown in
Figure 4 (a), P ′

n sends a migrate req to Pn. On receiving
the message, Pn establishes a temporary edge between P ′

n

and its parent (denoted as X), and leaves the tree.
Step 2: Finding the closest node. As shown in Figure 4

(b), this step is similar to the Step 2 of the new proxy joining
procedure. If the found closest node (Pi) is not X , P ′

n tears
down the temporary connection with X , and attaches to Pi.

Step 3: Joining the tree. As shown in Figure 4 (c),
this step is the same as the Step 3 of the new proxy joining
process.

4.1.3 Periodic Localized Tree Reconfiguration

When a proxy moves, as shown in Figure 4, the subtrees
that it leaves or joins are reconfigured, but the remaining
part of the tree is untouched even after it has been affected
by the reconfigurations. To address the problem, we pro-
pose a periodic localized tree reconfiguration mechanism.
With this mechanism, each Steiner point node monitors the
changes of its neighbors. Every certain time, it computes
the FST of the subgraph including its neighbors and finds
the optimal location for itself. If the cost difference be-
tween transmitting data via the new FST and via the current
subtree exceeds a certain percentage (α), the node replaces
itself with the node closest to the calculated optimal Steiner
point. With the periodic localized reconfiguration scheme,
the tree can be gradually reconfigured with low cost.

4.2 Spanning Range-Based (SR) Scheme

In the SP scheme, a new proxy needs to flood discover
messages to find its position in the proxy tree. The flood-
ing overhead can be large, especially when the multicast-
ing members are far away from each other. To deal with
the drawback, we propose a spanning range-based (SR)
scheme. The basic idea of SR is illustrated in Figure 5.
As shown in Figure 5 (a), each subtree is assigned a certain
spanning range, and the nodes in the subtree tree should be
within the range. If a proxy (Pn) in a subtree (Pi) is changed
to another one (P ′

n), as shown in Figure 5 (b), P ′
n should

leave subtree Pi and join subtree Pj . During this process,
both subtrees should be reconfigured. In the following, we
first present the strategy to assign spanning ranges, and then
present the algorithms for adding (removing) a proxy and
dealing with source (sink) changes.

4.2.1 Spanning Range Assignment

Let P be the root of the tree, and Pi (i = 0, · · · , m − 1) be
the children of P . As shown in Figure 6 (a), the spanning
range for each Pi is the halfplane that does not cover P and
is confined by the following three lines:

• l0i , which passes Pi and is perpendicular with line PPi;

• l1i , which equally divides � Pi−1PPi;

• l2i , which equally divides � PiPPi+1.

Here, Pi−1 (Pi+1) is the anti-clockwise (clockwise) neigh-
boring sibling of Pi.

For a node Pi,j whose parent nodes is Pi, as shown in
Figure 6 (b), its spanning range is decided as follows:

case 1: Pi,j is the most anti-clockwise child of Pi (e.g.,
P1,0 in Figure 6(b)). It is confined by

• l0i,j , which passes Pi,j and is perpendicular with line
PiPi,j ;
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Figure 6. Spanning ranges of nodes

• l1i,j , which equally divides � Pi−1PPi;

• l2i,j , which equally divides � Pi,jPiPi,j+1.

case 2: Pi,j is the most clockwise child of Pi (e.g., P1,2

in Figure 6(b)). It is confined by

• l0i,j , which is defined before;

• l1i,j , which equally divides � Pi,j−1PiPi,j ;

• l2i,j , which equally divides � PiPPi+1.

case 3: otherwise (e.g., P1,1 in Figure 6(b)). It is con-
fined by

• l0i,j , which is defined before;

• l1i,j , which equally divides � Pi,j−1PiPi,j ;

• l2i,j , which equally divides � Pi,jPiPi,j+1.

According to the spanning range assignment rule, each
node on the tree can decide the spanning range of its chil-
dren, and send the range to them. To reduce the overhead,
the range information can be piggybacked in data packets
sent from the node to its children.

4.2.2 Node Join

When a mobile sink wants to join the multicasting tree, sim-
ilar to the SP scheme, it selects a nearby sensor node Pn as
its proxy and asks Pn to join the tree. Pn obtains the current
location of the source proxy from some appropriate index
nodes, and then sends a join req to the source proxy (P ).
On receiving the request, P decides the location of Pn as
follows:

(1) P calculates the spanning ranges of its children. If Pn

is covered by the spanning range of a child Pi, P for-
wards join req(Pn) to Pi.

(2) Otherwise, P adds Pn as its child. In order to add
Pn at an appropriate position, P first finds a child Pj ,
such that � PnPPj is no larger than � PnPPi (i =
0, · · · , m − 1).

(2.1) If � PnPPj < 120o, then a FST for triangle
P − Pn − Pj is calculated and replaces the subgraph
containing P , Pn and Pj .

(2.2) Otherwise, Pn is directly added as a child of P .

On receiving a join req(Pn) forwarded by its parent, Pi

follows the same procedure as its parent to decide whether
to add Pn as its child or to forward the join req to one of
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Figure 7. Adding a new proxy (Pn)

its children. The process continues until Pn joins the tree.
Figure 7 shows an example of adding a new proxy.

4.2.3 Sink Movement-Triggered Tree Reconfiguration

As a sink moves and becomes far away from its current
proxy (Pn), Pn should be changed to another node (P ′

n)
which is closer to the sink. To conduct the migration, P ′

n

sends a message migrate req(P ′
n) to Pn. On receiving the

message, Pn removes itself from the tree if it is a leaf, and
sends an add req(P ′

n) to its parent (denoted as Pi).
When Pi receives the message, it checks if P ′

n is in its
spanning range. If it is still in the range, Pi follows the
procedure of adding a new proxy (as described in Section
4.2.2) to add P ′

n to the tree rooted at Pi. Otherwise, it sends
a message add req(P ′

n) to its parent. The process continues
until P ′

n finally joins the tree.

4.2.4 Source Movement-Triggered Tree Reconfigura-
tion

When a source becomes far away from its current proxy
(P ), P should also be changed to another node (P ′) which
is closer to the source. P ′ becomes the new root of the
proxy tree, and P becomes its child. The change of root
causes the other nodes in the tree to change their spanning
ranges, and the information about the new spanning ranges
is passed from the root to leaves as the sensing data flow.
On receiving its new spanning range, each node Pn checks
its children one by one in a certain order (e.g., clockwise
order), and decides whether the position of a child should
be changed. Specifically, if a child Pn,k becomes outside of
the spanning range of Pn, a message rearrange req(Pn,k)
is sent to its parent, which decides the new position of Pn,k

in the same way as described in Section 4.2.2. Otherwise,
the position of Pn,k is unchanged.

5 Performance Evaluations

We first use MATLAB to simulate the proposed cen-
tralized schemes and the distributed schemes, and com-
pare their performance in terms of the average weight of
proxy trees, without considering the tree reconfiguration
overhead. After that, simulations based on NS2 are con-
ducted in more practical scenarios to evaluate the perfor-
mance of the proposed distributed schemes.

5.1 Comparing the Centralized and the Dis-
tributed Schemes

The MATLAB-based simulations are conducted in the
following settings: 516 (or 2064) nodes are uniformly dis-
tributed in a 500×500m2 (or 1000×1000m2) square. One

27



target and 10 sinks move randomly within the sensing re-
gion. Data are sent from the source (whose location is the
same as the target) to the sinks every second. The proposed
centralized schemes, ONMST and E-ONMST, and the dis-
tributed schemes, SP and SR, are simulated. We use the
sum of the average tree weight as the metric to compare the
performance of these schemes. In the simulations, each ex-
periment lasts for 300s, and 60 experiments are conducted
for each scheme. The average results of these experiments
are shown in the figures.
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Figure 8. Comparing the tree weights of dif-
ferent schemes (average velocity=2.5m/s, lo-
calized reconfiguration interval= 1s)

As shown in Figure 8, the average tree weight is the
largest when the minimum spanning tree (MST) of the prox-
ies is used for data dissemination. When the ONMST
scheme is employed, the tree weight can be reduced by
about 25%, since ONMST can select some Steiner points
to reduce the tree weight. The tree weight can be fur-
ther reduced by about 20% when using the E-ONMST
scheme, which can periodically optimize the tree reconfig-
ured by ONMST. The shortest path-based (SP) scheme and
the spanning range-based (SR) scheme have about 9% and
12% higher tree weight than the E-ONMST scheme, respec-
tively. This is due to the reasons that they use less informa-
tion to reconfigure the tree.

5.2 Evaluating the Distributed Algorithms

5.2.1 Simulation Model

In the NS2-based simulations, the IEEE 802.11 MAC layer
protocol and the location-based GPSR routing algorithm are
employed. We uniformly deploy 516 sensor nodes over a
500 × 500m2 field. Each sensor node has a communica-
tion range of 40m. One target and 10 sinks move randomly
in the field, and the way-point model is used to simulate
their movement. As a sink or a source (target) moves 80m
away from its current proxy, the sensor node closest to it is
selected as the new proxy.

We evaluate the following metrics:

• Control message complexity: the number of control
messages transmitted in the network.

• Data message complexity: the number of data mes-
sages transmitted in the network.

• Overall message complexity: the sum of the control
message complexity and the data message complexity.

In the simulations, each experiment lasts for 300s, and
60 experiments are conducted for each scheme. The average
results of these experiments are shown in the figures.

5.2.2 Comparing SR and SP

Figure 9 (a) shows that SR has smaller control message
complexity than SP, which is due to the following rea-
sons: As a sink (source) changes its proxy, SP needs to
flood discover messages within a certain area to let the new
proxy join the proxy tree. After that, the new proxy also has
to exchange several messages with the tree nodes within the
flooding area to select the appropriate parent node. How-
ever, when SR is used, only a few messages need to be sent,
because the new proxy is usually still within the spanning
range of the parent of the previous proxy. So it can imme-
diately join the subtree rooted at the parent node. Even if
the new proxy is out of the spanning range, a reconfigura-
tion will be conducted in the smallest subtree that covers
the new proxy, and the process will not cause many control
messages.

Figure 9 (b) shows that SR has slightly larger data mes-
sage complexity than SP. This phenomenon is consistent to
that shown in Figure 8, which verifies that the shortest path
heuristic is slightly better than the spanning range heuristic.
However, as shown in Figure 9 (c), SR outperforms SP in
terms of the overall message complexity.

5.2.3 Impact of the Localized Reconfiguration (LR)
Mechanism

Figure 10 (a) shows that using the LR mechanism increases
the control message complexity. Also, the control message
complexity increases as the system parameter α decreases.
This is due to the reason that the localized reconfiguration is
conducted more frequently as α becomes smaller. However,
as shown in Figure 10 (b), using the LR mechanism can de-
crease the data message complexity, and the data message
complexity decreases as the system parameter α decreases.
Also, when α is very small (e.g., 0.05), decreasing the pa-
rameter does not significantly decrease the data complexity.
This is due to the reason that the node density is not large
enough, and hence there may not exist a node at the optimal
location to further minimize the cost, when α is too small.
Figure 10 (c) shows that, with an appropriate parameter α,
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Figure 9. Comparing SR and SP
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Figure 10. Impact of the localized reconfiguration mechanism ( SiMTR=Sink movement-initiated tree
reconfiguration)

using the LR mechanism can reduce the overall message
complexity.

5.2.4 Impact of the Source Movement-Initiated Tree
Reconfiguration (SoMTR) Mechanism

Figure 11 (a) shows that using the SoMTP mechanism in-
creases the control message complexity, and the complex-
ity increases as the source velocity increases. This phe-
nomenon can be explained as follows: As the source moves,
the source proxy changes accordingly. When the SoMTP
mechanism is employed, changing the source proxy causes
some nodes migrate from one branch to another. To conduct
the reconfigurations, some control messages should be ex-
changed. Also, as the source velocity increases, the source
proxy changes more frequently, which introduces more con-
trol messages.

Figure 11 (b) shows that using the SoMTP mechanism
can reduce the data message complexity, which is due to the
following reasons: If the SoMTP mechanism is not used,
the tree is not reconfigured as the source proxy changes.
Thus, data should be transmitted from the source to the pre-
vious proxy (root) before being transmitted to the sink prox-

ies. However, when the SoMTP mechanism is used, the
tree structure is optimized as the source proxy changes, and
hence reduces the data dissemination cost.

Figure 11 (c) compares the overall message complexity
when the SoMTP mechanism is used or not. As shown
in the figure, as the source velocity increases, the SoMTP
mechanism can significantly reduce the overall message
complexity when the source velocity is not large. But the
reduction becomes smaller when the source velocity is very
large. The reasons can be found from Figure 11 (a) and (b).
As the source velocity is small, the increment of the con-
trol message complexity is much slower than the reduction
of the data message complexity. However, as the source
velocity becomes very large, the increment of the control
message complexity is similar to the reduction of the data
message complexity.

6 Conclusion

In this paper, we addressed the problem of efficient dy-
namic multicasting in wireless sensor networks. We pro-
posed a dynamic proxy tree-based framework, and focused
on the issue of efficiently reconfiguring the proxy tree as
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Figure 11. Impact of the SoMTP mechanism (average sink velocity=5.0m/s)

proxies frequently change from one node to another. The
problem was modeled as on-line reconstructing a Steiner
minimum tree in an Euclidean plane. Some centralized on-
line schemes were proposed to solve the problem. Consid-
ering the strict energy constraints and the locality require-
ments in wireless sensor networks, we further proposed two
distributed schemes, the shortest path-based (SP) scheme
and the spanning range-based (SR) scheme. Extensive sim-
ulations were conducted to evaluate the proposed schemes.
The results showed that the distributed schemes can achieve
similar performance as the centralized schemes, and the SR
scheme outperforms the SP scheme.
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