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Abstract.  Data warehouse queries pose challenging performance problems that 
often necessitate the use of parallel database systems (PDBS). Although 
dynamic load balancing is of key importance in PDBS, to our knowledge it has 
not yet been investigated thoroughly for parallel data warehouses. In this study, 
we propose a scheduling strategy that simultaneously considers both processors 
and disks while utilizing the load balancing potential of a Shared Disk 
architecture. We compare the performance of this new method to several other 
approaches in a comprehensive simulation study, incorporating skew aspects 
and typical data warehouse features such as star schemas. 

1   Introduction 

A successful data warehouse must ensure acceptable response times for complex 
analytical queries. Along with measures such as new query operators [8], specialized 
index structures [13, 19], intelligent data allocation [18], and materialized views [3], 
parallel database systems (PDBS) are used to provide high performance [5]. For 
effective parallelism, good load balancing is a must, and many algorithms have been 
proposed for general PDBS. But we are not aware of load balancing studies for data 
warehouses with characteristic features such as star schemas and bitmap indices. 

In this paper, we evaluate a new approach to dynamic load balancing in parallel 
data warehouses based on the simultaneous consideration of both CPUs and disks. 
These are frequent bottlenecks in the voluminous scan/aggregation queries 
characteristic of data warehouses. A balanced utilization of both resources depends 
not only on the location (on which CPU) but also on the timing of load units such as 
subqueries. We thus propose to perform both decisions in an integrated manner based 
on the resource requirements of queued subqueries as well as the current system state. 

To this end, we exploit the flexibility of the Shared Disk (SD) architecture [16] in 
which each processing node can execute any subquery. For scan workloads, the 
balance of CPU load does not depend on the data allocation, permitting query 
scheduling with shared job queues for all nodes. Disk contention is harder to control 
because the total load per disk is predetermined by the data allocation and cannot be 
shifted at runtime. 

In a detailed simulation study, we compare the new integrated strategy to several 
simpler methods of dynamic query scheduling. We use a data warehouse setting based 
on the APB-1 benchmark comprising a star schema with a huge fact table supported 
by bitmap indices, both declustered across many disks for parallel access. The large 
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scan/aggregation queries we regard stress both disks and CPUs, creating a challenging 
scheduling problem. We particularly consider the often neglected but performance-
critical treatment of skew effects. As a first step in the field, we focus on single-user 
mode, but our scheduling approaches can also be applied in multi-user mode. 

In Section 2 of this paper, we briefly review some related work. Section 3 outlines 
our general load balancing paradigm, whereas our specific scheduling heuristics are 
defined in Section 4. Section 5 describes our simulation system and presents the 
performance evaluation of the scheduling strategies. We conclude in Section 6. 
Details omitted due to space constraints can be found in an extended version of this 
paper [11]. 

2   Related Work 

We are not aware of any load balancing studies for parallel data warehouses. For 
general PDBS, load balancing problems have been widely researched, for a variety of 
workloads and architectures [4, 6, 9, 10, 16]. Many of these approaches rely on 
extensive data redistribution too costly in a large data warehouse. Furthermore, most 
previous studies have been limited to balancing CPU load, sometimes including main 
memory [14]. Even so, the need for dynamic scheduling has been emphasized [2, 14]. 
Conversely, load distribution on disks has largely been considered in isolation from 
CPU-side processing. Most of these studies have focused either on data partitioning 
and allocation [7, 15, 17] or on limiting disk contention through reduced parallelism 
[16]. Integrated load balancing as proposed in this paper has not been addressed. 

The Shared Disk architecture has been advocated due to its superior load balancing 
potential especially for read-only workloads as in data warehouses [9, 12, 16]. It also 
offers great freedom in data allocation [15]. But the research on how to exploit this 
potential is still incomplete. SD is also supported by some commercial PDBS from 
IBM, ORACLE, and SYBASE. These and other data warehouse products (e.g., INFORMIX, 
RED BRICK, MICROSOFT, and TERADATA) support star schemas and (mostly) bitmap 
indices as well as adequate data fragmentation and parallel processing. But since no 
documentation is available on disk-sensitive scheduling methods, we believe that 
dynamic disk load balancing is not yet supported in current products. 

3   Dynamic Load Balancing for Parallel Scan Processing 

This section presents our basic approach to dynamic load balancing, which is not 
restricted to data warehouse environments. We presume a horizontal partitioning of 
relational tables into disjoint fragments. If bitmap indices or similar access structures 
exist, they must be partitioned analogously so that each table fragment with its 
corresponding bitmap fragments can form an independent unit of processing. We 
focus on the optimization of scan queries and exploit the flexibility of the Shared Disk 
architecture. 

The two performance-critical types of resources for scans are processing nodes and 
disks, but their respective load balance depends on different conditions: CPU 
utilization is largely determined by how much data each processor is assigned. A 



Dynamic Query Scheduling in Parallel Data Warehouses      323 

balanced disk load, on the other hand, hinges on when the data residing on each 
device are processed because their location is fixed. We thus aim for an integrated 
view on both resources. 

When a query enters the system, a coordinator node that controls its execution 
partitions the query into subqueries based on the presumed horizontal fragmentation. 
Each subquery scans either a fragment or a partition of the relevant table, where a 
partition comprises all table fragments residing on one disk. Fragments known to 
contain no hit rows are excluded. We thus obtain independent subqueries that can be 
processed on any processing node, yielding great flexibility in the subsequent 
scheduling step. 

Fragments, being smaller than partitions, permit a more even load distribution 
especially in case of skew. Partition-sized subqueries, however, reduce the scheduling 
and communication overhead as well as disk contention as no two subqueries will 
process the same table partition, although some interference may still stem from index 
access. 

Scheduling. Presuming full parallelism for the large queries we examine, we are left 
with the task of allocating subqueries to processors and timing their execution. We 
consider this scheduling step particularly important as it finalizes the actual load 
distribution in the system. To this end, the coordinator maintains a list of subqueries 
that are dispatched following a given ordering policy (cf. Section 4) and processed 
locally as described below. All processors obtain the same number of subqueries (±1) 
up to a given limit roughly corresponding to the performance ratio of CPUs to disks; 
remaining tasks are kept in a central queue. When a processor finishes a subquery and 
reports the local result to the coordinator, it is assigned new work from the queue until 
all subqueries are done. Finally, the coordinator returns the overall query result to the 
user. 

This simple, highly dynamic approach already provides a good balance of 
processor load. A node that has been assigned a long-running subquery will 
automatically obtain less load as execution progresses, thus nearly equalizing CPU 
load. Since no two subqueries address the same fragment, we may also achieve low 
disk contention depending on the order in which subqueries are dispatched. This 
aspect is elaborated in Section 4. 

Local Processing of Subqueries. When a node is assigned a fragment-sized 
subquery, it processes any required bitmap fragments and the respective table 
fragment simultaneously, minimizing memory consumption while exploiting 
prefetching and parallel I/O. For the scan/aggregation queries we assume, the 
measures contained in the selected tuples are aggregated locally to avoid a shipping of 
large datasets, and the partial results are returned to the coordinator at subquery 
termination. For partition-sized subqueries, a node will process its partition 
sequentially, skipping irrelevant fragments. Multiple subqueries on the same 
processor coexist without any need for intra-node coordination. 
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4   Scheduling Order of Subquery Execution 

Since we regard the scheduling of subquery execution as the most important aspect of 
load balancing in our processing model, we now present four scheduling policies 
based on either static (Section 4.1) or dynamic (Section 4.2) ordering of subqueries. 
Detailed calculations and some variant strategies can be found in the extended paper 
[11]. 

4.1 Statically Ordered Scheduling 

Our simpler heuristics employ a static ordering of subqueries. Even under these 
strategies, however, our scheduling scheme as such is still dynamic as the allocation 
of workload to processing nodes is determined at runtime based on the progress of 
execution. 

Strategy LOGICAL. This heuristic – taken from our previous study on star schema 
allocation [18] as a baseline reference – assigns fragment-sized subqueries in the 
logical or- der of the fragments they refer to. Since the allocation scheme applied here 
does not maintain this order (cf. Section 5.1), LOGICAL will not yield optimal 
performance. 

Strategy PARTITION. Partition-sized subqueries are dispatched in a round-robin 
fashion with respect to their logical disk numbers. In single-user mode, this means 
that each table partition is accessed by only one processor at a time. However, bitmap 
access (if required) can cause each subquery to read from multiple disks, so that 
access conflicts may not be avoided completely. Still, we expect this policy to 
minimize disk contention. 

Strategy SIZE. This method starts fragment-sized subqueries in decreasing order of 
size, based on the expected number of referenced pages. It implements an LPT 
(longest processing time first) scheme that provides good load balancing for many 
scheduling problems. It does not consider disk allocation but may be expected to 
optimize the balance of processor load based on the total amount of data processed 
per node. 

4.2 Dynamically Ordered Scheduling 

The static policies above tend to optimize the balance of either CPU or disk load. For 
an improved, integrated load balancing we reckon with both criteria based on a 
dynamic ordering. To distribute disk load over time and reduce contention, we try to 
execute concurrently subqueries with minimum overlap in disk access. To 
simultaneously balance CPU load, we also consider subquery sizes similar to the 
previous section. Figure 1 illustrates the following considerations using a 4-disk 
example with 4 subqueries. 

Strategy INTEGRATED. We model the disk load characteristics of each subquery in 
the shape of a load vector ➀  containing the expected number of pages referenced on 
each disk. This number is calculated from the query's estimated selectivity and 



Dynamic Query Scheduling in Parallel Data Warehouses      325 

includes both table and bitmap fragments. The load vector is normalized ➁  to 
represent the relative load distribution across the disks at a given point in time rather 
than its total magnitude. 

In addition to the single load vectors for each subquery, we keep a global vector of 
current disk load, defined as the sum of the load vectors of all subqueries currently 
running ➂ . We can then compute an expected rate of access conflict between the 
current load and any queued subquery by comparing their respective load vectors. 
Specifically, the products of local intensities per disk ➃ , added over all disks ➄ , yield 
a measure of the total access conflict between each candidate and the current load ➅ . 
To integrate disk conflict estimates with the distribution of CPU load, we divide the 
expected disk access conflict for each subquery by its total size ➆➇ , so that long-
running tasks may be executed earlier than shorter ones even if they incur a slight 
increase in disk contention. The subquery that minimizes the resulting ratio ➈  (thus 
optimizing the trade-off between both criteria) will be dispatched in the next 
scheduling step. 

5   Simulation Study 

We now present our simulation study, first introducing the simulation system used 
(Section 5.1), then discussing the performance of our scheduling schemes (Section 
5.2), and finally testing the scalability of our methods in speed-up experiments 
(Section 5.3). 

5.1 Simulation System and Setup 

Our proposed strategies were implemented in a comprehensive simulation system for 
parallel data warehouses that has been used successfully in previous studies [18]. 
Simulating a Shared Disk PDBS with 20 processors and 100 disks, it realistically 
reflects resource contention by modeling both CPUs and disks as servers. CPU 
overhead is reckoned for all relevant operations, and seek times in the disk modules 
depend on the location (track number) of the desired data within a disk. Each 
processor owns a buffer module with separate LRU queues for fact table and bitmap 

 
Fig. 1. Sequence of load vector calculation in strategy INTEGRATED (graph scaling varies). 
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access. The network incurs communication delays proportional to message sizes but 
models no contention, so as to avoid specific network topologies unduly influencing 
experimental results.  

Our sample data warehouse is modeled as a relational star schema for a sales 
analysis environment (Figure 2) derived from the APPLICATION PROCESSING 

BENCHMARK (APB- 1) [1]. The denormalized dimension tables PRODUCT, CUSTOMER, 
CHANNEL and TIME each define a hierarchy (such as product divisions, lines, families, 
and so on). The fact table SALES comprises several measure attributes (turnover, cost 
etc.) and a foreign key to each dimension. With a density factor of 1%, it contains a 
tuple for 1/100 of all value combinations. We incorporate common bitmap join 
indices [13] to avoid costly full scans of the fact table. We employ standard bitmaps 
for the low-cardinality dimensions TIME and CHANNEL, but use hierarchically encoded 
bitmaps [19] for the more voluminous dimensions PRODUCT and CUSTOMER to save 
disk space and I/O. With these indices, queries can avoid explicit join processing 
between fact table and dimension table(s) in favor of a simple selection using the 
respective precomputed bitmap(s). 

We follow a horizontal, multi-dimensional fragmentation strategy for star schemas 
that we proposed and evaluated in [18]. Specifically, we choose a two-dimensional 
fragmentation based on TIME.MONTH and PRODUCT.FAMILY. Each resulting fact table 
fragment thus combines all rows referring to one particular product family within one 
particular month, creating 375 ⋅ 24 = 9000 fragments. This can significantly reduce 
work for queries referencing one or both of the fragmentation dimensions; it also 
supports both processing and I/O parallelism and scales well. As demanded in Section 
3, the fragmentation of bitmaps follows that of the fact table. 

Since one focus of our study is on skew effects, we explicitly model attribute value 
skew in the fact table, using zipf-like frequency distributions with respect to 
dimension values. This leads to varying densities and sizes of table fragments, 
potentially causing severe load imbalance. To help alleviate such density skew, we 
employ a greedy data allocation algorithm similar to [17] which allocates fact table 
fragments in decreasing order of size onto the least occupied disk at each time to keep 
disk partitions balanced. Corresponding bitmap fragments of each bitmap are stored 
on adjacent disks to support parallel bitmap access. Note, however, that a smart 
allocation scheme is merely a complement, not a replacement for intelligent 
scheduling techniques employed at runtime. 

As our study regards single-user mode for the time being, queries are executed 
strictly sequentially. Focusing on fact table access, we assume simple aggregation 
queries that do not require joins to the dimension tables. All queries within a single 

 

Fig. 2. Sample star schema. 
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experiment are of the same type (e.g., QDIVISION, aggregating data from one product 
division) but with random parameters (e.g., the specific division selected). However, 
different simulation runs will use the same set of queries, facilitating a fair 
comparison of results. 

5.2 Scheduling Strategies 

Since the performance of our strategies will depend in part on the type of query being 
processed, we consider both disk-bound and CPU-bound workloads, as well as 
borderline cases that shift between categories. In our case, the selectivity of a query 
within the relevant fact table fragments determines the ratio of CPU to I/O load. Our 
CPU-intensive queries each have a 100% selectivity within the fragments they access. 
I/O-bound loads, in contrast, select only some of the tuples in each fragment, causing 
less CPU work per I/O, and use bitmap indices, which are also cheap to process on 
the CPU side. 

All queries are tested for our four scheduling strategies under varying degrees of 
skew on the two fragmentation dimensions, TIME and PRODUCT, using the same 
degree of skew to both dimensions. Under the zipf-like distributions we employ, the 
skew parameter may range from 0 (no skew) to values around 1 (heavy skew). 

Disk-Bound Queries. In Figure 3, we show simulation results for two disk-bound 
queries, QCHANNEL and QSTORE. With our greedy allocation scheme, balanced disk 
partitions can be processed in constant time regardless of skew under a proper 
scheduling method. PARTITION achieves the best response times as would be expected 
for disk-bound workloads, keeping disks optimally loaded at nearly 100%. It also 
minimizes the inevitable disk contention caused by concurrent access to fact table and 
bitmap fragments. INTEGRATED performs equally well as PARTITION for the QCHANNEL 

query with only 1% deviation; it is only slightly worse on QSTORE with at most 15% 
response time increase. Apparently, the conflict analysis it performs is similarly 
effective to avoid disk contention as a strict separation of partitions, despite the 
additional size criterion. 

 

Fig. 3. Disk-bound queries 
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Fig. 4.  CPU-bound queries 

The other strategies are less successful here as they do not respect disk allocation 
to the same degree. The worst case is LOGICAL, which processes fragments in their 
logical order that is unrelated to their disk location under the greedy scheme, more 
than doubling the response time. SIZE mimics partitionwise scheduling to some extent 
because it processes fragments in the same size-based order in which they were 
allocated. Still, it cannot contend with the near-optimal PARTITION, with differences of 
up to 35%. 

CPU-Bound Queries. The CPU-bound queries QDIVISION and QQUARTER perform a 
selection on the skewed fragmentation dimensions PRODUCT and TIME, respectively, 
and thus respond markedly to skew effects (Figure 4). Although partition sizes are 
well balanced for the database as a whole, this is not the case for single product 
divisions or calendar quarters and the largest fragment within such a subset can 
dominate the query's response time. This can be corrected by data allocation only to a 
limited extent. 

The best results are achieved by SIZE as it balances the sheer amount of data 
processed per node, which is essential for CPU-bound queries. PARTITION performs 
worst (up to 58% for QDIVISION and 46% for QQUARTER) because it does not permit more 
than one processor to access the same disk even under low disk utilization. The other 
two strategies achieve good success; INTEGRATED approximates SIZE most closely with 
only 10% deviation, demonstrating good performance for CPU-bound workloads as 
well. 

Increasing skew changes the ranking in favor of PARTITION. With QQUARTER, 
PARTITION becomes by far the best strategy for extreme skew, now offsetting SIZE by 
46%. This is because the skewed fragment sizes turn the query locally disk-bound, 
i.e., a single disk becomes the bottleneck even though the query as a whole is CPU-
bound! 

This situation is analyzed in detail in Figure 5, which shows the response times of 
queries referencing the least densely and most densely populated quarters for each 
given degree of skew. The smaller queries remain CPU-bound for the entire range 
because density skew is less severe toward the lower end of our zipf-like distribution 
curve. For large quarters, however, both the size of the respective quarter and the 
fragment imbalance increase with growing skew. It is only these queries that shift 
from CPU-bound to locally disk-bound so that PARTITION wins out by 43% for high 
skew. 
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Fig. 5. Shift from CPU-bound to disk-bound 

Discussion. The results show that no single scheduling scheme is optimal for all 
situations. For (globally or locally) disk-bound queries, minimal response times are 
normally achieved under the PARTITION heuristic, whereas CPU-bound workloads are 
best processed using SIZE. The choice of the truly best strategy then depends on the 
‘boundness’ of a query, as determined by its selectivity and index utilization, the 
degree of skew, and a number of other parameters. A cost-based query optimizer of a 
PDBS might make a sensible decision by comparing the total (estimated) processing 
cost on the CPU and disk side, respectively, although locally disk-bound queries may 
be hard to detect. 

On the other hand, our dynamic scheduling scheme based on the INTEGRATED 

heuristic was able to adapt to different types of queries and performed near-optimally 
in most experiments. Using this strategy thus promises to be more robust for complex 
workloads and avoids the need to select among different scheduling approaches based 
on error-prone cost estimates. Especially in a multi-user environment, we expect such 
an adaptive method to react more gracefully to the inevitable fluctuations in system 
load. In contrast, the correct selection between PARTITION and SIZE will be very 
difficult against a continually changing background load alternating between CPU-
bound and disk-bound states. This aspect, however, needs to be investigated in future 
studies. 

5.3 Speed-Up Behavior 

In this simulation series, we test the scalability of our query processing and 
scheduling strategies with varying numbers of disks and processors. For each 
configuration, we run the queries QQUARTER and QRETAILERMONTH under a medium skew 
degree of 0.4 and against skewless data, respectively. Results are shown in Figure 6. 

Since QQUARTER is CPU-bound, we test its speed-up in relation to the number of 
processors, using SIZE as the scheduling strategy according to the previous results. 
Against skewless data, QQUARTER shows linear speed-up until the disks of the system 
become bottlenecks and speed-up with respect to processors is no longer achievable. 
With skew (dashed graph), the curves decline earlier because response times are 
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dominated by the work on the largest fragment, causing locally disk-bound 
processing. 

To test the speed-up for disk-bound queries, we use QRETAILERMONTH which is more 
responsive to skew than QCHANNEL and QSTORE used above. QRETAILERMONTH is scheduled 
using PARTITION, and speed-up is evaluated in relation to the number of disks. 

As in the the previous case, speed-up is near-linear with skewless data but limited 
by the largest fragment in case of skew. The effect is even stronger this time as skew 
is more pronounced on lower hierarchy levels (months) than on higher ones 
(quarters). 

For both types of workload, the INTEGRATED policy we proposed achieved 
equivalent results to the above (not shown here). Overall, our load balancing method 
scales very well for all relevant scheduling policies; limitations due to skewed 
fragment sizes are not caused by scheduling and must be treated at the time of data 
allocation. 

6   Conclusions 

In this paper, we have investigated load balancing strategies for the parallel 
processing of star schema fact tables with associated bitmap indices. We found that 
simple scheduling heuristics like PARTITION and SIZE can be very effective. But the 
selection of the appropriate method depends on whether a query is disk-bound or 
CPU-bound, which can be difficult to determine especially under skew conditions. As 
an alternative, we proposed a more complex, dynamically ordered scheduling 
approach (INTEGRATED) that yields only slightly worse performance but naturally 
adapts to different query types. 

While we assumed a Shared Disk environment, most of the results can be 
transferred to other architectures, in particular, Shared Everything. Shared Nothing 
systems are restricted to strategies similar to PARTITION, which we found to be non-
optimal. This demonstrates the benefits of Shared Disk and justifies our architectural 
choice. The extension of our findings to multi-user mode is not trivial. As the simple 
heuristics PARTITION and SIZE may no longer be sufficient, we expect our integrated 

 

Fig. 6. Speed-up behavior of queries QQUARTER and QRETAILERMONTH 
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strategy to gain importance. Verifying this assumption will be a focus of our future 
work. 
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