
Dynamic Query Evaluation Plans

Goetz Graefe, Karen Ward

Oregon Graduate Center

Abstract

In most database systems, a query embedded in a program written in a conventional programming
language is optimized when the program is compiled. The query optimizer must make assumptions about the
values of the program variables that appear as constants in the query, the resources that can be committed to
query evaluation, and the data in the database. The optimality of the resulting query evaluation plan depends
on the validity of these assumptions. If a query evaluation plan is used repeatedly over an extended period of

time, it is important to determine when reoptimization is necessary. Our work aims at developing criteria when
reoptimization is required, how these criteria can be implemented efficiently, and how reoptimization can be

avoided by using a new technique called dynamic query evaluation plans. We experimentally demonstrate the
need for dynamic plans and outline modifications to the EXODUS optimizer generator required for creating

dynamic query evaluation plans.

1. Introduction

In many database applications, queries are
embedded in application programs written in a con-
ventional programming language like Cobol or C.
These application programs are compiled once and

then executed repeatedly over an extended period of

time. In most database management systems, the

embedded queries are optimized when the programs

are compiled. The resulting query evaluation plan is

stored in an ‘access module’ and is activated by pro-

cedure calls. This organization avoids the optimiza-
tion overhead when the programs and the queries are
executed, thus allowing for fast query evaluation and

high transaction rates.

The disadvantage of query optimization at
compile time is that free variables in the query predi-
cate and changes in the system load or in the data-
base cannot be reflected in the query evaluation plan.

This research is supported by National Science

Foundation grant RI-8805200.

Permission to copy without fee all or part of this material is granted provided that

the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for Computing Machinery.

To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1989 ACM 0-89791-317.5/89/C005/0358 $1.50

Since an embedded database query is used to retrieve
information pertinent to the current program run, it
is natural that program data and the database query
are connected by using one or more program vari-
ables as constants in the query predicate. The value

of the program variables is not known at compile-

time, i.e., when the query is optimized. While data-

base query optimization does not genuinely depend
on the values of constants in the database query, the

optimizer needs to estimate intermediate result sizes,

which in turn may depend on the constants in the

query predicate. For example, the optimal join stra-
tegy depends on the number of tuples to be joined
from each input. If the inputs are the results of

selections, it is imperative that the optimizer esti-

mate the select output size.

When optimizing an embedded query with pro-
gram variables in the query predicates, database
optimizers estimate selectivities using a guessed “typ-

ical” value for each variable, or directly guess selec-

tivities [I]. Costs of alternative query evaluation

plans are estimated using the guessed values. In the

case of complex queries with inequality constraints
involving program variables, the resulting query
evaluation plan can be far from optimal.

For example, consider a database query to find
all employees with a salary greater than $30,000 and
their departments. Assume that this query requires
joining the employee relation with the department

358

relation on the department number, and that the
only two indices in the database are for the employee

relation on salary and for the department relation on

department number. If there are very few employees
in this salary range, it probably is best to find quali-

fying employees using the salary index, to use the

result as outer relation in the join and to perform
repeated index lookups on the department relation.
If there are very many such employees, however, it
might be best to read the entire department relation
(the smaller of the two relations) into a memory-

resident hash table and then probe the hash table
using the employee tuples, using file scans for both

files. In this example, the scanning strategies, the
join order, and the join algorithm depend on the car-
dinality of the two relations and the selectivity of
the selection predicate. Imagine that the above

query is embedded in an application program, and
that the cutoff value, the constant $30,000, is

replaced by a program variable. In this case, a con-

ventional query optimizer cannot satisfactorily
optimize the query. We are trying to develop an

elegant, dynamic, and efficient solution.

Apart from program variables, the system load
can be considered a free variable in query optimiza-

tion. A number of cost functions, e.g., for sorting or
hash join with overflow resolution, depend on the size

of main memory available for a particular query. If
this size cannot be predicted, the optimizer cannot

make reasonable cost calculations and decisions.
Considering performance-critical resources, e.g.,

buffer pages, number of processors, number of chan-
nels and disk arms for temporary files, etc., free vari-
ables allows using effective optimization techniques

outlined in this paper. In the sequel, we will not dis-

tinguish between program variables and load vari-

ables because they are not significantly different from

the standpoint of query optimizations.

Another problem with stored query evaluation

plans is that they are optimized for the state of the
database at program compilation time, not for the

database state at query execution time. In the

meantime, the database may change such that the

query evaluation plan is no longer optimal. We have
to distinguish between changes that make a query

evaluation plan infeasible and changes that make a
query evaluation plan non-optimal. The former

category includes removing relations and indices that

are referenced in the query evaluation plan and has
been addressed by earlier work [2]. The latter
category includes creating new indices, inserting or
deleting a large number of tuples, and modifying a

large number of attribute values. Our research will
later address the problems in this category.

Consider the above example again with a con-
stant of $30,000. If most of the newly hired

employees are highly paid specialists, the number of
qualifying employees will change, as well as the por-

tion of qualifying employees (i.e., the selectivity). If

the query is optimized only once and the resulting
access plan reused over a long period of time, the

query evaluation plan will eventually become subop-
timal.

Other researchers also have identified the
benefits of multiple plans for a single query. In a
number of early query evaluation papers the problem
is considered so significant that plan generation is

delayed until query evaluation, e.g., [3, 4, 51. We
believe, however, that selectivity estimation tech-

niques have been sufficiently developed to-date that
query plans for completely specified queries can be
generated at compile time [6, 7, 81. Our work
addresses the case of incompletely specified queries,

e.g., queries with free variables in the predicate.

Most closely related to our work is the work of

Lee and Yu [9] h w o suggest to used index information

to decide scan method and join algorithm during
query evaluation. Their approach, while useful
where applicable, is limited to cases with existing

indices (therefore it is not applicable to intermediate
results) and to algorithm selection. Our approach

also allows reordering operators in a query evalua-
tion plan.

The XPRS project at UC Berkeley includes
plans for choosing at run time from a set of prepared

plans according to the amount of main memory
available at query execution time [lo]. The Star-
burst research group is considering rewriting a query
into multiple alternatives and selecting from among
them by the second optimization phase according to

cost estimates or at run time depending on variable
bindings [ll], but has as yet not developed techniques

for creating multi-plan access modules and appropri-

ate selection criteria.

So far, we have looked at the problem as it

appears in conventional, relational database manage-
ment systems. In a database system used to support

logic programs, the problem of unknown predicate
constants occurs very frequently. Consider a model

of execution that relies on backtracking, particularly
Prolog [12, 131. The same clause is activated repeat-
edly with different variable instantiations. If the

clause contains a database query, the same database

query is performed with different constants in the
query predicate. The techniques described here are
aimed at providing more flexibility and better perfor-
mance for both conventional and non-conventional

database management systems and applications.

Another application that will benefit from mul-
tiple or dynamic query evaluation plans are object-

oriented database systems. If behavior is

359

encapsulated in type definitions, a selection message
sent to a collection object results in repeated method

invocation for all members of the collection, e.g., in

Smalltalk [14] or Gemstone [15]. If a method

includes a database lookup, preparing a set of execu-
tion plans that covers all possible cases can greatly
improve query performance. We have incorporated

dynamic query evaluation plans in the Volcano query
evaluation system prototype [16] developed at OGC

and intend to exploit them in a high-performance
object-oriented database system [17].

The remainder of this paper is organized as fol-

lows. In Section 2 we propose mechanisms for testing
efficiently whether or not a query evaluation plan is
optimal, i.e., whether the query plan with the actual
constants is optimal for the current state of the
database. Section 3 describes how some of these

problems can be solved by choosing the scanning
strategy dynamically. Section 4 extends these tech-

niques to join processing. In Section 5, we develop a
general technique, called dynamic query evalua-
tion plans, with the goal of providing minimal over-

head, maximal flexibility, or both. The implementa-

tion of dynamic query evaluation plans is described
in Section 6, which include actual measurements

demonstrating the performance gains through

dynamic plans. Section 7 describes our current
research, including extensions to the EXODUS optim-

izer generator. Section 8 contains a summary and
our conclusions.

2. Test of Optimality

In order to test whether or not a given query

evaluation plan is optimal for a set of query con-

stants given in the program variables, a special
predicate is associated with each compiled query
evaluation plan. When a plan is activated with a
record of actual values for the query constants, the

associated predicate is evaluated on this record and

returns one of the values TRUE or FALSE. In the

case of TRUE, the access plan is considered
appropriate, and query processing proceeds as in

existing database systems. In the case of FALSE,

the access plan is considered suboptimal, and the

database query optimizer is invoked.

It can be argued that the overhead incurred by
evaluating the predicate is unacceptable for high-
performance database systems. Consider, for exam-

ple, a banking teller transaction. Probably, an
optimized plan finds account records using a hash
index on account numbers (assuming such an index
exists); testing this access plan’s optimality will be

wasted effort. While this is true, we would like to
alert the reader to two points. First, if the predicate
used to test the optimality is compiled into machine
code (just as predicates on data records should be),
evaluation requires probably in the range of 20 to

100 instructions. Second, in extreme cases like the

banking teller example, the predicate can be designed

such that it always returns TRUE without inspecting

the record of actual values.

When the query optimizer has been reinvoked
for a certain query after the original query evalua-
tion plan was rejected, it is probably a good idea to
keep both plans and choose dynamically among them

in future activations of the query. In general, there
might be a number of access plans to be chosen from

dynamically. It is not even necessary to wait until

the original query evaluation plan is rejected; rather,
it should be possible to prepare more than one plan
when the query is optimized originally. We discuss
this concept in more detail in the following sections.

3. Dynamic Decisions on Scanning Strategies

Dynamic decisions on the best scanning stra-
tegy are the first step towards dynamic query evalua-

tion plans. The alternative scanning strategies are
file scan and index scan, if a suitable index exists.
Let us first review the rationale by means of an

example.

Consider a large file, e.g., with 10,000 employee
records stored in 1,000 pages. If we need to retrieve

all records, we should use a file scan, as this method
ensures that we inspect each data page only once

and allows high-performance techniques like read-
ahead. If we retrieve only 10 of the 10,000 records,
we do better by using an index (assuming one exists).
We would have to read at most 10 data pages, and

probably less than 30 index pages. If we retrieve

2,000 records, however, it is quite likely that we

eventually have to read all 1,000 data pages and the
index adds only to the overhead for three reasons.
First, we have to read the index pages, second, if the
index is an unclustered index, we inspect many pages

more than once, and third, we cannot make best use
of read-ahead. Yao [18] gives an estimation formula

to determine the number of page accesses from the
number of qualifying records; others have expanded

on this work, e.g., [19, 20, 21, 22, 231. In addition to

the cost of pages accesses, there are also costs for

locking and concurrency control (let us assume that

locks are used for concurrency control). If only
relevant records are accessed using the index, only
those records need to be locked. For a file scan, all
records must be locked. However, this can be done

with a single call to the lock manager if a hierarchi-

cal locking scheme is used. Depending on the selec-
tivity and the current system load, either one of the
two strategies can be optimal.

The lesson from this example is that there are
many considerations that favor index scan over file
scan or vice versa, depending on the actual situation

when the query evaluation plan is activated. The

360

choice depends on the selectivity of the predicate and

on the current system load, and can be performed

efficiently at run time. If the interfaces to the file

scan procedure and the index scan procedures are
equal (or very similar), a dynamic choice of the scan
method can be implemented with reasonable effort
and run time overhead. The task of the query optim-
izer is to determine the break-even point. More
exactly, the query optimizer must determine the for-
mulas to find the break-even point and to compare it

with the actual selectivity, and include these formu-
las in the query evaluation plan.

4. Dynamic Decisions on Join Strategies

As we have seen in the example in the introduc-

tion, in some cases it is desirable to select the join

strategy at run time. If there are more than one join
operator cascaded in a query evaluation plan, the

decisions on the join strategies are interdependent.
Most importantly, the physical (sort) order of inter-
mediate results may affect the cost of algorithms for
the next processing step if order-sensitive algorithms
such as merge-join are used.

The query optimizer’s task for this kind of
access plan is more complex. Instead of following a

set of assumption and guesses about distributions,

selectivities, etc., it must design an efficient decision

procedure which can be executed when the query
evaluation plan is activated. This decision procedure
must have resolved the interdependence of partial

decisions into a straight-forward decision tree, and
include the break-even values between alternative

plans.

Since the number of possible join strategies is
very large, even for only moderately complex queries,
it is not possible to include all query execution plans

in the access module. There are two solutions to this

problem. First, the optimizer can select a subset of

query execution plans. The plans are selected to

allow reasonably efficient query evaluation for any

set of parameters. In order to keep this set small,

plans with wide range of optimality must be selected.
We call this a query evaluation plan’s stability and

will develop this concept is a later paper. Second,
instead of storing complete plans, only elements of
the plans are stored, and linked together when the

access module is activated.

5. Dynamic Query Evaluation Plans

Instead of a set of query evaluation plans, as
suggested in the previous sections, we propose to
avoid redundancy in the access module by designing
the data structure for the query evaluation plans to
be more flexible. The access modules of existing
database management systems consist of a number of
components, e.g., an indicator for file scan with a file
name and a search predicate, an indicator for hash

join with a hash function and a comparison function,

etc. These components are linked together into a

static plan by the query optimizer, thus hiding the

fact there are several components. Dynamic access
modules consist of the same components, only the
binding between components is more flexible. The
only new component is the decision procedure used
to analyze the actual query constants and the data
distribution. When an access module is activated,

the first step is to evaluate the decision tree. Con-
currently with the evaluation of the decision tree,

this step sets up the bindings between the com-
ponents of the access module.

In addition to the decision tree designed by the

optimizer, the access module must also contain the

support functions for all possible query evaluation
plans. These support functions include comparisons,
hash functions, etc. The physical organization of the
access module must allow equally efficient execution
of any of the query evaluation plans.

Introducing the dynamic choices outlined in the

sections above are an important step toward more
flexible and efficient database systems. However,

instead of considering scanning and join strategies

separately, we are investigating how far the concept

of dynamic query evaluation plans can be gen-
eralized. After this more general investigation, we
can consider selection of scanning and join strategies

as special cases. Other special cases that come

immediately to mind are join orders and the place-
ment and execution of aggregate functions.

It can be argued that setting up the bindings
dynamically inflicts too much overhead on query pro-
cessing. Consider the example of a banking teller
transaction introduced in Section 3. If there is no

gain in using a dynamic access module, the decision

tree can be an empty function. In this case, all bind-

ings must be set statically, and “evaluating” the deci-

sion tree costs only one instruction. The techniques

proposed here do not require that as many choices as
possible must be delayed until run time. Their

advantage is that they allow delaying exactly as

many choices as advisable.

6. A Dynamic Query Evaluation System

In order to assess whether dynamic query
evaluation plans are an attractive practical alterna-

tive to existing static plans, we have implemented
dynamic query evaluation plans in the Volcano query
evaluation system [16]. Volcano includes file scan,
B-tree scan, select, project, duplicate elimination,
sorting, merge join, hash join, naive and hash divi-

sion 1241, and sort- and hash-based aggregate func-
tions. Each algorithm is implemented as an iterator,
i.e., there are open, nezt, and close procedures for
each algorithm. Associated with each algorithm is a

361

state record, allowing multiple use of an algorithm in
a query. The arguments for the algorithms, e.g.,
predicates, are kept in the state record. We also

have a facility for parallel plan execution which we

will not describe here.

In queries involving more than one operator

(i.e., almost all queries), state records are linked
together by means of input pointers, also kept in the
state records. Calling open for the top-most operator
results in open calls for all inputs and in instantia-

tions for the associated state record, e.g., allocation

of a hash table. In this way, all iterators in a query
are initiated recursively. In order to process the
query, next for the top-most operator is called repeat-
edly until it fails with an end-of-stream error.
Finally, the close call recursively “shuts down” all
iterators in the query. This model of query execution

matches very closely the one being included in the E

programming language design [25] and the algebraic

query evaluation system of the Starburst extensible
relational database system [26].

The current implementation includes a choore-
plan operator to realize both multi-plan access
modules and dynamic plans. This operator provides

the same open, next, close protocol as the other
operators and can therefore be inserted into a query

plan at any location. The open operation decides

which of its several equivalent query plans to use,
and invokes the open operation for this input. The

next and close operations simply call the appropriate
operation for the input chosen during open.

The choose-plan operator allows considerable
flexibility in our experiments. If only one choose-plan

operator is used as top of a query evaluation plan, it

implements a multi-plan access module. If multiple
choose-plan operators are included in a plan, they

simulate a dynamic query evaluation plan. They
only simulate a dynamic plan because the decision

process is integrated with the open procedure rather

than preceding open, thus requiring the operator’s
next and close operation and their overhead. How-

ever, the flexibility and the implementation simplicity
of the choose-plan operator seem worth this over-
head.

Access modules are composed of state records
and support functions. We are currently designing
the required extensions to the EXODUS query optim-

izer generator to produce dynamic query evaluation
plans, i.e., plans with choose-plan operators.

6.1. Experimental Results

The following example demonstrates how con-
siderable savings might be realized by choosing

dynamically among multiple query evaluation plans.

The test data are drawn from the billing files of
a utility company. The example query selects

records from a site relation containing location and
revenue information for each site where energy
meters are installed. Much of the location informa-

tion is encoded. For instance, the names of the cities

served by the utility are found in a separate city
table. The address of a particular site is formed by

retrieving the street portion of the address from the
site record, then using a city code to look up the city
name.

The test database contains 13,229 site records,
each 252 bytes long, and 77 city records of 28 bytes.

Indices have been built for the site relation on reve-
nue amount, and for the city relation on city code.

The example query retrieves address informa-
tion for those sites whose most recent revenue

amount exceeded a certain threshold, where the
cutoff amount is a variable. Such a query might be
embedded in a program that produces specialized

mailing lists. The amount might be set to the
minimum bill amount to include all active in the

mailing, or it might be set to a high value to identify
the largest accounts. When the threshold amount is
high, we would prefer to use the amount index to
select those few sites that qualify, then use the city
code index to complete the address information. If

more than a few sites will qualify, however, it would

be better to avoid the overhead of reading and
repeatedly searching the indices. Instead, we can
ensure that each page is read only once by scanning
the site file after building a memory-resident hash

table from the city file.

We constructed a multi-plan access module con-

taining the state records and support functions
needed to execute this query using either B-tree scan

and index nested loops join or file scans and hash

join.

Currently, an access module is stored apart
from both the program that builds it and the

program(s) that may execute it. It can be “embed-

ded” in another program by having that program
read the access module into a buffer as data. The
module is then invoked by passing the buffer address

to an execute algorithm. Execute uses displacement
information included in the access module to build

the input pointers for the topmost state records, until
a choose-plan operator is encountered. If there are

no choose-plan operators, execute will link all of the

plan’s state records and support functions.

362

Comparison of Query Strategies

Tuples
Printed

0
1

251

501

752

1001

5002

10010

13229

(time in secor

B-tree Scans and Join

CPU I/O (1) I/O (2) cost

0.14 0.059 0.130 0.329

0.16 0.115 0.154 0.429

0.67 2.146 0.202 3.018

1.06 3.276 0.274 4.611

1.69 3.726 0.322 5.739

2.14 4.641 0.370 7.151

9.72 6.408 1.162 17.290

19.02 7.090 2.170 28.280

25.23 8.113 2.914 36.257

!!d S)

File Scans and Hash Join
CPU I/O (1) I/O (2) cost

1.04 3.410 0.083 4.533

1.07 3.410 0.083 4.563

1.21 3.410 0.083 4.703

1.37 3.410 0.083 4.863

1.39 3.410 0.083 4.883

1.52 3.410 0.083 5.013

3.40 3.410 0.083 6.893

5.77 3.410 0.083 9.263

7.22 3.410 0.083 10.713

A choose-plan operator fetches the information
it needs to select the best plan. In our implementa-
tion of this example, it reads a control record from

the database which contains the threshold amount,
and chooses the plan to use in the current invocation.
It then completes linking the state records for the

indicated plan. We have redesigned the open pro-
cedures to use a second parameter besides the state
record, namely a record called bindings which con-

tains query predicate constants and system load

information.

The cost function used to evaluate the perfor-

mance of a query is the sum of the CPU time in user

mode’ and the estimated time spent performing I/O
(calculated from statistics kept by the file system),
expressed in seconds. 3600 KB were allocated as file

system buffer space.

For the experiment, we “forced” the choose-plan

operator to use a plan of our choice, disreganding the

threshold amount. (Of course, the selection predicate
did use the threshold amount.) Each query plan was

invoked using a series of threshold amounts. The

results for each plan-amount combination are sum-

marized in Table 1. The columns for I/O reflect the
I/O cost on two disk devices. The first one, labeled
I/O(l), contains the data files, while the second one

contains the indices.

The strategies employing file scans and hash

join, shown in the four right-most columns, are com-
paratively insensitive to the output size. Since all

pages of both tables are read into the buffer, the I/O

cost is entirely independent of the cutoff value. The

’ The queries were run on a Sequent Symmetry
which uses Intel 80386 CPU’s with a 16 Mhz clock.
CPU time was determined using the UNIX system

call getrusage.

Table 1. Costs of two plans for various output sizes.

CPU cost for resource management (buffers, memory,
etc.) and for applying the selection predicate are
almost identical for all cutoff values; most of the

differences are due to hash and comparison functions
and to copying record fields into the output table.

The cost of the index-based access plan is

significantly more sensitive to the cutoff value
applied. For very few result tuples, the cost grows

very steeply with the number of result tuples, and it

grows about linearly for large outputs. This result

was to be expected as the number of index look-ups
and data page fetches is approximately equal to the
number of result tuples.

For a small cutoff value and very few result
tuples, the first plan using indices is superior to the

second. As the number of result tuples increases,
however, this advantage diminishes and eventually

turns into a disadvantage.

The ratio of costs at the two ends is surprising.

If only one account satisfies the predicate, the index

strategy is superior by a factor of 10. If all or almost

all accounts qualify, it is inferior by a factor of more

than 3. This very large range has a significant
impact on query optimization. If a cutoff value is
not known at compile and query optimization time,

as is frequently the case for embedded queries, choos-
ing either one of these plans is wrong. One alterna-
tive is to delay query optimization until run time in

order to include the actual cutoff value in the selec-

tivity and cost calculations. This alternative

increases query cost by the time used for optimiza-

tion, which could easily double the reponse time for
this query. In other words, a conventional query
optimizer effectively cannot optimize this simple
query. Dynamic query evaluation plans, on the other
hand, can decide in very little time which plan is
optimal and ensure the less expensive plan is used
every time the application program is run.

363

7. Current Work

Our current research consists of two inter-

dependent design and implementation efforts. First,
we are augmenting the EXODUS query optimizer
generator software to create multiple query evalua-
tion plans and a decision procedure. Second, we plan
on changing the search strategy employed by gen-
erated optimizers.

7.1. Modifications of the EXODUS Optimizer
Generator Software

We are currently designing and implementing
modifications to the EXODUS Optimizer Generator
[27, 28, 291 that enable generated optimizers to

optimize queries with free variables by creating more
than one query evaluation plan. The first two
modules, which are partially implemented, is actually

a pre- and post-processor for the optimizer. The
preprocessor parses initial queries coded in QUEL-

like syntax and transformed them into an operator
tree before optimization. The operator tree consists
of Cartesian product operators, followed by a selec-
tion and a projection. The postprocessor traverses a

query evaluation plan and generates type definitions,
support functions, and argument and state records in

the C programming language. These programs are
then compiled by the standard C compiler, linked

with the query evaluation library, and run against
the database. The program generated from the

optimized query evaluation plan includes a print

operator which prints the query result on the screen.

The next step will to allow designation of free
variables in queries. The optimizer will not consider
values for these variables and will generate multiple
query evaluation plans. The choose-plan operator
will use actual variable bindings to determine which
plan to execute. While designating “free” variables
in interactive queries is somewhat unrealistic, it

reduces the time to set up an environment for imple-

menting and experimenting with multiple plans and
dynamic plans, and to investigate the core of the

research, the optimizer search strategy.

In a later stage, we intend to augment the
selectivity estimation procedures and cost functions

with observations from query evaluations. Thus, we
will adjust and Iearn optimal values and formulas for

these functions, complementing earlier work on learn-
ing within the query optimizer [28]. Notice that only
dynamic query evaluation plans allow incorporating
cost function adjustments in existing access modules
effectively, i.e., without recompilation, thus providing
the most promising environment for learning and

adjusting selectivity estimation and cost functions.

7.2. The Search Strategy

In the current design of optimizers generated
with EXODUS, as in most other query optimizers, the

task of the query optimization module is to find one

best query evaluation plan. In the optimization

paradigm proposed here, the goal of query optimiza-
tion is to find a set of plans and an efficient decision
procedure to determine which of these plans is

optimal in the actual access module invocation. We
call this new optimizer a multi-plan optimizer, as

opposed to single-plan optimizers found in conven-
tional query optimization. The number of query
evaluation plans can be prohibitively large. Develop-
ing and using the concept of the stability of query
evaluation plans, however, we have reason to believe
that the number of required plans in an access
module can be kept reasonably low.

The first experiment will involve a binary
search scheme similar to the one proposed for XPRS

[lo]. The independent variable for the binary search
can be the buffer size as in XF’RS or the cardinality
of an intermediate result, calculated from a variable

binding. Clearly, only a very limited number of vari-
ables can be dealt with in this way, probably only
one or two, e.g., buffer size and the number of avail-
able CPUs. For the more general problem of embed-
ded queries with multiple free variables, the search

space must be pruned more aggressively. We expect
that the common subplan analysis implemented in
the EXODUS software to detect multiple derivations
of the same query evaluation plan will significantly

reduce the amount of redundant work.

The other technique we will employ is to split
ranges during optimization of subplans only on

demand. In the first query tree analysis, the possible
range of result cardinalities for each of the opera-
tions is determined. Instead of keeping just one
value for the result cardinality in each node of the
operator tree, as is done in most relational optimizers
including the one described in [28], cardinalities are
specified by their possible range. Similarly, the costs

of query evaluation plans and subplans are con-

sidered as ranges instead of as single values.

When a cost function is invoked, it first deter-

mines whether the cost increases “smoothly” over the
range of input sizes, or whether the cost function
shows a significant discontinuity. If necessary, the

range is split at points of discontinuity, and a

choose-plan operator is introduced into the plan. In
this way, multiple methods may be selected for a sin-
gle operator distinguished by cardinality ranges.

Consider the example query used in the intro-
duction, which involves two relations with a selection
using a free variable and a join. The cost function of

hash join may indicate a discontinuity at the point

where temporary files must be used to resolve hash
table overflow. At this point, the range is split and

two sub-plans are used, e.g., one using hash join and

one using merge join.

364

If two methods with smooth cost functions show

overlapping cost ranges, i.e., one plan is less expen-

sive than the other at one end of the range and

higher at the other end, the optimizer invokes the
cost function repeatedly to determine the break-even
point of the two plans, and optimizes the subranges
separately. A choose-plan operator is introduced to
determine at run time which of the plans should be
used.

Consider the above example again, but assume
that no hash table overflow occurs. Since index scan
and index nested loops join are superior if very few

tuples satisfy the query predicate but are inferior at

the opposite extreme, the cost range for the plan

using indices overlaps the cost range of the plan
using hash join. Thus, the optimizer splits the range

after determining the break-even point of the two

plans.

Plans that include a choose-plan operator i.e.,
the operators that use the output of this operator as
their input, are reanalyzed appropriately, as detailed

in [27, 281. Reanalyzing may result in further
method splits at higher levels of the operation tree

and introduction of more choose-plan operators. In

this case, lower level choose-plan operators may be
removed, effectively migrating them up in the opera-

tor tree, such that the final plan may include only

one choose-plan operator at the top of the query.

For example, the query used in the introduction

has two optimal plans, depending on the cutoff value
for the salary constant. Neither plan requires a
choose-plan operator within the query evaluation
plan, i.e., the choose-plan operator has migrated up

to the root of the plan tree.

8. Summary and Conclusions

In this paper, we have identified a significant

problem in current models of query optimization and

evaluation. For cases in which a single plan cannot

cover the entire possible range of query constants,
data distributions, and resource situations, we have
suggested a very efficient scheme to decide dynami-

cally when to reoptimize the query or to choose one
of several query evaluation plans. We have designed
and implemented a query evaluation system that

includes dynamic access modules. Dynamic access

modules perform the final steps of composing a query

evaluation plan very efficiently at run time from

fragments prepared by the query optimizer using a
decision and linking procedure also included in the
access module by the query optimizer.

The concepts presented here can be expected to
enhance database systems performance significantly
for both conventional and non-conventional applica-

tion domains. For conventional domains, the
emphasis is on better and more flexible support for

queries embedded in application programs, and on

adaptation to varying system loads. Within non-
conventional domains, we envision the new tech-
niques to be particularly advantageous for database
systems supporting logic programming relying on
backtracking, and in object-oriented database sys-

tems that employ query optimization.

Acknowledgements

Guy Lohman provided interesting and stimulat-
ing discussions, and pointed out the importance of
learning cost functions from run time observations.
David Dewitt suggested, supervised, and influenced

the development of the EXODUS optimizer genera-

tor. Portland General Electric provided the test
data, which is gratefully acknowledged.

References

1.

2.

3.

4.

5.

6.

7.

8.

P. Griffiths Selinger, M.M. Astrahan, D.D.
Chamberlin, R.A. Lorie, and T.G. Price,
“Access Path Selection in a Relational Data-

base Management System,” Proceedings of the
ACM SIGMOD Conference, pp. 23-34 (May-
June 1979).

D.D. Chamberlin, M.M. Astrahan, W.F. King,
R.A. Lorie, J.W. Mehl, T.G. Price, M. Schkol-

nik, P. Griffiths Selinger, D.R. Slutz, B.W.

Wade, and R.A. Yost, “Support for Repetitive
Transactions and Ad Hoc Queries in System
R,” ACM Transactions on Database Systems

6(l) pp. 70-94 (March 1981).

E. Wong and K. Youssefi, “Decomposition - A
Strategy for Query Processing,” ACM Transac-
tions on Database Systems l(3) pp. 223-241

(September 1976).

K. Youssefi and E. Wong, “Query Processing in
a Relational Database Management System,”

Proceedings of the Conference on Very Large

Data Bases, pp. 409-417 (October 1979).

C.T. Yu and C.C. Chang, “On the Design of a
Query Processing Strategy in a Distributed
Database Environment,” Proceedings of the

ACM SIGMOD Conference, pp. 30-39 (May
1983).

M.V. Mannino, P. Chu, and T. Sager, “Statisti-

cal Profile Estimation in Database Systems,”

ACM Computing Surveys 20(3)(September

1988).

L.F. Mackert and G.M. Lohman, “R* Optimizer
Validation and Performance Evaluation for
Local Queries,” Proceedings of the ACM SIG-

MOD Conference, pp. 84-95 (May 1986).

L.F. Mackert and G.M. Lohman, “R* Optimizer
Validation and Performance Evaluation for
Distributed Queries,” Proceedings of the

365

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Conference on Very Large Data Bases, pp. 149-

159 (August 1986).

Y.H. Lee and P.S. Yu, “Adaptive Selection of

Access Path and Join Method,” unpublished
manuscript, (1988).

M. Stonebraker, R. Katz, D. Patterson, and J.
Ousterhout, “The Design of XPRS,” Proceed-
ings of the Conference on Very Large Databases,

pp. 318-330 (August 1988).

W. Hasan and H. Pirahesh, “Query Rewrite

Optimization in Starburst,” Computer Science
Research Report, (RJ 6367 (62349))IBM
AImaden Research Center, (August 1988).

D.H.D. Warren, L.M. Pereira, and F. Pereira,
“PROLOG - The Language and its Implemen-

tation Compared with Lisp,” Proceedings of
ACM SIGART-SIGPLAN Symposion on AI and

Programming Languages, (1977).

W. Clocksin and C. Mellish, Programming in

Prolog, Springer, New York (1981).

A. Goldberg, D. Robson, and D. Ingalls,
Smalltalk-80: The Language and its Implementa-

tion, Addison-Wesley, Reading, MA. (1983,

1985).

G. Copeland and D. Maier, “Making Smalltalk

a Database System,” Proceedings of the ACM

SIGMOD Conference, pp. 316-325 (June 1984).

G. Graefe, “Volcano: An Extensible and Paral-

lel Dataflow Query Evaluation System,” in
preparation, (February 1989).

G. Graefe and D. Maier, “Query Optimization

in Object-Oriented Database Systems: A Pros-
pectus,” pp. 358-363 in Advances in Object-
Oriented Database Systems, ed. K.R.
Dittrich,Springer-Verlag (September 1988).

S.B. Yao, “Optimization of Query Evaluation

Algorithms,” ACM Transactions on Database

Systems 4(2) pp. 133-155 (June 1979).

S. Christodoulakis, “Estimating Block Transfers

and Join Sizes,” Proceedings of the ACM SIG-
MOD Conference, pp. 40-54 (May 1983).

S. Christodoulakis, “Estimating Record Selec-

tivities,” Information Systems 8(2) pp. 105-115

(1983).

S. Christodoulakis, “Estimating Block Selectivi-
ties,” Information Systems 9(l) p. 69 (1984).

B.T. Vander Zanden, H.M. Taylor, and D. Bit-
ton, “Estimating Block Accesses When Attri-

butes Are Correlated,” Proceeding of the
Conference on Very Large Data Bases, pp. 119-
127 (August 1986).

23. B.T. Vander Zanden, H.M. Taylor, and D. Bit-
ton, “A general framework for computing block

accesses,” Information Systems 12(2) p. 177

(1987).

24. G. Graefe, “Relational Division: Four Algo-
rithms and Their Performance,” Proceedings of
the IEEE Conference on Data Engineering, pp.
94-101 (February 1989).

25. J.E. Richardson and M.J. Carey, “Programming

Constructs for Database System Implementa-

tion in EXODUS,” Proceedings of the ACM
SIGMOD Conference, pp. 208-219 (May 1987).

26. L.M. Haas, W.F. Cody, J.C. Freytag, G. Lapis,
B.G. Lindsay, G.M. Lohman, K. Ono, and H.

Pirahesh, “An Extensible Processor for an
Extended Relational Query Language,” Com-

puter Science Research Report, (RJ 6182
(60892))IBM Almaden Research Center, (April

1988).

27. G. Graefe and D.J. Dewitt, “The EXODUS
Optimizer Generator,” Proceedings of the ACM
SIGMOD Conference, pp. 160-171 (May 1987).

28. G. Graefe, “Rule-Based Query Optimization in

Extensible Database Systems,” Ph.D. Thesis,
University of Wisconsin, (August 1987).

29. G. Graefe, “Software Modularization with the
EXODUS Optimizer Generator,” IEEE Data

Engineering, (December 1987).

366

