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Abstract 

This paper investigates the dynamic pull-in instability of vibrating 

micro-beams undergoing large deflection under electrosatically 

actuation. The governing equation of motion is derived based on 

the modified couple stress theory. Homotopy Perturbation Method 

is employed to produce the high accuracy approximate solution as 

well as the second-order frequency- amplitude relationship. The 

nonlinear governing equation of micro beam vibrations pre-

deformed by an electric field includes both even and odd nonline-
arities. The influences of basic non-dimensional parameters on the 

pull-in instability as well as the natural frequency are studied. It is 

demonstrated that two terms in series expansions are sufficient to 

produce high accuracy solution of the micro-structure. The accu-

racy of proposed asymptotic approach is validated via numerical 

results. The phase portrait of the system exhibits periodic and 

homoclinic orbits. 

 

Keywords 

Dynamic pull-in instability, Modified couple stress theory, Ho-

motopy Perturbation Method, Frequency – amplitude relationship, 

Homoclinic orbit. 

 

 
 

Dynamic pull- in instabil ity of geometrical ly nonlinear 

actuated micro-beams based on the modif ied couple 

stress theory 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

1 INTRODUCTION 

With development of modern technology, micro and nano-electro mechanical systems have shown 

enormous popularity on engineering and industry. The application of micro-electro-mechanical sys-

tems (MEMS) devices especially the electrically actuated MEMS devices which require low actua-
tion voltage levels are continuously growing. Actuated MEMS devices are extensively used in inkjet 

printers, switches, gyroscopes, chemo-sensors and so on. Recently several numerical and experi-
mental studies have been conducted on the pull-in instability and dynamic behavior of MEMS de-

vices (Ansari et al., 2013; Zhang and Fu, 2012; Rajabi and Ramezani, 2013; Nayfeh et al., 2005; He 

et al., 2009; Sedighi and Shirazi, 2013; Jia et al., 2011; Younis and Nayfeh, 2003; Mobki et al., 2013; 
Rahaeifard et al., 2013; Caruntu et al., 2013; Batra et al., 2008; Moghimi Zand and Ahmadian, 
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2009; Nabian et al., 2013). However, the amplitude dependence of nonlinear frequency and pull-in 

instability has not been developed, till present.  
A distributed size-dependent model based on the modified strain gradient elasticity theory 

(MSGT) was developed by Ansari et al. (2013)in order to investigate the pull-in instability of circu-

lar microplates subjected to the uniform hydrostatic and non-uniform electrostatic actuations. They 
employed step by step linearization of the equation of motion and utilized the generalized differen-

tial quadrature (GDQ) method to solve the problem numerically. A new model for a viscoelastic 
beam based on the simplified couple stress theory was developed by Zhang and Fu(2012). They 

investigated the effect of the beam size on the instantaneous pull-in voltage, durable pull-in voltage 

and pull-in delay time of the system. Rajabi and Ramezani (2013)studied the dynamic behaviour of 
the micro scale nonlinear beam model based on strain gradient elasticity. They demonstrated that 

by increasing the beam thickness, the strain gradient effect on increasing the natural frequency 
decreases and geometric nonlinearity plays the main role on its trend. Nayfeh et al. (2005) reviewed 

the development of reduced-order models (node and domain methods) for MEMS devices and dis-

cussed the advantages and disadvantages of each implementation. 
The improved macromodel of the fixed-fixed microbeam-based of MEMS capacitive switch was 

developed by He et al. (2009) to predict the electromechanical behaviors of electrically actuated 
MEMS capacitive switch. Their model accounted for moderately large deflections, dynamic loads, 

axial stress induced by the midplane stretching and the residual stress. Sedighi and Shirazi (2013) 

presented a new asymptotic procedure to predict the nonlinear vibrational behaviour of classical 
micro-beams pre-deformed by an electric field using Parameter expansion method. Jia et al. (2011) 

investigated the pull-in instability of micro-switches under the combined electrostatic and intermo-
lecular forces. They accounted for the effect of axial residual stress, the force nonlinearity and geo-

metric nonlinearity in their research and solved the governing equation using the differential quad-
rature method. 

An investigation into the response of a resonant microbeam to an electric actuation was present-

ed by Younis and Nayfeh(2003). They employed the nonlinear model to account for the mid-plane 
stretching, a DC electrostatic force, and an AC harmonic force and discussed the effect of the de-

sign parameters on the dynamic response of the micro-structure. Mobki et al. (2013) studied the 
mechanical and bifurcation behavior of a capacitive micro-beam suspended between two conductive 

stationary plates. They used a modified non-linear mass-spring model in order to study the global 

stability of the fixed points and showed the homoclinic and heteroclinic orbits by plotting phase 
plane diagrams. Rahaeifard et al. (2013) investigated the dynamic behavior of micro-cantilevers 

under suddenly applied DC voltage based on the modified couple stress theory. They utilized mul-
tiple scales method for analytical analysis and their numerical approach was based on a hybrid fi-

nite element/finite difference method. Caruntu et al. (2013)employed the reduced order model 

(ROM) method to investigate the nonlinearparametric dynamics of electrostatically actuated micro-
electromechanical systems (MEMS) cantilever resonators under soft alternating current (AC) volt-

age of frequency near half natural frequency. They found that the fringe effect affects significantly 
the behavior of the MEMS resonator especially for the narrower micro-cantilevers. Batra et al. 

(2008) studied the vibrations of narrow microbeams pre-deformed by an electric field with the elec-

tromechanical model that estimated the electrostatic fringing field due to both the finite width and 
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the finite thickness of the microbeam. Moghimi Zand et al (2009) studied the dynamic pull-in in-

stability of microbeams subjected to step voltages using homotopy analysis method under the con-
sideration of electrostatic force and midplane stretching. Nabian et al. (2013) examined the stability 

of a functionally graded clamped-clamped micro-plate subjected to hydrostatic and electrostatic 

pressures and illustrated that the micro-system undergoes a saddle node and homoclinic bifurca-
tions. 

The current work intends to compute the second-order frequency-amplitude relation in a micro 
clamped-clamped beam due to electrostatic voltage. Recently, considerable progresses had been 

made in asymptotic approximate solutionsof nonlinear differential equations (Sedighi et al., 2013; 

Sedighi and Shirazi, 2012; Sedighi et al., 2012). There have been several approaches employed to 
solve the governing nonlinear differential equations to study the nonlinear vibrations such as Para-

metrized Perturbation Method (PPM) (Barari et al., 2011), Energy Balance Method (Ghadimi et 
al., 2012), Variational Iteration Method and Hamiltonian Approach (HA)(Sedighi et al., 2012), 

Laplace Transform Method (Rafieipour et al., 2012), Max-Min Approach (He, 2008), Homotopy 

Analysis Method (HAM)(Sedighi et al., 2012), Parameter Expansion Method (Sedighi et al, 2012), 
Iteration Perturbation Method (IPM) (He, 2001) and Homotopy Perturbation Method (HPM) (He, 

1999). It is well known that while the perturbation methods provide the most versatile tools for the 
nonlinear analysis of engineering problems, they have also some limitations. In order to overcome 

these drawbacks, combining the standard homotopy and the perturbation method, known as the 

Homotopy Perturbation Method (HPM), improves the drawbacks of both approaches. He (1999) 
developed the homotopy perturbation method for solving a variety of problems including the linear 

and the nonlinear as well as the initial and the boundary value problems by merging two aforemen-
tioned techniques. Benefiting from easily computable components and rapid convergence, it has 

been applied to a wide class of functional equations. 
The aim of the present article is to investigate the dynamic pull-in instability of geometrically 

nonlinear actuated micro-beams by introducing the second-order frequency amplitude relation. The 

nonlinear equation of motion is derived based on the modified couple stress theory using Hamilton’s 
principle. The effect of vibrational amplitude and system parameters on the pull-in instability and 

natural frequency is studied via HPM. In this direction, analytical expressions for vibrational re-
sponse of actuated micro-beams are presented. The proposed analytical method demonstrates that 

two terms in series expansions is sufficient to obtain a highly accurate solution of micro-beam vi-

bration. 
 

2 MATHEMATICAL MODELING 

Consider a double-clamped micro-beam suspended above a rigid plate and under electro-statically 

actuation voltage as shown in Fig. 1.The actuated micro-beam has length L , cross section area 
  
A

0
, 

height  h , width  b , density r , moment of inertia I and modulus of elasticity E . The air initial gap 

is 
 
d

gap
 and an attractive electrostatic force which originates from voltage  V causes the micro-beam 

to deflect. Assume that the micro-beam considered here, be the Euler–Bernoulli beam. The strain of 

a material point located at a distance z  from the middle plane for the micro-beam caused by the 
large rotation and large displacement of the cross-section is represented as (Sedighi et al., 2012): 
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Figure 1 Configuration of a clamped-clamped actuated micro-beam 

 

Taking into account the linear relation between the stress and strain, we have    σ = Eε , The 

strain energy of the micro-beam can be calculated from: 
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Furthermore, the strain energy of an elastic continuum medium using the modified couple stress 

theory (MCST) can be mentioned as (Rahaeifard et al., 2013): 
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where

 
µ  represents the shear modulus and l  denotes the material length scale parameter, using the 

descriptions: 
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The total strain energy of the micro-structure incorporating the MCST micro-beam model can 

be expressed as: 
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The virtual work  W performed by the axial and electrical forces incorporating the von Karman 
type nonlinear strain can be written as(Batra et al., 2008): 



814      H. M. Sedighi et al. / Dynamicpull-in instability of geometricallynonlinearactuated micro-beamsbasedonthemodifiedcouple stress theory 

Latin American Journal of Solids and Structures 11(2014) 810 – 825 

 

   

W =−
1

2
N

i
+

EA

2L
w

x

2
dx

0

L

∫
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
w

x

2
dx

0

L

∫ − F
es
wdx

0

L

∫  (6) 

 

where
 
N

i
 is the axial force and 

 
F

es
 is the electrostatic force per unit length of the micro beam which 

is described by(Moghimi Zand et al, 2009): 
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where 0.65b = for double-clamped micro-beam. The kinetic energy is obtained as follows 
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Applying the Hamilton’s principle leads to: 
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After some mathematical computations, the nonlinear governing equation of motion for actuated 
MCST micro-beam model is expressed as follows: 
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By introducing the dimensionless parameters as: 
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the non-dimensional nonlinear equation of the micro-beam based on the MCST model can be writ-
ten as follows: 
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Using Taylor expansion for electrostatic force in equation (12) results in 
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Assuming 
    
W ξ,τ( ) = q τ( )φ ξ( ) , where 

  
φ ξ( )  is the first eigen mode of the clamped-clamped beam 

and can be expressed as: 
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where 
    
λ

cc

= 4.73  is the root of characteristic equation for first eigen mode. Applying the Bubnov-

Galerkin decomposition method, the non-dimensional nonlinear governing equation of motion can 

be written as follows: 
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where the parameters 
  
β

0
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4
 have been described in the Appendix. 

 

3 BASIC IDEA OF HOMOTOPY PERTURBATION METHOD 

Consider the following nonlinear differential equation (He, 1999): 
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where  A is a general differential operator,  B  a boundary operator,  
  
f r( )

 
is a known analytical 

function,  Γ is the boundary of the solution domain ( Ω ), and 
  
∂u ∂t denotes differentiation along 

the outwards normal to  Γ . Generally, the operator A  may be divided into two parts: a linear part 

 L  and a nonlinear one  N . Therefore, Eq. (16) may be rewritten as follows: 
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In cases where the nonlinear Eq. (16) includes no small parameter, one may construct the follow-
ing homotopy equation 
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Now we apply the homotopy perturbation method on Eq. (15). We construct a homotopy in the 

following form: 
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According to the HPM, we assume that the solution of Eq. (24) can be expressed in a series of 

 
p ; 
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the coefficient of q  is expanded into a series in p  in a similar way (He, 1999): 
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Since the solution of Eq. (27-a) is
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= Acos ωτ( ) , the solution of Eq. (27-b) should not contain 

the so-called secular term
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No secular terms in 
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τ( )  require eliminating contributions proportional to ( )cos wt on the right-

hand side of equation (28), we have: 
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Solving equation (28) for ( )
1
q t gives the following second order approximation for 

   
q τ( ) as: 

 

    

q
1
τ( ) =

cos ωτ( ) 48β
4
A4 + 160β

2
A2
−15β

3
A3 + 480β

0( )
480ω2

+
cos 2ωτ( ) 80β

4
A4 + 80β

2
A2( )

480ω2

+
β

3
A3

cos 3ωτ( )
32ω2

+
β

4
A4

cos 4ωτ( )
120ω2

+
−480β

0
−180β

4
A4
− 240β

2
A2

480ω2

 (30) 
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equation (26) for two terms approximation of series respect to p  and for 
   
p = 1  yields: 

 

   
ω

2
= ω2

−β
1
−ω

1
 (31) 

 

substitution of this result into the right-hand side of equation (27-c) for 
    
q

2
τ( )  and eliminating the 

secular terms proportional to 
   
cos ωτ( ) results in: 

 

    

S ω( ) = −
5

6
β

2

2
A

3
−

7

4
β

4
β

2
A

5 +
1

2
β

3
β

2
A

4 +
3

2
β

3
β

0
A

2
−

63

80
β

4

2
A

7 +
3

10
β

3
β

4
A

6

+ β
1
Aω2

− 2β
2
β

0
A +

3

4
β

3
A

3ω2
−

3

128
β

3

2
A

5
− 3β

4
β

0
A

3
−Aω4 = 0

 (32) 
 

 

solving equation (32) for the fundamental frequency gives the following second-order frequency-
amplitude relationship for actuated micro-beam vibrations as: 
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β

1

2
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3

8
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3
A
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1

2
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⎠
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1 2 ⎤

⎦

⎥
⎥
⎥
⎥

1 2  (33) 
 

 

4 RESULTS AND DISCUSSION 

In order to verify the effectiveness of the present modeling and the approximate approach, the ob-
tained results in this work are compared with the results of Rahaeifard et al. (2013) for micro-

cantilever beam vibrations. As can be seen in Fig. 2, the second order approximation for ( )q t based 

on the modified couple stress theory exhibits an excellent agreement with the results obtained by 

Rahaeifard et al. (2013)using a hybrid finite difference method. It should be noted that in order to 

achieve the best second-order approximation with zero initial conditions, 
    
q

0
τ( ) = 1− cos ωτ( )  is sub-

stituted for the first trial solution.   
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Figure 2 Comparison of the approximate periodic solutions with the reported results by Rahaeifard et al. (2013) 

 
The effect of normalized parameters on the natural frequency and pull-in instability of actuated 

clamped-clamped micro-beams have been illustrated in Figs. 3 to10. Fig.3 shows the characteristic 

curves of natural frequency for a micro-beam as a function of  V under some assigned values of 
normalized amplitudeA . It is demonstrated that this non-dimensional parameter has a significant 

effect on predicting the pull-in phenomenon. It is obvious from Fig. 3 that by increasing the initial 
amplitude, the pull-in instability occurs at the lower values of actuation parameter V . In addition, 

it is found that, the fundamental frequency of actuated micro-beam decreases by increasing the 

applied voltage until the natural frequency vanishes and the micro-beam drops to the rigid plate. 
 

 
Figure 3 The effect of actuation parameter V on the fundamenal frequency of micro-beam 

 
Fig.4 examines how the nonlinear fundamental frequency of actuated micro-beam is affected by the 

axial force parameter
 
f
i
. As can be observed, the fundamental frequency increases by decreasing 

initial condition A . Also, it appears from this Fig. that when the normalized amplitude A  decreases, 
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pull-in instability occurs at the lower values of parameter
 
f
i
. Furthermore, pull-in phenomenon van-

ishes by increasing the non-dimensional parameter 
 
f
i
. The influence of nonlinearity parameter  κ  on 

the fundamental frequency is investigated in Fig. 5. According to the illustrated results, it is obvi-
ous that the fundamental frequency decreases as the parameter  κ increases. Moreover, the pull-in 

voltage shifts downward by increasing this parameter. 
 

 
Figure 4 The effect of axial force parameter 

 
f
i
 on the natural frequency of micro-beam 

 

 
Figure 5 The effect of nonlinearity parameter k  on the natural frequency of micro-beam 

 

Fig. 6 represents the impact of length scale parameter 
 
h l  on the pull-in instability of micro-

systems. It is clear from the Fig. that,when the beam thickness is in order of the material length 

scale, the normalized amplitude has no significant effect on the pull-in behavior of the structure. 

The fundamental frequency decreases by increasing the length scale parameter. In addition, as the 
initial condition increases, pull-in phenomenon occurs at lower values of non-dimensional parameter 

 
h l . As mentioned earlier, the normalized amplitude and actuation voltage play substantial roles on 
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the pull-in behavior of the system. To this end, the effects of these parameters on the dynamic be-

havior of micro-beams are studied by plotting the time history and phase portrait diagrams. Figs. 7 
and 8 investigate the nonlinear behavior of the system as a function of initial condition A .It is 

concluded that the time period of oscillation increases by increasing the normalized amplitude. In 

the vicinity of pull-in point (here 0.65A = ), a small increase in the amplitude, changes the dynam-
ic behavior of micro-system. In this situation, when the initial amplitude increases, the system loses 

its stability and drops to the substrate beyond the pull-in point. According to Figs. 9 and 10, at less 
values of actuation voltage, the system exhibits periodic motion around the stable center point in 

the phase plane. Before pull-in point, when the actuation parameter increases, time period of vibra-

tion increases. As the actuation parameter approaches to the pull-in voltage (here 19.35V = ), the 
motion trajectories in the phase plane approach to the unstable saddle node. There exists homo-

clinicorbit which starts from the unstable branch and goes back to the saddle node at the stable 
one. By increasing the applied voltage and above the pull-in voltage, the micro-beam becomes dy-

namically unstable and collapse onto the rigid plate. 

 

 
Figure 6 The effect of ratio 

 
h l  on the nonlinear frequency of actuated micro-beam 

 
Figure 7 Time history of micro-beam deflection for different values of initial amplitude A  
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Figure 8 Phase portrait of micro-beam vibration for different values of initial amplitude A  

 
Figure 9 Time history of micro-beam deflection for different values of applied voltage V  

 
Figure 10 Phase portrait of micro-beam vibration for different values of applied voltage V

 



H. M. Sedighi et al. / Dynamicpull-in instability of geometricallynonlinearactuated micro-beamsbasedonthemodifiedcouple stress theory      823	  

Latin American Journal of Solids and Structures 11(2014) 810 – 825 

 

4 CONCLUDING REMARKS 

In this research, the Homotopy Perturbation Method was employed to solve governing equation of 

geometrically nonlinear actuated micro-beams based on the modified couple stress theory. An excel-
lent analytical solution using asymptotic approach was obtained. The integrity of the obtained ana-

lytical solutions is verified in comparison with the results in the literature. The presented results 
showed thatas the normalized amplitude increases, the pull-in phenomenon occurs at lower values 

of actuation voltage. In addition, the pull-in stability disappears by increasing the axial force pa-

rameter. The phase plane portrait of the system illustrated the periodic orbits around the stable 
center point and homoclinic orbit near the unstable saddle node. 
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