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Abstract 

In most database systems, a query embedded in a program written in a conventional programming 
language is optimized when the program is compiled. The query optimizer must make assumptions about the 
values of the program variables that appear as constants in the query, the resources that can be committed to 
query evaluation, and the data in the database. The optimality of the resulting query evaluation plan depends 
on the validity of these assumptions. If a query evaluation plan is used repeatedly over an extended period of 

time, it is important to determine when reoptimization is necessary. Our work aims at developing criteria when 
reoptimization is required, how these criteria can be implemented efficiently, and how reoptimization can be 

avoided by using a new technique called dynamic query evaluation plans. We experimentally demonstrate the 
need for dynamic plans and outline modifications to the EXODUS optimizer generator required for creating 

dynamic query evaluation plans. 

1. Introduction 

In many database applications, queries are 
embedded in application programs written in a con- 
ventional programming language like Cobol or C. 
These application programs are compiled once and 

then executed repeatedly over an extended period of 

time. In most database management systems, the 

embedded queries are optimized when the programs 

are compiled. The resulting query evaluation plan is 

stored in an ‘access module’ and is activated by pro- 

cedure calls. This organization avoids the optimiza- 
tion overhead when the programs and the queries are 
executed, thus allowing for fast query evaluation and 

high transaction rates. 

The disadvantage of query optimization at 
compile time is that free variables in the query predi- 
cate and changes in the system load or in the data- 
base cannot be reflected in the query evaluation plan. 
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Since an embedded database query is used to retrieve 
information pertinent to the current program run, it 
is natural that program data and the database query 
are connected by using one or more program vari- 
ables as constants in the query predicate. The value 

of the program variables is not known at compile- 

time, i.e., when the query is optimized. While data- 

base query optimization does not genuinely depend 
on the values of constants in the database query, the 

optimizer needs to estimate intermediate result sizes, 

which in turn may depend on the constants in the 

query predicate. For example, the optimal join stra- 
tegy depends on the number of tuples to be joined 
from each input. If the inputs are the results of 

selections, it is imperative that the optimizer esti- 

mate the select output size. 

When optimizing an embedded query with pro- 
gram variables in the query predicates, database 
optimizers estimate selectivities using a guessed “typ- 

ical” value for each variable, or directly guess selec- 

tivities [I]. Costs of alternative query evaluation 

plans are estimated using the guessed values. In the 

case of complex queries with inequality constraints 
involving program variables, the resulting query 
evaluation plan can be far from optimal. 

For example, consider a database query to find 
all employees with a salary greater than $30,000 and 
their departments. Assume that this query requires 
joining the employee relation with the department 
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relation on the department number, and that the 
only two indices in the database are for the employee 

relation on salary and for the department relation on 

department number. If there are very few employees 
in this salary range, it probably is best to find quali- 

fying employees using the salary index, to use the 

result as outer relation in the join and to perform 
repeated index lookups on the department relation. 
If there are very many such employees, however, it 
might be best to read the entire department relation 
(the smaller of the two relations) into a memory- 

resident hash table and then probe the hash table 
using the employee tuples, using file scans for both 

files. In this example, the scanning strategies, the 
join order, and the join algorithm depend on the car- 
dinality of the two relations and the selectivity of 
the selection predicate. Imagine that the above 

query is embedded in an application program, and 
that the cutoff value, the constant $30,000, is 

replaced by a program variable. In this case, a con- 

ventional query optimizer cannot satisfactorily 
optimize the query. We are trying to develop an 

elegant, dynamic, and efficient solution. 

Apart from program variables, the system load 
can be considered a free variable in query optimiza- 

tion. A number of cost functions, e.g., for sorting or 
hash join with overflow resolution, depend on the size 

of main memory available for a particular query. If 
this size cannot be predicted, the optimizer cannot 

make reasonable cost calculations and decisions. 
Considering performance-critical resources, e.g., 

buffer pages, number of processors, number of chan- 
nels and disk arms for temporary files, etc., free vari- 
ables allows using effective optimization techniques 

outlined in this paper. In the sequel, we will not dis- 

tinguish between program variables and load vari- 

ables because they are not significantly different from 

the standpoint of query optimizations. 

Another problem with stored query evaluation 

plans is that they are optimized for the state of the 
database at program compilation time, not for the 

database state at query execution time. In the 

meantime, the database may change such that the 

query evaluation plan is no longer optimal. We have 
to distinguish between changes that make a query 

evaluation plan infeasible and changes that make a 
query evaluation plan non-optimal. The former 

category includes removing relations and indices that 

are referenced in the query evaluation plan and has 
been addressed by earlier work [2]. The latter 
category includes creating new indices, inserting or 
deleting a large number of tuples, and modifying a 

large number of attribute values. Our research will 
later address the problems in this category. 

Consider the above example again with a con- 
stant of $30,000. If most of the newly hired 

employees are highly paid specialists, the number of 
qualifying employees will change, as well as the por- 

tion of qualifying employees (i.e., the selectivity). If 

the query is optimized only once and the resulting 
access plan reused over a long period of time, the 

query evaluation plan will eventually become subop- 
timal. 

Other researchers also have identified the 
benefits of multiple plans for a single query. In a 
number of early query evaluation papers the problem 
is considered so significant that plan generation is 

delayed until query evaluation, e.g., [3, 4, 51. We 
believe, however, that selectivity estimation tech- 

niques have been sufficiently developed to-date that 
query plans for completely specified queries can be 
generated at compile time [6, 7, 81. Our work 
addresses the case of incompletely specified queries, 

e.g., queries with free variables in the predicate. 

Most closely related to our work is the work of 

Lee and Yu [9] h w o suggest to used index information 

to decide scan method and join algorithm during 
query evaluation. Their approach, while useful 
where applicable, is limited to cases with existing 

indices (therefore it is not applicable to intermediate 
results) and to algorithm selection. Our approach 

also allows reordering operators in a query evalua- 
tion plan. 

The XPRS project at UC Berkeley includes 
plans for choosing at run time from a set of prepared 

plans according to the amount of main memory 
available at query execution time [lo]. The Star- 
burst research group is considering rewriting a query 
into multiple alternatives and selecting from among 
them by the second optimization phase according to 

cost estimates or at run time depending on variable 
bindings [ll], but has as yet not developed techniques 

for creating multi-plan access modules and appropri- 

ate selection criteria. 

So far, we have looked at the problem as it 

appears in conventional, relational database manage- 
ment systems. In a database system used to support 

logic programs, the problem of unknown predicate 
constants occurs very frequently. Consider a model 

of execution that relies on backtracking, particularly 
Prolog [12, 131. The same clause is activated repeat- 
edly with different variable instantiations. If the 

clause contains a database query, the same database 

query is performed with different constants in the 
query predicate. The techniques described here are 
aimed at providing more flexibility and better perfor- 
mance for both conventional and non-conventional 

database management systems and applications. 

Another application that will benefit from mul- 
tiple or dynamic query evaluation plans are object- 

oriented database systems. If behavior is 
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encapsulated in type definitions, a selection message 
sent to a collection object results in repeated method 

invocation for all members of the collection, e.g., in 

Smalltalk [14] or Gemstone [15]. If a method 

includes a database lookup, preparing a set of execu- 
tion plans that covers all possible cases can greatly 
improve query performance. We have incorporated 

dynamic query evaluation plans in the Volcano query 
evaluation system prototype [16] developed at OGC 

and intend to exploit them in a high-performance 
object-oriented database system [17]. 

The remainder of this paper is organized as fol- 

lows. In Section 2 we propose mechanisms for testing 
efficiently whether or not a query evaluation plan is 
optimal, i.e., whether the query plan with the actual 
constants is optimal for the current state of the 
database. Section 3 describes how some of these 

problems can be solved by choosing the scanning 
strategy dynamically. Section 4 extends these tech- 

niques to join processing. In Section 5, we develop a 
general technique, called dynamic query evalua- 
tion plans, with the goal of providing minimal over- 

head, maximal flexibility, or both. The implementa- 

tion of dynamic query evaluation plans is described 
in Section 6, which include actual measurements 

demonstrating the performance gains through 

dynamic plans. Section 7 describes our current 
research, including extensions to the EXODUS optim- 

izer generator. Section 8 contains a summary and 
our conclusions. 

2. Test of Optimality 

In order to test whether or not a given query 

evaluation plan is optimal for a set of query con- 

stants given in the program variables, a special 
predicate is associated with each compiled query 
evaluation plan. When a plan is activated with a 
record of actual values for the query constants, the 

associated predicate is evaluated on this record and 

returns one of the values TRUE or FALSE. In the 

case of TRUE, the access plan is considered 
appropriate, and query processing proceeds as in 

existing database systems. In the case of FALSE, 

the access plan is considered suboptimal, and the 

database query optimizer is invoked. 

It can be argued that the overhead incurred by 
evaluating the predicate is unacceptable for high- 
performance database systems. Consider, for exam- 

ple, a banking teller transaction. Probably, an 
optimized plan finds account records using a hash 
index on account numbers (assuming such an index 
exists); testing this access plan’s optimality will be 

wasted effort. While this is true, we would like to 
alert the reader to two points. First, if the predicate 
used to test the optimality is compiled into machine 
code (just as predicates on data records should be), 
evaluation requires probably in the range of 20 to 

100 instructions. Second, in extreme cases like the 

banking teller example, the predicate can be designed 

such that it always returns TRUE without inspecting 

the record of actual values. 

When the query optimizer has been reinvoked 
for a certain query after the original query evalua- 
tion plan was rejected, it is probably a good idea to 
keep both plans and choose dynamically among them 

in future activations of the query. In general, there 
might be a number of access plans to be chosen from 

dynamically. It is not even necessary to wait until 

the original query evaluation plan is rejected; rather, 
it should be possible to prepare more than one plan 
when the query is optimized originally. We discuss 
this concept in more detail in the following sections. 

3. Dynamic Decisions on Scanning Strategies 

Dynamic decisions on the best scanning stra- 
tegy are the first step towards dynamic query evalua- 

tion plans. The alternative scanning strategies are 
file scan and index scan, if a suitable index exists. 
Let us first review the rationale by means of an 

example. 

Consider a large file, e.g., with 10,000 employee 
records stored in 1,000 pages. If we need to retrieve 

all records, we should use a file scan, as this method 
ensures that we inspect each data page only once 

and allows high-performance techniques like read- 
ahead. If we retrieve only 10 of the 10,000 records, 
we do better by using an index (assuming one exists). 
We would have to read at most 10 data pages, and 

probably less than 30 index pages. If we retrieve 

2,000 records, however, it is quite likely that we 

eventually have to read all 1,000 data pages and the 
index adds only to the overhead for three reasons. 
First, we have to read the index pages, second, if the 
index is an unclustered index, we inspect many pages 

more than once, and third, we cannot make best use 
of read-ahead. Yao [18] gives an estimation formula 

to determine the number of page accesses from the 
number of qualifying records; others have expanded 

on this work, e.g., [19, 20, 21, 22, 231. In addition to 

the cost of pages accesses, there are also costs for 

locking and concurrency control (let us assume that 

locks are used for concurrency control). If only 
relevant records are accessed using the index, only 
those records need to be locked. For a file scan, all 
records must be locked. However, this can be done 

with a single call to the lock manager if a hierarchi- 

cal locking scheme is used. Depending on the selec- 
tivity and the current system load, either one of the 
two strategies can be optimal. 

The lesson from this example is that there are 
many considerations that favor index scan over file 
scan or vice versa, depending on the actual situation 

when the query evaluation plan is activated. The 
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choice depends on the selectivity of the predicate and 

on the current system load, and can be performed 

efficiently at run time. If the interfaces to the file 

scan procedure and the index scan procedures are 
equal (or very similar), a dynamic choice of the scan 
method can be implemented with reasonable effort 
and run time overhead. The task of the query optim- 
izer is to determine the break-even point. More 
exactly, the query optimizer must determine the for- 
mulas to find the break-even point and to compare it 

with the actual selectivity, and include these formu- 
las in the query evaluation plan. 

4. Dynamic Decisions on Join Strategies 

As we have seen in the example in the introduc- 

tion, in some cases it is desirable to select the join 

strategy at run time. If there are more than one join 
operator cascaded in a query evaluation plan, the 

decisions on the join strategies are interdependent. 
Most importantly, the physical (sort) order of inter- 
mediate results may affect the cost of algorithms for 
the next processing step if order-sensitive algorithms 
such as merge-join are used. 

The query optimizer’s task for this kind of 
access plan is more complex. Instead of following a 

set of assumption and guesses about distributions, 

selectivities, etc., it must design an efficient decision 

procedure which can be executed when the query 
evaluation plan is activated. This decision procedure 
must have resolved the interdependence of partial 

decisions into a straight-forward decision tree, and 
include the break-even values between alternative 

plans. 

Since the number of possible join strategies is 
very large, even for only moderately complex queries, 
it is not possible to include all query execution plans 

in the access module. There are two solutions to this 

problem. First, the optimizer can select a subset of 

query execution plans. The plans are selected to 

allow reasonably efficient query evaluation for any 

set of parameters. In order to keep this set small, 

plans with wide range of optimality must be selected. 
We call this a query evaluation plan’s stability and 

will develop this concept is a later paper. Second, 
instead of storing complete plans, only elements of 
the plans are stored, and linked together when the 

access module is activated. 

5. Dynamic Query Evaluation Plans 

Instead of a set of query evaluation plans, as 
suggested in the previous sections, we propose to 
avoid redundancy in the access module by designing 
the data structure for the query evaluation plans to 
be more flexible. The access modules of existing 
database management systems consist of a number of 
components, e.g., an indicator for file scan with a file 
name and a search predicate, an indicator for hash 

join with a hash function and a comparison function, 

etc. These components are linked together into a 

static plan by the query optimizer, thus hiding the 

fact there are several components. Dynamic access 
modules consist of the same components, only the 
binding between components is more flexible. The 
only new component is the decision procedure used 
to analyze the actual query constants and the data 
distribution. When an access module is activated, 

the first step is to evaluate the decision tree. Con- 
currently with the evaluation of the decision tree, 

this step sets up the bindings between the com- 
ponents of the access module. 

In addition to the decision tree designed by the 

optimizer, the access module must also contain the 

support functions for all possible query evaluation 
plans. These support functions include comparisons, 
hash functions, etc. The physical organization of the 
access module must allow equally efficient execution 
of any of the query evaluation plans. 

Introducing the dynamic choices outlined in the 

sections above are an important step toward more 
flexible and efficient database systems. However, 

instead of considering scanning and join strategies 

separately, we are investigating how far the concept 

of dynamic query evaluation plans can be gen- 
eralized. After this more general investigation, we 
can consider selection of scanning and join strategies 

as special cases. Other special cases that come 

immediately to mind are join orders and the place- 
ment and execution of aggregate functions. 

It can be argued that setting up the bindings 
dynamically inflicts too much overhead on query pro- 
cessing. Consider the example of a banking teller 
transaction introduced in Section 3. If there is no 

gain in using a dynamic access module, the decision 

tree can be an empty function. In this case, all bind- 

ings must be set statically, and “evaluating” the deci- 

sion tree costs only one instruction. The techniques 

proposed here do not require that as many choices as 
possible must be delayed until run time. Their 

advantage is that they allow delaying exactly as 

many choices as advisable. 

6. A Dynamic Query Evaluation System 

In order to assess whether dynamic query 
evaluation plans are an attractive practical alterna- 

tive to existing static plans, we have implemented 
dynamic query evaluation plans in the Volcano query 
evaluation system [16]. Volcano includes file scan, 
B-tree scan, select, project, duplicate elimination, 
sorting, merge join, hash join, naive and hash divi- 

sion 1241, and sort- and hash-based aggregate func- 
tions. Each algorithm is implemented as an iterator, 
i.e., there are open, nezt, and close procedures for 
each algorithm. Associated with each algorithm is a 
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state record, allowing multiple use of an algorithm in 
a query. The arguments for the algorithms, e.g., 
predicates, are kept in the state record. We also 

have a facility for parallel plan execution which we 

will not describe here. 

In queries involving more than one operator 

( i.e., almost all queries), state records are linked 
together by means of input pointers, also kept in the 
state records. Calling open for the top-most operator 
results in open calls for all inputs and in instantia- 

tions for the associated state record, e.g., allocation 

of a hash table. In this way, all iterators in a query 
are initiated recursively. In order to process the 
query, next for the top-most operator is called repeat- 
edly until it fails with an end-of-stream error. 
Finally, the close call recursively “shuts down” all 
iterators in the query. This model of query execution 

matches very closely the one being included in the E 

programming language design [25] and the algebraic 

query evaluation system of the Starburst extensible 
relational database system [26]. 

The current implementation includes a choore- 
plan operator to realize both multi-plan access 
modules and dynamic plans. This operator provides 

the same open, next, close protocol as the other 
operators and can therefore be inserted into a query 

plan at any location. The open operation decides 

which of its several equivalent query plans to use, 
and invokes the open operation for this input. The 

next and close operations simply call the appropriate 
operation for the input chosen during open. 

The choose-plan operator allows considerable 
flexibility in our experiments. If only one choose-plan 

operator is used as top of a query evaluation plan, it 

implements a multi-plan access module. If multiple 
choose-plan operators are included in a plan, they 

simulate a dynamic query evaluation plan. They 
only simulate a dynamic plan because the decision 

process is integrated with the open procedure rather 

than preceding open, thus requiring the operator’s 
next and close operation and their overhead. How- 

ever, the flexibility and the implementation simplicity 
of the choose-plan operator seem worth this over- 
head. 

Access modules are composed of state records 
and support functions. We are currently designing 
the required extensions to the EXODUS query optim- 

izer generator to produce dynamic query evaluation 
plans, i.e., plans with choose-plan operators. 

6.1. Experimental Results 

The following example demonstrates how con- 
siderable savings might be realized by choosing 

dynamically among multiple query evaluation plans. 

The test data are drawn from the billing files of 
a utility company. The example query selects 

records from a site relation containing location and 
revenue information for each site where energy 
meters are installed. Much of the location informa- 

tion is encoded. For instance, the names of the cities 

served by the utility are found in a separate city 
table. The address of a particular site is formed by 

retrieving the street portion of the address from the 
site record, then using a city code to look up the city 
name. 

The test database contains 13,229 site records, 
each 252 bytes long, and 77 city records of 28 bytes. 

Indices have been built for the site relation on reve- 
nue amount, and for the city relation on city code. 

The example query retrieves address informa- 
tion for those sites whose most recent revenue 

amount exceeded a certain threshold, where the 
cutoff amount is a variable. Such a query might be 
embedded in a program that produces specialized 

mailing lists. The amount might be set to the 
minimum bill amount to include all active in the 

mailing, or it might be set to a high value to identify 
the largest accounts. When the threshold amount is 
high, we would prefer to use the amount index to 
select those few sites that qualify, then use the city 
code index to complete the address information. If 

more than a few sites will qualify, however, it would 

be better to avoid the overhead of reading and 
repeatedly searching the indices. Instead, we can 
ensure that each page is read only once by scanning 
the site file after building a memory-resident hash 

table from the city file. 

We constructed a multi-plan access module con- 

taining the state records and support functions 
needed to execute this query using either B-tree scan 

and index nested loops join or file scans and hash 

join. 

Currently, an access module is stored apart 
from both the program that builds it and the 

program(s) that may execute it. It can be “embed- 

ded” in another program by having that program 
read the access module into a buffer as data. The 
module is then invoked by passing the buffer address 

to an execute algorithm. Execute uses displacement 
information included in the access module to build 

the input pointers for the topmost state records, until 
a choose-plan operator is encountered. If there are 

no choose-plan operators, execute will link all of the 

plan’s state records and support functions. 
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Comparison of Query Strategies 

Tuples 
Printed 

0 
1 

251 

501 

752 

1001 

5002 

10010 

13229 

(time in secor 

B-tree Scans and Join 

CPU I/O (1) I/O (2) cost 

0.14 0.059 0.130 0.329 

0.16 0.115 0.154 0.429 

0.67 2.146 0.202 3.018 

1.06 3.276 0.274 4.611 

1.69 3.726 0.322 5.739 

2.14 4.641 0.370 7.151 

9.72 6.408 1.162 17.290 

19.02 7.090 2.170 28.280 

25.23 8.113 2.914 36.257 

!!d S) 

File Scans and Hash Join 
CPU I/O (1) I/O (2) cost 

1.04 3.410 0.083 4.533 

1.07 3.410 0.083 4.563 

1.21 3.410 0.083 4.703 

1.37 3.410 0.083 4.863 

1.39 3.410 0.083 4.883 

1.52 3.410 0.083 5.013 

3.40 3.410 0.083 6.893 

5.77 3.410 0.083 9.263 

7.22 3.410 0.083 10.713 

A choose-plan operator fetches the information 
it needs to select the best plan. In our implementa- 
tion of this example, it reads a control record from 

the database which contains the threshold amount, 
and chooses the plan to use in the current invocation. 
It then completes linking the state records for the 

indicated plan. We have redesigned the open pro- 
cedures to use a second parameter besides the state 
record, namely a record called bindings which con- 

tains query predicate constants and system load 

information. 

The cost function used to evaluate the perfor- 

mance of a query is the sum of the CPU time in user 

mode’ and the estimated time spent performing I/O 
(calculated from statistics kept by the file system), 
expressed in seconds. 3600 KB were allocated as file 

system buffer space. 

For the experiment, we “forced” the choose-plan 

operator to use a plan of our choice, disreganding the 

threshold amount. (Of course, the selection predicate 
did use the threshold amount.) Each query plan was 

invoked using a series of threshold amounts. The 

results for each plan-amount combination are sum- 

marized in Table 1. The columns for I/O reflect the 
I/O cost on two disk devices. The first one, labeled 
I/O(l), contains the data files, while the second one 

contains the indices. 

The strategies employing file scans and hash 

join, shown in the four right-most columns, are com- 
paratively insensitive to the output size. Since all 

pages of both tables are read into the buffer, the I/O 

cost is entirely independent of the cutoff value. The 

’ The queries were run on a Sequent Symmetry 
which uses Intel 80386 CPU’s with a 16 Mhz clock. 
CPU time was determined using the UNIX system 

call getrusage. 

Table 1. Costs of two plans for various output sizes. 

CPU cost for resource management (buffers, memory, 
etc.) and for applying the selection predicate are 
almost identical for all cutoff values; most of the 

differences are due to hash and comparison functions 
and to copying record fields into the output table. 

The cost of the index-based access plan is 

significantly more sensitive to the cutoff value 
applied. For very few result tuples, the cost grows 

very steeply with the number of result tuples, and it 

grows about linearly for large outputs. This result 

was to be expected as the number of index look-ups 
and data page fetches is approximately equal to the 
number of result tuples. 

For a small cutoff value and very few result 
tuples, the first plan using indices is superior to the 

second. As the number of result tuples increases, 
however, this advantage diminishes and eventually 

turns into a disadvantage. 

The ratio of costs at the two ends is surprising. 

If only one account satisfies the predicate, the index 

strategy is superior by a factor of 10. If all or almost 

all accounts qualify, it is inferior by a factor of more 

than 3. This very large range has a significant 
impact on query optimization. If a cutoff value is 
not known at compile and query optimization time, 

as is frequently the case for embedded queries, choos- 
ing either one of these plans is wrong. One alterna- 
tive is to delay query optimization until run time in 

order to include the actual cutoff value in the selec- 

tivity and cost calculations. This alternative 

increases query cost by the time used for optimiza- 

tion, which could easily double the reponse time for 
this query. In other words, a conventional query 
optimizer effectively cannot optimize this simple 
query. Dynamic query evaluation plans, on the other 
hand, can decide in very little time which plan is 
optimal and ensure the less expensive plan is used 
every time the application program is run. 
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7. Current Work 

Our current research consists of two inter- 

dependent design and implementation efforts. First, 
we are augmenting the EXODUS query optimizer 
generator software to create multiple query evalua- 
tion plans and a decision procedure. Second, we plan 
on changing the search strategy employed by gen- 
erated optimizers. 

7.1. Modifications of the EXODUS Optimizer 
Generator Software 

We are currently designing and implementing 
modifications to the EXODUS Optimizer Generator 
[27, 28, 291 that enable generated optimizers to 

optimize queries with free variables by creating more 
than one query evaluation plan. The first two 
modules, which are partially implemented, is actually 

a pre- and post-processor for the optimizer. The 
preprocessor parses initial queries coded in QUEL- 

like syntax and transformed them into an operator 
tree before optimization. The operator tree consists 
of Cartesian product operators, followed by a selec- 
tion and a projection. The postprocessor traverses a 

query evaluation plan and generates type definitions, 
support functions, and argument and state records in 

the C programming language. These programs are 
then compiled by the standard C compiler, linked 

with the query evaluation library, and run against 
the database. The program generated from the 

optimized query evaluation plan includes a print 

operator which prints the query result on the screen. 

The next step will to allow designation of free 
variables in queries. The optimizer will not consider 
values for these variables and will generate multiple 
query evaluation plans. The choose-plan operator 
will use actual variable bindings to determine which 
plan to execute. While designating “free” variables 
in interactive queries is somewhat unrealistic, it 

reduces the time to set up an environment for imple- 

menting and experimenting with multiple plans and 
dynamic plans, and to investigate the core of the 

research, the optimizer search strategy. 

In a later stage, we intend to augment the 
selectivity estimation procedures and cost functions 

with observations from query evaluations. Thus, we 
will adjust and Iearn optimal values and formulas for 

these functions, complementing earlier work on learn- 
ing within the query optimizer [28]. Notice that only 
dynamic query evaluation plans allow incorporating 
cost function adjustments in existing access modules 
effectively, i.e., without recompilation, thus providing 
the most promising environment for learning and 

adjusting selectivity estimation and cost functions. 

7.2. The Search Strategy 

In the current design of optimizers generated 
with EXODUS, as in most other query optimizers, the 

task of the query optimization module is to find one 

best query evaluation plan. In the optimization 

paradigm proposed here, the goal of query optimiza- 
tion is to find a set of plans and an efficient decision 
procedure to determine which of these plans is 

optimal in the actual access module invocation. We 
call this new optimizer a multi-plan optimizer, as 

opposed to single-plan optimizers found in conven- 
tional query optimization. The number of query 
evaluation plans can be prohibitively large. Develop- 
ing and using the concept of the stability of query 
evaluation plans, however, we have reason to believe 
that the number of required plans in an access 
module can be kept reasonably low. 

The first experiment will involve a binary 
search scheme similar to the one proposed for XPRS 

[lo]. The independent variable for the binary search 
can be the buffer size as in XF’RS or the cardinality 
of an intermediate result, calculated from a variable 

binding. Clearly, only a very limited number of vari- 
ables can be dealt with in this way, probably only 
one or two, e.g., buffer size and the number of avail- 
able CPUs. For the more general problem of embed- 
ded queries with multiple free variables, the search 

space must be pruned more aggressively. We expect 
that the common subplan analysis implemented in 
the EXODUS software to detect multiple derivations 
of the same query evaluation plan will significantly 

reduce the amount of redundant work. 

The other technique we will employ is to split 
ranges during optimization of subplans only on 

demand. In the first query tree analysis, the possible 
range of result cardinalities for each of the opera- 
tions is determined. Instead of keeping just one 
value for the result cardinality in each node of the 
operator tree, as is done in most relational optimizers 
including the one described in [28], cardinalities are 
specified by their possible range. Similarly, the costs 

of query evaluation plans and subplans are con- 

sidered as ranges instead of as single values. 

When a cost function is invoked, it first deter- 

mines whether the cost increases “smoothly” over the 
range of input sizes, or whether the cost function 
shows a significant discontinuity. If necessary, the 

range is split at points of discontinuity, and a 

choose-plan operator is introduced into the plan. In 
this way, multiple methods may be selected for a sin- 
gle operator distinguished by cardinality ranges. 

Consider the example query used in the intro- 
duction, which involves two relations with a selection 
using a free variable and a join. The cost function of 

hash join may indicate a discontinuity at the point 

where temporary files must be used to resolve hash 
table overflow. At this point, the range is split and 

two sub-plans are used, e.g., one using hash join and 

one using merge join. 
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If two methods with smooth cost functions show 

overlapping cost ranges, i.e., one plan is less expen- 

sive than the other at one end of the range and 

higher at the other end, the optimizer invokes the 
cost function repeatedly to determine the break-even 
point of the two plans, and optimizes the subranges 
separately. A choose-plan operator is introduced to 
determine at run time which of the plans should be 
used. 

Consider the above example again, but assume 
that no hash table overflow occurs. Since index scan 
and index nested loops join are superior if very few 

tuples satisfy the query predicate but are inferior at 

the opposite extreme, the cost range for the plan 

using indices overlaps the cost range of the plan 
using hash join. Thus, the optimizer splits the range 

after determining the break-even point of the two 

plans. 

Plans that include a choose-plan operator i.e., 
the operators that use the output of this operator as 
their input, are reanalyzed appropriately, as detailed 

in [27, 281. Reanalyzing may result in further 
method splits at higher levels of the operation tree 

and introduction of more choose-plan operators. In 

this case, lower level choose-plan operators may be 
removed, effectively migrating them up in the opera- 

tor tree, such that the final plan may include only 

one choose-plan operator at the top of the query. 

For example, the query used in the introduction 

has two optimal plans, depending on the cutoff value 
for the salary constant. Neither plan requires a 
choose-plan operator within the query evaluation 
plan, i.e., the choose-plan operator has migrated up 

to the root of the plan tree. 

8. Summary and Conclusions 

In this paper, we have identified a significant 

problem in current models of query optimization and 

evaluation. For cases in which a single plan cannot 

cover the entire possible range of query constants, 
data distributions, and resource situations, we have 
suggested a very efficient scheme to decide dynami- 

cally when to reoptimize the query or to choose one 
of several query evaluation plans. We have designed 
and implemented a query evaluation system that 

includes dynamic access modules. Dynamic access 

modules perform the final steps of composing a query 

evaluation plan very efficiently at run time from 

fragments prepared by the query optimizer using a 
decision and linking procedure also included in the 
access module by the query optimizer. 

The concepts presented here can be expected to 
enhance database systems performance significantly 
for both conventional and non-conventional applica- 

tion domains. For conventional domains, the 
emphasis is on better and more flexible support for 

queries embedded in application programs, and on 

adaptation to varying system loads. Within non- 
conventional domains, we envision the new tech- 
niques to be particularly advantageous for database 
systems supporting logic programming relying on 
backtracking, and in object-oriented database sys- 

tems that employ query optimization. 

Acknowledgements 

Guy Lohman provided interesting and stimulat- 
ing discussions, and pointed out the importance of 
learning cost functions from run time observations. 
David Dewitt suggested, supervised, and influenced 

the development of the EXODUS optimizer genera- 

tor. Portland General Electric provided the test 
data, which is gratefully acknowledged. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

P. Griffiths Selinger, M.M. Astrahan, D.D. 
Chamberlin, R.A. Lorie, and T.G. Price, 
“Access Path Selection in a Relational Data- 

base Management System,” Proceedings of the 
ACM SIGMOD Conference, pp. 23-34 (May- 
June 1979). 

D.D. Chamberlin, M.M. Astrahan, W.F. King, 
R.A. Lorie, J.W. Mehl, T.G. Price, M. Schkol- 

nik, P. Griffiths Selinger, D.R. Slutz, B.W. 

Wade, and R.A. Yost, “Support for Repetitive 
Transactions and Ad Hoc Queries in System 
R,” ACM Transactions on Database Systems 

6(l) pp. 70-94 (March 1981). 

E. Wong and K. Youssefi, “Decomposition - A 
Strategy for Query Processing,” ACM Transac- 
tions on Database Systems l(3) pp. 223-241 

(September 1976). 

K. Youssefi and E. Wong, “Query Processing in 
a Relational Database Management System,” 

Proceedings of the Conference on Very Large 

Data Bases, pp. 409-417 (October 1979). 

C.T. Yu and C.C. Chang, “On the Design of a 
Query Processing Strategy in a Distributed 
Database Environment,” Proceedings of the 

ACM SIGMOD Conference, pp. 30-39 (May 
1983). 

M.V. Mannino, P. Chu, and T. Sager, “Statisti- 

cal Profile Estimation in Database Systems,” 

ACM Computing Surveys 20(3)(September 

1988). 

L.F. Mackert and G.M. Lohman, “R* Optimizer 
Validation and Performance Evaluation for 
Local Queries,” Proceedings of the ACM SIG- 

MOD Conference, pp. 84-95 (May 1986). 

L.F. Mackert and G.M. Lohman, “R* Optimizer 
Validation and Performance Evaluation for 
Distributed Queries,” Proceedings of the 

365 



9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Conference on Very Large Data Bases, pp. 149- 

159 (August 1986). 

Y.H. Lee and P.S. Yu, “Adaptive Selection of 

Access Path and Join Method,” unpublished 
manuscript, (1988). 

M. Stonebraker, R. Katz, D. Patterson, and J. 
Ousterhout, “The Design of XPRS,” Proceed- 
ings of the Conference on Very Large Databases, 

pp. 318-330 (August 1988). 

W. Hasan and H. Pirahesh, “Query Rewrite 

Optimization in Starburst,” Computer Science 
Research Report, (RJ 6367 (62349))IBM 
AImaden Research Center, (August 1988). 

D.H.D. Warren, L.M. Pereira, and F. Pereira, 
“PROLOG - The Language and its Implemen- 

tation Compared with Lisp,” Proceedings of 
ACM SIGART-SIGPLAN Symposion on AI and 

Programming Languages, (1977). 

W. Clocksin and C. Mellish, Programming in 

Prolog, Springer, New York (1981). 

A. Goldberg, D. Robson, and D. Ingalls, 
Smalltalk-80: The Language and its Implementa- 

tion, Addison-Wesley, Reading, MA. (1983, 

1985). 

G. Copeland and D. Maier, “Making Smalltalk 

a Database System,” Proceedings of the ACM 

SIGMOD Conference, pp. 316-325 (June 1984). 

G. Graefe, “Volcano: An Extensible and Paral- 

lel Dataflow Query Evaluation System,” in 
preparation, (February 1989). 

G. Graefe and D. Maier, “Query Optimization 

in Object-Oriented Database Systems: A Pros- 
pectus,” pp. 358-363 in Advances in Object- 
Oriented Database Systems, ed. K.R. 
Dittrich,Springer-Verlag (September 1988). 

S.B. Yao, “Optimization of Query Evaluation 

Algorithms,” ACM Transactions on Database 

Systems 4(2) pp. 133-155 (June 1979). 

S. Christodoulakis, “Estimating Block Transfers 

and Join Sizes,” Proceedings of the ACM SIG- 
MOD Conference, pp. 40-54 (May 1983). 

S. Christodoulakis, “Estimating Record Selec- 

tivities,” Information Systems 8(2) pp. 105-115 

(1983). 

S. Christodoulakis, “Estimating Block Selectivi- 
ties,” Information Systems 9(l) p. 69 (1984). 

B.T. Vander Zanden, H.M. Taylor, and D. Bit- 
ton, “Estimating Block Accesses When Attri- 

butes Are Correlated,” Proceeding of the 
Conference on Very Large Data Bases, pp. 119- 
127 (August 1986). 

23. B.T. Vander Zanden, H.M. Taylor, and D. Bit- 
ton, “A general framework for computing block 

accesses,” Information Systems 12(2) p. 177 

(1987). 

24. G. Graefe, “Relational Division: Four Algo- 
rithms and Their Performance,” Proceedings of 
the IEEE Conference on Data Engineering, pp. 
94-101 (February 1989). 

25. J.E. Richardson and M.J. Carey, “Programming 

Constructs for Database System Implementa- 

tion in EXODUS,” Proceedings of the ACM 
SIGMOD Conference, pp. 208-219 (May 1987). 

26. L.M. Haas, W.F. Cody, J.C. Freytag, G. Lapis, 
B.G. Lindsay, G.M. Lohman, K. Ono, and H. 

Pirahesh, “An Extensible Processor for an 
Extended Relational Query Language,” Com- 

puter Science Research Report, (RJ 6182 
(60892))IBM Almaden Research Center, (April 

1988). 

27. G. Graefe and D.J. Dewitt, “The EXODUS 
Optimizer Generator,” Proceedings of the ACM 
SIGMOD Conference, pp. 160-171 (May 1987). 

28. G. Graefe, “Rule-Based Query Optimization in 

Extensible Database Systems,” Ph.D. Thesis, 
University of Wisconsin, (August 1987). 

29. G. Graefe, “Software Modularization with the 
EXODUS Optimizer Generator,” IEEE Data 

Engineering, (December 1987). 

366 


