
DynamicQuantization Range Control for Analog-in-Memory Neural Networks
Acceleration

NATHAN LAUBEUF†‡, JONAS DOEVENSPECK†, IOANNIS A. PAPISTAS†, MICHELE CASELLI†,

STEFAN COSEMANS†, PETER VRANCX†, DEBJYOTI BHATTACHARJEE†, ARINDAM MALLIK†,

PETERDEBACKER†, DIEDERIKVERKEST†, FRANCKYCATTHOOR†‡ andRUDYLAUWEREINS†‡,

† Interuniversity Microelectronics Center (IMEC), Belgium and

‡ ESAT Laboratory, Katholieke Universiteit (K.U.) Leuven, Belgium

Analog in Memory Computing (AiMC) based neural network acceleration is a promising solution to increase the energy efficiency of
deep neural networks deployment. However, the quantization requirements of these analog systems are not compatible with state of the
art neural network quantization techniques. Indeed, while the quantization of the weights and activations is considered by modern deep
neural network quantization techniques, AiMC accelerators also impose the quantization of each Matrix Vector Multiplication (MVM)
result. In most demonstrated AiMC implementations, the quantization range of MVM results is considered a fixed parameter of the
accelerator. This work demonstrates that dynamic control over this quantization range is possible but also desirable for analog neural
networks acceleration. An AiMC compatible quantization flow coupled with an hardware aware quantization range driving technique
is introduced to fully exploit these dynamic ranges. Using CIFAR-10 and ImageNet as benchmarks, the proposed solution results in
networks that are both more accurate and more robust to the inherent vulnerability of analog circuits than fixed quantization range
based approaches.

CCS Concepts: • Computing methodologies→ Neural networks; • Hardware→ Analog and mixed-signal circuits.

Additional Key Words and Phrases: Neural networks, Quantization, In-Memory-Computing

ACM Reference Format:
Nathan Laubeuf†‡, Jonas Doevenspeck†, Ioannis A. Papistas†, Michele Caselli†, Stefan Cosemans†, Peter Vrancx†, Debjyoti Bhattacharjee†,
Arindam Mallik†, Peter Debacker†, Diederik Verkest†, Francky Catthoor†‡ and Rudy Lauwereins†‡. 2021. Dynamic Quantization
Range Control for Analog-in-Memory Neural Networks Acceleration. ACM Trans. Des. Autom. Electron. Syst. 1, 1 (October 2021),
21 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

The acceleration of MVM operations provided by graphical processing units (GPU) has been instrumental to the success
of deep neural networks [28, 33]. By providing high parallelism and large memory buffers to store the weights and
activations of deep neural networks, GPUs remain to this day the main platform to train and deploy deep neural

This research received funding from the Flemish Government (AI Research Program) and KU Leuven grant C14/18/100.
Authors’ address: Nathan Laubeuf†‡ , Jonas Doevenspeck† , Ioannis A. Papistas† , Michele Caselli† , Stefan Cosemans† , Peter Vrancx† , Debjyoti
Bhattacharjee† , Arindam Mallik† , Peter Debacker† , Diederik Verkest† , Francky Catthoor†‡ ; Rudy Lauwereins†‡ , nathan.laubeuf@imec.be,
† Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, Leuven, Belgium, 3001 and
‡ ESAT Laboratory, Katholieke Universiteit (K.U.) Leuven, Kasteelpark Arenberg 10, Leuven, Belgium, 3001.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/1122445.1122456

2 Laubeuf, et al.

DAC

ADC

DAC

DAC

ADC ADC

...

...

......

...

...

...

summation
lines

activation lines

Fig. 1. AiMC based matrix vector multiplier. The input vector 𝑎 is encoded on activation lines and multiplied by a weights matrix𝑊 .
The result vector 𝑜 is read out by analog-to-digital converters (ADCs) on summation lines.

networks. As most GPUs are designed for 32 bit floating point arithmetic, it is common for deep neural networks to be
executed with 32 bit weights and activations.

However, recent advancements in quantizing deep neural networks for inference have shown that networks using
smaller bit width representation for their weights and activations [19] can achieve accuracies on par with full-precision
networks. Exploiting these quantization solutions, digital neural network accelerators, such as Google TPUs [18],
Microsoft BrainWave [9] or Nvidia’s Volta architecture, are able to achieve significant time and energy gains compared
to conventional GPUs. Being tied to the progress of CMOS technology, the gains achievable by these digital accelerators
are unable to match the growing complexity of recent deep neural networks [3].

To overcome this limitation, emerging non-Von Neumann architectures for neural networks accelerators are being
developed. Among them, mixed-signal systems based on Analog in Memory Computing (AiMC) are a radical example
to push DNNs’ energy efficiency [31]. The working principle of AiMC based MVM acceleration is illustrated in Fig. 1.
In AiMC, an input integer vector 𝑎 is encoded by digital-to-analog-converters (DACs) on a set of activation lines.
These lines are connected to memories containing the weights𝑊 of the MVM operation. These weights determine
the contribution of each activation to rows of summation lines. The MVM result is digitized on these summation lines
using analog-to-digital converters (ADCs). This approach allows a drastic reduction of the data movement and energy
consumption compared to more conventional architectures, with further benefits in terms of energy due to the analog
processing.

In typical Convolutional Neural Networks (CNNs), convolutional layers are composed of three successively applied
operations: convolution, batch normalization and activation. To quantize these layers, quantization functions are applied
to the weights and the input activations of the convolution operation. Using this method, convolution operations are
processed using integer arithmetic while floating point precision is maintained for the rest of the operations. Though
this quantization flow is valid for digital accelerators, able to mix floating point and mixed precision integer arithmetic,
its assumptions are incompatible with AiMC execution.

Due to energy and area constrains, most AiMCs do not perform true integer based MVMs. Given an MVM array
containing 𝑖 rows, using 𝑏𝑎 bit DACs, and 𝑏𝑤 bit weights, an ADC capable of providing 2𝑏𝑎−1 × 2𝑏𝑤−1 × 𝑖 output codes
would be required to represent all possible MVM output values. As an example, given an array of ternary weights with
Manuscript submitted to ACM

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 3

8 bit DACs deployed over 256 rows, 15 bits are required by the output ADC to match all possible values. AiMC solutions
using such high resolution ADCs are not as energy efficient as equivalent digital designs [23]. As such, high precision
ADCs are not used in AiMC prototypes, implicitly requantizing and clipping all MVM results instead. By leaving
convolution outputs unconstrained, this quantization effect is overlooked by the previous state-of-the-art quantization
flows, reducing the accuracy achievable by these quantized networks on AiMC.

Carefully determining the quantization ranges of commonly used linear quantization functions, is crucial to maintain
the accuracy of quantized neural networks [19]. ADC resolution constrains limit the amount of control given over
this quantization range in AiMCs based systems. Ad hoc methods to determine ADC quantization ranges have proven
efficient on relatively small networks [7, 17, 24, 36]. However, the unique network-wide MVM output quantization
range assumed by these methods is incompatible with the tensor wise range determination techniques used by most
quantization methods and can result in significant accuracy degradation for deeper networks [36].

To address these discrepancies, this paper introduces a deep neural network quantization flow which is fully
compatible with AiMC execution. AiMC control techniques are exposed to achieve flexible MVM output quantization
ranges. This flow is coupled with a software solution to model the limits of ADC resolution, adapt the quantized
networks to these limits and generate appropriate AiMC driving patterns to control these dynamic quantization ranges.
In order, the contributions of this paper are as follows:

• A fully quantized AiMC aware neural network quantization flow is demonstrated.
• AiMC driving techniques, enabling flexible quantization range control in AiMC are introduced.
• On a simulated AiMC, the combination of the described methods is shown to result in quantized versions of
Resnet-20 and Resnet-18, that outperform empirical methods in both accuracy and resilience to inherent AiMC
variabilities.

The rest of this paper is organized as follows. Section 2 provides information on the different quantization flows in
the literature and quantization range determination in AiMC. Section 3 introduces the methods used by this paper for
the quantization dataflow, hardware-based quantization range scaling and the associated software model used to train
AiMC compatible neural networks. Section 4 experimentally validates these methods on relevant image classification
benchmarks. Finally, conclusions are provided in Section 5.

2 BACKGROUND AND RELATEDWORK

Though deploying quantized neural networks on AiMC holds the potential for more energy efficient networks, current
neural network quantization solutions are not adapted for the design constrains of AiMCs. Additional considerations
regarding quantization flow and achievable quantization resolutions need to be taken into account. This section presents
background information and related literature regarding, quantization flow considerations and quantization range
determination and control.

2.1 Quantization flow

As most digital neural network accelerators support mixed precision data-types, most quantization techniques make
active use of both integer and floating point operations. As mentioned in Section 1, the convolution layers of a CNN are
composed of three successive operations: convolution, batch normalization and activation. Most quantization methods
consider discretizing the weights and input activations of the convolution in order to accelerate the convolution

Manuscript submitted to ACM

4 Laubeuf, et al.

Conv BN Quant

Quant

Quant

Quant ReLU

Fig. 2. Batch norm folded convolution quantization. The Batch normalization parameters are used to rescale the weights and shift
the biases of the original convolution. The resulting Conv-Batch Norm operation can then be quantized.

operation using integer arithmetic, maintaining floating point precision for the batch normalization and activation
function [8, 11, 12].

To limit reliance on floating point logic, alternative quantization flows have considered quantizing the batch
normalization operation. In [4] and [22], the multiplicative and additive factors of batch normalization operations are
explicitly quantized. In [15], batch normalization multiplications are performed using a bit shift based mechanism
relying on powers of 2 approximations. The bit widths of the convolution results in these quantization flows, however,
remain unconstrained and possibly operate at precisions higher than those usually supported by AiMC systems.

In [19] and [16], the batch normalization operation is merged with the convolution operation during training by
rescaling the weights and shifting the biases of the convolution before their quantization (Fig. 2). This quantization
flow, referred to as batch norm folding, results in a merged convolution batch normalization operation that, if the DACs
and ADCs of the AiMC share the same precision, can be mapped on AiMC consistently. However, due to the binary
nature of the most of the memory elements used for AiMC accelerators, weight precisions higher than ternary are
rarely supported (Table 1). To the best of authors knowledge, the batch norm folding in ternary neural networks has
yet to be demonstrated.

2.2 Range determination

In most quantization methods, uniform quantization functions are inserted in the network computation flow to quantize
the weights and activations. Using a uniform quantization function 𝑄 , a floating point tensor 𝑥 ∈ R𝑛 is decomposed as
the product of a discrete integer tensor 𝑥𝑖 ∈ N𝑛 and a floating point step size 𝑥𝑠 ∈ R, such that 𝑄 (𝑥) = 𝑥𝑖 ·𝑥𝑠 = 𝑥 . The
quantization step size 𝑥𝑠 is expressed as the ratio of the maximum absolute floating point value in the quantization
range 𝑠𝑓 and the maximum absolute value representable by the chosen integer representation 𝑠𝑖 , such that: 𝑥𝑠 =

𝑠𝑓
𝑠𝑖
.

The integer tensor 𝑥𝑖 is calculated by dividing 𝑥 by the scaling factor 𝑥𝑠 , clipping this value to the quantization’s
representable integer range [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥], and rounding the obtained value up, down or to the nearest integer. Rounding
to the nearest integer, 𝑥𝑖 can be expressed as:

𝑥𝑖 = clamp(
⌊
𝑥

𝑥𝑠

⌉
, 𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥) (1)

The quantization ranges 𝑠𝑓 of the inserted quantization functions need to be properly determined to maintain the
accuracy of quantized neural networks. These ranges can be determined based on the statistics of the tensors to quantize.
The approach proposed in [19] uses the minimum and maximum values of the weights and the moving average of the
minimum and maximum of the activations. [22] uses a multiple of the standard deviation of the weights and the 99.99th

or 99.9th percentile of the activations. The quantization ranges can also be learned as parameters of the network. In [8]
Manuscript submitted to ACM

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 5

Table 1. AiMC macro bit widths, input vector length and resulting quantization ranges.

Precision Vector
length

Quantization
range

DAC Memory ADC

[36] ternary 1 bit 11 levels 256 [−60, 60]
[17] ternary 1 bit 11 levels 256 [−64, 64]
[24] 7 bit ternary 6 bit 1024 [−6400, 6400]
[7] 7 bit 1 bit 7 bit 64 [−2048, 2048]
[32] 2 bit 5 bit 5 bit 64 NA

and [5], they are learned as parameters of quantized activation functions, while in [16] and [11] they are learned for
both weights and activations quantization.

As quantization ranges are determined on a tensor [16] or filter basis [19], different ranges are used throughout
the network. These range determination methods differ significantly from the methods adopted by most reported
AiMC implementations which tend to adopt a single network wide quantization range, determined empirically on a
small set of targeted neural networks. In [36], the distributions of network-wide accumulation results are observed to
select a quantization range able to encompass most of the MVM results dynamic range. The number of quantization
levels dedicated to that range is then determined by selecting the minimal number of levels resulting in no accuracy
degradation on the selected tasks. [17] adopts the opposite approach of first selecting the largest quantization step size
resulting in no accuracy degradation and discarding the levels outside of the observed dynamic range.

In both cases, the post-hoc methods used to determine the bit-width and step size of the ADC are calibrated on
distributions gathered from relatively shallow networks (maximum 9 layers). By determining the accelerator design
parameters(e.g. ADC bit-width and step size), from such networks, the resulting accelerators offer no guaranties
regarding the accuracy of deeper networks. The type of degradation that such method can cause on deeper networks is
illustrated in [36] where an originally more accurate ternary Resnet-14 becomes less accurate by 1.73% on CIFAR-10 than
the shallower VGG network used to determine the considered accelerator’s ADCs step-size and bit-width. This example
illustrates that designing accelerators around specific networks, and thus not enabling control over the quantization
range of MVM operations, can cause significant accuracy degradation on the application of interest.

Other notable AiMC designs are not limited by such constrains, and still allow flexibility regarding the quantization
range of the ADC. As an example, [34] uses a current-sensing approach based on an RRAM array whose load resistance
consists of a programmable RRAM cell used to dynamically rescale the summation line current range to a fixed voltage
range. Similarly, [32] is a charge-discharge based SRAM AiMC design that includes a configurable replica SRAM column
used to provide a voltage reference to dynamically change the quantization range of the ADC.

Although these methods can enable flexible quantization ranges, specific implementations often parametrize this
range as a single value, empirically determined network wide [24]. Table 1 lists examples, taken from the literature,
of bit-widths and vector lengths supported by AiMC implementations along with the quantization ranges reported
for these implementations. To our knowledge, paired quantization and control patterns to enable algorithm driven,
tensor-wise control over these quantization ranges are still missing from the literature. Our experiments show that
enabling such control is advantageous for the deployment of realistic networks on large, energy efficient, AiMC arrays.

Manuscript submitted to ACM

6 Laubeuf, et al.

Batch
Norm

Conv ReLUQuantshift

Quant

QuantADC

QuantQuant

Quantshift Quantshift

Fig. 3. Mixed signal convolution quantization. The convolution and batch normalization are quantized separately with different
precisions.

3 METHODS

To reconcile the assumptions of modern quantization techniques and the constrains of AiMC, novel contributions are
introduced by this work. In subsection 3.1, a new CNNs quantization flow, adapted for execution on AiMC accelerators,
is introduced. In subsection 3.2, methods to support dynamic output quantization ranges in AiMC accelerators are
discussed. Subsection 3.3 proposes a method to appropriately control these quantization ranges, with the quantization
step sizes learned using the previous quantization flow.

3.1 AiMC Aware CNNQuantization flow

Batch norm folding is a widely adopted technique, used by default by two of the most popular neural-networks-based
machine learning frameworks [1, 26] to enables fully quantized CNN execution. However, this method causes large
precision degradation below 4 bit weight precision (as shown in subsection 4.2). This paper proposes an alternative CNN
quantization flow (Fig. 3), adapted for AiMC execution. Contrary to batch norm folding, all operations in the introduced
flow are quantized individually considering both the operands and results of each operation. These quantization
functions ensure that the bit width of the represented data is supported by the considered platforms at each step of the
network’s execution. As opposed to the operands-only quantization schemes reviewed in subsection 2.1, the different
precisions imposed by the DACs, ADCs, and memory elements in AiMC (Table 1) are accounted for in this scheme,
constraining analog convolution outputs to precisions supported by the components on the considered platform.

Since each operation can be tied individually to specific execution methods by using this quantization flow, flexible
deployment configurations can be considered. By mapping convolution operations to AiMC and batch normalizations
to digital support logic, higher precision batch normalization can be applied with this method. However, to support such
mixed signal configurations, the requantization of the results to the bit-width of the next operations is mandatory. An
approach similar to [16], is adopted to avoid the expensive floating point conversions and the requantization operations.
By constraining the quantization step sizes 𝑥𝑠 of quantized tensors to powers of 2, the conversion steps between
operation can be executed using bit-shift and clipping operations, minimizing their computation overhead.

A similar bit-shift mechanism is used to quantize the residual connections of CNNs. Residual connections are a
prominent feature of state-of-the-art CNN architecture [13, 27, 30]. With residual connections, the result of convolutions
layers occurring at different levels of the CNN are added to one another before being passed to the rest of the execution.
For quantized residual networks, the addition of quantized tensors using integer arithmetic can be non trivial if its
operands use different quantization step sizes. The sum of two quantized tensors is the result of a sum of products:

𝑥 + 𝑦 = 𝑥𝑖 ·𝑥𝑠 + 𝑦𝑖 ·𝑦𝑠 (2)
Manuscript submitted to ACM

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 7

If 𝑥𝑠 ≠ 𝑦𝑠 , these step sizes cannot be factored out of the addition. As such, adding the integer component of quantized
tensors using different step sizes results in an incorrect result. Therefore, a quantized addition using bit shift based
rescaling is introduced to solve this issue. Given two quantized operands 𝑥 = 𝑥𝑖 ·𝑥𝑠 and 𝑦 = 𝑦𝑖 ·𝑦𝑠 , with 𝑥𝑠 > 𝑦𝑠 , 𝑥 is
scaled down to the level of 𝑦 by bit shifting its integer component 𝑥𝑖 by the ratio 𝑥𝑠/𝑦𝑠 . Since the resulting quantized
tensor 𝑥 ′ = 𝑥𝑖 << ⌊𝑙𝑜𝑔2(𝑥𝑠/𝑦𝑠)⌉ ·𝑦𝑠 uses the same scale 𝑦𝑠 as 𝑦, it allows for the following approximation:

𝑥 + 𝑦 ≈ 𝑥 ′ + 𝑦 = (𝑥𝑖 << ⌊𝑙𝑜𝑔2(𝑥𝑠/𝑦𝑠)⌉ + 𝑦𝑖) ·𝑦𝑠 (3)

This approximation is used throughout the network to realistically model quantized residual connections.
Compared to the full-integer based quantization flow proposed here, more conventionnal AiMC based system tend

to rely on high precision floating point operations for batch normalization and residual addition. To evaluate the
expected energy and area impact of AiMC based neural networks inference using the proposed fully quantizated flow
compared to the aforementioned systems, an evaluation was performed based on 180nm PDK using Synopsis DC at 250
MHz. Based on synthesized floating point-32 (IEEE 754 single precision float) [35] and int-8 based multiply-add units,
the area and energy of the synthesized fp-32 unit are 64.5 and 178.8 times larger, respectively, than their int-8 based
equivalent. The number of multiply-add operations required to implement batch normalization is proportional to the
number of output channels of each convolution operation. Similarly, the number of addition operations required to
implement residual connection in layers for which it is required is also proportional to the number of output channels.
This implies that the proposed fully integer based quantization flow offers significant benefits over more conventional
implementations relying on floating point logic.

This work concerns itself mainly with the inference of CNNs on large AiMC arrays, that do not require the matrices
of single convolution operations to be split across multiple analog arrays. The reason for this choice is that addition in
the analog domain is much cheaper than in digital domain. If smaller arrays are used, the energy efficiency of the array
itself reduces due to higher ADC overheads and this is further compounded by the overhead of partial sums required
compute each layers results. As shown in [6], at equal areas, larger arrays are more energy efficient than their smaller
counterparts.

Two network architectures are of interest for this work: Resnet-20 and Resnet-18. For ResNet-20, an array size of
576 x 64 is large enough to accommodate all MVM operations without the need for splitting. As such, the 1024 x 415
AiMC demonstrated by [24] does not require any of the Resnet-20 operation to be split in any way. For Resnet-18 an
arrays size of 4608 x 512 is large enough to accommodate all MVM operations without the need for splitting. Though
such a large AiMC array is yet to be demonstrated, we believe that such an array size is not inconceivable.

If partial sums are explicitly required, however, the technique presented here can be extended to account for the
splitting of the MVM operations. By tiling convolution operations to the size of the considered array and wrapping
each MVM operation in quantization operation a proper scaling factor can be determined for the MVM operations
groups corresponding to each analog convolution layer.

3.2 Hardware supported scaling

In AiMC, MVM results are encoded as voltages on summation lines (Fig. 1). These voltages are proportional to the
MVM results. A unit summation voltage 𝛿𝑣𝑠𝑢𝑚 can thus be defined, such that:

𝑣𝑠𝑢𝑚 = 𝛿𝑣𝑠𝑢𝑚 ·𝑊𝑎 (4)

Manuscript submitted to ACM

8 Laubeuf, et al.

-64 -48 -32 -16 0 16 32 48 64

Acc.

p
d

f

δvadc < δvsum

-64 -48 -32 -16 0 16 32 48 64

Acc.

p
d

f

δvadc = δvsum

Accumulation
distribution ADC references

-64 -48 -32 -16 0 16 32 48 64

Acc.

p
d

f

δvadc > δvsum

Fig. 4. Accumulation results partition by the ADC as a function of the ADC least significant bit - unit summation voltage relationship.

Analog results 𝑣𝑠𝑢𝑚 are converted to digital values 𝑜 by an ADC before being passed as operands for the next operation.
By noting 𝛿𝑣𝑎𝑑𝑐 the quantization step of the ADC, the complete transfer function of the AiMC based MVM is:

𝑜 = clamp(
⌊
𝛿𝑣𝑠𝑢𝑚

𝛿𝑣𝑎𝑑𝑐
·𝑊𝑎

⌋
, 𝐴𝐷𝐶𝑚𝑖𝑛, 𝐴𝐷𝐶𝑚𝑎𝑥) (5)

The relationship between the unit summation voltage 𝛿𝑣𝑠𝑢𝑚 and the ADC’s quantization step determines the partition
of the accumulation results by the ADC’s quantization (Fig 5).

• If the ADC’s quantization step is smaller than the unit summation voltage (𝛿𝑣𝑎𝑑𝑐 < 𝛿𝑣𝑠𝑢𝑚), the ADC’s quantiza-
tion step is unnecessarily small as more than one ADC level is spent per accumulation unit.

• If the ADC’s quantization step and the unit summation voltage are equal (𝛿𝑣𝑎𝑑𝑐 = 𝛿𝑣𝑠𝑢𝑚), the AiMC behaves
like a digital accelerator. However, as outputs are clipped to the range of the ADC, this configuration fails to
capture the full accumulation distribution (Fig. 5).

• If the ADC’s quantization step is larger than the unit summation voltage, (𝛿𝑣𝑎𝑑𝑐 > 𝛿𝑣𝑠𝑢𝑚), a wider quantization
range, able to capture the accumulations distribution, is achieved. As the ADC’s quantization step covers
𝛿𝑣𝑎𝑑𝑐/𝛿𝑣𝑠𝑢𝑚 accumulation levels, a rescaling factor 𝜌 = 𝛿𝑣𝑠𝑢𝑚/𝛿𝑣𝑎𝑑𝑐 is applied to the accumulation by the
ADC’s quantization. Controlling either of the ADC’s quantization step or the unit summation voltage allows to
tune this scaling factor.

Control over the unit summation voltage can be introduced in hardware in multiple ways. As an example, in [7] and
[24], Pulse Width Modulation (PWM) DACs are used to encode the activation. Fig. 4 illustrates how activations are
converted to voltage pulses in such DACs. The time width of the encoding pulses is proportional to the activations as
their product with a unit time parameter 𝑡𝑢 . This unit time is generated using a clocking mechanism, with period 𝑡𝑐 . By
grouping a programmable number 𝑛𝑢 of successive clocking events, the unit time is: 𝑡𝑢 = 𝑛𝑢 × 𝑡𝑐 . As such, the unit
contribution of each activation on the summation line 𝛿𝑣𝑠𝑢𝑚 is directly proportional to the number of clock events per
unit time 𝑛𝑢 .

Similar type of control can be enabled over the ADC’s quantization step. Time scaling can be implemented by linearly
controlling the unit integration time of time conversion based integrating ADCs. ADCs using programmable voltage
references, such as [32] can also be used, allowing large flexibility with a linear control over the ADC’s LSB, but also
non-linear ADC quantization schemes.
Manuscript submitted to ACM

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 9

Fig. 5. Pulse width modulation scaling. A voltage pulse width is generated proportional to the input activation, 3 in the example. The
time per unit 𝑡𝑢 is a multiple of a fixed delay 𝑡𝑐 generated by an internal clocking mechanism.

......

Fig. 6. Scaling unrolling scheme. The weights and activations are unrolled n times in the AiMC array, resulting in a gain factor of 𝑛.

Table 2. Numerical applications parameters

𝑉𝑑𝑑 𝑐𝑠𝑏𝑖𝑎𝑠 𝐼𝑐𝑒𝑙𝑙 𝐶𝑙𝑖𝑛𝑒 𝑡𝑐

0.8 V 0.6 V 0.85 𝜇A 700 fF 27 ps

Hardware based methods to control the scaling factor of AiMC are not limited to charge based implementations.
Notably, the current-sensing approach based on an RRAM array introced in [34] uses a load resistance consisting of
a programmable RRAM cell, to dynamically re-scale the summation line current range to a fixed voltage range. This
observation, along with previously mentioned approaches, testifie that dynamic scaling can be generalized, across a
wide range of device types, for both current-sensing and charge based AiMC implementations.

Not all AiMC arrays, however, implement such control schemes. For those AiMC systems, redundant weight mapping
strategies are available to emulate control over the unit summation voltage. As an example, considering a convolution
layer with 𝑖 input channels, 𝑜 output channels, and a 𝑘 × 𝑘 sized kernel, General Matrix Multiply (GeMM) inspired
architectures unroll the convolution filters corresponding to each output channel in the columns of the accelerator.
In each column, the kernels are unrolled sequentially for each input channel, resulting in 𝑖 × 𝑘 × 𝑘 weight vectors,
multiplied by their corresponding unrolled activations. By repeating the unrolling procedure 𝑛 times in each row (Fig. 6),
𝑣𝑠𝑢𝑚 is multiplied by 𝑛. Nonetheless, this approach is limited by the total number of times an operation can be unrolled
in a given array, and constraints 𝑣𝑠𝑢𝑚 to multiples of its original value, since each operation must be fully unrolled to
obtain correct results.

Manuscript submitted to ACM

10 Laubeuf, et al.

3.3 Scaling control

Subsection 3.2 showed that multiple solutions are available to enable control over the rescaling factor 𝜌 across a wide
range of AiMC based systems. However, specific AiMC system implementations restrict the number of possible values
of 𝜌 . Linear control of the unit summation voltage 𝛿𝑣𝑠𝑢𝑚 or the ADC’s quantization step 𝛿𝑣𝑎𝑑𝑐 using a fixed precision
integer 𝑛 is assumed by this work. All the scaling techniques mentioned in subsection 3.2 are covered under this
assumption. The values of 𝜌 , achievable under this assumption, can be expressed as:

𝜌𝑎 =

𝑛 ·𝛼𝑠𝑢𝑚
𝛿𝑣𝑎𝑑𝑐

for linear 𝛿𝑣𝑠𝑢𝑚

𝛿𝑣𝑠𝑢𝑚

𝑛 ·𝛼𝑎𝑑𝑐
for linear 𝛿𝑣𝑎𝑑𝑐

(6)

where 𝑛 is a fixed precision integer control signal.
The MVM of a quantized matrix �̃� with a quantized vector 𝑎, using subsection 3.1 quantization flow, can be written

as:
𝑜 = 𝑄 (�̃� 𝑎) = clamp(

⌊
𝑤𝑠 ·𝑎𝑠
𝑜𝑠

·𝑊𝑖𝑎𝑖

⌉
, 𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥) (7)

In this expression, the quantization step sizes 𝑎𝑠 ,𝑤𝑠 and 𝑜𝑠 are determined by the training process. Hence, the rescaling
factor 𝜌𝑑 =

𝑤𝑠 ·𝑎𝑠
𝑜𝑠

, is also indirectly learned during training.
In order to enable AiMC based operation-wise scaling, a control signal 𝑛 needs to be found, for each operation, to

approximate 𝜌𝑑 using the available values of 𝜌𝑎 . By expressing the control signal 𝑛 as:

𝑛 =

clamp(

⌊
𝜌𝑑 ·

𝛿𝑣𝑎𝑑𝑐

𝛼𝑠𝑢𝑚

⌉
, 𝑛𝑚𝑎𝑥 , 𝑛𝑚𝑖𝑛) for linear 𝛿𝑣𝑠𝑢𝑚

clamp(
⌊
1
𝜌𝑑

·
𝛿𝑣𝑠𝑢𝑚

𝛼𝑎𝑑𝑐

⌉
, 𝑛𝑚𝑎𝑥 , 𝑛𝑚𝑖𝑛) for linear 𝛿𝑣𝑎𝑑𝑐

(8)

the fixed precision integer 𝑛 results in an analog scale 𝜌𝑎 closest to the learned scale 𝜌𝑑 .
However, 𝜌𝑎 only approximates the learned factor 𝜌𝑑 . Therefore, to properly take into account the difference between

the analog and digital rescaling factors during training and inference, the output quantization step sizes of the MVM
operations are adjusted to match the control signal 𝑛 as:

𝑜 ′𝑠 =

𝑤𝑠 ·𝑎𝑠 ·

𝛿𝑣𝑎𝑑𝑐

𝑛 ·𝛼𝑠𝑢𝑚
for linear 𝛿𝑣𝑠𝑢𝑚

𝑤𝑠 ·𝑎𝑠 ·
𝑛 ·𝛼𝑎𝑑𝑐
𝛿𝑣𝑠𝑢𝑚

for linear 𝛿𝑣𝑎𝑑𝑐
(9)

As a result, the output quantization step sizes are also quantized, and can be expressed as a function of the different
quantization step sizes𝑤𝑠 , 𝑎𝑠 and 𝑜𝑠 learned during training. Using these step sizes, 𝑜 ′𝑠 can be rewritten:

𝑜 ′𝑠 =

{
𝛾𝑠𝑢𝑚/clamp(⌊𝛾𝑠𝑢𝑚/𝑜𝑠 ⌉) for linear 𝛿𝑣𝑠𝑢𝑚

𝛾𝑎𝑑𝑐 · clamp(⌊𝑜𝑠/𝛾𝑎𝑑𝑐 ⌉) for linear 𝛿𝑣𝑎𝑑𝑐
(10)

with

𝛾𝑠𝑢𝑚 = 𝑤𝑠 ·𝑎𝑠 ·
𝛿𝑣𝑎𝑑𝑐

𝛼𝑠𝑢𝑚
(11)

𝛾𝑠𝑢𝑚 = 𝑤𝑠 ·𝑎𝑠 ·
𝛼𝑎𝑑𝑐

𝛿𝑣𝑠𝑢𝑚
(12)

Manuscript submitted to ACM

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 11

By using straight-through-estimation [5, 14] to differentiate the rounding function, the scale adjustment operation
is fully differentiable. As such, backpropagation through this function is possible, maintaining the learnability of the
quantization step sizes 𝑎𝑠 , 𝑤𝑠 and 𝑜𝑠 . As the control signal 𝑛 is a function of these step sizes and fixed hardware
parameters, 𝑛 is indirectly learned using this process. Since the step sizes are also different for individual layers,
different control signals 𝑛 are used throughout the network, which contrasts with previously mentioned network wide
determination techniques.

From a system perspective, the method presented here introduces a single integer parameter per layer. As such, this
value can be loaded with the weights in a register directly associated with the array. Taking the configuration and
networks considered in section 4 as an example, Resnet-20 maps a total of 269824 weights (67.5 KB) on the array for its
execution. For this same execution, 20 6-bit encoded scale factors (15B) are required, that is 0.02% of the total memory
impact. For Resnet-18 the number of weight goes up to 11157504 (2.8 MB), while only 19 scales are required (15B), or
0.005% of the total memory impact. Thus, in a complete system the overheads of control and storing this value in a
layer-wise fashion is expected to be negligible compared to the control and memory overhead of the array’s weights.

4 EXPERIMENTS

The methods introduced in Section 3, are validated on two sets of experiments. The quantization flow introduced
in subsection 3.1 is then compared to a batch norm folding based quantization flow. The scaling control pattern of
subsection 3.3 is finally benchmarked against an empirical scale determination method, under realistic hardware
assumptions.

4.1 Target networks and dataset

Two visual object classification datasets are used to evaluate the described methods: CIFAR-10 [20] and ImageNet
[29]. CIFAR-10 is composed of 60,000 32x32 pixels colored RGB images, evenly split into 10 different classes, while
ImageNet is a larger dataset composed of 1.25M high-resolution images, split across 1000 classes. In order to perform
model testing on previously unseen data, both datasets are subdivided into two separate training and testing sets. For
CIFAR-10 and ImageNet, the testing sets are composed of 10,000 and 50,000 images, respectively. For model selection
and early stopping purposes, similarly sized validation sets are sampled from the remaining images.

Two networks of the Resnet-family [13] are targeted for this evaluation: Resnet-20 on CIFAR-10 and Resnet-18 on
ImageNet. For Resnet-20, a floating point baseline is trained from scratch for 200 epochs. Training is conducted with a
batch size of 128 samples, using step decay learning rate scheduling with an initial learning rate of 0.1, decaying by a
factor 5 at epoch 60, 120 and 160 as used originally in [20]. Nesterov momentum is also applied to the weight update,
with a momentum value of 0.9 along with a 5𝑒 − 4 weight decay value. For Resnet-18, a pretrained model is obtained
directly from the Torchvision Python module.

On CIFAR-10, Resnet-20 achieves a validation accuracy of 93.0% and a test accuracy of 91.4%. On ImageNet, Resnet-18
achieves a validation accuracy of 68.3% and a test accuracy of 69.1%.

4.2 Quantization flow selection

Evaluation of the quantization flow introduced in Section 3.1 is performed by training quantized versions of Resnet-20.
The accuracy achieved by these networks is evaluated on CIFAR-10’s test set. To assert the relevance of this method,
each quantized network is evaluated against a batch norm folded equivalent, by comparing the accuracy of both
approaches under the same AiMC configurations.

Manuscript submitted to ACM

12 Laubeuf, et al.

Table 3. Bit width configurations summary

Configuration
Convolutions First - Last - BN.

weights inputs outputs weights inputs outputs

𝐴𝑛𝑎𝑙𝑜𝑔 8 8 bit 8 bit 8 bit 8 bit 8 bit 8 bit
𝐴𝑛𝑎𝑙𝑜𝑔 4 4 bit 4 bit 4 bit 4 bit 8 bit 8 bit
𝐴𝑛𝑎𝑙𝑜𝑔 2 ternary 7 bit 6 bit 8 bit 8 bit 8 bit

Three bit width configurations are considered for evaluation. Two configurations aim at full 8 bit and 4 bit AiMC
execution respectively, while the latter targets deployment on a ternary weight AiMC with 7 bit inputs and 6 bit encoded
outputs, similar to [24]. In most reported quantization methods, the first and last layers of CNNs are excluded from
the quantization flow [8, 22, 38]. These interface layers are included in the considered quantization flow. However, to
avoid information loss at the CNN’s inputs and outputs, 8 bit quantization is applied to the input and output of these
interface layers. Under these considerations, 8 bit support logic is assumed for the CNN’s first and last layers. As such,
by assuming the same support logic can be used for batch normalization operation, 8 bit quantization is also applied to
the inputs and outputs of the batch normalization layers. In addition, to relax the quantization constrains on batch
normalization in the ternary configuration, 8 bit quantization is applied to the batch normalization’s multiplicative and
additive factors in this configuration. As the same acceleration logic is assumed for batch normalization and interface
layers, 8 bit weights were also used for the input and output layers of CNNs using this configuration. A summary of
these configurations is reported in Table 3.

The linear quantization described in Section 2.2 is applied following either the batch norm folded quantization flow
or the quantization flow explained in subsection 3.1. To parametrize the linear quantization functions, AiMC specific
constraints are taken into account. Activations in AiMCs are encoded using a sign-magnitude representation. The sign
bit is used in combination with the weights to determine the direction of the activations contribution and the magnitude
bits are used to determine the size of that contribution. In order to account for that representation, symmetric bounds
are used to quantize the AiMC inputs (𝑙𝑚𝑎𝑥 = −𝑙𝑚𝑖𝑛). On the contrary, as the first ADC reference, determining the sign
of the output, is generally placed at the center of the summation line voltage range, ADCs used in AiMCs use a 2’s
complement representation. As such, the quantization function corresponding the ADC uses asymmetric quantization
bounds (𝑙𝑚𝑎𝑥 = −𝑙𝑚𝑖𝑛 − 1) and a round down function to quantize the convolution outputs.

During training, straight through estimation is used to backpropagate the gradients through the rounding functions.
Different strategies are applied to determine the floating point quantization range 𝑠𝑓 . For the weights, 𝑠𝑓 is learned as
network parameter, as shown in [11], and is initialized to the absolute maximum value (AbsMax) of the floating point
weights. For the activations, 𝑠𝑓 is determined as a training hyperparameter. All quantized networks are implemented
using Xilinx’s Brevitas PyTorch framework [25].

Inspired by [11], different learning rates are applied to train the quantization scales and the parameters of the neural
networks. In [11] the magnitude of the gradient updates are scaled as a function of number of neuron inputs and of the
bit width. Here, the scaling is achieved through the use of different learning rates for the weights of the network and
the ranges learned by the quantization functions. The different learning rates are determined using hyperparameter
tuning. Due to the variety of bit widths used in the quantization configurations, learning rates for the convolution
operations and the rest of the layers are separate, resulting in two different sets of learning rates.
Manuscript submitted to ACM

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 13

Analog8 Analog4 Analog2

50
70
90

ac
cu

ra
cy

 (%
)

baseline
mixed
folded

Fig. 7. Mixed signal and batch norm folded quantization flow test accuracies for Resnet-20 on CIFAR-10.

Hyperparameter tuning is performed using the Optuna framework [2]. A list of the hyperparameters tuned during
this process, with the distributions each of them is sampled from, is provided in Appendix A. Each training configuration
sampled during the procedure is used to train a network for a 100 epoch. To limit the number of hyperparameters
tuned, cosine annealing learning rate is used in place of step decay. For each quantization configuration, the training
configuration achieving the best validation accuracy is selected, trained for 200 epochs and tested on a previously
unseen test set.

The classification accuracies obtained with quantization flow of subsection 3.1 and by batch norm folding, with the
same quantization precision, are shown Fig. 3. Though batch norm folding is able to maintain close to floating point
accuracy using full 8 bit execution, lower precision results in an observable drop in accuracy. By leveraging the higher
precision batch normalization operations, the mixed signal configuration is able to maintain accuracices within 1.6% of
the floating point baseline for all execution precisions.

The training configuration obtained for Resnet-20 is used to train Resnet-18 on ImageNet. In order to achieve
convergence on ImageNet, however, modification to the training procedure are required. AbsMax initialization of the
weight quantization scale results in the majority of the weights been quantized to zero, preventing the convergence of
the network through gradient extinction. As such, weight quantization scales are initialized to one standard deviation
of the floating point weights for the training of Resnet-18. Similarly, for the activations and accumulations, fixed
quantization scales prevent convergence. These scales are thus set to track the absolute maximum average for the first
300,000 training batches before becoming a learnable parameter for the rest of the training.

The resulting ternary-weights Resnet-18 achieves a test accuracy of 64.7% on ImageNet. Table 4, shows that this
accuracy is comparable with ternary and 2 bit quantized Resnet-18 from the literature, while also considering stricter
quantization assumption for AiMC execution.

4.3 AiMC array scale control

To evaluate the hardware scaling technique exposed subsection 3.3, deployment on the AiMC accelerator introduced in
[24] is targeted. Operating using ternary weights, 7 bit inputs and 6 bit outputs, the accelerator’s computation pattern is
illustrated Fig 8. The compute cells are composed of two SRAM memories storing ternary weights𝑤 and four switches,
controlled by the cell weights𝑤 and the pulse width encoded activations 𝑎. Two long channel transistors, operating in
saturation and controlled by the bias voltage 𝑐𝑠𝑏𝑖𝑎𝑠 , act as current limiters to discharge summation lines.

Each cycle, two summations lines (𝑠𝑢𝑚+, 𝑠𝑢𝑚−) are precharged to 𝑉𝑑𝑑 . Depending on the sign of each cell’s local
product𝑤 ×𝑎, the switching circuitry selects the appropriate summation line. A charge𝑄𝑠𝑢𝑚 , proportional to the width
of pulse encoded activation is discharged form the selected summation line. This discharge results in a voltage drop
Δ𝑉𝑙𝑖𝑛𝑒 on the summation line, proportional to the DAC’s unit time 𝑡𝑢 , multiplied by the transistor’s saturation current

Manuscript submitted to ACM

14 Laubeuf, et al.

Table 4. Quantized Resnet-18 accuracies on ImageNet test set as a function of the weights (W) activations (Act.), Accumulations (Acc.)
and batch norm operation precisions. × denotes floating-point execution.

W. Act. Acc. Batch
Norm Accuracy

[37] 2 bit × × × 68.0
[21] ternary × × × 61.8
[39] ternary × × × 66.6
[8] 2 bit 2 bit × × 64.4
[11] 2 bit 2 bit × × 66.7
[12] 2 bit 8 bit × × 67.9

Ours. ternary 7 bit 6 bit 8 bit 64.7

𝐼𝑐𝑒𝑙𝑙 , and inversely proportional to the summation line capacitance 𝐶𝑙𝑖𝑛𝑒 .

Δ𝑉𝑙𝑖𝑛𝑒 = 𝑎 × 𝑡𝑢 · 𝐼𝑐𝑒𝑙𝑙
𝐶𝑙𝑖𝑛𝑒

(13)

The accumulation of the discharge contributions on the summation lines results in a voltage difference between 𝑠𝑢𝑚+
and 𝑠𝑢𝑚−. This difference is sampled in the range [0, 𝑉𝑑𝑑] by a 6 bit differential SAR-ADC. Using (5), the transfer
function of this AiMC array can be written as:

𝑜 = clamp(
⌊
𝛿𝑣𝑠𝑢𝑚

𝛿𝑣𝑎𝑑𝑐
·𝑎𝑊

⌋
,−32, 31)

𝛿𝑣𝑠𝑢𝑚 =
𝑡𝑢 · 𝐼𝑐𝑒𝑙𝑙
𝐶𝑙𝑖𝑛𝑒

, 𝛿𝑣𝑎𝑑𝑐 =
𝑉𝑑𝑑

64

(14)

Simulations are performed using Pytorch-based analytical model of AiMC deployed operations, based on (14). In
addition to the ADC quantization range related clipping modeled by (14), summation line level clipping is taken into
account by this model. In the considered precharge discharge pattern, both positive and negative summation lines are
precharged to 𝑉𝑑𝑑 at the beginning of each MVM operation. As such, the maximum voltage drop Δ𝑣𝑙𝑖𝑛𝑒 supported on
both positive and negative summation lines is limited by 𝑉𝑑𝑑 . This limit imposes a maximum 𝑙 to the positive 𝜎+ and
negative 𝜎− contributions of the AiMC’s MVM operations.

𝑙 =
𝐶𝑙 · 𝑉𝑑𝑑
𝑡𝑢 · 𝐼𝑙𝑖𝑛𝑒

, 𝜎+ < 𝑙, 𝜎− < 𝑙 (15)

To model this single ended summation clipping, convolution operations mapped on the simulated AiMC are decom-
posed as sums of their positive and negative parts. To do so weights and input activation are separated by sign.

𝑊+ =𝑊 ◦ (𝑊 > 0),

𝑊− =𝑊 ◦ (𝑊 < 0),

𝑎+ = 𝑎 ◦ (𝑎 > 0),

𝑎− = 𝑎 ◦ (𝑎 < 0)

(16)

Manuscript submitted to ACM

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 15

act+

act−

sum+ sum−

csbias

Precharged
atvdd

w+

w−

Example 1: a =−5, w = +1

Example 2: a = +2, w =−1

act+

act−

act+

act−

vdd

Qsum,− = I cel l × 5× tunit

Qsum,+ = 0

Qsum,− = I cel l × 2× tunit

Qsum,+ = 0

Fig. 8. Circuit schematic of compute cell concept. The weights 𝑤 are stored in two SRAM cells, two long-channel transistors are
utilized as current limiters, and switches determine whether to discharge 𝑠𝑢𝑚+ or 𝑠𝑢𝑚−, based on the signs of input activation 𝑎 and
weight 𝑤.

The positive and negative parts of the convolutions are then processed, clipped, and summed to generate the digital
convolution outputs 𝜎 , as they are seen at the ADCs’ inputs.

𝜎+ = 𝑐𝑙𝑖𝑝 (𝑎+ ∗𝑊+ + 𝑎− ∗𝑊−, 𝑙)

𝜎− = 𝑐𝑙𝑖𝑝 (𝑎− ∗𝑊+ + 𝑎+ ∗𝑊−,−𝑙)

𝜎 = 𝜎+ − 𝜎−

(17)

Quantization is then applied using (14) by replacing the digital MVM operation 𝑎𝑊 with the single ended clipped
convolution outputs 𝜎 .

This accelerator integrates the unit time scaling proposed in Section 3.2, using a programmable delay line and
encoding the number of delay events per unit time 𝑛 as a 6 bit integer number, such that 𝑡𝑢 = 𝑛 × 𝑡𝑐 . To determine
this number of events per unit time, the scale-based, operation-wise, determination pattern detailed in Section 3.3 is
compared to sweeping-based, network-wide, empirical determination technique. To do so, trained ternary networks are
deployed using the Pytorch simulated AiMC system and evaluated on their corresponding validation set. All possible,
network-wide, delay events count values 𝑛 are evaluated and the value resulting in the highest validation accuracy is
selected for comparison. The test accuracy using this value network-wide is compared to the test accuracy obtained
using scale-determined values for individual operation.

The validation and test accuracies obtained by sweeping the range of all possible counts are illustrated in Fig. 9.
Different optimum counts per unit are observed for each network. An optimal of 12 counts per unit is found for
Resnet-20 and of 7 counts for Resnet-18. This observation can be explained by the wider distribution of the convolution
outputs, before ADC quantization, observed in Resnet-18 (Fig. 10). To cover the wider distribution, a smaller unit time is
necessary. Fig. 11 compare the rescaling factor resulting from these unit times to the distribution of the operation-wise

Manuscript submitted to ACM

16 Laubeuf, et al.

0 10 20 30 40 50 60
n

20

40

60

80

100
CI

FA
R-

10
 a

cc
ur

ac
y

(%
)

5 10 15 20
85
90
95

Resnet-20
val_top-1
test_top-1

baseline
from scales
best

0 10 20 30 40 50 60
n

0
10
20
30
40
50
60

Im
ag

eN
et

 a
cc

ur
ac

y
(%

)

5 10
50

60

Resnet-18

val_top-1
test_top-1

baseline
from scales
best

Fig. 9. Network test and validation accuracy vs delay events count per unit time 𝑛, for Resnet-20 on CIFAR-10 and Resnet-18 on
ImageNet. Gray dashed line is the baseline accuracy of the ternary neural network. Red dashed line is the network wide delay events
count resulting in the maximum validation accuracy. Black dashed line is the test accuracy obtained determining 𝑛 from the scales of
each operation.

800 600 400 200 0 200 400 600 800
convolution outputs

0.000

0.002

0.004

0.006

de
ns

ity

Resnet-20
Resnet-18

Fig. 10. Ternary convolution outputs distributions for Resnet-20 and Resnet-18 on CIFAR-10 and ImageNet.

0.014
0.022

0.030
0.038

0.046
0.054

0.062

Rescaling factor

0

1

2

3

4

fre
qu

en
cy

Resnet-20

0.014
0.022

0.030
0.038

0.046
0.054

0.062

Rescaling factor

Resnet-18
best
median

Fig. 11. Rescaling factors distribution across networks convolution operations. Each bin corresponds to a single value of 𝑛. Rescaling
factor found using value sweeping is marked in red. Median rescaling factor is marked in blue.

factors deduced from the learned quantization scales. The factors selected by the sweeping methods are neighboring
the median of the operation-wise deduced ones.

Thought accuracies close to the ternary baseline are achieved by both the network-wide and operation-wise methods
for Resnet-20, significant accuracy loss is observed on Resnet-18 for both methods. To close this accuracy gap, additional
Manuscript submitted to ACM

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 17

Table 5. Simulated hardware accuracies of ResNet-20 and ResNet-18 on CIFAR-10 and ImageNet

Network Dataset Method
Accuracy [%]

Baseline
Raw Retrained

Resnet 20 CIFAR-10
Net wide (𝑛 = 12) 89.1 89.6

89.8
Layer wise 89.5 90.1

Resnet 18 ImageNet
Net wide (𝑛 = 7) 56.5 62.9

64.7
Layer wise 57.6 63.4

training is performed with the modeled accelerator. The networks are retrained for 5 epochs, lowering the previously
determined learning rates by a factor 1000 for Resnet-20 and 10 for Resnet-18.

Table 5, reports all the accuracies obtained with both methods, before and after retraining. Operation wise scale
control achieves 90.1% accuracy on CIFAR-10 with Resnet-20 and 63.4% on ImageNet, surpassing the network wide
determination by 0.5% in both cases. Inspection of the summation lines clipping events frequency during the execution
of the networks, reveals that this difference of accuracy can be attributed to a drastic reduction in the number of clipping
events when operation-wise scaling is used. On Resnet-20 and Resnet-18, the number of clipping events is reduced by
58.8% and 40.9% respectively, when operation-wise scaling is used instead of network-wide scaling.

4.4 AiMC variability impact

The results presented in subsection 4.3 advocate for operation wise scale control over network wide scale control.
However, as subsection 4.3 relies on a fully deterministic model of the arrays operation, these results fail to account for
the inherent vulnerability of the analog circuits. Indeed, due to the analog nature of AiMC operation, process variations
in their manufacturing process can cause variability in the results of the analog MVM operation [10].

To account for such variations, a modification for the model of subsection 4.3 is proposed. In this updated model,
sources of stochasticity are modeled through the injection of noise to the analog values before quantization is applied
by the ADC. This noise takes the form of a random variable 𝜖 such that:

𝑜 = 𝑐𝑙𝑎𝑚𝑝

(⌊
𝛿𝑣𝑠𝑢𝑚

𝛿𝑣𝑎𝑑𝑐
·𝜎 + 𝜖

⌋
,−32, 31

)
(18)

Where 𝜖 ∼ N
(
0, 𝑝 · 𝛿𝑣𝑠𝑢𝑚

𝛿𝑣𝑎𝑑𝑐

)
is a normally distributed random variable whose standard deviation is proportional to the

step size of the quantized MVM operation.
[24] reports that for a similar configuration to the one considered by this work, the variability observed at the

output of the array should correspond to 52% of the ADC step size. To assert the relevance of the considered model, a
comparison is established between analog MVM results obtained using the aforementioned model with 𝑝 = 0.52 and
results obtained from the measurements reported by [24] under an equivalent context. Fig. 12, illustrates the results
from this comparison. Under the same configurations, the proposed updated model seem to match the observations
reported by [24].

To evaluate the impact of AiMC variability on operation wise scale control compared to network wide scaling, the
trained networks obtained subsection 4.3 are evaluated under different noise regimes with the updated AiCM model.
Results for Resnet-18 on ImageNet and Resnet-20 on CIFAR-10 are reported in Fig 13. For each noise level, the considered

Manuscript submitted to ACM

18 Laubeuf, et al.

Fig. 12. Simulated analog MVM output for 𝑝 = 0.52 as a function of the true MVM results (left) vs measured MVM result as measured
by [24] (right).

0.0 0.5 1.0 1.5
p

0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

 (t
op

-1
)

Resnet-18 with noise

0.0 0.5 1.0 1.5
p

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

 (t
op

-1
)

Resnet-20 with noise

Fixed tu (test)
Dynamic tu (test)

Fig. 13. Resnet-18 accuracy on Imagenet and Resnet-20 accuracy on CIFAR-10 as a function of the applied noise. In blue, accuracies
obtained using network wide scaling. In orange, accuracies obtained using operation wise scaling.

network is evaluated 5 times with different random seeds. The average accuracy is reported as well as the standard
deviation of the 5 runs. Though an accuracy degradation is observed for increasing noise levels for both networks and
scaling patterns, across all of the reported noise magnitudes, operation-wise control continues to outperforms network
wide scaling. Moreover, the accuracy gap between operation-wise and network-wide scaling widens with increasing
noise levels. For Resnet-18 the accuracy gap increases from 0.5% without AiMC variability to 3.5% for 𝑝 = 1.5. For
Resnet-20 this same gap increase from 0.5% to 5.4%. These results further accentuate the advantages of dynamic over
static scaling in AiMC.
Manuscript submitted to ACM

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 19

5 CONCLUSION

This work addresses the discrepancies between the scaling assumptions of AiMC based neural networks accelerators
and those of modern neural networks quantization methods. An AiMC compatible quantization flow is introduced and
demonstrated with relevant residual networks on the CIFAR-10 and ImageNet datasets. By leveraging higher precision
batch normalization while maintaining AiMC execution compatibility, the proposed quantization flow can limit the
accuracy degradation caused by quantization. Ternary versions of Resnet-20 and Resnet-18 are obtained, achieving
accuracies of 89.8% and 64.7% on CIFAR-10 and ImageNet respectively. AiMC scale control patterns are compared by
deploying these networks on simulated AiMC arrays. Compared to standard sweep based AiMC scale determination
methods, operation-wise scale control is shown to result in neural networks that are both more accurate and more
robust to the inherent variability of the analog based MVM operation.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16). 265–283.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2623–2631.

[3] Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg Brockman, and Ilya Sutskever. [n.d.]. AI and Compute. https://openai.com/blog/ai-
and-compute/. Accessed: 2021-05-04.

[4] Chaim Baskin, Natan Liss, Yoav Chai, Evgenii Zheltonozhskii, Eli Schwartz, Raja Giryes, Avi Mendelson, and Alexander M Bronstein. 2018. Nice:
Noise injection and clamping estimation for neural network quantization. arXiv preprint arXiv:1810.00162 (2018).

[5] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or propagating gradients through stochastic neurons for conditional
computation. arXiv preprint arXiv:1308.3432 (2013).

[6] Debjyoti Bhattacharjee, Nathan Laubeuf, Stefan Cosemans, Ioannis Papistas, Arindam Mallik, Peter Debacker, Myung Hee Na, and Diederik Verkest.
2021. Design-Technology Space Exploration For Energy Efficient AiMC-based Inference Acceleration. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 1–5.

[7] Avishek Biswas and Anantha P Chandrakasan. 2018. CONV-SRAM: An energy-efficient SRAM with in-memory dot-product computation for
low-power convolutional neural networks. IEEE Journal of Solid-State Circuits 54, 1 (2018), 217–230.

[8] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. 2018. Pact:
Parameterized clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085 (2018).

[9] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael
Haselman, et al. 2018. Serving dnns in real time at datacenter scale with project brainwave. iEEE Micro 38, 2 (2018), 8–20.

[10] Jonas Doevenspeck, Peter Vrancx, Nathan Laubeuf, Arindam Mallik, Peter Debacker, Diederik Verkest, Rudy Lauwereins, and Wim Dehaene. 2021.
Noise tolerant ternary weight deep neural networks for analog in-memory inference. In 2021 International Joint Conference on Neural Networks
(IJCNN). IEEE, 1–8.

[11] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S Modha. 2020. Learned Step Size quantization.
In ICLR. OpenReview.net.

[12] Cheng Gong, Yao Chen, Ye Lu, Tao Li, Cong Hao, and Deming Chen. 2020. Vecq: Minimal loss dnn model compression with vectorized weight
quantization. IEEE Trans. Comput. (2020).

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 770–778.

[14] Geoffrey Hinton. 2012. Neural networks for machine learning. Coursera (video lectures).
[15] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized neural networks: Training neural networks

with low precision weights and activations. The Journal of Machine Learning Research 18, 1 (2017), 6869–6898.
[16] Sambhav Jain, Albert Gural, Michael Wu, and Chris Dick. 2020. Trained Quantization Thresholds for Accurate and Efficient Fixed-Point Inference of

Deep Neural Networks. In Proceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze (Eds.), Vol. 2. 112–128.
[17] Zhewei Jiang, Shihui Yin, Jae-Sun Seo, and Mingoo Seok. 2020. C3SRAM: An in-memory-computing SRAM macro based on robust capacitive

coupling computing mechanism. IEEE Journal of Solid-State Circuits 55, 7 (2020), 1888–1897.
[18] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al

Borchers, et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th annual international symposium on
computer architecture. 1–12.

Manuscript submitted to ACM

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/

20 Laubeuf, et al.

[19] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342
(2018).

[20] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).
[21] Fengfu Li, Bo Zhang, and Bin Liu. 2016. Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016).
[22] Jeffrey L McKinstry, Steven K Esser, Rathinakumar Appuswamy, Deepika Bablani, John V Arthur, Izzet B Yildiz, and Dharmendra S Modha. 2018.

Discovering low-precision networks close to full-precision networks for efficient embedded inference. arXiv preprint arXiv:1809.04191 (2018).
[23] Boris Murmann. 2020. Mixed-signal computing for deep neural network inference. IEEE Transactions on Very Large Scale Integration (VLSI) Systems

29, 1 (2020), 3–13.
[24] Ioannis Papistas, Stefan Cosemans, Bram Rooseleer, Jonas Doevenspeck, Myung-Hee Na, Arindam Mallik, Peter Debacker, and Diederik Verkest.

2021. A 22𝑛𝑚, 1540𝑇𝑂𝑃/𝑠/𝑊 , 12 : 1𝑇𝑂𝑃/𝑠/𝑚𝑚2 in-Memory Analog Matrix-Vector-Multiplier for DNN Acceleration. In 2021 IEEE Custom
Integrated Circuits Conference (CICC). IEEE.

[25] Alessandro Pappalardo. [n.d.]. Xilinx/brevitas. https://doi.org/10.5281/zenodo.3333552
[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32
(2019), 8026–8037.

[27] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. 2020. Designing network design spaces. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10428–10436.

[28] Rajat Raina, Anand Madhavan, and Andrew Y Ng. 2009. Large-scale deep unsupervised learning using graphics processors. In Proceedings of the
26th annual international conference on machine learning. 873–880.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/s11263-015-0816-y

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4510–4520.

[31] Abu Sebastian, Irem Boybat, Martino Dazzi, Iason Giannopoulos, V Jonnalagadda, Vinay Joshi, Geethan Karunaratne, Benedikt Kersting, Riduan
Khaddam-Aljameh, SR Nandakumar, et al. 2019. Computational memory-based inference and training of deep neural networks. In 2019 Symposium
on VLSI Technology. IEEE, T168–T169.

[32] Xin Si, Jia-Jing Chen, Yung-Ning Tu, Wei-Hsing Huang, Jing-Hong Wang, Yen-Cheng Chiu, Wei-Chen Wei, Ssu-Yen Wu, Xiaoyu Sun, Rui Liu, et al.
2019. 24.5 a twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine learning. In 2019 IEEE International Solid-State
Circuits Conference-(ISSCC). IEEE, 396–398.

[33] Dave Steinkraus, Ian Buck, and PY Simard. 2005. Using GPUs for machine learning algorithms. In Eighth International Conference on Document
Analysis and Recognition (ICDAR’05). IEEE, 1115–1120.

[34] Hanbo Sun, Zhenhua Zhu, Yi Cai, Xiaoming Chen, Yu Wang, and Huazhong Yang. 2020. An energy-efficient quantized and regularized training
framework for processing-in-memory accelerators. In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 325–330.

[35] Rudolf Usselmann. 2018. Opencores Floating Point Unit. https://opencores.org/projects/fpu
[36] Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. 2020. XNOR-SRAM: In-memory computing SRAM macro for binary/ternary deep neural

networks. IEEE Journal of Solid-State Circuits 55, 6 (2020), 1733–1743.
[37] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. 2018. Lq-nets: Learned quantization for highly accurate and compact deep neural

networks. In Proceedings of the European conference on computer vision (ECCV). 365–382.
[38] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. 2016. Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).
[39] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. 2016. Trained ternary quantization. arXiv preprint arXiv:1612.01064 (2016).

Manuscript submitted to ACM

https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.1007/s11263-015-0816-y
https://opencores.org/projects/fpu

Dynamic Quantization Range Control for Analog-in-Memory Neural Networks Acceleration 21

A HYPERPARAMETERS TUNING

Table 6. Hyperparameter tuning configurations and results for ResNet-20 on CIFAR-10

Parameter Distribution Domain Folded Mixed

𝐴𝑛𝑎𝑙𝑜𝑔 8 𝐴𝑛𝑎𝑙𝑜𝑔 4 𝐴𝑛𝑎𝑙𝑜𝑔 2 𝐴𝑛𝑎𝑙𝑜𝑔 8 𝐴𝑛𝑎𝑙𝑜𝑔 4 𝐴𝑛𝑎𝑙𝑜𝑔 2

Digital act scale uniform {2𝑛 |𝑛 ∈ [−1. . 3]} 2 8 2 2 2 4
Analog input scale uniform {2𝑛 |𝑛 ∈ [−1. . 3]} 4 1 2 8 2 4
Analog output scale uniform {2𝑛 |𝑛 ∈ [−1. . 3]} 1 1 8 0.5 1 4
Digital param. lr log uniform [1𝑒 − 5, 1𝑒 − 1] 3.79𝑒 − 2 2.48𝑒 − 3 2.20𝑒 − 2 5.03𝑒 − 3 7.92𝑒 − 2 8.24𝑒 − 3
Digital scale lr log uniform [1𝑒 − 5, 1𝑒 − 1] 1.48𝑒 − 5 1.03𝑒 − 4 9.79𝑒 − 2 2.05𝑒 − 2 4.47𝑒 − 4 3.64𝑒 − 2
Analog param. lr log uniform [1𝑒 − 5, 1𝑒 − 1] 4.91𝑒 − 4 5.53𝑒 − 5 8.32𝑒 − 2 2.31𝑒 − 3 2.66𝑒 − 4 2.90𝑒 − 3
Analog scale lr log uniform [1𝑒 − 5, 1𝑒 − 1] 2.29𝑒 − 5 6.84𝑒 − 2 4.88𝑒 − 3 3.05𝑒 − 3 1.63𝑒 − 3 5.48𝑒 − 4
Weight decay log uniform [1𝑒 − 6, 1𝑒 − 3] 1.38𝑒 − 5 5.71𝑒 − 6 6.59𝑒 − 4 5.58𝑒 − 6 1.03𝑒 − 6 1.91𝑒 − 6
Momentum uniform [0.0, 0.99] 0.87 0.19 0.37 0.58 0.57 0.50
Nesterov categorical {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒

Warm up steps uniform {250 ·𝑛 |𝑛 ∈ [0. . 8]} 1000 1500 1500 1250 1750 750

Test Accuracy (%) 91.3 86.2 47.1 90.9 89.7 89.8

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Background and Related work
	2.1 Quantization flow
	2.2 Range determination

	3 Methods
	3.1 AiMC Aware CNN Quantization flow
	3.2 Hardware supported scaling
	3.3 Scaling control

	4 Experiments
	4.1 Target networks and dataset
	4.2 Quantization flow selection
	4.3 AiMC array scale control
	4.4 AiMC variability impact

	5 Conclusion
	References
	A Hyperparameters tuning

